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Abstract: This article presents a Geographic Information
System (GIS) assessment of Landslide Susceptibility Zona-
tion (LSZ) in North Macedonia. Because of the weak land-
slide inventory, statistical method (frequency ratio) is
combined with Analytical Hierarchy Process (AHP). In
this study, lithology, slope, plan curvature, precipitations,
land cover, distance fromstreams, anddistance fromroads
were selected as precondition factors for landslide occur-
rence. There are two advantages of the approach used. The
first is the possibility of comparing of the results and cross-
validation between the statistical and expert based meth-
odswith an indication of the advantages anddrawbacks of
each of them. The second is the possibility of better weight-
ing of precondition factors for landslide occurrence,which
can be useful in cases of weak landslide inventory. The fi-
nal result shows that in the case of weak landslide inven-
tory, LSZmap createdwith the combination of bothmodels
provide better overall results than each model separately.

Keywords: landslides, LSZ, LSI, AHP, geo-environmental
factors, North Macedonia

1 Introduction

The territory of the Republic of NorthMacedonia (hereafter
North Macedonia) is highly exposed to various natural
hazards, including landslides. Extensive areas are covered
with erodible crystalline rocks (gneiss, mica schists, and
other schists), sandstones, lacustrine and fluvial deposits.
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For the topography (Figure 1) steep slopes are characteris-
tic (the average slope is 15.5∘). Climate is semi-arid (annual
precipitation of 500ś700mm) and the vegetation is sparse.
In addition to natural factors, human impact significantly
contributes to the activation of landslides. Landslides are
especially common on the valley sides, where Neogene la-
custrine sands and sandstones are superimposed over in-
clined less permeable layers of clays and schists [1].

To reduce the risk from landslides, identifying, and
mapping the landslides-prone area in the form of Land-
slide Susceptibility Zonation (LSZ) is very important [2ś7].
In addition to the high frequency of landslides and yearly
damage of up to several million euros, in North Macedo-
nia only a few small-scale studies of LSZ weremade [8ś12].
Thus, this is the first attempt to prepare a LSZmap on a na-
tional scale. In addition, the results will help in the further
development of the models and help speed up the compi-
lation of a nationwide landslide inventory map.

Landslide researchers have elaborated many land-
slide susceptibility (LS) models [13, 14]. They are gener-
ally divided into qualitative or heuristicmethods (partially
subjective and essentially basedon expert knowledge) and
quantitative methods (based on numerical expressions
of the relations between precondition (triggering) factors
for landslide occurrence and landslide activity). In both
the results are prone to uncertainties due to possible er-
rors related to the pre-processing of triggering factors or
model limitations [15]. Considering these the combination
of both approaches in the form of hybrid methods is often
used. These is also the case, when landslide dataset is not
sufficient for a reliable statistical analysis [16]. Thus, the
combined approach using data-driven Landslide Suscep-
tibility Index (LSI) and an expert-based semi-quantitative
(AHP) method is applied in this study. Instead of using ex-
perts’ opinion only for the weighting of precondition fac-
tors for landslide occurrence in the AHP method, the bi-
variate analysis method (calculating the landslide density
of each class) is additionally used to analyse the weights.
In addition, relationship and dependence statistics are
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Figure 1: Geographic location and relief map of North Macedonia.

used to analyse the correlation coefficients of triggering
factors.

2 Data and Methods

One of the basic requirements for accurate LS modelling
is to have a sufficient spatial dataset (inventory) that repre-
sents former and recent landslides. This is themost critical
information layer for the carrying out quantitative statisti-
cal analysis, and also for the validating of the model’s ac-
curacy [17, 18]. Unfortunately, in North Macedonia there is
no such inventory yet (there are only partial records and
data at some institutions). For this reason, we collected
from various sources (e.g., geological maps, scientific pa-
pers and reports, media) as many landslide records as pos-
sible. The final landslide dataset consists of 302 landslides,
which is rather a small number considering the study area.
However, recently Chalkais et al. [18] prepared aGIS-based
LS model of Peloponnese (in Greece) with a similar land-
slide density and acceptable accuracy (76%).

Most of the recorded landslides in our database are
of the rotational and translational type, then rock-falls
and earth-falls, and rarely the complex type. Some of the
recorded landslides were new, and some were reactivated.
Because of the small inventory, the landslide dataset was
randomly split into two equal groups: a training dataset
and a validation dataset. The training dataset was used
to carry out the statistical analysis, and the validation
dataset was used to verify the results.

Proper identification of precondition (triggering) fac-
tors for landslide occurrence is the basis for the Landslide
Susceptibility Assessment (LSA). According to Crozier [3],
depending on the characteristics of the study area, at least
three factors must to be included in GIS analysis, includ-
ing topography, lithology, and land use. Donati and Tur-
rini [19] indicate that the most common precondition fac-
tors are: lithological units, tectonic features, slope angle,
proximity to (road and drainage) networks, land cover,
and rainfall distribution. At Landslide Susceptibility Map-
ping (LSM) at the national scale in Austria, the authors
used six contributing factors [20]: elevation, slope angle,
aspects, land cover, lithology, and Topographic Position
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Index (TPI). The same number of factors (six) is used in
the LSM at the national level in Slovenia [21] including:
lithology, slope angle, surface curvature, land use, maxi-
mum 24-hour precipitation, and aspect. In a similar study
at the national level in Slovenia [22] the following rele-
vant precondition factors for landslide occurrence were
identified: lithology, slope angle, land use, surface curva-
ture, distance to structural elements, and aspect. In the re-
gional GIS-based LSM of the Peloponnese, the authors se-
lected seven factors as a most relevant: elevation, slope,
aspect, mean annual precipitation, peak ground accelera-
tion, lithology, and land cover [18].

In this study, eight precondition factors were taken
into account considering the nature of the study area, the
scale of the analysis, and data availability. These are topo-
graphic factors (slope, aspect, and plan curvature), lithol-
ogy, precipitation, land cover, distance from streams, and
distance from roads. The data for slope, aspect, and curva-
ture were calculated from a 15 m Digital Elevation Model
(DEM) of the entire country using SAGA GIS software. The
15 m DEM was prepared with filtering and resampling of
the 5 m TIN-like DEM of the State Agency of Cadaster, re-
sulting in a natural (non-triangular) appearance. Based on
the distribution and structure of slopes in North Macedo-
nia [1], slope values are classified into five classes (0ś5∘,
5ś10∘, 10ś30∘, 30ś45∘, and more than 45∘). In the analy-
sis, four main aspects were considered (N, E, S, W), and
the curvature is classified into five classes: highly convex,
convex, flat, concave, and highly concave. The lithology
map was prepared from a 1:100,000 digitalized and raster-
ized geological map of the country with ninety-three litho-
logical units: from Precambrian gneiss and mica schist
through Mesozoic limestone to Cenozoic sediments of ma-
rine, lacustrine, and riverine origin. These lithological
units are generalized according to engineering-geological
features and clustered into five classes, from clastic sedi-
ments to very resistant rocks (marble, limestone, quartzite,
etc.). The land cover layer was prepared according to the
CORINE (CLC2012) classification hierarchy (level 1). The
precipitation map of the country (average sums for the pe-
riod from 1986 to 2015) was prepared from the gauge data
and vertical gradients [23]. Distances from the streams
were derived using the topographic river network (25K)
of the State Agency of Cadaster, and the distance from
roads was prepared from a freely available Open Street
Map (OSM) road network in vector (.shp) format. Follow-
ing themethodology, five buffer zones for roads (with 50m
intervals) and streams (with 100 m intervals), which were
considered most influential for landslide triggering [4ś7],
were created and rasterized (Figure 2). All the layers were
then converted to raster grids with 15 × 15 m cells.

The next step was the selection of a suitable LSA
method.One of the principal assumptions employed in the
LSA is that the triggering factors for landslide occurrence
in the future will stay the same as they were in the recent
past. In general, LSA can be elaborated by means of quali-
tative and quantitative methods, or their combination [24].
Keeping inmind the large study area and aweak landslide
inventory, a combination of frequency ratio (Fr) and Ana-
lytical Hierarchy Process (AHP) was used.

The frequency ratio method, which is among the best
for larger areas [13ś17], is based on the relationship be-
tween the spatial distribution of landslides and individual
triggering factor [25]. Thismethod calculates the Landslide
Susceptibility Index (LSI) for each category i of all selected
factors j (e.g., slope, lithology, land cover, etc.) selected for
the study with the following equation [26]:

LSI ij = ln

(︂

Nij

Aij
/
NT

AT

)︂

(1)

where Nij is the number of landslides in category j of fac-
tor i, Aij is the area of this category, NT is the total number
of landslides, and AT is the total area under investigation.
Thus, LSI represents the relative susceptibility to landslide
occurrence. Thefinal LSImap is calculatedby summingup
the values of all factors; that is by summing the values for
each individual grid cell of all six digital layers. Next, we
classified these continuous values into five classes (very
low, low, medium, high, and very high LS zones). There
is no widely accepted agreement concerning the best ap-
proach for classifying LS values. Natural breaks and quan-
tile classification are the most frequently used [18, 24ś26].
Both classifications were performed using SAGA GIS soft-
ware, and their results are compared to ROC curve valida-
tion.

AHP is a semi-qualitative method that involves a
matrix-based pairwise comparison of theweight (contribu-
tion) of various factors for landsliding. It was developed by
Saaty [27] and has gained widespread attention [28]. The
factor weight for each precondition factor is usually deter-
mined by an expert-based pairwise comparison matrix as
described by Saaty andVargas [29]. In our case, thismatrix
is compiled by the combination opinions of two experts,
the field experience of the authors, and the results of the
frequency ratio rankings. As with the LSI approach, in the
AHP approach the final map is calculated by summing up
the values of individual grid cell of all digital layers (see
Figure 2). The same course of action is used for reclassify-
ing the AHP values into different LS zones andmap valida-
tion.
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Figure 2: Raster layers of selected landslide-triggering factors: 1) slope, 2) lithology, 3) land cover, 4) planar curvature, 5) road network
buffers, and 6) river network buffers. Black dots represent landslides from the landslide inventory.
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3 Results

If an individual factor class correlates highlywith the land-
slides in the dataset, then the area associated with this
class will have a high positive LSI value (Table 1). A neg-
ative LSI value for a specific class is an indicator of low
landslide density for this class [13, 20ś22]. The results in
Table 1 show that the highest positive LSI value has a 0
to 50 m road buffer. However, the reason for this may be
the nature of the landslide dataset because a significant
number of landslides and rockfalls in our inventory are on
the roadside slopes. On the other hand, the relative ratio
of significance (in the form of ranking in the last column)
between the classes for individual factor (of layer) corre-
sponds well to our expectations from field analysis.

However, for better evaluation of the importance of in-
dividual factor, the standard deviation, range, maximum
value, and sums of negative and positive values were cal-
culated (see Table 2). According to the values in Table 2,
apart from the road factor (which has a medium range of
extreme LSI values), the most important factors are slope,
lithology, and land cover.

All factors except aspect have a value range greater
than 0.8 and an LSImax value greater than 0.25. In fact,
aspects have a very low value range from the maximum
positive to the maximum negative value of only 0.27. This
means they have an almost insignificant influence on LS.
For these reasons, aspect is excluded from further LSM.
However, some studies disagree regarding the correlation
between aspect and landslides [18, 30, 31]. With regard to
precipitation, the corresponding LSI values showan incon-
sistent pattern, with the highest index for the class of 600
to 800 mm and a sharp drop for the class above 800 mm.
We assume that this is related to a weak landslide inven-
tory at the higher mountain elevations, where the mean
annual precipitation exceeds 800mm.Thus, there are only
twenty-six landslides above 1,500 m in the inventory, but
a much larger number is to be expected. Because of this
uncertainty, precipitation is excluded from the frequency
ratiomodelling, at least until a better inventory (especially
with elevation) is prepared.

Nevertheless, the ratios between the factors (except
aspect) were used as indicators (together with the expert
opinions) for the AHP method.

To obtain factor weights in the AHP, individual factor
is rated against every other factor by assigning a relative
dominant value between 1 and 9 to the intersecting cell.
When the factor on the vertical axis ismore important than
the factor on the horizontal axis, this value varies between
1 (equally important) and 9 (extremely important, or domi-

nant). Conversely, the value varies between the reciprocals
1/2 (0.5) and 1/9 (0.11). Because we used seven parameters,
the comparison matrix has forty-nine boxes (Table 3). The
matrix-based weight of the factors, as well as the consis-
tency ratio (CR) of thematrix, was calculatedwith the AHP
Excel template [32].

Saaty [27] states that the CRmust be less than 0.1 to ac-
cept the computed weights, otherwise the ratings should
be re-evaluated. In Table 3 the CR is 0.02, indicating the
acceptable consistency of the comparison matrix.

Furthermore, the weight of each factor is multiplied
by its rankings R (based on the previous LSI values of fre-
quency ratio and expert rankings [33]). The results are pre-
sented in Table 4.

The final maps of quantitative LSI and semi-
qualitative AHP approaches are presented in Figures 3
and 4. At first glance they are similar, but some consider-
able differences are also present. Namely, in the LSI map
(Figure 3), very high susceptibility areas are mostly near
the roads in hazardous terrains (steep slope, unstable
rocks, and weak vegetation). This is because of the high
LSI value for the 0 to 50 m road buffer class is calculated
from the training landslide dataset, which also influences
the resulting map.

On the other hand, the AHP-based map (Figure 4) has
a more visible dominance of the high susceptibility zone
with increasing slope, rock erodibility, weak vegetation,
and higher precipitations.

Because of the advantages of both approaches and as-
suming that some of the disadvantages of the both can be
avoided, the next step overlays both raster grids. With this
procedure, the mean sum of LSI and AHP values for indi-
vidual cell was calculated ((LSI+AHP)/2) and the output
grid was classified for quantiles and natural breaks. The
final (combined) map is presented in Figure 5.

In order to choose thefinal LSZmap, a cross-validation
technique was used to compare known landslide location
data and the LSZ map. This is produced with analytical
tables and the Receiver Operating Characteristics (ROC)
curve.

In the case of LSI method both classifications (quan-
tiles and natural breaks) show good accuracy of the imple-
mented frequency ratio model because more than 60% of
the landslides in the validation subset are in the classes
of high and very high LS. However, quantile classification
is somewhat better as only nine (5.9%) landslides fall into
the classes of low and very low susceptibility, versus thirty
(19.2%) landslides in the natural breaks classification (Ta-
ble 5). Moreover, as many as 122 landslides (80.8%) fall
into the classes of high and very high susceptibility, versus
only ninety-five landslides (62.3%) in the natural breaks
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Table 1: Landslide number (n), landslide density (in %), area, LSI, and ranking (5ś1) for individual factor class.

Factor/class Landslide n Landslide % Area km2 Area % LSI Rank
Slope

0ś5 5 3.3 5,831.5 22.9 −1.93 1

5ś10 13 8.6 3,517.4 13.8 −0.47 2

10ś30 110 72.8 12,689.7 49.9 0.38 5

30ś45 21 13.9 3,136.6 12.3 0.12 3

> 45 2 1.3 274.7 1.1 0.20 4

Lithology

Limestone, marble 3 2.0 3,002.0 11.8 −1.78 1

Granite, andesite, chert 5 3.3 1,334.0 5.2 −0.46 2

Gneiss, flysch 32 21.2 5,800.3 22.8 −0.07 3

Schists, chalk 42 27.8 7,280.9 28.6 −0.03 4

Clastic sediments, tuff 69 45.7 8,032.7 31.6 0.37 5

Land cover

Water bodies 0 0.0 484.4 1.9 /

Dense forest 1 0.7 591.9 2.3 −1.26 2

Transitional forest 34 22.5 7,491.8 29.4 −0.27 3

Cultivated/urban area 25 16.6 5,198.5 20.4 −0.21 4

Pastures, bare rock 91 60.3 11,683.4 45.9 0.27 5

Curvature

Highly convex 21 13.9 5,530.3 21.7 −0.45 1

Convex 32 21.2 5,804.8 22.8 −0.07 2

Flat 28 18.5 4,688.7 18.4 0.01 3

Concave 42 27.8 4,895.4 19.2 0.37 5

Highly concave 28 18.5 4,530.8 17.8 0.04 4

Stream (buffer)

0ś100 m 74 49.0 8,829.4 34.7 0.35 5

100ś200 m 41 27.2 6,709.0 26.4 0.03 4

200ś300 m 15 9.9 3,570.3 14.0 −0.35 2

300ś400 m 11 7.3 2,293.6 9.0 −0.21 3

> 400 m 10 6.6 4,047.7 15.9 −0.88 1

Road (buffer)

0ś50 m 44 29.1 1,801.3 7.1 1.42 5

50ś100 m 14 9.3 1,084.7 4.3 0.78 4

100ś150 m 16 10.6 1,313.6 5.2 0.72 3

150ś200 m 8 5.3 1,812.3 7.1 −0.30 2

> 200 m 69 45.7 19,438.2 76.4 −0.51 1

Precipitation

400ś500 mm 6 4.0 941.7 3.7 0.08 2

500ś600 mm 35 23.2 5,140.9 20.2 0.14 3

600ś700 mm 40 26.5 5,471.8 21.5 0.21 4

700ś800 mm 47 31.1 5,980.8 23.5 0.28 5

800ś1200 mm 23 15.2 7,940.4 31.2 −0.72 1

Aspect

N (0ś45∘; 315ś360∘) 29 19.0 5,599.0 22.0 −0.15 3

E (45ś135∘) 46 30.1 6,947.9 27.3 0.10 4

S (135ś225∘) 42 27.5 6,260.7 24.6 0.11 5

W (225ś315∘) 34 22.2 6,642.5 26.1 −0.16 2
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Table 2: Frequency ratio values (LSI) for individual factor showing its importance as a precondition for landslide occurrence.

Factor LSImin LSImax LSIrange LSIstdv LSIneg.val LSIpos.val
Slope −1.93 0.38 2.31 0.95 −2.41 0.70

Lithology −1.78 0.37 2.15 0.83 −2.34 0.37

Land cover −1.26 0.27 1.53 0.64 −1.74 0.27

Road buffer −0.51 1.42 1.93 0.80 −0.81 2.91

Stream buffer −0.88 0.35 1.22 0.45 −1.43 0.37

Precipitations −0.72 0.28 1.00 0.42 −0.72 0.71

Curvature −0.45 0.37 0.82 0.29 −0.52 0.42

Aspect −0.16 0.11 0.27 0.13 −0.31 0.21

Table 3: AHP comparison matrix for selected factors.

Factor Slope Lithology Land cover Precipitation Roads Curvature Streams Weight

Slope 1 2 3 4 5 5 6 0.349

Lithology 0.50 1 2 3 5 5 5 0.248

Land cover 0.33 1 1 2 3 3 4 0.152

Precipitation 0.25 0.33 0.50 1 2 3 3 0.103

Roads 0.20 0.20 0.33 0.50 1 1 2 0.058

Curvature 0.20 0.20 0.33 0.33 1 1 1 0.049

Streams 0.17 0.20 0.25 0.33 0.50 1 1 0.042

Table 4:Weight values of factors used for the AHP model.

Factor Value Factor Value

Slopes w = 0.349 Precipitation w = 0.103

0ś5∘ 0.35 400ś500 mm 0.10

5ś10∘ 0.70 500ś600 mm 0.21

10ś30∘ 1.75 600ś700 mm 0.31

30ś45∘ 1.05 700ś800 mm 0.41

> 45∘ 1.40 800ś1200 mm 0.52

Lithology w = 0.248 Roads w = 0.058

Clastic sediments, tuff 1.24 0ś50 m 0.29

Schists, chalk 0.99 > 50 m 0

Gneiss, flysch 0.74 Curvature w = 0.049

Granite, andesite, chert 0.50 Concave 0.25

Limestone, marble 0.25 Highly concave 0.20

Land cover w = 0.152 Flat 0.15

Pastures, bare rock 0.61 Convex 0.10

Cultivated/urban area 0.46 Highly convex 0.05

Transitional forest 0.30 Streams w = 0.042

Dense forest 0.15 0ś100 m 0.21

Water bodies 0 > 100 m 0
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Figure 3: LSI map of North Macedonia (quantile classification).

classification, covering 39.5% and 18.9% of the total area

of North Macedonia respectively. However, the number of

landslides (in%) comparedwith the area (in%) of the high

and very high susceptibility classes show a somewhat bet-

ter ratio for natural breaks, versus quantile classification

(i.e., 6.4 and 4.1 respectively).

The analyses for the AHP approach show a somewhat

different situation. Thus, according to the quantile classifi-

cation of the AHPmodel, 72.2% or 109 out of 151 landslides
in the validation subset, belongs to the high and very high
LS classes covering 40.1% of the total area of North Mace-
donia (Table 5). The natural breaks classification shows
the same, with 72.9% of the landslides located in the high
and very high LS classes, which in turn cover 40.1% of the
country. Moreover, the number of landslides (in %) com-
pared with the area (in %) of the high and very high sus-
ceptibility classes show a somewhat better ratio for natu-

ral breaks, versus quantile classification (i.e., 4.3 and 3.6
respectively). On the other hand, the same ratio for the ar-
eas with low and very low susceptibility classes is 0.76 and
0.6, respectively, which favors the quantile classification
(lower value). Given that the ratio tends to be as close to 0
for the very low LS class, and that it increases well above
1 for the very high LS class, then natural breaks classifica-
tion shows slightly better overall accuracy. Thus, accord-
ing to the AHP map prepared with the natural breaks clas-
sification, 88.8% of the validated landslide fall within the
very high, high, and moderate LS zones.

The third approach as a combination (averaging) of
LSI and AHP sums of values retains some advantages of
both models, which means that areas with high to very
high and low to very low LS rates tend to be more distinc-
tive (depending on the classification). Thus, with the im-
plemented natural breaks scheme, there are 121 landslides
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Figure 4: AHP-based landslide susceptibility map of North Macedonia (natural breaks classification).

(80.2%) in the classes of very high and high LS, which in
turn cover only 33.4%of the country’s area. Because of this,
the ratio of the number of landslides (in %) and the area
of class (in %) is 3.01 for the very high LS zone, which is
the best result, whereas together with the high susceptibil-
ity zone it is 4.65 (only LSI is slightly better, at 6.44). More-
over, the ratio for the very low and low susceptibility zones
is only 0.11 and 0.22 (or 0.33 in total), which is among the
lowest values and indicates a small number of landslides
in these zones (only 10 or 6.6%) compared to the total area
(40.7%) (Table 5).

In order to estimate the overall performance of LSmod-
els in the study area, validation of the susceptibility maps
was checked using the ROC curve, and the Area Under
Curve (AUC) [34]. For better assessment of the model, ex-
cept the spatially random half of the recorded (151) true-
positive landslides (value 1) in the validation dataset, 450

false-positive landslides (value 0) were carefully selected.
TheROC curve andAUC in this studywere calculatedusing
SPSS-statistical software and are presented in Figure 6. It
is interesting that all three models (the LSI, AHP, and com-
bined LSI+AHP-based model) have almost the same AUC
with a very slight advantage of LSI with AUC at 0.790 vs.
0.709 vs. 0.784, respectively.

However, when the classificationmethod is examined,
natural breaks perform best in the combined LSI+AHP
model (0.784), after which are LSI (0.781) and AHP
(0.767). In the case of quantile classification, LSI performs
best (0.783) compared to the AHP model and combined
(LSI+AHP) model (0.696 vs. 0.766). All methods (LSI, AHP,
and LSI+AHP) show nearly 78% agreement with landslide
locations of the validation dataset, which is a reasonable
result on this scale [16ś18].
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Figure 5: Combination of LSI (frequency ratio) and AHP-based landslide susceptibility map of North Macedonia (natural breaks classifica-
tion).

Based on both LSZ models, most of the landslides (in

the test and validation dataset) in North Macedonia occur

on moderate slopes (10ś30∘) and on terrain composed of

clastic sediments (Neogene lacustrine deposits and collu-

vium sediments) and schists (mica schists, green schists,

etc.). In addition, a significant number of landslides oc-

cur on terrainswithweakvegetation (pastures, grasslands,

and bare and erodible rocks), and also on the cultivated

land on steep terrains and in urban areas. A statistically

substantial number of landslides are located at a distance

up to 100 to 200 m from the streams and up to 50 m from
the roads, mostly as a large roadside rockfalls. Regionally,
most of the area with high and very high LS in North Mace-
donia extends over hilly terrain andmountain foothills, on
the sides of valley bottoms in gorges, andon the sides of de-
pressions and basins that are usually covered by Neogene

lacustrine sediments (see Figures 3ś5). Thus, according to
the maps, the areas in the central part of the country (the
Tikveš Depression), the north-east part of the hillslopes of
Mount Osogovo and Mount Bilino, and the upper Bregal-
nica catchment (Figure 7), and the foothills of Mount Šara
are among the most susceptible to landslides.

In contrast, larger plains and terrains composed of
solid rock (limestone, marble, andesite, etc.), especially
in the western part, shows low LS. However, field studies
have revealed that even the occurrence of (smaller) land-
slides is not totally excluded near channels, roads, con-
structions, and other sites with substantial anthropogenic
activities [1, 33].
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Figure 6: ROC curve and AUC for the LSI (upper left), AHP (upper right), and combined LSI+AHP-based LS maps: with (lower left) and without
precipitation as a precondition factor (lower right).

4 Discussion

Large scale mapping of landslides-prone areas is based

on the data obtained by extensive and expensive geotech-

nical research. Such detailed maps contain all the infor-

mation needed for spatial planning. However, such de-

tailed geotechnical investigations are not feasible (due to

expenses and time needed) for the country scale. Thus, for

this scale an alternative and less time consuming solution

for LSZ is needed [13ś18, 35ś37].

Many models for LSZ were elaborated using e.g., mul-

tivariate statistics, binary statistics, the AHP, neutral net-

works, etc. All have some advantages and disadvantages

in regards to the reliability of data sources, pre-processing

of precondition factors, weighting of precondition factors,
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Figure 7: Part of the: A) LSI, B) AHP, and C) combined LSI+AHP LS maps in the Lake Kalimanci area (indicated with a red square on the
country map; upper left).

level of subjectivity, etc. The article focuses on two such ap-

proaches, i.e., on a statistical (LSI) method and an expert-

based (AHP) method. Not to use experts’ opinions to build

a weighting matrix for precondition factors in the AHP, a

bivariate analysis method (considering the landslide den-

sity of each class)was used to analyze theweights. Further-

more, relationship and dependence statistics were used

to analyze the correlation coefficients of precondition fac-

tors.

For this study, eight precondition factors for land-

slide occurrence (slope, lithology, land cover, precipita-

tion, plan curvature, aspect, distance from streams, and

distance from roads) were selected, rasterized, and harmo-

nized to a cell size of 15 m × 15 m. Then, the frequency ra-

tio of landslide events in individual factor class was calcu-

lated in form of LSI values. These values were considered

as the basis for the relative rankings of factor classes (con-

firmed or slightly corrected with expert rankings), which

was then used in the AHP weighting matrix. However, be-

cause of the weak frequency ratio values, aspect is ex-

cluded from the modelling, whereas precipitation is con-

sidered only in the AHP approach (because of inconsis-

tent ratio with precipitation increase). Thus, the final LSI

and AHP models are the sums of grid cell values for each

of the remaining six factors or layers. With further quan-

tile and natural breaks classification, five classes of LSZ

are defined and represented in the form of a LS map. Even

with a very limited landslide inventory, statistically, there

is about 78% agreement (AUC value) between prepared LS

maps and 151 landslide locations (true positive) from the

validation dataset. It is interesting that both approaches,

LSI and AHP, show a very similar AUC in slight favor of

LSI and quantile classification. Combined together (with

values averaged), very consistent results are produced, at
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least with respect to our previous field research [1, 8ś10]

and knowledge. These results show that a significant area

of the country (18.9% by the LSI model, 33.4% by the

LSI+AHP model, and 40.1% by the AHP model) falls into

high and very high LS zones, which are verified with the

landslide dataset.

The approach used has several limitations. As the

modelling is based on national-scale datasets, the results

are unsuitable for a reliable site-oriented spatial analysis,

for which a much more detailed landslide inventory as

well as precondition factors inbetter resolutionareneeded.

E.g., for this study the geology data are from the geologi-

cal (lithological) map with a spatial resolution of approxi-

mately 80 to 100 m and the DEM used has a spatial resolu-

tion of 15 m. Furthermore, the resulting LS maps present

only the predicted spatial distribution of landslides and

not also the temporal probability of landslide occurrence

(for which the exact data about the precipitation patterns

and highest intensities must be considered). Further lim-

itation is a very complex relationships between the pre-

condition (triggering) factors. Thus, approach used can

only be applied as a first step of LS assessment (accurate

with mentioned limitations only for national scale). The

approach is simple andmakes ameaningful use of limited

datasets, as shown in some other studies [38].

To improve the approach some points must be consid-

ered, e.g. a significant improvement of the landslide data

inventory and a spatial resolution of the precondition data

layers, an improvement of the factors weighting, the inclu-

sion of additional precondition factors (e.g., Topographic

Wetness Index (TWI), Stream Power Index (SPI), Normal

Difference Vegetation Index (NDVI), geological structural

elements, precipitation intensities, and the introduction of

alternative model validation approaches [36ś38].

5 Conclusion

The goal of LS maps is not merely to show hazardous ar-

eas, but to help in activities to reduce hazard. If applied

properly, suchmaps can help to avoid future damage. This

is especially important when climate change and its con-

sequences in terms of higher landslide activity are con-

sidered. In North Macedonia, as in some other European

countries [39, 40], national funds are primarily used for

the recovery of landslide damage, and much less for the

prevention (also for the elaboration of LS maps). In this

sense, approach used is the first attempt in North Mace-

donia at the country level, and it is hoped that further

improvements will be made soon. Overall, this approach

can produce reliable LS maps up to the regional scale and

provide useful information for the decision making in re-

gional planning.
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