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Preface

My thanks are due to the many people who have assisted in the work reported
here and in the preparation of this book. The work is incomplete and this
account of it rougher than it might be. Such virtues as it has owe much to
others; the faults are all mine.

My work leading to this book began when David Boulton and I attempted
to develop a method for intrinsic classification. Given data on a sample from
some population, we aimed to discover whether the population should be
considered to be a mixture of different types, classes or species of thing,
and, if so, how many classes were present, what each class looked like, and
which things in the sample belonged to which class. I saw the problem as
one of Bayesian inference, but with prior probability densities replaced by
discrete probabilities reflecting the precision to which the data would allow
parameters to be estimated. Boulton, however, proposed that a classification
of the sample was a way of briefly encoding the data: once each class was
described and each thing assigned to a class, the data for a thing would be
partially implied by the characteristics of its class, and hence require little
further description. After some weeks’ arguing our cases, we decided on the
maths for each approach, and soon discovered they gave essentially the same
results. Without Boulton’s insight, we may never have made the connection
between inference and brief encoding, which is the heart of this work.

Jon Patrick recognized in the classification work a possible means of
analysing the geometry of megalithic stone circles and began a PhD on the
problem. As it progressed, it became clear that the message-length tools used
in the classification method could be generalized to apply to many model-
selection and statistical inference problems, leading to our first attempts to
formalize the “Minimum Message Length” method. However, these attempts
seemed to be incomprehensible or repugnant to the referees of statistical
journals. Fortunately, Peter Freeman, a proper statistician who had looked
at the stone circle problem, saw some virtue in the approach and very kindly
spent a year’s sabbatical helping to frame the idea in acceptable statistical
terms, leading to the first publication of MML in a statistical journal [55].
Acceptance was probably assisted by the simultaneous publication of the
independent but related work of Jorma Rissanen [35].



vi Preface

Over the 35-year gestation of this book, I have benefited greatly from
the suggestions, comments and criticisms of many colleagues and anonymous
referees. The list includes Mike Georgeff, Peter Cheeseman, Ray Solomonoff,
Phil Dawid, David Hand, Paul Vitanyi, Alex Gammerman, Ross Quinlan,
Peter Tischer, Lloyd Allison, Trevor Dix, Kevin Korb, Murray Jorgenson,
Mike Dale, Charles Twardy, Jon Oliver, Rohan Baxter and especially David
Dowe, who has contributed significantly both to the range of applications of
MML and to the development of new approximations for message lengths
and MML estimators.

I must also thank Julie Austin, who typed and proofread the early chap-
ters, and Steve Gardner and Torsten Seeman, who helped convert the original
draft into LaTeX.

Finally, without the constant support of my wife Judith, I would never
have managed to complete the work.

Victoria, Australia, August 2004 C.S. Wallace

Disclaimer

The reader should be warned that I make no claim to be an authority on
statistical inference, information theory, inductive reasoning or the philos-
ophy of science. I have not read widely in any of these fields, so my dis-
cussions of others’ work should be treated with some suspicion. The ideas
in this book are those of a one-time physicist who drifted into computing
via work on computer hardware and arithmetic. In this uncertain progress
towards enlightenment, I encountered a succession of problems in analysing
and understanding data for which I could find no very satisfactory solution
in standard texts. Over the years, the MML approach was developed from
rather ad hoc beginnings, but the development was driven mostly by the chal-
lenge of new problems and informal argument with colleagues, rather than
by a proper study of existing work. This casual, indeed almost accidental,
evolution partly excuses my paucity of citations.

Editorial Notes

This book is essentially the manuscript left behind by Christopher Wallace
when he died on August 7, 2004.

We wanted to publish a book that was as close as possible to the original
manuscript. We have therefore made only minimal changes to the manuscript.
We have corrected typing and spelling errors. We have also attempted as best
as we could to include all the references that the author intended to include.
Where the author made it clear that he wanted to add citations, but did not
indicate to what they referred, we have included our best guesses of what
these references might be.
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and that of Jeanette Niehus in preparing the index. We are also indebted to
all the people who helped produce this manuscript after Chris’ death. In par-
ticular, we thank the following people who assisted us in proofreading the
final version of this book: Lloyd Allison, David Dowe, Graham Farr, Steven
Gardner, Les Goldschlager, Kevin Korb, Peter Tischer, Charles Twardy and
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1. Inductive Inference

1.1 Introduction

The best explanation of the facts is the shortest.
This is scarcely a new idea. In various forms, it has been proposed for

centuries, at least from Occam’s Razor on. Like many aphorisms, it seems to
express a notion which is generally accepted to be more or less true, but so
vague and imprecise, so subject to qualifications and exceptions, as to be use-
less as a rule in serious scientific enquiry. But, beginning around 1965, a small
number of workers in different parts of the world and in different disciplines
began to examine the consequences of taking the statement seriously and
giving it a precise, quantitative meaning. The results have been surprising.
At least three related but distinct lines of work have been developed, with
somewhat different aims and techniques. This book concentrates on just the
one line in which the author has worked, but two other important lines are
briefly surveyed in Chapter 10. The major claims of this line refer to several
fields.

– Bayesian Inference: The new method unifies model selection and estima-

tion, usually treated as separate exercises. In many cases, the results ob-
tained by treating both questions at once are superior to previous methods.
While closely related to existing Bayesian statistical theory, it provides a
sound basis for point estimation of parameters which, unlike “MAP” and
“mean of posterior” estimates, do not depend on how the assumed data
distribution is parameterized.

– Best Explanation of the Data: For the engineer, scientist or clinician who
needs to work with a single, well-defined “best guess” hypothesis, the new
result is more useable than methods which provide only “confidence inter-
vals” or posterior densities over a sometimes complex hypothesis space.

– Induction: The work gives a new insight into the nature of inductive
reasoning, i.e., reasoning from a body of specific facts and observations
to general theories. Hitherto, there has been no accepted logical basis for
inductive reasoning despite its great importance.

– Philosophy of Science: The discovery, refinement (and sometimes wholesale
replacement) of scientific theories is essentially inductive, and the philoso-
phy of science has been hampered by a lack of a logic for induction. The
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new insight is at least a step towards a theory of scientific enquiry which
is both normative and descriptive.

– Machine Learning: As a branch of Artificial Intelligence research, machine
learning is an attempt to automate the discovery of patterns in data, which
amounts to the formation of a theory about the data. One result of the
new work has been a sound criterion for assessing what has been “learnt”,
leading to successful new algorithms for machine learning applications.

These claims may seem rather dry, of interest only to the specialist statis-
tician, machine learning expert, or logician. There are much wider implica-
tions.

If the basis of the new approach is sound, it seems to lead to a clearer
understanding of the role and methods of science and the validity of its claim
to be a search for objective truth about the world. It also places scientific
enquiry in the same conceptual basket as the development of human lan-
guage, traditional techniques of navigation, tool-use, agriculture, hunting,
animal husbandry, and all the other skills our species has learnt. They all,
including science as we practice it, are based on inductive reasoning from
real-world observations to general theories about how the world behaves. In
the earliest developments of human culture, these “theories” were possibly
not consciously formulated: the emergence of vocal signals for danger, food,
enemy, friend, come-here, etc. and the earliest skills for finding food, more
likely came from many generations of gradual refinement of simple instinctive
actions, but in logical terms they are theories indeed: recognition of similarity
or more subtle regularity among many things or happenings. In this light,
science and engineering are not wholly revolutionary initiatives of recent cen-
turies, but just the gradual systemization of what humans have always done.

Viewing science as common sense used carefully, we find that the new
insight gives strong theoretical support for the belief that, given the same
physical environment, any sufficiently long-lived, large and motivated com-
munity of intelligent beings will eventually come to the same, or at least
equivalent, theories about the world, and use more or less equivalent lan-
guages to express them. This conclusion is not unqualified: the development
of theories about different aspects of the world may well proceed at differ-
ent rates and not follow the same paths of refinement and replacement in
different communities, but, if our account of induction is right, convergence
will occur. The idea that there may be different, correct, but incompatible
views of reality seems untenable. If two sets of belief are incompatible but
equally valid, it can only be that they are equally wrong. Note that we are not
asserting that scientific communities will inevitably converge to a finite set
of fundamental theories which then express everything which can be learnt.
Our account of inductive reasoning admits the possibility that complete and
ultimate “theories of everything” may never be reached in a finite time, and
perhaps may not even be expressible, as will be explained later.
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It has been said that to a man with a hammer, all problems look like
nails. Having perhaps acquired a new and shiny hammer in the shape of a
theory of induction, we will of course fall to temptation and swing it at a
couple of “nails” which it may miss. These attempts have been left to the
end of this work, but may have some value.

This book presents the basic theory of the new approach and shows in
numerous examples its application to problems in statistical inference and
automated inductive inference, which is usually called “learning” in the Ar-
tificial Intelligence literature. I emphasize statistical and machine-learning
applications because in these limited arenas, the new approach can be ap-
plied with sufficient rigour to allow its performance to be properly assessed. In
less well-understood and wider arenas, the approach can arguably be shown
to have some merit, but the arguments cannot at this stage be made com-
pelling and must involve some arm-waving. By contrast, statistical inference
is relatively simple and its language of probability well defined in operational
terms, even if it rests on somewhat ambiguous conceptual foundations. If our
approach cannot at least handle problems of some difficulty in this relatively
simple field, it cannot be credible. We therefore think it important to show
that it performs well in this field, and believe the examples given in this book
demonstrate that it does. Moreover, at least some of the examples seem to
show its performance to better that of previous general principles of statis-
tical inference, and we have so far found no problems where its performance
is notably inferior.

The formal arguments in-principle for the approach, as opposed to specific
demonstrations of performance on particular problems, are mainly confined
to statistical inference, but are extended to a less-restricted formal treatment
of inductive inference. The extensions are based on the theory of Universal
Turing Machines, which deals with the capabilities of digital computers, and
as far as is currently known, also covers the capabilities of all sufficiently
general reasoning systems, including human reasoning. The extensions draw
on the work of Turing, Solomonoff, Chaitin and others and provide formal
arguments for supposing that our approach is applicable to the inductive
inference of any theories whose implications are computable. According to
some theorists, this range includes all theories which can be explicitly com-
municated from one person to another and then applied by the recipient, but
we will not pursue that argument. We will, however, argue that the approach
provides the basis for a partial account of scientific inference which is both
normative and descriptive. It says how science ought to choose its theories,
and fairly well describes how it actually does, but has little to contribute to
an account of what drives science as a social activity, i.e., what determines
the direction of social investment in different areas of enquiry.

This first chapter continues with an informal introduction to inductive
inference and our approach to it. It outlines the more obvious problems as-
sociated with inductive inference and mentions a couple of well-known ap-
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proaches to these problems. The critique of classical approaches is neither
comprehensive nor fair.

To advance any further with the argument, the informal discussion must
be followed by a formal treatment which is inevitably quantitative and math-
ematical. We assume some familiarity with elementary statistics and simple
distributions such as the Normal and Binomial forms. Where less familiar
statistical models are used, the models will be briefly introduced and de-
scribed. The mathematics required is restricted to elementary calculus and
matrix algebra.

The chapter concludes with a brief introduction to probability and statis-
tics, essentially just to establish the notations and assumptions used later.
The nature of the inferences which can be made using conventional non-
Bayesian and Bayesian reasoning are outlined, and certain criticisms made.
We do not pretend this critique is comprehensive or impartial. It is intended
merely to clarify the distinctions between conventional statistical inference
and the method developed in this work. Not all of the workers who have con-
tributed to the new approach would necessarily agree with the critique, and
the results obtained with the new approach do not depend on its validity.
These sections might well be merely skimmed by readers with a statistical
background, but the criticisms may be of interest.

The second chapter introduces the elementary results of Information The-
ory and Turing Machine theory which will be needed in the sequel. These
results are needed to define the notion of the “length” of an explanation and
to sharpen the concepts of “pattern” and “randomness”. There is nothing
really novel in this treatment, and it could well be skipped by readers who
are familiar with Shannon information and Kolmogorov-Chaitin complexity.
However, at the time of writing (2004) it seems some of this material is still
not as well understood as one might expect. In recent years several papers
have been published on applications of Minimum Message Length or Ris-
sanen’s related Minimum Description Length, which have made significant
and in some cases serious errors in estimating the length of “explanation”
messages. The commonest errors have arisen from a failure to realize that
for the statement of a hypothesis about a given body of data, the shortest
useable code need not in general allow the encoding of all hypotheses initially
contemplated, and should never state a parameter of the asserted hypothesis
more precisely than is warranted by the volume and nature of the data. A
couple of examples are discussed in later chapters. Other errors have arisen
because the authors have applied approximations described in early MML
papers in which the limitations of the approximations were not emphasized.

The third, fourth and fifth chapters formally develop the new approach
to statistical inference. In Chapter 3, the development is exact, but leads to
a method which is computationally infeasible except in the simplest prob-
lems. Chapters 4 and 5 introduce approximations to the treatment, leading
to useable results. A number of simple inference problems are used in these
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chapters to illustrate the nature and limitations of the exact and approxi-
mate treatments. Chapter 6 looks in more detail at a variety of fairly simple
problems, and introduces a couple of techniques needed for some rather more
difficult problems. Chapter 7 gives examples of the use of MML in problems
where the possible models include models of different order, number of free
parameters or logical structure. In these, MML is shown to perform well in se-
lecting a model of appropriate complexity while simultaneously estimating its
parameters. Chapter 8 is speculative, presenting an argument that, while de-
ductive (probabilistic) logic is properly applied in predicting the future state
of a system whose present state is partly known, useful assertions about the
past state of the system require inductive reasoning for which MML appears
well suited. Chapter 9 considers whether scientific enquiry can be seen as
conforming to the MML principle, at least over the long term. Chapter 10
briefly discusses two bodies of work, Solomonoff’s predictive process and Ris-
sanen’s Normalized Maximum Likelihood, both of which embody the same
“brief encoding” notion as Minimum Message Length but apply it to different
ends.

1.2 Inductive Inference

The term “inductive” is sometimes used in the literature to apply to any
reasoning other than deductive, i.e., any reasoning where the conclusions
are not provably correct given the premises. We will use the term only in the
above narrower (and more common) sense. Deductive reasoning, from general
theories and axioms to specific conclusions about particular cases, has been
studied and systematized since Aristotle and is now fairly well understood,
but induction has been much more difficult to master. The new results give
an account of inductive reasoning which avoids many of the difficulties in
previous accounts, and which has allowed some limited forms of inductive
reasoning to be successfully automated.

With the exception of “knowledge” that we are born with or which comes
through extraordinary routes such as divine inspiration, our knowledge of the
external world is limited to what our senses tell us and to the inferences we
may draw from this data. To the extent that a language like English allows,
the information gained about our surroundings can be framed as very specific
propositions, for instance “I feel warm”, “I hear a loud rhythmic sound of
varying pitch”, “I see blue up high, green-brown lower down, brown at the
bottom”. Groups of such elementary sensory propositions can be interpreted
by most people to arrive at propositions whose terms involve some abstraction
from the immediate sense data. “That motor car has rust in its doors”, “Joe
is lying down”, “Percy said ‘Crows are black’ ”. Let us accept that at least
this degree of abstraction may be taken for granted, to save us the trouble of
having to treat all our information in purely sensory terms. Attempts such
as Carnap’s [7] to base all reasoning on natural-language sentences relating
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to uninterpreted sense data have not been fruitful. Then virtually all of our
knowledge comes from simple observational propositions like those above,
which I will call directly available. Note that even when we are taught by
our mothers or learn from books, the propositions directly available to us are
not “crossing the road is dangerous” or “France is a major wine producer”,
but the observational propositions “I heard Mother say crossing the road is
dangerous”, “I read in this book maps and tables implying that France is a
major wine producer”.

Each observation tells us something about a specific object or event at
a specific time, and when framed as a proposition has no generality. That
is, the propositions do not concern classes of things or events, only single
isolated things or events. Yet somehow we work from collections of such
specific propositions to very general ones, which make assertions about wide
classes of objects and events most of which we have never observed, and
never will. “Apples and pears both contain malic acid”, “1960 V-8 Roadrats
are a bad buy”, “All power corrupts”, “The universe became transparent
to electromagnetic radiation one year after the big bang”. The process(es)
used to obtain such general propositions from masses of specific ones is called
“inductive” reasoning or “induction”.

This inductive process is fundamental to our culture, our technology, and
our everyday survival. We are perhaps more used to regarding deductive
reasoning, and in particular the formalized quantitative deduction of the
sciences, as being the hallmark of rational activity, but deduction must be
based on premises. The premises of scientific deductions include many general
propositions, the “natural laws” of the physical world. Except for deductions
based on hypotheses accepted for the sake of argument, deductive reasoning
requires the fruits of induction before it can start, and our deduced con-
clusions are no better than the inductively derived premises on which they
are based. Thus, induction is at least as important a mode of reasoning as
deduction.

The priority of induction is even stronger than these arguments have
shown. When we look at the specific propositions illustrated above, we find
that their very expression relies on previous inductive steps. Before I can
frame an observation as an assertion like “This car has rust in its doors”, I
and my cultural forebears must somehow form the belief that there is a class
of observable phenomena which share so many features correlating usefully
with features of other phenomena that the class deserves a name, say, “rust”.
This is an inductive conclusion, no doubt based on many thousands of obser-
vations of pieces of iron. Inductive conclusions of this type must lie behind
the invention of all the common nouns and verbs of natural languages. In-
deed, without induction, language could use only proper nouns: the subject
of every sentence could be named only as itself, with its own unique grunt.
Induction is needed for us to invent and accept the general proposition that
all observed phenomena satisfying certain criteria are likely to share certain



1.2 Inductive Inference 7

unobserved but interesting properties, and hence are worth a common name.
Thus, we can claim that every generally used common noun and verb in a
natural language is the product of inductive inference. We do not claim those
inductions were all necessarily sound. The empirical justification for some
of them, such as those leading to the nouns “dragon”, “miracle” and the
compound “free will”, may be quite unsound.

With every such word are associated two clusters of propositions. The
first cluster one might call the defining propositions — those which allow us
to recognize an instance of the class named by the word. For example:

Cows tend to be between 1.5 and 3 m long.
Cows usually have 4 legs.
Cows move against the background.
Cows have a head at one end, often bearing horns, etc., etc.

Then there is a second cluster of propositions which are not needed for recog-
nition, but which allow useful inferences. We may call them “consequential”.

Cows are warm.
Cows can (sometimes) be induced to give milk.
Those that can’t are often dangerous.
Cows need vegetation to eat.
etc., etc.

The two clusters often overlap: some propositions may be used as defining
in some instances, but treated as consequential if not directly observed. The
concept of “cow” is accepted because we can recognize an instance of “cow”
using a subset of the propositions, and can then infer the probable truth of
the remaining propositions in this instance, even though we have not ob-
served them. The induction embodied in the “cow” concept is thus the gen-
eral proposition that any phenomenon observed to satisfy a certain defining
cluster of propositions will also (usually) satisfy the associated consequential
propositions.

Some common nouns result from conscious, systematic, “scientific” rea-
soning. Terms such as “electron”, “quark”, “cyclonic depression” and “catal-
yse” label clusters of propositions whose association was unobvious and dis-
covered only after much directed effort. Others, like “man” and “fire” (in
whatever language) predate history. We suggest that inductive processes are
not necessarily a matter of conscious rational thought, or even of any sort of
reasoning.

Any biological organism can be regarded as, at least in a metaphorical
sense, embodying such clusters of propositions. Organisms have means, not
always neural, of detecting properties of their environment, and many have
means to detect with some reliability when several properties are present si-
multaneously or in a specific sequence. That is, many organisms are equipped
to detect when a cluster of propositions is true of their environment. Detec-
tion of such a defining cluster instance may trigger behaviour expected to
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be advantageous to the organism if the environment has other properties not
directly detectable by the organism. That is to say, the organism may behave
in a way whose benefit depends on certain consequential propositions being
true of its environment, although the truth of these propositions cannot at
the time be detected by the organism. For instance, seedlings of some species,
when grown in a closed dark box with a tiny hole admitting some light, will
grow towards the hole even though the light admitted by it is far too weak to
support photosynthesis. This behaviour is beneficial to the species because,
in the environments naturally encountered by its seedlings, it is indeed usu-
ally the case that instances of weak light coming from some direction are
associated with useful light being available in a region located in that di-
rection. We do not suggest that such a seedling “knows” or has “inferred” a
concept “light source” as a cluster of defining and consequential propositions.
However, it is not unreasonable to suggest that the genetic endowment of the
species incorporates in some way an association among a cluster of possible
properties of its environment, and that other species which grow in environ-
ments where such clustering is not evident will not show such behaviour.
Further, we suggest that the incorporation of such a cluster of environmental
properties differs from a “concept” formed by a reasoning agent only in that
the latter is expressible in language-centred terms such as “proposition” and
“assertion”.

It seems to us proper to regard the genetic makeup of organisms as in-
corporating many powerful theories about the natural environment. These
have not been induced by any reasoning agent. Rather, mutation and other
mechanisms result in the creation of many organisms each incorporating a
different set of theories. The inductive process which infers good theories is
the natural selection of those organisms which carry them. Our aim in this
work is to characterize what are good inductions, regardless of how the in-
ductions have been made. The phototropism of a growing seedling, the alarm
cry of a seagull, the concept of momentum, and wave equations of quantum
mechanics are all the result of the inductive inference of general propositions
from hosts of specific “observations”. The methods of induction may differ
greatly among these examples, but any satisfactory account of how specific
data can lead to general assertions should cover them all.

What then are the problems in giving an account of, or logic for, inductive
inference? Clearly, one negative requirement which an inferred general propo-
sition must satisfy is that it should not be contradicted by the accepted data.
Thus, we cannot conclude that all crows are black if our observations record
a large number of black crows, but a few white ones as well. In strictly logical
terms, a single counter-example is sufficient to show a general proposition to
be false. In practice, the matter is not so clear-cut. Two qualifications are (al-
most always) implicit in our assertion of a general proposition. First, we are
well aware that a general proposition cannot be proved true by any number
of conforming observations, so when we assert “All crows are black”, most of
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us mean something a little less. We expect our audience to understand the
assertion as an acceptable abbreviation for something like “My best guess is
that all crows are black. However, my evidence is incomplete, and I will be
prepared to modify my assertion in the light of conflicting evidence”. If the
assertion is so read, the discovery of one or two white crows among millions of
black ones would not cause us to apologize abjectly for misleading. Outside
of deductive argument from unquestioned premises, an assertion of universal
scope is either meant to be understood in this less than literal way or else is
almost certainly unjustified. How can anyone possibly know that all crows,
past, present and future, are black?

The second qualification is logically more of a problem. Even if we read the
assertion “All crows are black” in its absolute sense, will we really abandon it
if we see a single white crow fly past? Not necessarily. The counter-example
proposition “The crow that just flew past was white” may itself be suspect.
Was the bird indeed a crow? Had it been bleached white by some joker? Was
it really white or was it a trick of the light or that last drink over lunch? In
the real world, a general assertion which has been long and widely held by
people knowledgeable in the field is not rejected on the grounds of a single
reported contrary observation. There is always the possibility of error in the
observation, perhaps even of malicious misrepresentation or delusion.

Even a steady trickle of contrary reports may not suffice to discredit the
proposition. If one observer can make an error, so can others, and perhaps one
or two mistaken observations per year must be expected. We also tend to be
skeptical of observations, no matter how frequent, which cannot be confirmed
by others. Joe may report, frequently and consistently, seeing crows which
seem to others black, but which to Joe are distinguished from their fellows
by a colour which he cannot otherwise describe. Even if Joe shows he is able
consistently to distinguish one crow from another by “colour”, we will suspect
that the exceptional nature of the observations lies in Joe rather than in what
everyone else calls the crows’ colour. Similar doubts may arise with respect to
observational apparatus: does it really measure what we think it measures?

Before we reject a well-regarded general assertion, it seems we need to be
satisfied that, perhaps only under certain specified but achievable conditions,
any competent observer can obtain as many counter-examples as are wished.
If the bird can be caught, and we find that any competent ornithologist
will confirm that it is indeed a crow and indeed white, we will abandon the
proposition at least in its absolute sense. If anyone willing to visit lower
Slobovia with a pair of binoculars can count a dozen white crows within a
day of arrival, we will abandon it completely. But note what needs to be
established before we regard the proposition as false: we need to establish
that any competent person can consistently accumulate contrary data. This
is itself a general proposition. It asserts something about a possibly large
class of phenomena: the unlimited observations of any number of competent
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observers. Note that the large class of observations might all relate to the one
white crow.

To summarize, except in special domains, a well-supported general propo-
sition is not regarded as disproven by a single contrary observation or even a
limited number of contrary observations. It is usually rejected only when we
come to accept a new general proposition, namely that we can get as much
credible contrary evidence as we like. The evidence may come from one or
many counter-instances (white crows), but the evidential observations are in
principle unlimited. However, the requirement that the inductive inference
should not conflict with the data, while valid and necessary, does not much
advance our understanding of how the inference can be formed from and be
supported by the data.

A third qualification may be implicit in a general assertion. It may be
true only in an approximate sense, its context implying that it is meant as
an approximation. For instance, Boyle’s Law that the pressure of a confined
gas rises in proportion to its absolute temperature is still taught at school,
but is only approximately true of most gasses.

A second necessary requirement of an inductive inference is that the gen-
eralization should be falsifiable. The importance of this requirement was first
clearly stated by Popper (1934), whose writings have influenced much modern
discussion of induction. The first requirement we asked was that the inference
not be falsified by the data we have. Now we require also that it be possible
for future data to falsify the inference. That is, we require it to be at least
conceivable, given all we know of the source and nature of the data, that
we might find data sufficient to make us reject the proposition. Essentially,
this requirement is equivalent to requiring the inferred proposition to have
empirical content. If we can deduce, from what is already known about the
nature and source of the data, that it is impossible for future data to meet
our criteria for falsifying the proposition, then the proposition is telling us
nothing of interest. To accept the proposition is to exclude no repeatable
observation except those already excluded as impossible.

Popper rightly criticizes theories, advanced as inductive inferences from
known data, which are so phrased and hedged with qualifications that no
conceivable new data can be considered as damning. He finds most of his bad
examples among social, political and economic theories, but examples are not
unknown in other domains. His requirement places on any proposed account
of inductive inference the duty of showing that any inference regarded as
acceptable in the proposed framework must ipso facto be falsifiable. This
duty we hope to fulfill in the present work.

The two requirements above, that an inductively derived general propo-
sition be falsifiable but not yet falsified, are far from sufficient to describe
inductive inference. They also perhaps place undue emphasis on the notion
of disproof. Many useful inductive inferences (let us call them theories for
brevity) are known to be false in the form originally inferred, yet are still
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regarded as useful premises in further reasoning, provided we are careful. A
classic example are Newton’s laws of motion and gravitation. Reproducible
sources of data in apparent conflict with these laws have been known at least
since the early 1900s. The reaction to this “falsification” was, first, a series of
quite successful attempts to modify the interpretation of these laws, and then
the inference of the new theories of Relativity. The new theories were rapidly
recognized as superior to the old Newtonian theories, explaining simply all of
the results which appeared to falsify the old theories, at least in their original
form. Yet the old unreconstructed Newtonian “laws” continue to be used for
the great majority of engineering calculations. Although known to be wrong,
they in fact fit and explain vast bodies of data with errors that are negligible
compared with the measurement errors and uncertainties of the data. In fact,
one of the early concerns of the exponents of the Relativistic theories was to
show that the new theories did not contradict Newtonian theories except un-
der extreme conditions. Similarly, the new quantum theories which replaced
Newtonian mechanics under other extreme conditions had to be shown not
to contradict the old theory to any measurable degree outside these extreme
conditions.

We are forced to conclude that an account of inductive inference must ac-
commodate the fact that theories which have been conclusively falsified can
remain acceptable (albeit within a circumscribed domain of phenomena) even
though their basic concepts have been shown to be mistaken. The account
must also accommodate the fact that two theories can both command general
acceptance even though their formulations appear mutually inconsistent. We
accept the present situation that Relativistic theory is basically concerned
with the relationships among “events” regarded as having precise locations
in space and time, while quantum theory denies the possibility of precisely
locating an event involving only finite energy. We accept that Relativistic
theory describes gravitational effects in geometric terms, while quantum the-
ory, insofar as it can treat gravity at all, must invoke as yet undiscovered
particles.

Any satisfactory account of induction must therefore not be overly con-
cerned with absolute notions of truth and falsification. In practice, we do
not expect our inferences to be true. We tolerate falsifying data provided
it relates to conditions outside our immediate arena, and we tolerate the
co-existence (and even the joint application to the one problem) of theories
whose conceptual bases seem to belong to different universes.

1.3 The Demise of Theories

The strictly logical requirement that a theory not be falsified cannot be ac-
cepted at face value. Merely being shown to be wrong is not sufficient to
damn an inference. We can accept the requirement that a theory be falsi-
fiable, i.e., that we can conceive of data which would falsify a theory, as
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otherwise the theory is empirically vacuous, but we cannot accept that such
a falsification will necessarily lead us to reject the inference, because history
shows otherwise. How, then, do we ever come to reject theories?

One possible route to rejection is the accumulation of falsifying data.
When a theory is falsified, we may not reject it but we must at least qualify
it by restricting its application to arenas not including such data, and/or
weakening its assertions to approximations. If falsifying data is found in a
sufficient range of conditions, the theory may become so qualified and re-
stricted that it ceases to be falsifiable, i.e., becomes empty. The cases of data
which do appear to conform to the theory may be found to be no more than
might be expected to arise by chance in the absence of the theory, in which
case we may decide that the amended theory explains nothing and should be
abandoned.

Another route to rejection is that the theory is never decisively falsified,
but is supplemented by a theory of greater accuracy or wider applicability.
That is, it is found that all the data explained by the theory is explained
as well or better by a new theory, which may in addition explain data not
covered by the old theory.

A third route is the usual fate of most hypotheses proposed in a scien-
tific investigation. The theory may be compatible with known data, but not
regarded as adding much to our understanding of that data compared with
other possible theories about the same data. A new experiment or observa-
tion is designed such that its expected outcome, if the theory is valid, is one
which would not be expected without the theory. The observation is per-
formed, and does not conform with the prediction of the theory. The theory
is then rejected as having little explanatory power for the old data, and not
fulfilling the hope of explaining the new data.

A fourth, less common, route is that the theory is supplanted by a new
theory which is not (at least initially) in better conformity with the known
data either in accuracy or scope, but which is in some way simpler or more
“elegant” than the old. The criteria of simplicity and elegance are not obvi-
ously quantifiable, especially the latter, and people may legitimately disagree
in their assessments of theories on these criteria. However, there might be
general agreement that, for instance, of two theories otherwise similar in
structure, the one needing fewer numeric values to be assumed in order to
explain a set of data is the simpler. Similarly, of two theories requiring the
same number of assumed quantities, we might assess as the simpler the theory
having the shorter mathematical or logical description.

An example may serve to clarify these notions. Observation of the ap-
parent positions of the planets, sun and moon gave rise to the “Ptolemaic”
theory, which supposed the motions of the bodies to be composed of simple
circular motions with constant radii and speeds. To fit the observations, it
was necessary to assume that the motions of most of the heavenly bodies
were epicyclic. That is, a body moved round a circle whose centre was mov-
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ing round another circle whose centre might be moving round yet another
circle. This theory could be made to fit the observations quite well, to predict
future movements with fair accuracy, and to predict events such as eclipses.
It is structurally a simple theory: the circle is one of the simplest geometric
shapes by any criterion. However, it required the assumption of a rather large
number of numeric values, the radii and speeds of rotation of all the circles,
of which there were two, three or more for each body. These quantities had
to be assumed: the theory gave no explanation of their values and asserted
no useful relationships among them.

The later Keplerian theory was in marked contrast. Structurally, it might
be considered more complex or less elegant, since it assumed the motions
to be elliptical rather than circular, and to take place with varying rather
than constant speed. Each ellipse requires both a major and minor axis to be
specified rather than just a radius. In these respects, the new theory seems
messier and more complex than the Ptolemaian. However, only one ellipse
is needed per body, rather than several circles. The speeds of motion, while
not constant, have a fixed and simple relationship to the position of the body
round its elliptic path, and the one number for each body required to describe
this relationship was shown to have a fixed relation to the size of the ellipse.
Thus, the number of values which had to be assumed dropped from half a
dozen per body to essentially two. (We are deliberately oversimplifying here:
the descriptions of the orbital planes of the bodies involve more numbers but
these are essentially the same in both theories.)

The smaller number of arbitrary constants required by Kepler’s laws could
be held to outweigh his use of more complex geometry, but the issue was not
clear-cut on this score. Of course, as observational accuracy increased, it was
found that Kepler’s theory required only minor refinement to maintain its
agreement with observation, whereas more and more circles had to be added
to the epicycles of the Ptolemaian model, each with its new inexplicable
numbers. The “simplicity” argument in favour of Kepler’s model became
overwhelming.

This sketch of how theories may be rejected, usually but not always in
favour of a new theory, has argued that rejection is not a simple matter of
falsification. Rather, it involves factors such as the scope of data explained,
the accuracy of explanation, the number of inexplicable or arbitrary values
which must be assumed, and some notion of structural simplicity or elegance.
Together, we may call these factors the explanatory power of the theory.
The explanatory power increases with the volume and diversity of the data
explained, and with the accuracy of the explanation. It decreases with the
structural complexity of the theory, and with the number and precision of
the parameters, initial conditions and unobservable quantities which must be
assumed in the explanation.

In the above, we have used the terms explanation and accuracy without
elaboration. While it is our intent to use these words in accordance with
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normal usage, both are sufficiently loosely used in everyday speech as to
demand some definition.

1.4 Approximate Theories

The notion of the accuracy of a theory, as applied to some data, rests on
belief that a theory is rarely intended or taken in an absolute sense. If we
assert the theory that a floating ship displaces its own weight of water, we do
not intend to claim that careful measurement of the ship and the displaced
water will show them to be equal within a milligram. Rather, we are claiming
that they will be equal within a small margin due to measurement error,
the effects of wind and wave, motion of the ship, etc. The theory does not
attempt to explain the causes of this margin of error, which in practice might
be of the order of 0.1%. We might then say the theory is “accurate” within
0.1%. It could be argued that the theory does indeed claim exact equality,
at least under certain ideal and probably unattainable conditions such as
zero wind, zero motion, no surface tension, etc., and that it is unfair to
regard measurement errors and deviations caused by inevitable disturbances
as inaccuracies of the theory. But a theory which asserts a conclusion only
under forever unattainable conditions is empty, since it can never apply to
real data. It may alternatively be suggested that if careful measurement is
made, it will be found that the weight of the ship, plus any downwards pull of
surface tension, minus any hydrodynamic wave force, etc., etc., will exactly
equal the weight of water displaced within measurement error. But this is not
the same theory — it is a more elaborate and perhaps more accurate theory.

In a slightly different vein, the Newtonian equation for the kinetic energy
of a moving mass, E = 1

2mv2, can be said to have inaccuracies due not only
to the kind of error and unobserved effects described above, but also an error
of order 1

2v2/c2 because it ignores relativistic effects. If the speed v is less
than 1000 km/sec, this inaccuracy is less than 0.01%. Whatever the sources
of error, it seems plausible that all theories will fail to match our data exactly,
but that some will be more accurate than others. Exactly how we can most
usefully quantify the inaccuracy of a theory will be discussed later.

1.5 Explanation

A dictionary definition of the word “explain” is “to make plain or under-
standable”. We take an explanation of a body of data to be a demonstration
that the data are not unexpected given a relatively small set of premises. By
“not unexpected” we mean that the premises either imply the data proposi-
tions, or, more commonly, imply close approximations to the data. Two cases
need to be distinguished. In some explanations, the necessary premises are
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already known and accepted by the reader of the explanation. In this case,
the explanation is purely a deductive demonstration that the data should be
expected to be more or less as they are, given what is already known. We will
not be interested in such explanations. In other explanations, not all of the
necessary premises are known a priori. Rather, the explanation proposes one
or more new premises, and then goes on to show that the new premises, com-
bined with ones already known and accepted, imply or approximately imply
the data. In forming such explanations, the new premises are an inductive
inference from the data. Typically, they are general propositions which can-
not be deduced from the data and premises already known. However, if they
are assumed to be true, the data is found to be unsurprising.

Two imaginary examples may clarify the distinction we wish to draw.
First, suppose there is an amateur carpenter who knows and is familiar

with concepts of length, area and angle, is competent at arithmetic and ele-
mentary algebra, but who has never studied geometry. The carpenter notices
that it is possible to make right-angled triangular frames whose sides are in-
tegral numbers of decimetres, but only if the numbers are multiples of a few
sets such as {3, 4, 5}, {5, 12, 13} and {15, 8, 17}. In seeking an explanation
of these observations, he might, given time, deduce Pythagoras’s theorem
from the premises he knows and accepts about lines, areas and angles, then
deduce that these sets of integers satisfy the theorem but most others do
not. He might even be able to deduce that any such integer set must have
the form {(a2 − b2), 2ab, (a2 + b2)}, where a and b are any unequal positive
integers. This would be an explanation of the first kind: a demonstration that
what has been observed is not surprising given what the carpenter already
believed. No new premise is required and nothing is inductively inferred from
the data.

Now imagine an ancient Egyptian surveyor who was a competent user of
geometry and knew many of the simple properties of triangles, but otherwise
knew no more than his fellows. In particular, he knew that the sum of the
three angles of a triangle equals two right angles (180◦). As he rose in the
surveyors’ hierarchy, he noticed minor inconsistencies appearing in the data
and ordered the large-scale resurveying of the kingdom. He was surprised to
find that in the largest triangles covered by the survey, the sum of the angles
consistently exceeded 180◦ by a small amount, which seemed to be propor-
tional to the area of the triangle. After much reflection, he finds that the data
can be explained if he supposes that the world is not flat, as everyone had
thought, but spherical, with a diameter of about 7000 miles. If he adds this
premise to what he knows of geometry, he can deduce that the sum of the
angles of a triangular piece of land should exceed 180◦ by about five thou-
sandths of a degree for every thousand square miles of area. This deduction
agrees well with the survey data, so he accepts the explanation.

This explanation requires a new premise in addition to what the surveyor
knew. The new premise, that the world is a sphere of 7000 miles diameter, is
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more complex than the old implicit assumption of a flat earth, and involves
a number. It could not be deduced from the data. Rather, it was derived
by induction from the data, and the diameter estimated from the data. The
new premise is falsifiable — new data could conceivably show it to be untrue
— and is actually false. The world is not quite spherical, nor is its diameter
7000 miles. However, the explanation is good. At the expense of one inferred
premise of no great complexity, the deviations of the data from what is ex-
pected are greatly reduced. Henceforth, we will restrict the term explanation

to this second sort, which involves the inductive inference of a new premise
or theory and/or the estimation of unknown quantities.

1.5.1 Explanatory Power

Our view is that an inductive inference from a body of data is a premise which,
if assumed, allows the data to be explained. Other propositions already known
and accepted may be involved in the explanation, but are by themselves
insufficient to allow a satisfactory explanation of a purely deductive kind.

To develop this view into an account of when an inductive inference can be
regarded as satisfactory and how competing inferences may be compared, it is
necessary to develop a quantitative measure of the merit of an explanation, or
at least of the relative merits of competing explanations. We have suggested
that the explanatory power of an inductive inference or theory increases with
the volume of data explained and the accuracy of the explanation. It decreases
with the complexity of the theory, the number of inexplicable parameter
values appearing in the theory, and (we will see later) the precision with which
these quantities must be specified in order to achieve an accurate explanation.
In short, a good inductive inference is one which explains much by assuming
little. Other considerations, such as causal structure, have been proposed as
contributing to or necessary for explanatory power. At least for now, we will
not consider them, and rather discuss only what follows from the criteria
above. We now propose a step towards quantifying these considerations.

First, we will simplify the problem by assuming that all the inductive
inferences to be assessed apply to the same body of data. The extension to
situations where one theory explains more data than another is easy but is
best treated later.

For a given fixed body of data, we propose to recast all competing expla-
nations into the same canonical form.

1.5.2 The Explanation Message

An explanation message of a body of data comprises two parts. The first is
a statement of all the inductively derived premises used in the explanation,
including numeric values for quantities assumed in these premises (the di-
ameter of the earth, for example). The second part of the explanation is a
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statement of all those details of the data which cannot be deduced from the
combination of the induced premises and such other premises as are already
known, accepted, and not in question. Let us call the already-known premises
the prior premises. Being already known to the receiver, no statement of the
prior premises need appear in the message.

First, note that a person knowing only the prior premises and not the data
is able to recover the original body of data exactly from this message. The
first part tells him to assume the truth of the new premises — the “theory”.
From these and the prior premises, he can then deduce much about the data.
The second part completes his knowledge of the data by telling him all the
details which he could not so deduce. Thus, the explanation message may
be regarded as a restatement of the data without loss of any information
or detail. The restatement is in a “coded” form which can be “decoded” by
anyone with knowledge of the prior premises. Another way of regarding the
explanation message is that it states a theory about the data, then states the
data itself in a condensed form which assumes the truth of the theory.

We will argue that the best explanation of the data is the one leading to
the shortest explanation message, and that the best inductive inference which
can be drawn from the data is the inference used in the shortest explanation
message. That is, we claim the shortness of the explanation message using an
inferred theory is a measure of its explanatory power. Henceforth, we will not
distinguish between an explanation message and an explanation expressed in
other forms. When we refer to an explanation or its length, we mean the
explanation message or its length.

Even from the above informal account, it is clear that the length of an
explanation takes into account all the factors affecting explanatory power.
The length of the first part, which states the inductively inferred premises or
theory, will be longer for a complex theory than for a short one. Its length
increases with every quantity assumed, as the first part must state its assumed
numeric value. Its length increases with the precision to which these values
need be specified.

On the other hand, the length of the second part decreases with the scope
and accuracy of the theory. Data falling outside the scope of the theory must
be stated in full, since nothing about such data can be deduced from the
theory. Hence, the greater the scope of the theory, the less data need be stated
fully. Typically, the theory, together with the prior premises, will not allow
exact deduction of the data as observed. For quantitative data, the best that
we can hope is that values may be deduced close to but not exactly equaling
the measured values. The observed value may be corrupted by measurement
error, and the deduced value will often be deduced in part from other values in
the data, and hence itself be corrupted by error. And of course the theory and
its parameters may only be approximate. Thus, for quantitative data within
the scope of the theory, the second part of the message must at least record
the differences between deduced and measured values. The more accurate
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the theory, the smaller will be these differences, and hence the shorter will
be their representation in the second part.

Similarly, for data which refers to discrete values rather than real-valued
quantities, there remains some possibility of errors in observation. If, further,
the theory is not entirely accurate, the deduced values will sometimes differ
from correctly recorded observations. Thus, for discrete data, the second part
will typically require a list of “exceptions” recording which observed values
differ from the predictions of the theory, and the actual observations in these
exceptional cases. The more accurate the theory, the fewer will be these
exceptions, and the shorter will be the second part.

Overall, the “best” inference or theory, as assessed by its explanation
length, will be a compromise between complexity on the one hand, and scope
and accuracy on the other. An overly complex theory may be slightly more
accurate, and hence give a slightly shorter second part, but will require a
long description in the first part. An overly simple theory will require only a
short first part, but will be relatively less accurate or have narrower scope,
and hence leave more errors and exceptions to be stated in the second part.

Note that if a proposed theory is particularly poor or overly-complex, or
if the data is very sparse, the length of the explanation may exceed the length
of a message which simply records the data as measured, with no attempt at
explanation. In such a case, we regard the proposed theory as unacceptable.

This informal discussion suggests that the two-part explanation model
conforms qualitatively with what we expect and require of inductive infer-
ence. Inferences regarded as good in this model must have content, because
the second part will be shorter than a simple transcription of the given data
only if the first part implies something of substance about the data. The
model has an inherent balance between the complexity of the theory and
its having meaningful implications about the data. It provides a criterion
for rejecting a theory as useless and for comparing the merits of compet-
ing theories. The model accommodates the observation that theories are not
necessarily rejected on the grounds of a single or a few contradictory mea-
surements: such data can be flagged as “exceptional” in the second part and
recorded as measured. The “flagged” record of inexplicable data is slightly
longer than a bare transcription of the data, so if too many observations dis-
agree with the theory, the explanation may become longer than a copy of the
data as given, and so be rejected, but small amounts of conflicting data need
not lead to rejection. Finally, an acceptable theory in this model necessarily
makes testable predictions about new data on the same subject. It predicts
that the data will be such that after taking into account what can be deduced
from the theory and prior premises, the remaining details of the new data
can be specified more briefly than the data as measured.

The reader may have noticed a loophole in the discussion of whether an
explanation is acceptable. It may be the case that the prior premises alone,
without any inductively-derived theory, imply enough about the data to al-
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low it to be restated more briefly. In this case we could have an explanation
message shorter than the original statement of the data as measured, yet
containing no first part, i.e., no inference from the data. Such an explanation
is not ridiculous and is often met in practice. It is an example of the first
kind of “explanation” mentioned above, in which it is shown that the data
is not surprising given what is already known and accepted. Since our inter-
est is in explanations involving inductive inference, we wish to exclude such
explanations from discussion even though they have a useful place in human
discourse. They also provide a base length, shorter than the original data,
against which inductive explanations should be compared.

We therefore modify slightly our definition of “acceptable” theories and
explanations. We will require the length of the explanation message which
states and uses an acceptable theory to be shorter than any message restat-
ing the data using only the implications of prior premises. That is, we shift
the target for an inductive theory by allowing for the implications of prior
premises. This modification affects only the criterion for acceptability of a
theory. It does not affect comparisons among competing theories. In a sense,
we have simply redefined the “null hypothesis” against which all theories
must compete. Rather than taking as the null hypothesis the assumption
that the data as given shows no regularities at all which might be exploited
to recast it more briefly, we now take as the null hypothesis the assumption
that the only regularities in the data are those implied by the prior premises.

Qualitatively, our model has much to recommend it. However, if it is to
be anything more than an aphorism, it must be given quantitative substance.
That is, we must be able to put numeric values on the lengths of explanations.
The necessary tools are described in the next chapter, and show a close
relation between this account of inductive inference and Bayesian statistical
inference.

1.6 Random Variables

A random variable has a value which is not known with certainty. For in-
stance, if a coin is tossed, its attitude when it comes to rest may be assigned
one of the two values Head and Tail. If the coin has not yet been tossed, or
if it has landed under a table and no-one has yet looked to see how it lies,
the value of the toss (i.e., the attitude of the coin) is not as yet known and
could be either Head or Tail. The value may then be represented by a random
variable, say, “v”. (For no good reason, this book departs from a common
convention, and usually names random variables by lower-case letters.) Then
the equation “v = Head” is the proposition that the coin will be found to
land, or to have landed, with its head uppermost.

Note that we are using a subjective interpretation of random variables.
If the coin has been tossed and come to rest under a table, and my friend
has crawled under the table and had a look at it but not yet told me the
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outcome, I am still justified (in this interpretation) in representing the value
of the toss as a random variable, for I have no certain knowledge of it. Indeed,
my knowledge of the value is no greater than if the coin had yet to be tossed.
Other definitions and interpretations of the idea of a random variable are
possible and widely used. We will later hope to show that, for our purposes,
the differences in definition lead to no differences in the conclusions drawn
from any statistical enquiry. For the moment, let it suffice that the subjective
interpretation adopted here is convenient for our present exposition.

The range of a random variable is the set of values which the variable (as
far as we know) might equal. Thus, the range of the coin-toss variable v is
the set {Head, Tail}. The value of a random variable is the actual (but as
yet unknown) value denoted by the variable.

Random variables may be either discrete or continuous. A discrete random
variable has a range which is a discrete set of values, e.g., { Head, Tail } or
{ Married, Single, Divorced }. The range may be countably infinite. That
is, it may include an infinite number of values, but if so there must be a
rule for establishing a one-to-one correspondence between the values in the
range and the positive integers. For instance, the range of a random variable
“s” might be the set of all non-empty finite sequences of symbols 0 and 1.
There is an infinite number of such sequences, since the length of a sequence
is unbounded, but they can be placed in one-to-one correspondence with the
integers, as shown in Table 1.1.

Integer Sequence
1 0
2 1
3 00
4 01
5 10
6 11
7 000
8 001
9 010

10 011
etc etc

Table 1.1. An enumeration of binary strings

A continuous random variable has a range which is a continuum or part
of one. For instance, if the random variable “m” denotes the mass (in grams)
of a raindrop, its range might be all the real numbers between 0.01 and 20.0.
This range is uncountably infinite. That is, this range cannot be placed in
1-to-1 correspondence with the positive integers.

A vector-valued continuous random variable has a range which is (part
of) a continuum of more than one dimension. For instance, if “p” denotes
the point of impact of a dart on a dart board, the range of p is the two-
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dimensional area of the face of the board, and two real numbers (say the
height of the point and its East-West location across the width of the board)
are needed to specify a value of the variable. In general, the value of a vector-
valued variable with a D-dimensional continuum range is a vector, or ordered
list, of D real numbers. We may also have vectors which are ordered lists of
discrete variables. In either case the individual simple variables in the list are
termed components of the vector.

1.7 Probability

Consistent with our subjective definition of a random variable, we adopt a
subjective definition of probability. Let v be a discrete random variable, with
a range

{v1, v2, . . . , vi, . . . , vR}
Note that here the symbols v1, vi, etc. are not random variables. Rather, they
represent the known values forming the range of v, and any one of them might
be the actual value of v.

The probability of the proposition “v = v1” is a real number between zero
and one representing how likely it is that the value of v is v1. We use the nota-
tion Pr(proposition) or sometimes Prob(proposition) or just P (proposition)
to mean the probability of the proposition. Thus, we write the probability
that v has value v2 as Pr(v = v2). In contexts where the identity of the ran-
dom variable is obvious, we may abbreviate this notation simply to Pr(v2).
(Note that were v continuous, no non-zero probability could attach to the
proposition “v = v1” for arbitrary v1.)

A probability of one represents certain knowledge that the proposition is
true. Zero represents certain knowledge that the proposition is false. A prob-
ability of 1/2 represents complete uncertainty: we consider the proposition
equally likely to be true or false. In general, the higher the probability, the
more likely we consider the proposition.

We require the numerical values assigned to probabilities to satisfy cer-
tain axioms set out below. These axioms are also satisfied by “probabilities”
defined in other, non-subjective, ways. In what follows, X, Y , etc. denote
propositions. X̄ denotes the negation of X. That is, X̄ is true if and only if
(iff) X is false, and vice versa. X.Y denotes the proposition that both X and
Y are true. X ∨ Y denotes the proposition that X is true, or Y is true, or
both are true.

Axiom 1 0 ≤ Pr(X) ≤ 1
Axiom 2 Pr(X|Y ) + Pr(X̄|Y ) = 1
Axiom 3 Pr(X.Y ) = Pr(Y ) Pr(X|Y )

where Pr(X|Y ) is the probability we assign to proposition X if we know
Y is true. Pr(X|Y ) is read “the probability of X given Y ”, and is called a
conditional probability.
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Notation: We will often write Pr(X.Y ) as Pr(X, Y ). Also, we often write
Pr(X|Y.Z) as Pr(X|Y, Z). This is the conditional probability of X given that
both Y and Z are true.

From the above axioms and the axioms of Aristotelian propositional logic
follow the identities:

Pr(X, Y ) = Pr(Y, X) = Pr(Y ) Pr(X|Y ) = Pr(X) Pr(Y |X)

Pr(X, Y, Z) = Pr(X) Pr(Y |X) Pr(Z|X, Y )

Pr(X ∨ Y ) = Pr(X, Ȳ ) + Pr(X̄, Y ) + Pr(X, Y )

= Pr(X) + Pr(Y ) − Pr(X, Y )

Pr(X|Y ) = Pr(X) Pr(Y |X)/ Pr(Y ) (Bayes’ Theorem)

(The singular case Pr(Y ) = 0 will not arise in our use of Bayes’ theorem.)
If {X1, X2, X3, . . . , Xi, . . .} is a set of propositions which are exhaustive

and mutually exclusive, so that one and only one of them must be true, then
∑

i Pr(Xi) = 1. Hence, if {v1, v2, . . . , vi, . . .} is the range of discrete random
variable v,

∑

i

Pr(v = vi) = 1

or, in abbreviated notation where the identity of v is obvious,

∑

i

Pr(vi) = 1

1.8 Independence

If two propositions X and Y are such that Pr(X|Y ) = Pr(X), then the truth
or falsity of Y does not affect the probability of X. If this is so,

Pr(X, Y ) = Pr(X|Y ) Pr(Y ) = Pr(X) Pr(Y )

Also,

Pr(X, Y ) = Pr(Y |X) Pr(X)

Pr(X) Pr(Y ) = Pr(Y |X) Pr(X)

Pr(Y ) = Pr(Y |X)

Hence, the truth or falsity of X does not affect the probability of Y . Such
propositions are called “statistically independent” of one another, or simply
“independent”.
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1.9 Discrete Distributions

For a discrete random variable v with range {v1, v2, . . . , vi, . . .}, it is conve-
nient to represent the probabilities of the various values in its range by a
function of the integer “i” indexing the values. Generally, we can write such
a function as a function of either the index or the value, whichever is the
more convenient:

Pr(v = vi) = f(i) or f(vi) ∀i

Since v must equal some value in its range,
∑

range of v

f(vi) = 1

Such a function is called a probability distribution function, or simply a
distribution, and will here usually be denoted by the letter f . If f(i) gives
the probability that v = vi for all values in the range of v, f will be called
the “distribution of v”.

Often, we may know that the distribution of a variable v is one of a
parameterized family or class of functions, but we may not know which one.
In such cases, we will write the distribution of v as the function

Pr(v = vi) = f(i|θ) or f(vi|θ)

meaning that the distribution of v is that function in the family identified by
the parameter value θ. Sometimes, the family of functions will have more than
one parameter, i.e., it will be a family of two or more dimensions. In such case
we may still write the distribution as f(vi|θ), but read θ as a vector whose
components are the several parameters, or we may write the distribution as
f(vi|α, β, . . .) where α, β, . . . are the parameters.

Note the use of the vertical bar in the same sense as it is used in the
notation for probabilities. Pr(X|Y ) means the probability of X given that Y
is true. Similarly, f(v|θ) means the distribution of v given that the parameter
has the value θ. The symbols after the bar show what is assumed to be
known or fixed that can affect the probability or distribution. They are said
to condition the probability or distribution.

Finally, be warned that in discussing distribution, we often treat the ran-
dom variable v as an ordinary algebraic variable, and use it as the argument
of the distribution function. Thus, we will write

f(v|θ)

and treat it as an ordinary function of two algebraic variables, v and θ.
The algebraic variable v has the same range of values as the random

variable v, and the algebraic variable θ ranges over the values identifying
members of the family of distributions.



24 1. Inductive Inference

1.9.1 Example: The Binomial Distribution

A series of N trials is conducted. Each trial either succeeds or fails. It is
believed that Pr(trial succeeds) has the same value θ (0 ≤ θ ≤ 1) for all
trials, and that the trials are independent. Let n be the number of successes.
Then n is a random variable with range {0, 1, . . . , N}. The distribution of n
is called a “Binomial distribution” and depends on the parameter θ.

f(n|θ) =

(

N

n

)

θn(1 − θ)(N−n)

Here,

(

N

n

)

is the mathematical notation for the number of ways of selecting

a subset of n things out of a set of N things. The distribution is a member
of a family of distributions, each characterized by a different value of the
parameter θ. For example, if θ = 0.3 and N = 100,

Pr(20 successes) =

(

100

20

)

0.3200.780

and the distribution of n is

f(n) = f(n|0.3) =

(

100

n

)

0.3n0.7(100−n)

Note that the number of trials N is not normally regarded as a parameter,
even although it enters into the distribution function. Strictly, we should
write the distribution of n as f(n|θ, N), meaning the probability of getting
n successes given that there were N trials and that each trial had success
probability θ. However, values such as N describing known, fixed conditions
under which the random variable will be observed are often not treated as
parameters of the distribution. The status of a parameter is often reserved
for those quantities affecting the distribution whose values might well not be
known.

1.10 Continuous Distributions

Suppose v is a continuous random variable, i.e., one which can take any
value in a continuous range, and let a be a value in that range. Then, in
general, one cannot usefully define the probability Pr(v = a). For instance,
if it is believed that v could equally well have any value in the real interval
1 < v < 2, the probability that v will have exactly the value a should equal
the probability that v will equal b, for any pair of values a and b in (1, 2).
But there are infinitely many values in this interval. If all are to have equal
probability and the probabilities are to sum to 1, each probability must be
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infinitesimally small. Thus, we cannot define the kind of distribution function
used for discrete random variables.

Instead, for a scalar continuous random variable v, we define a probability

density function, or simply density, by

Pr(a < v < b) =

∫ b

a

f(v)dv

For sufficiently well-behaved variables,

lim
δ→0

Pr(a < v < a + δ)

δ
= f(a)

That is, δf(a) gives the probability that the value of v will lie in a small
interval of size δ near the value a.

Note that we will often use the same function symbol f(·) for either a
discrete distribution or a density. As with discrete variables, the density may
be one of a family of densities with parameter θ, where we write the density
as f(v|θ), or perhaps as f(v|α, β, . . .) if there are several parameters.

If v is a vector-valued continuous random variable, the same notation is
used, but the element dv must be interpreted as an element of area, volume,
etc. rather than as an element of the real line. For instance, if v is a 2-vector
with components x and y, we may write the density of v either as f(v) or as
f(x, y). The probability that v lies within a region R of the (x, y) plane can
be written as either

∫

v∈R

f(v)dv or

∫ ∫

(x,y)∈R

f(x, y)dxdy

1.11 Expectation

If v is a discrete random variable with range {v1, v2, . . . , vi, . . .} and distri-
bution f(v), and if g(v) is some function defined for all values in the range
of v, then we define the “expectation” of g(v) as

∑

range of v

f(vi)g(vi)

and symbolically denote it as Eg(v) or simply Eg.
In situations where we can obtain or observe an unlimited number of in-

stances or realizations of v, the long-term average of g(v) over many instances
of v will approach Eg(v). In N instances, we expect v to take the value v1

about Nf(v1) times, and in each of these occasions g will take the value g(v1).
Similarly, we expect g will take the value g(v2) about Nf(v2) times, and so
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on. Thus, the sum of all the g values obtained in the N instances should be
approximately

∑

range of v

Nf(vi)g(vi) = N
∑

f(vi)g(vi)

Dividing by N to obtain the average gives

∑

f(vi)g(vi) = Eg

Thus, Eg represents the average value we expect to get for g(v) over many
instances.

Even when there is no possibility of observing many instances of v, i.e.,
when it is not possible to interpret f(vi) as a long-term average frequency
of getting v = vi, the expected value Eg still usefully summarizes what a
rational person might consider to be a “fair average” value for g(v), assum-
ing that the distribution f(v) properly represents his uncertainty about v.
For instance, suppose I arranged a wager with you, that I will pay you 3.50
dollars, we toss a 6-sided dice, and then you pay me 1 dollar for each dot
showing on the uppermost surface of the die. Let vi = i be the number shown
by the die, with the range {1, 2, . . . , 6}. Let g(vi) = g(i) be my net monetary
gain from the wager. Then we have

g(1) = −2.50 dollars (I paid 3.50 dollars and got 1 dollar back)
g(2) = −1.50 dollars
...

...
g(6) = +2.50 dollars (I paid 3.50 dollars and got 6 dollars back)

Consider my situation before the die is cast. I do not know what the value
of my net gain g(v) will be, and there will be no repetitions of the wager,
so there is no consideration of a long-term average gain over many tosses.
However, if I believe that all numbers in the range 1 to 6 are equally likely
to come up, so f(vi) = 1/6 for all i, then the expectation Eg(vi) is

6
∑

i=1

f(i)g(i) =

6
∑

i=1

1

6
(i − 3.5) = 0 dollars

The “expected” net gain is zero, and we would normally regard the wager as
a “fair bet”: neither you nor I have an advantage.

By contrast, if there are grounds for believing the die to be biased so that
number 5 is twice as likely to occur as any other, then my “expected” net
gain is

1

7
(−2.5) +

1

7
(−1.5) +

1

7
(−0.5) +

1

7
(0.5) +

2

7
(1.5) +

1

7
(2.5) = 0.214 dollars
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The positive “expectation” of g or “expected net gain” is an indication that
the wager is biased in my favour. Were it to be repeated 1000 times, I could
expect to win about 214 dollars, and even though there will in fact be only
the one wager, Eg represents a fair assessment of how beneficial (in purely
monetary terms) the wager is likely to be to me.

Note that this use of the term “expectation” (and “expected value”) is a
technical definition which does some violence to the normal English meaning
of the word. In the biased-die case, the definition gives an expected value
Eg = 0.214 dollars, or about 21 cents. However, I certainly do not expect
(in the usual sense) my net gain to be anything of the sort. My net gain
can only be one of the values −2.5, −1.5, −0.5, 0.5, 1.5 or 2.5, and cannot
possibly be 21 cents. The value Eg(v) might better be termed an “average
in probability” rather than “expected value” or “expectation”, but the latter
terms are entrenched in the statistical literature and will be used in their
technical sense in this work.

The definition of expectation extends in the obvious way to functions
of continuous random variables. If v is a continuous random variable with
probability density f(v), and g(v) is a function of v, then the expected value
of g(v) is defined as

Eg(v) =

∫

f(v)g(v)dv

Conditional expectations are also useful: the expected value of g(v) given
some value or proposition y which affects the distribution of v is defined as

E(g(v)|y) =
∑

range of v

f(vi|y)g(vi) (discrete)

or

E(g(v)|y) =

∫

f(v|y)g(v)dv (continuous)

Finally, we may be interested in the expected value of v itself (called the
mean of v), in which case g(·) is the identity function. Then

Ev =
∑

range of v

f(vi)vi

E(v|y) =
∑

range of v

f(vi|y)vi

or for continuous v:

Ev =

∫

f(v) v dv

E(v|y) =

∫

f(v|y) v dv
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1.12 Non-Bayesian Inference

Given some data and a set of probabilistic models for the data, we would like
to be able to infer some statement about which model or subset of models
should be preferred in the light of the data. We will represent the data by a
proposition or vector of values x, and the set of models by Θ, with θ denoting
a model in the set.1 Note that we use the term “model” to denote a fully-
specified probability distribution over the possible range of the data, with no
parameters left free. We use “family of models” or “model family” to refer
to a set of models individually identified by different parameter values.

For each model θ, we assume the probability of getting data x given model
θ is known, and we write it as Pr(x|θ).

Classical non-Bayesian inference attempts to draw some conclusion about
the model using only x and the probabilities {Pr(x|θ) : θ ∈ Θ}. The diffi-
culty of doing so is evident if we consider the simplest of examples. Suppose
there are only two models considered possible, θ1 and θ2, and that data x is
obtained such that

Pr(x|θ1) = 0.001 Pr(x|θ2) = 0.01

Armed only with those facts, what can be said about the true source of the
data, θ? Clearly, we cannot deduce any statement of the form “θ = θ1”,
since the data does not logically exclude either model. Nor do the axioms of
probability and logic allow us to deduce a probability for any such statement.
That is, we cannot obtain from these facts any value for Pr(θ = θ1) (which
we can abbreviate to Pr(θ1)).

The inequality Pr(x|θ2) > Pr(x|θ1) is the only deducible statement which
distinguishes between θ1 and θ2 in the light of the data. We may well feel
that the inequality favours belief in θ2 over belief in θ1, but the strength of
this preference cannot be quantified as a probability.

When the set of possible models Θ is a family with a single real parameter,
the situation is superficially improved but actually no better. Let θ denote the
parameter identifying a member of the family, and Pr(x|θ) be the probability
of obtaining the data given the parameter value θ. If we consider a proposition
such as A: “a < θ < b”, we cannot even deduce the probability Pr(x|A), let
alone the probability Pr(A). However, at least in some cases, it appears that
we can deduce something useful about such a proposition.

Suppose that Θ is the family of Normal densities with standard deviation
1.0 and mean θ (the parameter). Let the data be a sample of 8 values inde-
pendently drawn from the density, x1, x2, . . . , x8. Let x̄ be the sample mean

1

8

8
∑

i=1

xi, and suppose x̄ = 1.272. It is easily proved for the Normal density

1 For notational simplicity, we let x denote either scalar or vector data values, and
do not use x to distinguish the vector case.
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that the mean of N independent random values drawn from Normal(µ, σ2)
is a random value drawn from Normal(µ, σ2/N). Thus, in this case, x̄ is a
random variable drawn from Normal(θ, 1/8). Equivalently, we may say that
(x̄−θ) is a random variable drawn from Normal(0, 1/8). Then, since we know
x̄ from the data, cannot we infer some probabilistic statement about (θ − x̄),
and hence θ? For example, tables of the Normal distribution function show
that a random value from Normal(0, 1/8) has probability 0.99 of lying in
the range ±0.911. Can we not then say that the proposition B: “θ lies in the
range 1.272± 0.911” has probability 0.99, i.e., Pr(B) = 0.99 ? Unfortunately,
we cannot.

If we know nothing except that x̄ is the mean of 8 values drawn from
Normal(θ, 1), then the proposition C: “|x̄ − θ| < 0.911” is distinct from B
and has probability 0.99, i.e., Pr(C) = 0.99. However, in the present case we
know more, namely the 8 data values. We have no right to assume that C is
independent of the data, i.e., that Pr(C) = Pr(C|x1, . . . , x8). In some special
cases, C may be approximately independent of the data, but in general it is
not.

For this simple example, we can be sure that C is independent of some
aspects of the data. The Normal distribution has the property that if the
standard deviation is known, then for any set of data values, Pr(x1, . . . , xN |θ)
can be factorized into two probabilities:

Pr(x1, . . . , xN |θ) = Pr(x1, . . . , xN |x̄) Pr(x̄|θ)

where the first factor does not depend on θ. Hence the probability of any
proposition about θ or (x̄ − θ) may depend on the data only via x̄, and all
other aspects of the data must be irrelevant. A function of the data, such as
the mean x̄ in this example, which allows the probability of the data given the
parameters to be factorized in this way, is called a “sufficient statistic”. The
value of a sufficient statistic contains all the information about the parameters
which can be recovered from the data.

However, it remains possible that proposition C is dependent on x̄, and
hence that Pr(x̄−0.911 < θ < x̄+0.911) �= 0.99. An example may clarify this
possibility. Suppose that, in addition to knowing the data to be drawn from
Normal(θ, 1.0), we also happen to know that θ is positive, although its value
is unknown. This additional knowledge does not affect the probability of the
proposition that the mean of 8 values drawn from the Normal distribution will
lie within ±0.911 of the true mean θ. However, it does change the probability,
given x̄, of proposition C, that θ lies within ±0.911 of x̄. Although θ >
0, it is quite possible that the data will give a negative sample mean, say,
x̄ = −0.95. If we observe such data, then we will be sure that proposition
C is false, since the range x̄ ± 0.911 becomes the range −1.861 to −0.039,
and we are sure θ > 0 and hence not in this range. Thus, if x̄ ≈ −0.95,
Pr(C|x̄) = 0. Again, suppose the data yielded x̄ = −0.90. Then proposition
C becomes “|θ + 0.90| < 0.911” or “−1.811 < θ < 0.011”. Combined with
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our knowledge that θ ≥ 0, proposition C now implies “0 ≤ θ < 0.011”. While
this proposition is not known to be false, we would be hesitant to regard it
as having probability 0.99, i.e., very probably true, but we have no means of
calculating its probability from what is known. More generally, if we know
almost anything about θ in addition to the observed data, we must conclude
that the probability of proposition C is dependent on x̄, even if we cannot
compute it.

The impossibility of deducing probabilities for propositions such as “θ
lies within ±0.911 of the sample mean”, using knowledge only of the model
probability distribution, is well known. However, a range such as x̄ ± 0.911
is often stated as an inference from the data, and is called a “confidence
interval”. Rather than claiming that the proposition “θ lies within ±0.911
of x̄” has probability 0.99, the proposition is said to have confidence 0.99.
“Confidence” is not the same as probability, no matter how the latter term
is defined. It is rather unsatisfactory that starting with assumptions stated
in terms of probability, one can only make an inference stated in terms of the
even more problematic concept of “confidence”.

1.12.1 Non-Bayesian Estimation

Given data x believed to be drawn from a source modelled by some distribu-
tion in a known family with unknown parameter θ, one might wish to infer
a “best guess” value of θ, accepting that no probabilistic statement will be
possible about its accuracy. Such a “best guess” is called an estimate. In a
non-Bayesian framework, the raw material for forming an estimate comprises
the observed data x and the function f(x|θ) giving the probability of ob-
taining data x from a source with parameter value θ. With such limited raw
material, the most general process available for forming an estimate appears
to be the “Maximum Likelihood” (ML) method. This method chooses as the
estimate that value of θ which maximizes f(x|θ).

Viewed as a function of θ with given data x, the function f(x|θ) is called
the likelihood of θ. Clearly, for given x, f(x|θ) is not a probability distribution
or density for θ. No such distribution or density can be inferred from x and
f(x|θ). The ML method is just an extension to a parameterized family of
models of the simple preference scheme first discussed for two models: prefer
the model having the highest probability of giving the data.

If no information other than the data and the function f(x|θ) is to be
used in the estimation, it is difficult to see any alternative to ML. How else
can one obtain a value within the range Θ of the unknown parameter from
such raw material? Indeed, so long as f(x|θ) has only a single local maximum
as a function of θ, the ML estimate can be shown to have several desirable
properties. It depends on the data only via functions of the data which are
sufficient statistics, and so uses no information in the data which is not rel-
evant to θ. For many model families, ML is consistent. That is, if more and
more data is obtained, the ML estimate can be expected to approach the
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true value of θ. Also, for many model families, ML is efficient, meaning that
it uses all the information in the data which is relevant to the value of θ.
However, ML is not unique among estimation methods in possessing these
features. In some cases, ML can be improved upon by allowing a little more
information into the non-Bayesian framework.

Up to this point, we have tacitly treated the value of θ identifying a
member of a family of models simply as an identifying label, with no quanti-
tative interpretation. However, in many cases, the parameter(s) of a family of
models are quantities whose numeric values are meaningful. For instance, the
mean diameter of a population of sand grains is itself a diameter, to be stated
in some physical unit such as millimetres, and its value may be important in,
say, calculations of wind erosion. Similarly, the mean kinetic energy of a col-
lection of gas molecules is itself an energy, and has physical meaning related
to the temperature of the gas. In such cases, we may well import into the
statistical inference process arguments based on the quantitative difference
between the true parameter value and the estimate. Let θ0 denote the true
value and θ̂ an estimated value based on data x. We write the estimate as a
function of the data: θ̂ = m(x). The function m() is called an estimator.

The bias of an estimator is the expected difference between the true value
θ and the estimate:

B(m, θ0) = E(θ̂ − θ0)

=

∫

f(x|θ0) (m(x) − θ0) dx

Clearly, the bias in general depends on the estimator and on the true param-
eter value θ0, and where possible it seems rational to choose estimators with
small bias.

Similarly, the variance of an estimator is the expected squared difference
between the true parameter value and the estimate:

V (m, θ0) = E(θ̂ − θ0)
2

=

∫

f(x|θ0) (m(x) − θ0)
2 dx

Again, it seems rational to prefer estimators with small variance.
In general, it is not possible to base a choice of estimator on a preference

for small bias and/or variance, because both B and V depend on θ0, which
is unknown. However, for a few particularly well-behaved model classes, it
is possible to choose an estimator which has zero bias and minimal variance
whatever the value of θ0. Such estimators are called “Minimum Variance Un-
biased”. More generally, even when the model class is such that no minimum
variance unbiased estimator exists, it may be possible to choose an estimator
which is, say, less biased than the ML estimator, yet which retains all the
favourable properties of the ML estimator. A familiar example is the estima-
tion of the variance (squared standard deviation) of a Normal distribution
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with unknown mean µ and unknown variance σ2. Given data comprising N
values (x1, x2, . . . , xN ) drawn from Normal(µ, σ2), the ML estimate of σ2 is

σ̂2
ML =

∑

i

1

N
(xi − x̄)2

which has bias (−σ2/N). The estimate

σ̂2
UB =

∑

i

1

N − 1
(xi − x̄)2

however, has zero bias for any true µ, σ, and is usually preferred.
Note that considerations of bias and variance apply only to a particular

parameterization of the model family. For instance in the above example,
while σ̂2

UB is an unbiased estimate of σ2, σ̂UB is not an unbiased estimate of
σ. Also, the few model families which admit of Minimum Variance Unbiased
estimators have such estimators for only one parameterization. Thus, the
usefulness of these considerations is quite limited.

1.12.2 Non-Bayesian Model Selection

One of the most difficult targets for statistical inference is to make a choice
among two or more model families, where each family has a different mathe-
matical form and/or a different number of unknown parameters. For example,
given data comprising N values from a univariate distribution, we might like
to suppose whether the data comes from a Normal density with unknown µ
and σ2, or from a Cauchy density

f(v|c, s) =
s

π(s2 + (v − c)2)

with unknown location c and spread s. This problem is analogous to the
choice between two simple models for the data, but more difficult because
the parameter values for either family are unknown. The only choice crite-
rion available without using additional premises is to compare the maximum
likelihood obtained in one family with the maximum likelihood obtained in
the other, and to choose the family giving the greater. This process is equiv-
alent to choosing a single model from each family by ML estimation of the
unknown parameters, and then comparing the two resulting models.

An important subclass of this type of inference problem arises when one
family of models is a subset of the other. Typically, the restricted family is
defined by fixing one or more of the unknown parameters in the more general
family, so the smaller family has fewer unknown parameters, and these are
a subset of the parameters of the larger family. The smaller family is then
called the null hypothesis, and one seeks to infer whether the data give reason
to suppose that they come from some model in the full family rather than
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some model in the null hypothesis. A simple comparison of the maximum
likelihoods obtained within the two families will no longer suffice. Since the
full family includes all the models in the null hypothesis, the maximum like-
lihood in the full family must be at least as great as that in the subset family,
and will almost always be greater.

The typical non-Bayesian approach to this problem is to devise some
statistic, i.e., some function of the data, whose distribution can be calculated
on the assumption that the data comes from a model in the null hypothesis,
but whose distribution does not depend on the parameters of that model.
The statistic is also chosen so that its distribution for models not in the null
hypothesis is different, typically in such a way that the statistic is likely to
take values which would be improbable under the null hypothesis. The value
of this test statistic is then computed from the data, and the null hypothesis
rejected if the value obtained is deemed sufficiently improbable.

A classic example of this inference technique was devised for choosing
between the full family of Normal models Normal (µ, σ2) with µ and σ un-
known, and the null hypothesis Normal(µ1, σ

2) where µ1 is a known value
but σ is unknown. Thus, the desired inference is to decide whether or not the
true mean equals µ1. Given data comprising N values (x1, . . . , xN ) drawn
from the distribution, the test statistic

t =
x̄ − µ1

√

1

N − 1

∑

i

(xi − x̄)2

is computed. If µ = µ1, the numerator of this expression has a distribution
of form Normal(0, σ2/N). The denominator has a more complex distribution
with mean σ, but both distributions have widths proportional to σ. Thus, the
distribution of t does not depend on σ. Its mean is zero. Further, if the true
mean differs from µ1, the distribution of t no longer has zero mean. Thus, if
the observed value of t is far from zero, this event is improbable if µ = µ1,
but not improbable for some other values of µ, and the null hypothesis is
rejected.

There is an extensive literature on the construction and use of test statis-
tics for many inference problems of this general class. Many of the test statis-
tics are related to a rather general test statistic called the log likelihood ratio,
and defined as

λ = log

⎛

⎝

max
full family

f(x|θf )

max
null

f(x|θn)

⎞

⎠

It is the natural logarithm of the ratio between the maximum likelihood
obtained in the full family and the maximum likelihood obtained in the null
family. Here, θf denotes the full set of parameters and θn the restricted
set. Under certain regularity and smoothness conditions on the form of the
function f(x|θf ), it can be shown that for large data samples and assuming
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the data comes from a model in the null hypothesis, the statistic 2λ has a
distribution close to the ChiSquared form with d degrees of freedom (written
χ2

d), where d is the number of parameters having fixed values in the null
hypothesis. Thus, if the null hypothesis is true, 2λ is expected to have a value
around d (the mean of χ2

d) and rarely to have values very much greater.
The log likelihood ratio can be interpreted in another way. Suppose data

x is obtained from an unknown member of a family with general distribution
form f(x|θ), and that the family has n parameters, i.e., θ is a vector with
n components. Let θ0 be the true parameter values. Then, under regularity
and smoothness conditions, the random variable

v = 2 log

(

max
Θ

f(x|θ)
f(x|θ0)

)

has asymptotically a distribution close to χ2
n form, and E(v) = n. Let θ̂ be

the maximum likelihood estimate of θ, so v = 2 log f(x|θ̂) − 2 log f(x|θ0).
The value of log f(x|θ0) is of course unknown, but may be guessed as

being roughly given by

log f(x|θ0) ≈ log f(x|θ̂) − 1

2
E(v)

≈ log f(x|θ̂) − n

2

where the value of θ̂, and hence of f(x|θ̂), is calculated from the given data x.
Now suppose that it is believed that the data comes from one of two different
families, with forms f(x|θ) and g(x|φ), and that they have respectively n1

and n2 parameters. We do not assume that one family is a subset of the other.
In comparing the two families f and g, it can be argued that if the data

comes from an unknown model in family f , then the log of its probability
given that model is roughly log f(x|θ̂) − n1/2. Similarly, if the data comes
from an unknown model in family g, its log-probability under that model is
roughly log g(x|φ̂) − n2/2. Hence, to choose between the two families, one
might prefer the larger of these two quantities. Equivalently, we might prefer
family f if

log f(x|θ̂) − log g(x|φ̂) >
1

2
(n1 − n2)

i.e., if

log
f(x|θ̂)
g(x|φ̂)

>
1

2
(n1 − n2)

Thus, we are again led to the log likelihood ratio test, as (n1 − n2) is the
number of parameters for family f over and above the number for family g,
but it is no longer required that g be a subset of f .

In the above rule, the value of the test statistic (the log likelihood ratio)
is compared with 1

2 (n1 − n2), which would be its expected value were g a
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subset of f and the data came from a model in g. We do not require the first
of these conditions, and certainly do not know whether the second is true.
Hence, it is not obvious that 1

2 (n1 − n2) is necessarily the best value against
which to compare the test statistic. It has been argued by Akaike [1] that it
is better to compare the log likelihood ratio against (n1 − n2) rather than
1
2 (n1 − n2). That is, the log likelihood of each family should be “penalized”
by 1 for each free parameter, rather than 1/2. Later we will see arguments for
a “penalty” which is not a constant for each parameter, but rather a value of
order 1

2 log N , where N is the sample size of the data. It is known [5, 40, 60]
that for some pairs of families f and g, the Akaike criterion is inconsistent.
That is, no matter how much data is acquired, it can be expected to show
a preference for the more complex model family even when the data comes
from the simpler family.

1.13 Bayesian Inference

We have seen that non-Bayesian statistical inference cannot lead to prob-
abilistic statements about the source of the data. In choosing among com-
peting models, or model families, we can at best compare the likelihoods
of the competing models, and more generally only estimates or bounds on
these likelihoods. The form of statement which can be deduced from these
comparisons is usually equivalent to the statement below.

“Something has happened which would be surprising if I knew the data
came from model/family A, but less surprising if I knew it came from
model/family B.” Since the substance of such a statement is conditional upon
conditions which are not true, the statement is counterfactual and a leap of
faith is required to translate it into what we want to hear, which is something
like the statement that the source of the data is probably in family B, or at
least that family B is a better guess than family A.

The introduction of new premises into the argument can allow the de-
duction of rather more meaningful conclusions. We now outline Bayesian
statistical inference, in which we assume that probabilistic knowledge about
the source of the data is available independent of, or prior to, the observed
data.

We will begin by discussing inference problems in which the set of possible
models is discrete. Model families with unknown real valued parameters will
be treated later. Let Θ be the set of models with identifying labels {θ1, θ2, . . .}.
The Bayesian approach assumes that, even before the data x is known, we
have reason to assign a probability Pr(θi)(θi ∈ Θ) to each competing model.
This is called the prior probability of the model, since it is the probability
we assign to the proposition that the data come from the model before, or
prior to, our seeing the data. The probability distribution {P (θi), θi ∈ Θ}
is called the prior distribution or simply the prior. As in the classical non-
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Bayesian approach, we also assume the data probability distribution function
or likelihood Pr(x|θi) is known for every model.

Then, using Bayes’ theorem we write

Pr(θi|x) =
Pr(x|θi) Pr(θi)

Pr(x)
∀θi ∈ Θ

Here, {Pr(θi|x)} is a new probability distribution over the possible models,
called the posterior distribution or simply the posterior. Pr(x) is the marginal
data probability given by

Pr(x) =
∑

θi

Pr(x|θi) Pr(θi)

Pr(x) acts as a normalizing constant for the posterior distribution. The value
of Pr(θi|x) for model θi is called its posterior probability, interpreted as the
probability that model θi is indeed the source (or an accurate model of the
source) of the observed data x. Loosely, it is the probability, given the data,
that model θi is “true”. (Since Pr(x) does not depend on θ, it need not be
calculated if we are only interested in comparing the posterior probabilities
of different models for fixed data.)

The Bayesian approach thus makes possible the inference of probabilistic
statements about the source of the data. The posterior probabilities, unlike
measures of “confidence”, obey the usual axioms of probability. For instance,
the posterior probability that the source was either θi or θj is

Pr((θi ∨ θj)|x) = Pr(θi|x) + Pr(θj |x)

Also, if two sets of data x and y are obtained from the same unknown source,
then

Pr(θi|y, x) =
Pr(x|θi, y) Pr(θi|y)

∑

j Pr(x|θj , y) Pr(θj |y)

If the data sets are independent, that is, if for a known model θ the probability
of its yielding data x is not affected by knowing that it has also yielded data
y, then Pr(x|θi, y) = Pr(x|θi) and we have

Pr(θi|y, x) =
Pr(x|θi) Pr(θi|y)

∑

j Pr(x|θj) Pr(θj |y)
=

Pr(x|θi) Pr(y|θi) Pr(θi)
∑

j Pr(x|θj) Pr(y|θj) Pr(θj)

Pr(θi|y) is the posterior probability assigned to θi after seeing data y. The
above equation shows that, in considering further data x,Pr(θi|y) plays the
role of the prior probability of θi, and leads to the posterior probability
Pr(θi|y, x) assigned to θi after seeing the additional data x.

Note that the final posterior distribution Pr(θ|y, x) is independent of the
order in which the two data sets are considered. Whether or not the data sets
are independent for a given model, we have
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Pr(θi|x, y) =
Pr(x, y|θi) Pr(θi)

∑

j Pr(x, y|θj) Pr(θj)

which is a symmetric function of x and y.
The above results show that, given a prior probability distribution over

a discrete set of possible models, the Bayesian method makes it possible to
choose that model which is most probably the source of the data, and to make
statements about the probability that this choice, or any other, is correct.

Henceforth, we will usually denote the prior on a set of possible models
by the generalized function “h(θ)”. Here, h(θ) may represent a probability,
if θ is discrete, or, as discussed below, a probability density.

We now consider problems in which Θ, the set of possible models, is a con-
tinuum rather than a discrete set. Let θ denote the real-valued parameter or
vector of parameters identifying a particular model. Since Θ is a continuum,
prior knowledge cannot assign a non-zero prior probability to every member
of Θ. Instead, we may have a prior probability density over Θ. (It is of course
possible to have a prior distribution which assigns a non-zero probability to
every member of some countable subset of Θ, and a probability density over
the remainder of Θ, but this possibility introduces only mathematical com-
plexity to the problem, and nothing new in principle. We shall ignore it for
the time being.)

We write the prior density over Θ as h(θ), with the meaning that the
prior probability that the true model lies in some region R of Θ is given by

Pr(R) =

∫

R

h(θ)dθ

where dθ is an element of line, area, volume, etc., depending on the number
of scalar parameters, i.e., depending on the dimension of the continuum Θ.
Given data x and the data probability function Pr(x|θ), the Bayes identity
now allows the calculation of a posterior density on Θ:

p(θ|x) =
h(θ) Pr(x|θ)

Pr(x)

where the marginal probability of data x is now

Pr(x) =

∫

Θ

h(θ) Pr(x|θ)dθ

(Henceforth, all integrals or summations with respect to θ will be over the
set Θ of possible models unless otherwise shown.)

Note that the prior density h(θ) and posterior density p(θ|x) are often
called simply the prior and posterior, as is also done with distributions over
a set of discrete models.

The posterior density can be used to calculate the probability, given the
data x, that the source is in some region R of Θ:
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Pr(R|x) =

∫

R

p(θ|x)dθ

and so to attach posterior probabilities to such propositions as “a < θ <
b”, “θ < 0”, “log θ > 1”, etc. for a scalar parameter θ. Similarly, if θ has
two or more components, θ = (u, v) say, then by integrating the posterior
density p(θ|x) = p(u, v|x) with respect to some components, one can compute
posterior probability densities involving only the other components. Thus, the
posterior probability density of component u is given by

∫

v∈Θ

p(u, v|x)dv

However, the posterior density of θ does not allow us to attach a non-zero
probability to individual values of θ. Being a density, it cannot give a prob-
ability to a proposition of the form “θ = a”.

Thus, the Bayesian argument, when applied to a continuum of possible
models, does not lead directly to a simple rule for choosing a “best guess”
estimate of the parameter. When Θ is discrete, one may choose the discrete
model of highest posterior probability, but when Θ is a continuum, no one
model has any posterior probability. It might be thought that an obvious es-
timation rule analogous to the simple rule for discrete Θ would be to estimate
θ by that value having the largest posterior density given the data, that is,
to choose the mode of the posterior density:

θ̂ = Mode p(θ|x)

This rule is in general unacceptable, as it depends on the particular param-
eterization or coordinate system used for identifying members of Θ. Instead
of identifying models by the parameter θ, we could equally well use any other
quantity which is a one-to-one function of θ, say

φ = g(θ) θ = g−1(φ)

Assuming for simplicity that the function g is differentiable, we can then use
the standard rules for transforming probability densities to obtain the prior
and posterior densities of φ:

Prior density hφ(φ) = h(θ)
dθ

dφ
=

h(θ)

ġ(θ)

where

ġ(θ) =
d

dθ
g(θ)

Posterior density pφ(φ|x) =
hφ(φ) Pr(x|g−1(φ))

Pr(x)
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=
h(θ)

ġ(θ)

Pr(x|θ)
Pr(x)

=
p(θ|x)

ġ(θ)

In general, the mode of pφ(φ|x) will not correspond to the mode of p(θ|x)

Mode pφ(φ|x) �= g(Mode p(θ|x))

The modes can only correspond if ġ() happens to have zero slope at the mode.
A similar objection can be raised to using the mean of the posterior

density as an estimate: it also is not invariant under a change in the choice
of parameter. However, if θ is a single scalar parameter, there is some logic
in choosing as the estimate the median of the posterior density. One can say
that the true parameter is equally likely, given the data, to be above or below
this value, and the median is invariant under a (monotonic) change in the
choice of parameter. However, the median is not defined when there are two
or more parameters, and the posterior medians of single components of a
vector parameter are not invariant.

The difficulty outlined above in obtaining a parameter estimate from the
Bayesian argument alone is one of the problems we believe has been overcome
in the new approach to be developed here.

We now consider Bayesian choice among two or more model families,
perhaps with different numbers of parameters. One family may or may not
be a subset of another. Let the families be indexed by j, and let the probability
of data x for a model in family j be fj(x|θj), where parameter variable θj is
the parameter for family j. It is convenient to describe the prior distribution
by the notation

Prior = h(j, θj) = h(j)h(θj |j)
Here h() is a generalized function symbol denoting prior probability or den-
sity, h(j) is the prior probability that the data source is a model in family j,
and h(θj |j) is the prior density of parameter θj , given that the model is in
family j. Then

∑

j

h(j) = 1;

∫

h(θj |j) dθj = 1 (for all j)

Given data x, the posterior can be similarly described by a generalized func-
tion symbol p().

p(j, θj |x) =
fj(x|θj)h(j, θj)

Pr(x)

= p(j|x) p(θj |j, x)

Here, Pr(x) is the marginal probability of obtaining data x from any model
in any family
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Pr(x) =
∑

j

∫

fj(x|θj) h(j, θj) dθj

=
∑

j

h(j)

∫

fj(x|θj) h(θj |j) dθj

The latter form can be recognized as summing (prior probability that the
family is j) times (marginal probability of getting x from some model in
family j). Thus, we can write

Pr(x) =
∑

j

h(j) Pr(x|j)

where

Pr(x|j) =

∫

fj(x|θj) h(θj |j) dθj

The posterior probability that the data comes from family j is

Pr(j|x) =
h(j) Pr(x|j)

Pr(x)

and the posterior density of parameter θj , given or assuming that the data
comes from family j, is

Pr(θj |j, x) =
fj(x|θj) h(θj |j)

Pr(x|j)

The posterior distribution {p(j|x)} over the families behaves exactly as the
posterior distribution over a discrete set of unparameterized models. It allows
us to make probability statements about families or groups of families in the
light of the data, and suggests a simple choice rule for inferring the family
when a choice must be made, namely, choose the family of highest posterior
probability. However, the difficulty of estimating parameter values, i.e., of
choosing the “best” model within a family, remains. Nor is it entirely obvious
that the “best” model, however that is defined, will necessarily be a member
of the family with highest posterior probability.

1.14 Bayesian Decision Theory

In certain circumstances, the inability of the Bayesian argument by itself to
pick a “best” estimate of parameter values is of no consequence. It may be
that the objective of the statistical investigation is to choose among a set
of possible actions whose favourable or unfavourable consequences depend
on the true state of the source of the data. A much-studied example is the
problem of deciding on the treatment of a patient on the basis of the patient’s
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symptoms. Here, the set of “models” is the set of possible causes of the
symptoms, i.e., Θ is a set of possible diseases or conditions. Let θ be some
disease in Θ, x be the observed symptoms and Pr(x|θ) be the probability
that someone suffering θ would show x. The prior h(θ) may reflect the known
frequency of disease θ in the population to which the patient belongs. Then
the Bayesian argument allows us to calculate the posterior

Pr(θ|x) =
h(θ) Pr(x|θ)

Pr(x)

for any θ.
Suppose now that there is a set A of actions {a1, a2, . . . , ak, . . .} which may

be taken, i.e., a set of treatments which could be given, and that previous
experience has shown that the cost, in terms of money, time, suffering and
final outcome, of treating a sufferer from θ with treatment ak is C(θ, ak).
(In general, C would usually represent an expected or average cost, as θ and
ak might not fully determine the consequences.) Then the expected cost of
taking action ak given the data x is

E(C(ak)|x) =
∑

θ

h(θ) Pr(x|θ) C(θ, ak)

Pr(x)

=
∑

θ

Pr(θ|x) C(θ, ak)

It is then rational to choose that action â for which E(C(ak)|x) is least.
This technique of using the posterior to decide on the action of least

expected cost, given the data, is known as Bayesian decision analysis, and
has been much studied. Although presented above in terms of a discrete set
of possible models and a discrete set of possible actions, the extension to
parameterized models and/or a continuum of possible actions is immediate
and raises no problems. If Θ is a continuum with parameter θ, the expected
cost of action a given data x is

E(C(a)|x) =

∫

p(θ|x)C(θ, a) dθ

where p(θ|x) is the posterior density of θ. This expression is valid whether
the set A of possible actions is continuous or discrete. When A is continuous,
C(θ, a) remains a “cost”, e.g., a sum of money, and is not a density over
A. Similarly, E(C(a)|x) is not a density, and its minimum is invariant under
changes of parameterization of Θ and A.

We see that, given the addition of a cost function, Bayesian inference leads
to a rational basis for decision which is valid whether or not the set of possible
models is or contains a continuum family with unknown parameters. Where
a cost function is available, we can see no conceptual objection to Bayesian
decision analysis, and the approach developed in this work adds nothing to



42 1. Inductive Inference

Bayesian decision theory save (we hope) some useful comments about prior
probabilities.

Bayesian decision theory does not require or involve making any statement
about the “best” or most probable model of the data, nor does it involve any
estimation of parameters. In fact, it really makes no inference about the
source of the data other than a statement of the form: “Our knowledge of the
source of the data is such that the action of least expected cost is â”, which
is not about the source, but about our knowledge of it.

In some circumstances, Bayesian decision analysis can appear to lead to
estimates of parameters. Consider a problem where the set of possible models
is a single family with parameter θ, and the set of possible actions is also a
continuum, having the same dimension as the family of models. Then it may
be that the choice of action can be expressed in a form similar to a statement
about the model. For example, imagine a traveller faced with the problem
of what clothes to pack for a visit to Melbourne. Her extensive wardrobe
offers an almost unlimited range of garments, each suitable for one particular
narrow range of temperatures. Prior knowledge and meteorological data allow
the traveller to infer a posterior density over θ, tomorrow’s temperature in
Melbourne. In this case, the action chosen, i.e., the selection of clothes, can
also be expressed as a temperature: the temperature θa for which the chosen
clothes are ideal. The cost C(θ, θa) is related to the difference between the
temperature θa and the actual temperature θ to be encountered in Melbourne.

In cases such as the above, where the parameters of the action or decision
are commensurable with the unknown parameters of the model, the action
parameters θa of the least-cost action are sometimes considered to be an
estimate of the model parameter θ. This possibility arises most commonly
when the cost function can be expressed as a function C(θ − θa) of the
difference between “estimate” and true value. In our view, this use of the term
“estimate” is misleading. It is not difficult to imagine cases where the least-
cost action is described by an action parameter θa such that Pr(x|θ = θa) = 0.
For instance to use a fanciful example, the meteorological data might show
quite conclusively that the temperature in Melbourne will not be in the range
22–23◦C, but has high posterior probability of being either about 20◦ or about
25◦. The least-cost action might then be to pack clothes ideal for 22.5◦C,
even although the traveller is certain that this will not be the temperature.
Of course, it is more usually the case that the least-cost θa is a reasonable
estimate of θ, even if it is not so intended.

The above remarks are no criticism of the Bayesian decision-making pro-
cess. They aim only to argue that the process need not and does not make
any estimate about the source of the data. No assertion, however qualified,
is made about the “true state of the world”.

Similar but stronger remarks can be made about the outcome of Bayesian
decision when the set of possible models includes different parameterized
families. The process makes no assertion about which family contains the
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source of the data. Even if the chosen action is described in the same terms as
are used to name a family, we cannot properly regard the terms describing the
least-expected-cost action as an assertion or guess about the “true” family.

If Bayesian decision analysis is accepted as a sound basis for choosing
actions, as we argue, there may seem no need ever to go beyond it in any
analysis of data. Whenever data is collected, observations made, model fam-
ilies devised and inferences drawn, it is for some purpose or purposes. These
purposes may be vital or frivolous, but almost always some action will be
taken in the light of the data to further these aims. If Bayesian decision can
reliably guide these actions, need we ever worry about weighing one theory
against another, or trying to discover precise values for unknown parame-
ters? The decision process automatically takes into account all the theories,
models and possible parameter values we are prepared to consider, weights
each in due proportion to the support it gets from the data, and leads to an
appropriate choice of action.

If the Bayesian decision process were universally feasible, we would have
indeed no reason other than idle curiosity to pursue any other kind of sta-
tistical inference. Unfortunately, the limitations of human reason and the
division of responsibilities in human societies make the process infeasible in
all but a few arenas. An obvious obstacle is that the investigator who col-
lects and analyses the data is rarely in a position to know what decisions will
be made using the conclusions of the investigation. Some of the immediate
objectives of the study may be known, but many inferences, especially those
widely published, will be used by persons and for purposes quite unknown to
the investigator. The investigator will often have even less knowledge of the
cost functions involved in the decisions based on his work. It is unlikely that
Kepler could have had any idea of the consequences of accepting his inference
that planetary orbits are elliptical, or that Millikan could have put a cost to
any error in his estimation of the electronic charge.

Because an investigator is not usually in a position to know the uses
which will be made of his conclusions and the cost functions relevant to those
uses, one can argue that a statistical analysis of the data should proceed no
further than the calculation of the posterior distribution. Any agent who,
faced with a range of decisions and a cost function, wishes to use the results
of the investigation will find all the relevant results expressed in the posterior
distribution. The posterior encapsulates everything about the source of the
data that can be inferred within the assumptions of the investigation (i.e.,
within the constraints imposed by the set of models considered). On the
other hand, if the investigator goes beyond the posterior, and states as his
inference a “best guess” of model family and parameter values, he is in general
censoring and/or distorting the data. Except in those simple cases where a
small set of sufficient statistics exists, no one model can accurately summarize
all the information in the data which may be relevant to future decisions.
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There are thus good reasons to consider the task of a statistical investiga-
tion to be complete when the posterior has been calculated. Further inference,
e.g., the choice among actions or the prediction of future events, can be based
on the posterior but require additional information not normally known to
the original investigator.

In the real world, however, the above policy is a counsel of perfection,
rarely able to be carried out and rarely meeting practical needs. There are two
difficulties. First, in even modestly complicated problems, the set of models
considered possible may be quite large and have a fairly complex structure.
For instance, it may commonly include several structurally different families
of models with different numbers of parameters. The result can be that the
posterior is a complicated function, difficult both to express and to evaluate.
Indeed, in some cases an accurate specification of the posterior is just as
lengthy as the body of data on which it is based. “Conclusions” of such a
sort are hard to communicate and give little or no insight into the nature of
the data source.

The second difficulty is that posterior distributions of any complexity are
often too difficult to use in further reasoning. Consider a study on the effect
of various inputs on the yield of a crop. The data might include observed
yields under a range of fertilizer and rainfall inputs, soil types, temperature
profiles over the growing season, etc. The models considered might range
from simple linear families through ones allowing for interaction of different
inputs and saturation effects to model families which incorporate detailed
modelling of photosynthesis and other biochemical reactions. The posterior
distribution over these families and their numerous parameters would be a
very complicated function. Even within a single family, such as the family
of non-linear regression models, the posterior densities of the unknown pa-
rameters would have complex shapes and correlations. It would be extremely
difficult to use such a function in answering practical questions such as “If
November is unusually cool and dry, will fertilizer applied in December have
any useful effect?” Here, the most useful result that could be obtained from
the study is a single model, preferably of no great mathematical complex-
ity, which captured most of the effects visible in the data with reasonable
accuracy.

A further striking example where a posterior would be almost useless is
the “computer enhancement” of noisy images such as satellite photographs.
Here, the “models” are all those 2-dimensional brightness patterns which the
subject of the photo might have had, the data is the brightness pattern of
the available image(s), the data probability function describes the probability
distributions of the various noise and distortion processes which corrupt the
image, and the prior should reflect what is already known about the subject.
The processing of the given image to provide a clearer picture of the subject
is essentially a statistical inference. However, to give as the result a posterior
distribution over all possible pictures would be ludicrous: what is needed is a
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single picture showing the “best guess” which can be made about the subject.
Merely to enumerate all the “models” of the subject would be infeasible for
an image comprising a million pixels. It is likely that the set of models with
high posterior probability would allow at least two brightness values for each
pixel independently, giving at least 21000000 models to be enumerated.

1.15 The Origins of Priors

The Bayesian argument takes a prior probability distribution over a set of
models, adds information gleaned from data whose source is believed or as-
sumed to be in the model set, and results in a new, posterior, probability
distribution over the set. We have seen that the new distribution can prop-
erly be taken as the prior in analyzing more data from the same source,
giving a new posterior which in turn serves as the prior when yet more data
is obtained. Well-known convergence results assure us that as more and more
data is obtained, the final posterior will almost certainly converge towards a
distribution placing all the probability on the model of the data source, pro-
vided that this model is in the set considered possible by the original prior.
Thus, to some extent we can regard the choice of prior as unimportant. Pro-
vided the prior is not extreme, i.e., does not give zero prior probability to
any model (or interval of models in the case of a continuum), the evidence
gained from sufficient data can always overwhelm the prior distribution. In
real life, however, the option of collecting more and more data is not always
feasible and economic, and the data which is available may not suffice to
overwhelm the effects of a misleading prior. In practice, the prior should be
treated seriously, and care should be taken to ensure that it represents with
some fidelity what we really know and expect about the source of the data.

Here, we should remark that the Bayesian approach seems to demand that
prior probabilities have a meaning distinct from a naive frequentist interpre-
tation of probabilities. First, the very concept of a “probability” attaching
to a proposition such as “giant pandas evolved from the bear family” is in-
admissible if probability is to be interpreted in naive frequentist terms. The
proposition either is or is not true. There is no useful sense in which it can be
said to be true 83% of the time, or in 83 out of 100 cases on average in this
universe. The frequentist interpretation has been extended to accommodate
probabilities for such statements by such devices as an ensemble of possible
universes, but we do not follow this line. Rather, we believe this objection
to prior (and posterior) probabilities is empty if probabilities are regarded
as measures of subjective certainty. Later, we will address the question of
how such a subjective interpretation can be reconciled with the apparently
objective probabilities involved in statements like: “Every plutonium atom
has probability 0.5 of decaying radioactively in the next 12,000 years”.

A more fundamental problem with priors is that the Bayesian argument
cannot explain how a prior distribution is arrived at. More generally, it fails
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to explain how we come to have varying degrees of certainty about any propo-
sitions. Given some initial distribution of belief or probability, the Bayesian
approach shows us how observed data should lead us to modify that dis-
tribution. But in the absence of a prior distribution, the standard Bayesian
argument cannot lead us to infer any probability distribution over alternative
models, no matter how much data we obtain. Whence, then, come our priors?

There are several possible answers to this question.

1.15.1 Previous Likelihood

The prior could be based on previous data relevant to the current problem.
Without a pre-existing distribution, it could not be obtained from the data
by a Bayesian inference, but by a leap of faith the prior over a discrete set of
models could be obtained from the likelihood function Pr(z|θ) for previous
data z. The likelihood as it stands is not a probability distribution over the
possible models, i.e., the possible (discrete) values of θ, but a normalized form

h(θj) =
Pr(z|θi)

∑

j Pr(z|θj)

could usually be constructed and used as a prior. (For some model families,
Pr(z|θ), the sum in the denominator, may be infinite.) In effect, the prior is
obtained by stretching non-Bayesian inference and regarding the likelihood
of a model on data z as being an indication of its probability.

Formally, the above device is equivalent to assuming an original, primitive
prior in which all models have equal prior probability, then using the previous
data z to obtain a posterior by a conventional Bayesian argument. Hence,
deriving a “prior” by appeal to previous data in this way is no more or less
defensible than supposing all models to have equal prior probability.

When this kind of process is used to construct a prior over a continuum
of models with parameter θ, a further leap of faith is required. For some
previous data z, the likelihood function Pr(z|θ), when regarded as a function
of θ with given z, is not a density. To infer from it a prior density over the
continuum of the form

h(θ) =
Pr(z|θ)

∫

Pr(z|θ)dθ

could be justified only if one is persuaded that the variable θ is the “correct”,
or “most natural”, parameter for the continuum. Use of the same device to
obtain a “prior” for some other parameter φ, non-linearly related to θ, would
give a prior for φ implying quite different prior expectations about the model.

1.15.2 Conjugate Priors

The prior could be based on the mathematical properties of the data distri-
bution function (or density) Pr(x|θ). For instance, it is common to choose
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a “conjugate prior” h(θ) which has the property that, when used with data
from the distribution family Pr(x|θ), it gives a posterior of the same math-
ematical form as the prior. That is, h(θ) and Pr(θ|x) = h(θ) Pr(x|θ)/ Pr(x)
belong to the same mathematical family, whatever the value of x. An exam-
ple of a conjugate prior is the Beta prior density for the parameter θ of a
Binomial distribution. If the data x is the number of successes in N trials,
where each trial has independently an unknown but constant probability θ
of succeeding, then

Pr(x|θ) =

(

N

x

)

θx(1 − θ)N−x

If the prior density h(θ) has the Beta form

h(θ) =
θα−1(1 − θ)β−1

B(α, β)
(0 ≤ θ ≤ 1)

where B(α, β) is the Beta function Γ (α)Γ (β)/Γ (α+β) and α, β are constants
greater than zero, then the posterior density p(θ|x) is given by

p(θ|x) =
θx+α−1(1 − θ)N−x+β−1

B(x + α, N − x + β)

which is also of Beta form.
Priors which are normalized forms of the likelihood function derived from

some real or imagined pre-existing data z are always conjugate. The prior
h(θ) then has the form

h(θ) = K Pr(z|θ)
where K is a normalization constant. The posterior given data x becomes

p(θ|x) =
K Pr(z|θ) Pr(x|θ)

Pr(x)

= K2 Pr(x, z|θ)

where K2 is a new normalization constant. Thus, the posterior p(θ|x) is a
normalized form of the likelihood function arising from the combined data x
and z, and so is of the same mathematical form as the prior.

A useful listing of the general forms of conjugate priors for many common
probability models is given in Bernardo and Smith’s book on Bayesian Theory
[4]. They also give the resulting forms for the posterior distributions.

Conjugate priors are mathematically convenient but any argument for
basing the prior on the mathematical form of the data distribution family
Pr(x|θ) must be suspect.

Under our subjective view of probabilities, the prior should represent what
we expect about the model before the data to be analysed is known. Only if
this is so are we justified in using the Bayes identity. We also consider that an
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honest choice of prior should be independent of the data probability distribu-
tion given the model. We may properly think of the collection of observable
data as an (imperfect) procedure designed to measure the unobservable pa-
rameter θ. The kind of data collected and its probabilistic dependence on θ
determine the function Pr(x|θ). That is, this function describes the procedure.
Our prior beliefs about θ are not, or should not be, modified by knowledge
of the procedure available to measure θ.

1.15.3 The Jeffreys Prior

There is a weak argument which might be used by a statistician who is given
data to analyse and who is unable to extract from his client any coherent
statement about prior expectations. The statistician could argue that, if the
client has chosen a procedure characterized by Pr(x|θ) to investigate θ, the
choice might reflect what the client originally believed about θ. Thus, if the
form of Pr(x|θ) is such that the distribution of x is a rapidly varying func-
tional of θ only when θ is in some range a < θ < b, the statistician might
argue that the client must have expected θ to lie in this range, or he would
have chosen a better procedure. The most general expression of this line of
argument is the “Jeffreys” prior, which is a density proportional to

√

F (θ),
where F (θ) is the “Fisher Information”, a generalized measure of how sen-
sitive the probability of x is to variation of θ (described more fully later in
Section 5.1).

This argument is not very convincing. It assumes that a range of “proce-
dures” was available to the investigator, each procedure being well-matched
to some set of prior beliefs about θ. The real world is rarely so obliging.
Jeffreys, while noting the interesting mathematical properties of the Jeffreys
prior, did not advocate its use as a genuine expression of prior knowledge (or
ignorance).

Our prior beliefs about the model will usually be fairly vague. Even when
we have reason to expect one model, or one range of parameter values, to
be more likely than others, the strength of this prior certainty would rarely
be quantifiable more precisely than within a factor of two, and more com-
monly only within an order of magnitude. So there is usually no value in
attempting to specify our prior distribution with great precision. If we can
find a conjugate or other mathematically convenient prior distribution which
roughly accords with our prior beliefs, and excludes no model or parameter
value which we consider at all possible, then there is no reason not to adopt
it. For instance, the Beta prior is convenient for the parameter of a Binomial
distribution, and by choosing appropriate values for the constants α and β
we can find within the Beta family distributions expressing a wide range of
prior beliefs. Thus, if we set α = β = 0.1, the Beta density diverges at θ = 0
and θ = 1, expressing a strong expectation that θ is extreme, i.e., we expect
that either success is very common or failure is very common. Conversely,
setting α = 4 and β = 3, the density has a broad peak at θ = 0.6. If we can
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find values of α and β which give a density doing no violence to our prior
knowledge, we might well use it in preference to some other mathematical
form marginally more in line with our expectations.

1.15.4 Uninformative Priors

A prior may be formulated to express our ignorance of the source of the data
rather than substantial prior belief. That is, when almost nothing useful is
known or suspected about the source of the data, we can try to form a prior
which says nothing about θ. Such colourless or uninformative priors have
been well described in the literature. To take a simple example, suppose that
the data comprises the locations of serious cracks in a long straight road. If
we believe the cracks are the result of minor earth tremors due to some deep
geological fault, we might take as the model family a Normal distribution of
locations with unknown mean µ (presumably over the fault) and unknown
standard deviation σ. For such a distribution, µ is known as a parameter of
location and σ as a parameter of scale. These terms are used whenever, as in
this case, the probability density of a value y can be expressed as

Density(y) =
1

σ
G

(

y − µ

σ

)

where the function G does not otherwise depend on y, µ or σ. In this case,
if the location y of a crack has the density Normal(µ, σ2) then the linearly
transformed value (y − µ)/σ has the density Normal(0,1).

A location parameter may have no “natural” origin of measurement. The
location y of a crack can equally well be expressed in kilometres North or
South of town X as in km N or S of town Y. We may feel that whether X
or Y is taken as the origin of measurement for y (and hence for µ) has no
bearing on our prior expectations about the numeric value of y. Equivalently,
we may feel that our prior knowledge is so irrelevant that we would be no
more and no less surprised to learn that µ was 10 km N of X than we would
be to learn that µ was 10 km N of Y, or anywhere else along the road for
that matter. In such a case, we may argue that the prior density for µ, h(µ),
should be a Uniform density, i.e., that h(µ) should be a constant independent
of µ. This prior density then expresses no preference for any value of µ over
any other.

Similarly, if we have no useful information about the depth and activity of
the suspected fault, we may feel totally ignorant about the expected spread
of the crack locations, i.e., about σ. We may feel that we would be no more
or less surprised to learn that σ was 1 m, 10 m, 100 m or 10 km. If so,
knowing the unit of measurement for σ (m, km, mile, etc.) would not lead us
to modify our prior expectations as to the numerical value of σ. Being wholly
ignorant of the location parameter µ means our hµ(µ) should be unaffected
by a shift of origin, hence hµ(µ) = hµ(µ−a) for any a, and hence hµ(µ) must
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be uniform. Being wholly ignorant of the scale parameter σ means that our
prior hσ(σ) should be unaffected by a change of units, hence hσ(σ) = bhσ(bσ)
for any positive b. The factor b arises from the rule for transforming densities.
If x has density f(x) and variable y = g(x), then the density of y is

f(g−1(y))
(

dy
dx

)

The only prior satisfying hσ(σ) = bhσ(bσ) for all b > 0 is hσ(σ) proportional
to 1/σ. Equivalently, we may suppose the prior density of log σ to be uniform,
since a change in units for σ is equivalent to a change in origin for log σ.

The above arguments, or variants, support the common practice that
prior ignorance of a parameter of location is expressed by a uniform prior
density, and prior ignorance of a parameter of scale is expressed by a (1/θ)
prior density or, equivalently, by a uniform prior density for log θ. There is
an objection to these uninformative priors: they cannot be normalized. If we
are wholly ignorant of µ, its possible range is ±∞, and the integral of any
non-zero uniform density over this range cannot be finite. Similarly, if we
are wholly ignorant of σ, its possible range is [0,∞), and the integral of any
non-zero density proportional to 1/σ over this range cannot be finite. The
fact that these priors are improper is a reminder that we are never wholly
ignorant a priori about any quantity which we hope to measure or estimate.
This point will be elaborated in the next chapter.

In practice, the use of these improper priors is often admissible. Although
the priors are improper, when combined with some real data they usually
lead to posterior densities which are proper, i.e., normalizable. Conceptually,
we may argue that when we use, say, a uniform prior for a location parameter
µ, we really mean that the prior density of µ is almost constant over some
large but finite interval of width W , i.e., we really mean something like

h(µ) =
1

W
; (a − W/2 < µ < a + W/2)

Provided that the data x is such that Pr(x|µ) falls to negligible values for µ
outside the range a ± W/2, the values of the constants a and W will have
negligible effect on the posterior density of µ, so we need not specify them.

The arguments for these uninformative priors are special cases of a more
general “argument from ignorance”. If we feel that our expectations about
some parameter θ are unchanged by any operation on θ in some group of
operations, then the prior we use for θ should have at least the same symmetry
as the group. Here, the terms group and symmetry are used in the sense of
group theory. Thus, if we feel our expectations about µ are unchanged by the
group of translation operators µ → µ + a, h(µ) should have the symmetry of
this group, and hence must be uniform.

If some trial can produce outcomes A, B or C, and we feel that our prior
knowledge about A is the same as about B or C, then our expectations
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should be unchanged by any permutation of the outcomes. Our prior for the
probabilities of the outcomes should then have the same symmetry, so we
should choose a prior with the property that

Prior density (Prob (A)) = Prior density (Prob (B)), etc.

1.15.5 Maximum-Entropy Priors

The prior may be chosen to express maximum ignorance subject to some
constraints imposed by genuine prior knowledge. The most well-known form
is called a maximum entropy prior. Suppose we have an unknown parameter
θ about which we know little, but we do have reason to believe that h(θ)
should satisfy one or more equations of the form

G(h(θ)) = C

where G is a known operator taking a distribution or density as argument and
giving a numeric value, and C is a known constant. The maximum entropy
approach chooses h(θ) to maximize

H =

{

−
∫

h(θ) log(h(θ)) dθ h() a density
−∑Θ h(θ) log h(θ) h() a discrete distribution

subject to the constraints {Gk(h(θ)) = Ck, k = 1, 2, . . .}
The quantity H is called the entropy of the distribution h(). At least

when θ ranges over a fixed discrete set of values, i.e., when h() is a discrete
distribution, it can plausibly be argued that, of all distributions satisfying
the constraints, the maximum entropy distribution implies the least amount
of information about θ. The theory is given in the next chapter. Note that
the constraints

G0(h()) =
∑

θ

h(θ) = C0 = 1; h(θ) ≥ 0 (all θ)

are always imposed.
If no other constraint is imposed, H is maximized by choosing h(θ) to be

constant.
The term “entropy” derives from thermodynamics, and we now give an

example with a thermodynamic flavour. Suppose that our data x relates to
the vertical velocity θ of a gas molecule, and we have a known data probability
function Pr(x|θ). Our prior knowledge is that the molecule has been selected
from a fixed body of gas by some process which should not be affected by θ,
the body of gas as a whole has no vertical momentum, and the mean squared
vertical velocity (which can be inferred from the temperature) is known. All
molecules have the same mass. Assuming the subject molecule to be randomly
selected, we can then argue that h(θ) should satisfy the constraints
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∫

h(θ)θ dθ = 0 (No average momentum)
∫

h(θ)θ2 dθ = T (Known average squared vertical velocity)
∫

h(θ) = 1 (Normalization)
h(θ) ≥ 0 ∀θ (No negative density)

Using the method of indeterminate (Lagrange) multipliers, it is then easily
shown that H is maximized by the Normal prior

h(θ) =
1√
2πT

exp

(

− θ2

2T

)

= Normal(0, T )

When, as in this example, h() is a density rather than a discrete dis-
tribution, the maximum entropy construction unfortunately depends on the
chosen parameterization. If we ask for the prior which is least informative
about, say, θ3 rather than θ, then under exactly the same constraints we
get a different prior for θ. Like many of the arguments outlined above for
original priors, the result depends on the choice of parameterization of the
continuum of possible models. These arguments can command our support
only to the extent that we are persuaded that the chosen parameters give
the most “natural” way of specifying a particular model in the continuum.
The only argument so far presented which is exempt from this criticism is
the argument based on symmetry. This argument requires as its premise a
prior belief that our expectations should be unaffected by a certain group of
operations on the continuum. It does not depend on how we parameterize the
continuum (provided we appropriately modify the parametric description of
the group), but leaves unexplained how we might ever come to believe in the
premise. In general, it also fails fully to determine the prior.

1.15.6 Invariant Conjugate Priors

The conjugate prior h(θ), which is the normalized form of the likelihood of θ
given some prior (possibly imaginary) data z

h(θ) = constant × Pr(z|θ)

has the unfortunate property that for fixed z, the prior distribution over mod-
els depends on how the models are parameterized. However, this objection
does not apply to a prior constructed as the posterior density of θ given some
initial prior h0(θ) and some real or imagined prior data z. If we define the
normalized prior density as

h(θ) = constant × h0(θ) Pr(z|θ)

then h(θ) is invariant under transformations of the parameter, providing h0(θ)
is appropriately transformed. That is, if φ = g(θ) where the transformation
g() is invertible, and the “initial” priors for θ and φ obey
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h0θ(θ)dθ = h0φ(φ)dφ

= h0φ(g(θ))

(

d

dθ
g(θ)

)

dθ

then the priors for θ and φ resulting from the “prior data” z are also equiv-
alent:

hθ(θ)dθ = ConstPθ(z|θ)h0θ(θ)dθ

= ConstPφ(z|φ)h0φ(φ)dφ

= hφ(φ)dφ

for φ = g(θ).
This construction may seem only to defer the problem, leaving us still to

choose the “initial” prior h0(θ). However, for model families possessing simple
conjugate prior forms (essentially the exponential family of distributions), the
“uninformative” priors of Section 1.15.4 usually turn out to be degenerate or
extreme members of the conjugate family, and by virtue of their genesis in
the symmetry or transformation properties of the model family, inherently
transform properly. Thus, prior densities defined as the “posteriors”

h(θ|z) = constant × h0(θ) Pr(z|θ)

where h0(θ) is the “uninformative” prior, are also of conjugate form, but
unlike those based purely on the likelihood, transform correctly. The uninfor-
mative prior h0(θ) is usually improper, but provided the “prior data” z are
sufficiently numerous, the resulting posterior, which we then take as the prior
for analysing new data, is normalizable. We will call such priors “invariant
conjugate”. Note that although convenient, they have no other special virtue
or claim to credence.

1.15.7 Summary

To summarize this introduction to priors, we have so far found no explanation
in either Bayesian or non-Bayesian inference of how our prior experience and
observations could lead us to formulate a prior over a continuum of models.
Even over a discrete set of models, the symmetry and maximum-entropy
arguments so far presented can suggest how we might come to formulate a
prior which assigns every model the same probability, but cannot suggest how
we might rationally come to any other prior belief except by starting with
an equiprobable prior and using some pre-existing data. This last exception
is more rarely available than might appear, since it applies only when the
pre-existing data is believed to come from the same source as the data to be
analysed.

Despite this gloomy picture, it is often, perhaps usually, found that ratio-
nal persons with similar background knowledge of the subject of an investi-
gation can agree as to their priors, at least within an order of magnitude, and
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agree that some compromise prior does little violence to anyone’s expecta-
tions. We will later attempt to give an account of how such agreement is not
only possible but to be expected. However, for the time being let us simply
assume that prior expectations are not wholly irrational and/or idiosyncratic,
and that a prior distribution in rough conformity with the expectations of
most rational investigators will be available as a premise for a Bayesian anal-
ysis.

1.16 Summary of Statistical Critique

The foregoing sections do not do justice to the statistical inference methods
described. However, they do suggest that classical non-Bayesian methods are
incapable of obtaining conclusions which (a) have a well-defined interpreta-
tion in terms of probability, and (b) are not conditional on propositions not
known to be true. Classical Bayesian inference, because it assumes more, can
infer more. Probabilities, at least of the subjective kind treated in this work,
can be calculated for propositions about the source of the data, and in par-
ticular, it is possible to choose that model or model family among a discrete
set of competitors which has the highest probability given the data.

Neither classical approach can offer a convincingly general solution to the
estimation of real-valued unknown parameters. The non-Bayesian approach
can at best derive assertions about intervals of possible parameter values,
framed in terms of the rather vague concept of “confidence”. In a few par-
ticularly simple cases, estimators of no bias and/or minimal variance can be
deduced, but these properties apply only to one special parameterization of
the model family. The Bayesian approach can deduce a posterior density over
parameters, but offers no general method of selecting a “best” estimate which
is not tied to a particular parameterization of the model family.

If a “cost function” is added to the Bayesian premises, it becomes possible
to deduce actions or decisions of least expected cost. It may be possible to
argue that making an estimate θ̂ of a parameter θ is an “action”, and that,
lacking more specific knowledge of the uses to which the estimate will be put,
it is reasonable to assume that the “cost” of an estimate will be some function
such as (θ̂ − θ)2 or |θ̂ − θ| reflecting the error of the estimate. However, such
“least cost” estimates again depend on the parameterization. Where genuine
cost functions are known, Bayesian decision analysis is justified. However, it
does not lead to genuine estimates of parameter values.

In the absence of a cost function, it can be argued that Bayesian inference
is complete when it has obtained a posterior distribution over the possible
models and their parameters. In effect, it is argued that this is as far as
statistical inference can or should go; the rest is up to the user. This program
is in principle defensible but impractical except for very simple sets of models.
Generally, the user of the results can absorb and work with only a single model
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and wants it to be the best available in the light of the data. The classical
Bayesian approach gives no convincing way of choosing this model.

Finally, we note that any Bayesian analysis assumes the availability of
a prior probability distribution. While in practice there may be no great
difficulty in obtaining agreement among reasonable people as to what distri-
bution to use in a specific case, the classical Bayesian argument gives no basis
for this agreement. A prior distribution over models may be refined in the
light of data to give a posterior distribution, which can serve as the prior in
the analysis of further data, but neither the non-Bayesian nor the Bayesian
approach gives any grounds for choosing an original prior.



2. Information

This chapter has three sections. The first gives a short introduction to Shan-
non’s theory of information, or at least those aspects which relate to coding
theory. The second introduces the theory of algorithmic complexity arising
from the work of Kolmogorov, Chaitin and others. These sections could be
skipped by readers familiar with the material, as they contain nothing novel.
The third section connects these two approaches to the measurement of in-
formation with Bayesian statistics, and introduces some slight but useful
restrictions on the measure of algorithmic complexity which assist in the
connection. It should be of interest to most readers.

2.1 Shannon Information

For our purposes, we define information as something the receipt of which
decreases our uncertainty about the state of the world. If we are planning
a visit to Melbourne, we may not know whether it is raining there, and be
wondering whether to take an umbrella. A phone call to a weather service can
inform us of the present and forecast weather in Melbourne. Even if we do not
wholly believe the report, its receipt has reduced our uncertainty: it has given
us information. Information is not directly related to physical quantities. It is
not material, nor is it a form of energy, although it may be stored and com-
municated using material or energy means (e.g., printed paper, radio-waves
etc.). Hence, it cannot be directly measured with instruments, or in units,
appropriate for physical quantities. The measurement of information is most
conveniently introduced in the context of the communication of information.
That is, we will look at what happens when information is passed from a
sender to a receiver.

The communication of information normally involves the transfer from
sender to receiver of some material object (a magnetic disc, a handwritten
letter, etc.) or some form of energy (sound waves, light or radio waves, elec-
trical currents on a phone line etc.) but the choice of vehicle is not important
for our purposes. In fact, many communications in everyday life involve sev-
eral transformations of the information as it is transferred from vehicle to
vehicle. Consider just a part of the communication taking place when we
hear the race results summarized on the radio. The summary may be given
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to the news reader as a typed sheet of paper: patterns of black ink on a
white substrate. These patterns modify the light waves falling on them from
the ceiling lights. Some of the light waves enter the reader’s eyes and trigger
electro-chemical pulses in her retina, which trigger many other pulses in her
brain, and eventually pulses in nerves controlling her lungs, voice box, mouth
and tongue. The resulting muscular motions cause pressure waves in the sur-
rounding air. These waves are detected by a microphone which generates
an electrical voltage varying in sympathy with the air pressure. The voltage
eventually has the effect of controlling the strength or frequency of a rapidly
oscillating current in the radio station’s antenna, causing modulated electro-
magnetic waves to be emitted. These waves are detected in a radio receiver
and decoded by a rather complex process to produce an electric voltage vary-
ing in roughly the same way as that produced by the studio microphone. This
voltage drives a cone of stiff paper into rapid vibration, causing sound waves
which our ears detect. More electro-chemical pulses travel to and around our
brains, and suddenly we are fairly certain that Pink Drink won the 3.20 race
at Caulfield. Through all these transformations in representation and vehicle
(which we have grossly over-simplified) somehow this information has been
preserved and transmitted.

The full theory of information stemming from the work of Shannon [41]
has much to say about all the processes involved in the above scenario, al-
though those taking place in human brains remain largely mysterious. How-
ever, we need only consider an abstract and simple view of what takes place
in such communications.

We will view all representations of the information, be they printed page,
waves, nerve impulses, muscle movements, pictures or whatever, as sequences
of symbols. A symbol is an abstract entity selected from a discrete set (usually
finite) called an alphabet. The use of the words in this technical sense is based
on their familiar use in relation to written or typed text in a natural language.
The race summary was first seen as a sheet of paper marked with letters
(symbols) selected from the alphabet of written English. The arrangement
of the letters on the paper implied by convention a sequence of presentation:
left to right, then top to bottom. The colour and chemistry of the ink, the
size and font style of the printing etc. are all unimportant for our purposes.
What matters is the sequence of symbols. (Note that the alphabet must be
considered to comprise not only the 26 ordinary letters, but also (at least) the
symbols “space” and “full stop”. These punctuation symbols must appear in
the sequence to delimit words and sentences. They carry an essential part of
the information.)

It is less obvious that a pressure wave in the air or a microphone voltage
can be regarded as a sequence of symbols. In both cases, the sequence is clear
enough — it is the temporal sequence of the changing pressure or voltage.
However, a pressure or voltage can take infinitely many values within a finite
range, so it appears that the “alphabet” is infinite. Further, the pressure or
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voltage is constantly changing, so it takes infinitely many different values in
the course of a single second, so it appears that for such media, the com-
munication can only be represented by an infinite sequence of “symbols”,
each selected from an infinite alphabet. Fortunately these difficulties are only
apparent. One of the early results of Information Theory shows that when
information is conveyed by a time-varying physical quantity such as pressure
or voltage, all the information conveyed can be recovered from measurements
of the quantity at regular, discrete intervals, and that these measurements
need be made only to a limited precision. When information is conveyed by
speech, the words spoken and in fact the whole sound of the utterance can
be recovered from pressure or microphone-voltage measurements made about
40,000 times per second, and each measurement need only be accurate enough
to distinguish about 65,000 different pressure or voltage values. Speech (or
any other audible sound) can thus be represented without loss of information
by a sequence of symbols where the sequence contains about 40,000 symbols
for every second of sound, and each symbol is selected from an alphabet of
size 65,000.

Such a representation of sound as a symbol sequence is routinely used on
Compact Discs and increasingly in telephone networks. The measured values
of pressure can themselves be represented as decimal numbers, e.g., one of
the numbers 0-64,999. Thus, the whole sequence representing a passage of
sound can be recorded as a sequence of decimal digits in which groups of 5
consecutive digits represent pressure measurements. In practice, binary rather
than decimal numbers are used, so each pressure would be represented as a
group of 16 binary digits indicating a number in the range 0, . . . , 65,535.
Using binary digits allows the entire sequence to be a binary sequence, using
only the symbols 0 and 1. The length of the sequence required for one second
of sound is then 40,000 x 16 = 640,000 binary digits.

Using similar techniques, pictures, measurements and texts can all be
translated (or rather their information can be translated) into binary se-
quences. As far as is now known, information in any physical medium can be
so translated in principle, although no adequate translation mechanisms yet
exist for some media such as smells. Since the kinds of data presented for sys-
tematic scientific analysis are almost always available in a symbolic form, we
will assume henceforth that all information of concern will be representable
as sequences of binary digits. We now consider how these sequences may be
constructed.

2.1.1 Binary Codes

A binary sequence conveying some information is called a message. Clearly,
there must be some agreement between sender and receiver as to how to
represent information in binary form. That is, they must agree on the meaning
of the binary sequences. Such an agreement defines a code, which we may
also think of as a kind of language. Often, a complete message will convey
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several pieces of information of the same kind, one after another. If these
pieces are independent of one another, in the sense that knowing one piece
gives us no hint about what the next might be, each piece may well be
independently encoded. That is, the message will comprise several binary
subsequences concatenated together. Each subsequence conveys one piece
of information, and the same code may be used repeatedly for each piece
of information in turn. For example, suppose the information as presented
is an apparently random sequence of 2000 Roman letters. To encode this
message in binary form, we might agree that, rather than deciding on a binary
sequence for each of the 262000 possible messages, we will encode each letter
in turn as a 5-binary-digit subsequence and then form the whole message
by concatenating the subsequences. Five binary digits per letter will suffice,
because there are 25 = 32 possible subsequences. A simple code might be:

A→00000 B→00001 C→00010 D→00011 . . .

M→01100 . . . P→01111 . . . Z→11011

If the message began
CBPM . . .

the binary sequence would begin

00010000010111101100 . . .

When messages are encoded piece-by-piece in this way, each subsequence is
often known as a word and the code definition requires only that the binary
subsequence for each word be defined. There is no hard-and-fast distinction
between messages and words. We introduce the notion of words merely to
emphasize that messages may be encoded piecemeal, and that a meaningful
binary sequence may be followed by more binary symbols representing more
information. It will be convenient in the following discussion to consider the
construction of a code for words rather than for complete messages, although
there is no real difference in the two problems. We will use the term “word”
to indicate both the fragment of message being encoded and the sequence or
string of binary digits by which it is represented.

Assume we wish to construct a code for a known finite set of words.
Let the number of different words be N. (In the example above, N=26.)
The code is a mapping from the set of words to a set of finite non-empty
binary strings. We assume the mapping to be one-to-one, as for our purposes
there is nothing to be gained by allowing several binary representations of
the same word. The strings in the code must obviously be all distinct. If
two words were represented by the same string, the receiver would have no
way of knowing which of the two was meant by the string. Further, we will
require the code to have the prefix property : no string is a prefix of any other.
The reason for this requirement is easily seen. Suppose in the random-letters
example above, the code for A was 0000, the code for B was 00001 and the
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code for Z was 11001. Then if the message began AZ . . . the binary form
would begin 00001 . . . The receiver of the binary sequence would have no
way of knowing whether the message began with A followed by some letter
whose binary string began with 1, or began with B. A code having the prefix
property is called a prefix code. (It is possible to define codes which lack the
prefix property yet allow unambiguous decoding. However, such codes have
no advantages for our purposes.)

A binary prefix code with N distinct words can easily be constructed. We
can find the lowest integer k such that 2k ≥ N and let all words have k binary
digits. Since all words have the same length, the prefix property is obvious.
Since there are 2k distinct sequences of k binary digits, and 2k ≥ N , each
of the N words can be assigned its own binary sequence or word according
to some convenient convention. Such equal-length codes are commonly used
because of their simplicity. A well-known example is the ISO-7 code whose
“words” all have seven digits, and are used to represent 128 different letters,
digits, punctuation marks and other symbols. However, equal-length codes
are not the only possible codes, and we shall be interested in codes whose
words are of unequal length.

Any binary prefix code for a set of N words can be represented by a code

tree. A code tree is usually drawn as an inverted tree with the root at the top.
The nodes of the tree are all those points where branches meet or end, so the
root is a node. Every node save the root is at the lower end of some branch,
and every node may have 0, 1 or 2 branches depending from it. Nodes having
no dependent branches are called leaves. Each leaf corresponds to, and can
be labelled with, one of the N words. Every word labels exactly one leaf, so
there are N leaves. We will be mainly interested in trees in which all non-
leaf nodes have exactly two dependent branches. Example: a possible binary
prefix code for the set of 5 words { A B C D E } is

A→0 B→100 C→101 D→110 E→111

This code can be shown as the tree in Figure 2.1. The rule for reading the
binary strings from the tree is as follows. To find the binary string for a
word, follow a path from the root to the node labelled by the desired word.
The path must follow branches of the tree. Whenever a branch to the left
is taken, write down a “0”. Whenever a branch to the right is taken, write
down a “1”. When the desired labelled node is reached, the digits written
down will form the binary string for the desired word. For instance, to get
from the root to the leaf labelled “C” we branch right, left, and right, so the
string for C is 101. Note that words of the given set label only leaf nodes.
This fact guarantees the prefix property, since the path from the root to a
leaf cannot continue on (downwards) to another leaf.

The code tree is convenient for decoding a message comprising sev-
eral words. Suppose the message were BABD. Then the binary form is
1000100110.
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ROOT NODE

------------O-----------
| |
| |
A ---------o----------

| |
| |

-------o------ -----o-------
| | | |
| | | |
B C D E

Fig. 2.1. Tree for prefix code.

To decode it, begin at the root of the code tree and follow left or right
branches downward, guided by successive digits of the message string. Follow
a left branch if the digit is “0”, right if it is “1”. Thus, the first three digits
lead us to the leaf labelled “B”, so the first letter of the message is B. Having
reached a leaf and decoded a word, start again at the root with the next digit
of the string (in this case the fourth digit). As it is “0” follow the left branch
from the root to leaf “A”. Starting again from the root, the next three digits
(100) lead again to “B” and so on.

We need not be concerned with codes whose code tree contains a node
having just one dependent branch. Any such node and its dependent branch
may be deleted from the tree, and the branch leading to it joined directly to
the node at the lower end of the deleted branch. The resulting tree preserves
all the leaves of the original, it still has the prefix property (i.e., only leaves are
labelled as words) and the code strings for some words are now shorter than
in the original code. Such a deletion of a useless node is shown in Figure 2.2.

________O________ ________O________
| | --> | |
| | | |

_____o_____ _____o_____ _____o_____ _____o_____
| | | | | | | |
| | | | | | | |
P Q R ____o P Q R ____o____

| | |
| | |

____o____ S T
| |
| |
S T

Original Revised

Fig. 2.2. Deletion of a useless node.
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The revision shortens the strings for words S and T from 4 digits to 3,
leaving the strings for other words unchanged. Since there is no advantage
in making the binary strings of a code longer than they need be, we assume
all codes and trees to have no nodes with just one dependent branch. All
interior (non-leaf) nodes have two dependent branches, and leaves of course
have none.

2.1.2 Optimal Codes

Codes using strings of different lengths for different words are useful because
they offer the possibility of making binary message strings short. When a
body of information is to be stored in or communicated via some medium,
there are obvious economic advantages in minimizing the use of the medium,
which may be expensive. Other things being equal, a code which allows the
information to be represented in a short string is preferable to one requiring a
longer string. We are thus led to ask whether the code for a given set of words
can be chosen to minimize the length of the binary string. Suppose that the
set of possible words has N members. It is obvious that, whatever the word
actually communicated, there is a code which encodes this word with a single
binary digit. For instance, if the set of words is {A B C D E}, there is a code
encoding A with one digit and all other words with 3 digits. The same is true
for every other word in the set. This fact is of no use in practice, because
sender and receiver must agree on the code to be used before the information
to be communicated is available. There is no point in agreeing to use a code
which minimizes the length of the string for “A” if we have no grounds for
supposing that A will be sent rather than B C D or E. (It is of course possible
for sender and receiver to agree that one of a set or family of codes will be
employed, to be determined by the sender after the information is available.
But if it is so agreed, the binary string must begin with some additional digits
identifying the chosen code. Although this technique will later be seen to be
very important, it really amounts to no more than an agreement to use a
certain single rather complicated code. It would certainly not permit a word
from the 5-member set to be encoded with one digit, no matter what that
word might be.)

Since it is meaningless to ask for the code which gives the least string
length, we may choose to seek the code which gives the least maximum string
length. That is, we can choose the code to minimize the length of the longest
string for any word. It is easily shown that this code assigns strings of the
same length k to some words of the set and length (k − 1) to the remainder,
where k is the smallest integer satisfying 2k ≥ N . If 2k = N , all strings have
length k. Essentially, the code of minimal maximum length is an equal-length
code with some nodes deleted if N < 2k.

When the sender and receiver negotiate the choice of code, they do not yet
know the information to be sent. However, they may have grounds to believe
that some words are more probable than others. That is, they may agree on
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ROOT
-------O------- level 0
| |
| |

----o---- -----o----- level 1
| | | X |
| | | |

----o---- a3 o ----o---- level 2
| | | | |
| | | | |
a1 a2 a4 ---o--- a7 level 3

| |
| |
a5 a6 level 4

Fig. 2.3. Sample binary tree for N words.

a non-uniform prior probability distribution over the set of words. Let the
set of words be {ai : i = 1, . . . , N} and the probability of word ai be pi for all
i. This probability is the subjective probability held by the communicating
parties that the word to be sent will be ai. Then we may seek a code which
minimizes the expected length of the code string. If the chosen code encodes
word ai with a string of length li, the expected string length is

E(l) =
∑

i

pili

Codes which minimize E(l) are called optimal codes.
Before considering how E(l) can be minimized, we must establish a bound

on the choice of the string lengths. The chosen code can be represented by
a code tree, i.e., a rooted binary tree with N leaves corresponding to the N
words. Consider any such tree, for example the tree in Figure 2.3.

Each node may be placed on a level corresponding to the number of
branches on the path from the root to the node. In particular, the level of a
leaf node equals the length of the string encoding the word at that leaf. For
instance, the leaf for word a2 is on level 3, and the tree shows that the string
for a3 is 001, of length 3.

Now give each node of the tree a “weight” according to the following rule:
the weight of a node on level l is 2−l. Then

(a) The weight of a node is greater than or equal to the sum of the weights
of its children, where the children of a node are the nodes (if any) at the
lower ends of the branches depending from the node.

(b) It follows by mathematical induction from (a) that the weight of a non-
leaf node is greater than or equal to the sum of the weights of all the
leaves of the subtree rooted at the node. For example, the weight of the
node X in the diagram must be not less than the sum of the weights of
the leaves a4, a5, a6 and a7.
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(c) The weight of the root is 1.

Hence, from (b) and (c):

∑

i

2−li ≤ 1

where the summation is over all leaves, i.e., over all words of the code. This
inequality is a form of Kraft’s inequality. Equality is reached unless the tree
contains one or more nodes having just one dependent branch. The example
tree above has such a node, but as we have mentioned before, there is no
reason to use codes having such nodes. For codes of interest, we will usually

have the equality
∑

i

2−li = 1

We can now proceed to choose the string lengths li to minimize the ex-
pected string length E(l) =

∑

i pili subject to the above constraint. Using
the method of indeterminate multipliers:

∂

∂li

(

∑

i

pili − λ(
∑

i

2−li − 1)

)

= pi + λ(log 2)2−li

Equating to zero gives

2−li = − pi

λ ln 2

Using
∑

i 2−li = 1 and
∑

i pi = 1 gives 2−li = pi, so li = − log2 pi.
That is, the expected string length is minimized when a word of proba-

bility pi is encoded using a string of length − log2 pi binary digits. Probable
words are encoded with short strings, improbable ones with long strings. Ex-
cept in the unlikely event that all the word probabilities are negative powers
of 2, it will not be possible to choose string lengths (which are of course in-
tegers) exactly satisfying

∑

i 2−li = 1 . For the moment, we will ignore this
complication and assume that either the probabilities are negative powers of
2 or that we can somehow have non-integer string lengths.

Assuming that for every word, pi = 2−li , it is clear that the “weight” of the
leaf node for a word equals its probability. The probability that some interior
node of the code tree will be visited in decoding a string equals the sum of the
probabilities of all the leaf words in the subtree rooted at that node. Thus,
since we exclude trees with nodes having only one child, the probability of
visiting any interior or leaf node equals its weight. Further, for any interior
node Y at level l, the probability of visiting Y is 2−l and the probability of
visiting its left child is 2−(l+1). Thus, the probability of visiting the left child
given that the decoding process has reached Y is 2−(l+1)/2−l = 1/2. But, if we
have reached Y, its left child will be visited if and only if the next digit in the
string being decoded is “0”. Hence, given that we have reached Y, the next
digit is equally likely to be “0” or “1”. But this is true for any interior node
Y. Reaching Y while decoding a string is determined by the digits already
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decoded: these determine the choice of left or right branch at each step, and
hence determine what node is reached. Hence, regardless of what digits have
already been decoded, i.e., regardless of what node the decoding has reached,
the next digit has probability 1/2 of being “0”. Thus, in the strings produced
by an optimal binary code, each binary digit has equal probability of being
0 or 1 independently of the other digits. Knowledge of the early digits of a
string gives no clue about the values of later digits. It follows that each binary
digit in the string optimally encoding a word of probability p is distinguishing
between two equally probable possibilities.

2.1.3 Measurement of Information

The above considerations have led to the idea that the amount of information
conveyed by a word (or message) can usefully be equated to the number of
binary digits in a string optimally encoding the word or message. The unit
of this measure is the amount of information conveyed by naming one of
two equally probable alternatives. As we have seen, every binary digit of the
string conveys just this amount of information. This unit of information is
conventionally named the bit. The word is a contraction of “binary digit”, but
its meaning in Information Theory is distinct from the meaning of “binary
digit”. The latter is a symbol having value either 0 or 1. The bit is an amount
of information which, in an optimal code, is encoded as a single binary digit.

In other codes, a binary digit can convey other amounts of information.
For instance, we could arrange to communicate every day a single binary
digit showing whether rain had been recorded in Alice Springs during the
preceding 24 hours. Let 0 mean no rain, 1 mean rain has fallen. Alice Springs
has a very dry climate, so the great majority of transmitted digits would be
zero, and the subjective probability that tomorrow’s digit will be 1 would
be perhaps 0.1. Then the information conveyed by each digit would not be
one bit, since the two possibilities distinguished by the digit are not equally
probable.

If we take the information conveyed by a word as being the number of
binary digits in a string optimally encoding the word, then the information
conveyed by a word of probability pi is − log2 pi. This definition is unambigu-
ous for a set of words admitting an ideal optimum code, i.e., a set in which all
words have probabilities which are negative powers of 2. We will assume for
the time being that it can be adopted whatever the probabilities of the words.
For instance, we will define the information conveyed by a word of probabil-
ity 0.01 as − log2 0.01 = 6.6438 . . . bits. Since this number is not integral, it
cannot equal the number of binary digits in a string optimally encoding the
word. However, the extension of the definition to arbitrary probabilities can
be justified on two grounds. First, the number of digits in an optimal encod-
ing of the word is usually close to − log2 pi. Second, and more persuasively,
we will later show that when any long message of many words is optimally
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encoded, the length of the resulting string is expected to be within one digit
of the sum of the information contents of its words as given by this definition.

This definition of information content satisfies several intuitive expecta-
tions.

(a) A message announcing something we strongly expected has little infor-
mation content.

(b) A message announcing a surprising (low probability) event has high in-
formation content.

(c) If two messages convey independent pieces of information, then the in-
formation content of a message announcing both pieces is the sum of the
information contents of the two separate messages. If message M1 an-
nounces event E1 of probability P (E1), and message M2 announces event
E2 of probability P (E2), then their information contents are respectively
− log2 P (E1) and − log2 P (E2). A message announcing both events has
content − log2 P (E1, E2) and since E1, E2 are independent, P (E1, E2) =
P (E1)P (E2), so − log2 P (E1, E2) = − log2 P (E1) − log2 P (E2).

(d) If two propositions E1, E2 are not independent, the information in a
message asserting both does not equal the sum of the information in two
messages asserting each proposition singly, but does not depend on the
order of assertion. Suppose a message optimally encodes E1 and E2 in
that order. The first part, asserting E1, has length − log2 P (E1) binary
digits (ignoring any rounding-off to integer values). The second part en-
codes E2. But, by the time the receiver comes to decode the second part
of the message, the receiver knows proposition E1 to be true. Hence, the
probability he gives to E2 is not in general P (E2) but P (E2|E1), the
probability of E2 given E1. An optimal encoding of the second part will
therefore have length − log2 P (E2|E1). The length of the whole optimally
coded string is therefore

− log2 P (E1) − log2 P (E2|E1)

= − log2 P (E1)P (E2|E1)

= − log2 P (E1, E2) ≡ − log2 P (E2, E1)

which is independent of the order of E1 and E2.
By definition, the information in the message asserting E1 and E2 is the
length of the coded message in binary digits. Hence, the above equations
apply to the information contents as well as to the string lengths. This
result is in accord with our intuition. If we are told E1, and E2 is to be
expected if E1 is true, then the additional information we get when told
E2 is small. In particular, if E1 logically implies E2, P (E2|E1) = 1 so
once we have been told E1, a further assertion of E2 adds nothing to our
information.

(e) The information in a message relates in an obvious way to the ability of
the message to distinguish among equiprobable possibilities. Intuitively,
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we would regard a message which names one of 1000 possibilities as being
more informative than a message which names one of only five possibili-
ties. The relationship between information and number of possibilities is
easily seen to be logarithmic. Imagine a message which names one of 12
possibilities. We can think of the twelve possibilities as being arranged
in a table having 3 rows and 4 columns. Any possibility can be named
by naming its row and column. Thus, the message could be made of two
words: the first naming one of 3 possible rows, the second naming one of
4 possible columns. The information conveyed in the two words together
names one of 12 possibilities. Generalizing to an N-by-M table of (NM)
possibilities, we see that

Information to name one of N × M possibilities
= Information to name one of N possibilities (the row)
+ Information to name one of M possibilities (the column)

If I(N) denotes the information needed to name one of N equiprobable
possibilities, we have

I(N × M) = I(N) + I(M)

The only function I() satisfying this relation for all positive integers is
the logarithmic function I(N) = log(N). This argument does not fix the
base of the logs, but if we note that one of 2k possibilities can be named
by a k-digit binary number, we must have

I(2k) = k bits

I(N) = log2 N bits

Since the N possibilities are assumed equally likely, the probability of
each is 1/N . Hence, we can write

I(N) = log2 N

= − log2(1/N)

= − log2 (probability of thing named)

(f) The information conveyed by a word or message announcing some event
or proposition depends on only the probability p of the event announced.
What other events might have been announced by the word, and the
distribution of the remaining probability (1 − p) over them, are of no
consequence. The amount of information in the message depends on what
did happen, not on what did not. This observation has the practical
consequence that, in discussing the information content of a message, we
need only establish the probability of the event or proposition conveyed
by the message. We need not enumerate the entire set of messages which
might have been sent but were not, nor need we calculate the probabilities
of the events that might have been announced.
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2.1.4 The Construction of Optimal Codes

An optimal binary code for a set of words minimizes the expected string
length

∑

i pili where pi is the probability of the ith word of the set and li
is the length, in binary digits, of the string encoding that word. Given a set
of words and their probabilities {pi : i = 1, 2, . . .}, we now consider how an
optimal code can be constructed. We have seen that in the ideal case where all
probabilities are negative powers of two, the optimal code obeys the relation

∀i li = − log2 pi

giving expected length
∑

i

pili = −
∑

i

pi log2 pi

When the probabilities are not all negative powers of two, this relation cannot
be observed because all lengths l must be integral.

First, observe that whatever the probabilities, we can easily design a code
such that

∑

i

pili < −
∑

i

pi log2 pi + 1

That is, we can devise a code with expected string length exceeding the ideal
value by less than one digit. For every word in the set (assumed finite), let qi

be the largest negative power of two not exceeding pi. Then pi ≥ qi > pi/2
for all i, and − log2 qi is an integer satisfying

− log2 qi < − log2 pi + 1

In general,
∑

i qi < 1. Add to the set of words some additional dummy
words with “probabilities” which are negative powers of 2, such that for the
augmented set of words

∑

i qi = 1. Then design an optimal binary code for
the now-ideal set of probabilities { qi : i covers real and dummy words }.
This code can then be used as a code for the given set of words. The expected
string length is

−
∑

i

pi log2 qi (summation over real words only)

<
∑

i

pi(− log2 pi + 1)

<
∑

i

pilog2pi +
∑

i

pi

< −
∑

i

pi log2 pi + 1

The code has the capacity to encode the dummy words. As this capacity
will never be used, the code is obviously not the most efficient possible, but
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A: 0 0 0
B: 0 1 0 0
C: 0 1 0 1
D: 0 1 1
E: 1 0 0
F: 1 0 1
G: 1 1
H: 0 0 1

Fig. 2.4. Sample code table.

none the less has an expected string length exceeding the ideal value by less
than one. We now describe two constructions which do better than this crude
approach.

A Shannon-Fano code [41, 14] is based on the principle that in an optimal
code, each digit of a code string should have equal probability of being zero
or one. The construction builds the code tree from the root downwards. The
first digit of a string shows whether the word encoded lies in the left subtree
depending from the root, or the right subtree. In order to make these two
possibilities as nearly as possible equiprobable, the set of words is divided into
two subsets with nearly equal total probabilities. Words in the first subset are
assigned to the left subtree and have code strings beginning with zero. Those
in the other subset are assigned to the right subtree and have code strings
beginning with one. The construction then proceeds recursively. Words in
the left subtree are divided into nearly equiprobable subsets, and the subsets
assigned to different subtrees, and so on until all words are fully coded. For
example, consider the set of words and probabilities below:

A (1/36) B (2/36) C (3/36) D (4/36)
E (5/36) F (6/36) G (7/36) H (8/36)

One way of dividing the set into equiprobable subsets is {A, B, C, D, H} ,
{E, F, G}.

The left subset can be exactly equally divided into {A, H}, {B, C, D},
each subset having probability 9/36. The right subset cannot. The best that
can be done is the split {E,F}, {G}. Proceeding in this way we obtain the code
in Figure 2.4. It can be seen that the choice of an equiprobable split for the
early digits can lead to unfortunate consequences later in the construction.
For instance, the subtree of words beginning “00” contains only A and H
with probabilities 1/36 and 8/36. Although these are far from equal, there
is no choice but to split them, with the result that the most-probable and
least-probable words are coded with strings of the same length. The expected
string length is 2.944 digits. This may be compared with the ideal expected
string length, or entropy defined as −∑i pi log2 pi = 2.7942 bits.

A Huffman code [19] is also based on an attempt to have each binary
digit decide between equiprobable subsets, but the construction is bottom-
up, moving from the leaves of the code tree towards the root. It is both easier
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to construct and more efficient than the Shannon-Fano scheme. We begin
with a set of nodes comprising leaves of the tree labelled with the words and
their probabilities. Then this set of nodes is searched to find the two nodes of
smallest probability. These two nodes are joined in a subtree by introducing
a new node which has the two nodes as children. The child nodes so joined
are removed from the set of nodes and replaced by the new node. The new
node is labelled with a probability equal to the sum of the probabilities of its
children. Then again the set of nodes is searched for the two nodes of smallest
probability, these are joined and replaced by their parent, and so on until the
set of nodes is reduced to a single node, which is the root of the tree. Using
the same example as above:

F6 A1 B2 C3 D4 E5 G7 H8
| |__Z3__| | | | | |
| | | | | | |
| |____Y6____| | | | |
| | |__X9__| | |
|______W12______| | | |

| | | |
| | |__V15__|
|__________U21___________| |

| |
|_____________T36___________|

(Root)

Fig. 2.5. Construction of a code tree.

The first step joins nodes A and B, replacing them with a new node (say Z)
of probability (1 + 2)/36. Then Z and C are joined and replaced by a parent
Y of probability (3 + 3)/36, and so on. Schematically, the construction can
be shown as in Figure 2.5. Probabilities are shown as times 36.

The leaves were slightly rearranged to avoid branches of the tree crossing
one another. Using the convention that left branches are labelled “0”, the
resulting code is as shown in Figure 2.6.

A: 0 0 1 0 0
B: 0 0 1 0 1
C: 0 0 1 1
D: 0 1 0
E: 0 1 1
F: 0 0 0
G: 1 0
H: 0 1

Fig. 2.6. Rearranged code table.
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The improvement over the Shannon-Fano code is evident. The string
lengths are now monotonically decreasing with increasing word probabil-
ity. The expected string length is 2.833 digits, about 0.11 less than for the
Shannon-Fano code but still, of course, greater than the entropy. The Huff-
man construction can be proved to give optimal codes.

For both constructions, and indeed for any binary code tree, the labelling
of the left and right branches depending from a node with the digit values
0 and 1 is arbitrary. A different choice will give different code strings for
the words, but the lengths of the strings and the expected string length
are unchanged. Thus, there are many “Huffman” codes for the same set of
words. All are optimal, and the choice of one of them can be made by some
convention.

2.1.5 Coding Multi-Word Messages

We have discussed the construction of optimal codes for “words” or “mes-
sages” indifferently. If we are considering the encoding of long messages con-
veying many bits of information, it may be inconvenient to attempt an op-
timal code construction for the set of all possible messages. There may be
many millions of possible messages any one of which could be sent, each
having a very small probability. A Shannon-Fano or Huffman code for the
whole set would be efficient, but very tedious to construct by the methods
outlined above. A common approach is to divide the message into sequence
of “words” each of which can take only a manageable number of values. The
simplest situation, which we will consider first, arises when the message can
be expressed as a sequence of words in such a way that all words are selected
from the same set of values, and the probabilities of these values are known
constants which do not depend on the position of the word in the message or
on the values of preceding words. For instance, it may be possible to express
the message as a sequence of letters where each letter is one of A, B or C, and
the probabilities of these letter values are in the ratio 1:4:5 independently of
what preceding letters may be. In this situation, we can construct an opti-
mum code just for the alphabet, or set of possible letters. To encode a message
of many letters, one simply concatenates the binary strings representing each
letter of the message in turn. For the 3-letter alphabet { A, B, C } above,
with the probabilities as given, an optimal (Huffman) code is

A : 00 B : 01 C : 1

with expected string length 1.5 digits. In a long message of, say, 1000 letters,
one could expect each letter to occur with a frequency nearly proportional
to its probability, so we would expect the length of the coded message to
be about 1500 binary digits. However, the Huffman code for the alphabet,
while as good as can be achieved, is not very efficient. For the given letter
probabilities, the entropy, or ideal expected string length −∑i pi log2 pi, is
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AA 0.01 0 0 0 1 0 0
AB 0.04 0 0 0 1 0 1
AC 0.05 0 0 0 0 0
BA 0.04 0 0 0 0 1
BB 0.16 0 0 1
BC 0.20 1 0
CA 0.05 0 0 0 1 1
CB 0.20 1 1
CC 0.25 0 1

Fig. 2.7. Code table for pairs.

only 1.361, so the expected information content of a 1000-letter message is
only 1361 bits. The use of the Huffman coding of each letter in turn wastes
about 139 binary digits.

This inefficiency can be reduced if we make a small step towards coding
entire messages rather than individual letters. The simplest modification is
to devise a Huffman code for pairs of letters rather than individual letters.
The set of possible pairs, their probabilities and a Huffman code for the set
of pairs is shown in Figure 2.7.

This code has expected string length 2.78 binary digits per letter pair, or
1.39 digits per letter. Hence, if we code the letters of a 1000-letter message
in pairs, the expected length is reduced from 1500 digits to 1390 digits, only
29 digits longer than the ideal minimum.

A further increase in efficiency might be obtained by devising a Huffman
code for the 27 possible triplets of letters, or the 81 possible quadruplets.
However, in this case most of the achievable improvement has been gained
simply by coding pairs.

2.1.6 Arithmetic Coding

An ingenious coding technique has been devised by Langdon et al. [37] called
arithmetic coding. This technique achieves a coding efficiency very close to
the theoretical optimum which would be reached by a Huffman code for the
entire set of possible messages. In practice, arithmetic coding easily achieves
a string length for a long message within 0.01% of the information content of
the message. We give only an outline of the method. Its full implementation
is well described in [59]. While not unduly complicated, it requires careful
attention to details of computer arithmetic which are outside our present
interest.

Arithmetic coding is applicable to messages presented as a sequence of
words. The set of possible words is not necessarily fixed: it may depend on the
position of a word in the message and on the preceding words of the message.
Also, the probability distribution over the set of possible words may depend
on position in the message and on the preceding words. These dependencies
must be known a priori to the receiver. It is also necessary that the set
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of possible next words, given the preceding words, be ordered in some way
known a priori to the receiver. Thus, at any point along the message, we have
an ordered set of possible next words with known probabilities. Whatever the
set might be, let us label its members A, B, C, etc. Then any message can be
represented as a sequence of label letters. The same letter, D say, may stand
for different words at different places in the message, and may have different
probabilities, but the rules for determining the word corresponding to D and
its probability are implied by the rules already known by the receiver for
determining the ordered set of possible words and their probabilities, given
the preceding words. This labelling scheme for representing a message as a
sequence of letters allows us to define a lexical ordering on the set of all
possible messages. A message beginning Z A P Q B V . . . is lexically earlier
than a message beginning Z A P Q B W . . . . That is, the relative order of two
messages is determined by the relative alphabetic order of the first letter in
which they differ. Note that we need no rule to determine the relative order
of A X B and A X B C. The set of messages must have the prefix property, as
otherwise the receiver could not know when the message was finished. Hence,
the above two sequences could not both be possible messages.

As well as establishing a lexical order in the set of possible messages, we
can in principle calculate the probability of each message. The probability of
a message C A B A is

P (C)P (A|C)P (B|CA)P (A|CAB)

where each of these probabilities is derivable from the known rules of the
message set.

With these preliminaries, we can now define the following representation
of the set of possible messages. Consider the interval [0, 1] of the real line. We
will call this interval the probability line. It can be divided into a number of
small intervals, each corresponding to a possible message. Let the interval for
a message have a length equal to the probability of the message. Since the sum
of the probabilities of all messages is one, the message intervals exactly fill
the probability line. Further, let the message intervals be arranged in lexical
order, so that the lexically earliest message (“AAA . . . ”) is represented by
an interval beginning at zero, and the lexically last by an interval ending at
one. The diagram in Figure 2.8 shows the resulting probability line for a set
of two-word messages in which the set of possible words is { A, B, C } with
constant probabilities { 0.4, 0.3, 0.3 }.

It is now obvious that any message in the possible set can be specified
by specifying a number between 0 and 1 which lies in its interval. Thus,
message AB could be identified by any number x in the range 0.16 < x <
0.28. Arithmetic coding chooses a binary fraction to identify a message. That
is, it encodes a message as a binary string which, when interpreted as a
binary fraction, lies in the interval corresponding to the message. The binary
fractions must be somewhat constrained to ensure that the code strings have
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1----------------
| CC 1 1 1 1 (0.9375-1)

0.91 ---
| CB 1 1 0 1 1 (0.84375 - 0.875)

0.82 ---
| CA 1 1 0 0 0 (0.75 - 0.78125)

0.7 -------
| BC 1 0 1 0 (0.625 - 0.6875)

0.61 ---
| BB 1 0 0 0 1 (0.53125 - 0.5625)

0.52 ---
| BA 0 1 1 1 (0.4375 - 0.5)

0.4 -------
| AC 0 1 0 1 (0.3125 - 0.3750)

0.28 ---
| AB 0 0 1 1 (0.1875 - 0.25)

0.16 ---
| AA 0 0 0 (0 - 0.125)

0----------------
Probability line | Message | String | Binary Fraction Interval

Fig. 2.8. Probability line for a set of two-word messages.

the prefix property. This is ensured by regarding a binary fraction with n
binary digits as denoting, not a point on the probability line, but an interval of
size 2−n. For instance, the code string 010 is interpreted as the interval 1/4 ≤
x < 3/8, and 0111 is interpreted as the interval 7/16 ≤ x < 1/2. Then the
arithmetic coding of a message chooses the shortest binary string representing
an interval lying wholly within the message interval. The diagram above
shows the resulting codes for this simple example. In the worst case, the
size of the interval represented by the code string can be almost as small as
a quarter of the size of the message interval. Thus, the length of the code
string for a message can exceed − log2(Probability of message) by almost 2.
This excess is negligible for a long message, but it might seem that arithmetic
coding is no more than a rather roundabout implementation of Shannon-Fano
coding, as each digit of the code string effectively divides an interval of the
probability line into equiprobable subsets.

The advantage of arithmetic coding is that it is not necessary ever to
calculate the probabilities of all possible messages. One need only compute
the boundaries on the probability line of the interval representing the given
message. This calculation can be done progressively, dealing with each word
of the message in turn. For example, consider the message A B C A, where
the alphabet {A, B, C} and their probabilities {0.4, 0.3, 0.3} remain fixed as
in the example above.

The first letter divides the probability line into three intervals with bound-
aries at 0.4 and 0.7. Since the first letter is A, the message interval will be
somewhere in [ 0, 0.4 ). The second letter divides this interval into three,
in the ratio 0.4:0.3:0.3 with boundaries at 0.16 and 0.28. Since the second
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letter is B, the message interval will be somewhere in [ 0.16, 0.28 ). The third
letter again divides this interval at 0.208 and 0.244. Since it is C, the message
interval is reduced to [ 0.244, 0.28 ). The final letter A reduces the interval
to [ 0.244, 0.2584 ). These boundaries are derived without ever enumerating
or considering any message other than the one to be sent.

Further, as the calculation of the interval proceeds, it is possible to gen-
erate binary digits of the code string progressively. After the first letter has
been inspected, the working interval is [0, 0.4). As this interval is wholly be-
low 0.5, the first digit of the binary fraction must be 0, regardless of what
letters follow. As it happens in this example, the next three letters reduce the
interval to [0.244, 0.2584), which contains 0.25. Thus, they do not directly
allow us to conclude whether the final message interval will be wholly below
0.25, in which case the next binary digit would be zero, or wholly above,
in which case it would be one. If the message continued with a further fifth
letter, say, C, the working interval would be reduced to [0.25408, 0.2584),
allowing us to decide that the second digit must be 1, since the interval now
lies wholly in the range [0.25, 0.5). In fact, we can determine all digits up
to the sixth, since the interval now lies wholly within [0.25, 0.265625), or in
binary, [0.010000, 0.010001). Thus, the binary string must begin 010000 . . . .
Proceeding in this way, arithmetic coding deals with the words of the message
in turn, and produces binary digits of the code string whenever the working
interval is sufficiently reduced. At the end of the message, some small number
of additional binary digits may be needed to specify a binary interval wholly
within the final message interval.

It may appear from the above that arithmetic coding requires arithmetic
of arbitrarily high precision in order to calculate the interval boundaries.
However, it turns out to be possible to do the calculations with a fixed and
quite modest precision by periodically rescaling the numbers involved. There
is a slight loss of efficiency involved, but use of 32-digit binary arithmetic typ-
ically gives code strings whose length exceeds − log2(Probability of message)
by less than 0.1%.

The importance of arithmetic coding for the present study is that it gives
a constructive demonstration that it is not only possible in principle but also
feasible to encode messages as binary strings whose length is essentially equal
to the information content of the message.

2.1.7 Some Properties of Optimal Codes

If an optimal code is used to encode a message, the length of the code string
is (within one digit) given by − log2 (Prob. of message), and so is almost
exactly equal to the information (in bits) conveyed by the message. Thus,
each binary digit conveys one bit on average. For this to be possible, each
binary digit must, independently of all others, be equally likely to be one
or zero. This property, as we have seen, forms the basis for optimal code
constructions. When asserting that each digit is equally likely to be 0 or 1,
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there are two senses in which these equal probabilities may be understood.
First, we may mean that, if a message is in some way randomly selected
from the set of possible messages in accordance with the assumed probability
distribution over that set, then each digit of the resulting message is randomly
and equiprobably selected from the values of 0 and 1. That is, the digits are
the result of a random process with probability 1/2 of giving a one.

Even if the observational protocol which gave rise to the message to be
sent cannot properly be regarded as such a random selection, there is another
sense in which the assertion may be read. We assume that the probability
distribution over messages used in constructing the code accurately models
the receiver’s expectations about what message might be received. In this
case, however the message was in fact acquired by the transmitter, it will still
be true that, after receiving some digits of the coded message, the receiver
will still have no reason to expect the next digit to be more likely one than
zero, or vice versa. That is, from the receiver’s point of view, the digits are
no more predictable than those generated by an independent equiprobable
random process.

Indeed, if a receiver who is expecting a series of messages in some optimal
code instead receives a random stream of digits, the receiver will still decode
the stream as a series of messages, and find nothing in the messages to show
that they are garbage. When an optimal code matched to the receiver’s ex-
pectations is used, any long string of digits decodes to a perfectly meaningful
series of messages.

Suppose the set of possible messages has a probability distribution {pi :
i = 1, 2, . . .} and for all i, message i is encoded by a string of length li =
− log2 pi digits. Then the probability that a stream of random, equiprobable
binary digits will begin with the string for message i is just the probability
that its first li digits will match those of the message string. Each random
digit has probability 1/2 of matching the corresponding message digit, so the
probability of a match to message i is (1/2)li = pi. That is, message i will
appear at the beginning of the random stream with precisely the probability
that the receiver expects.

A further consequence is that if a random stream of digits is decoded, the
expected length of the first message decoded is

∑

i pili, which, for an optimal
code, is nearly equal to −

∑

i pi log2 pi.

2.1.8 Non-Binary Codes: The Nit

All the above discussion of codes generalizes easily to codes using more than
two digit values. Most obviously, if the coded string uses the four digits 0,
1, 2 and 3 rather than just the binary digits 0 and 1, the length of the code
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string can be halved. Each base-4 digit can represent two binary digits using
the mapping

00 -> 0

01 -> 1

10 -> 2

11 -> 3

Similarly, if base-8 digits are used, allowing the digit values 0, 1, . . . , 7,
the code string will be only one third the length of the equivalent binary
string, since each base-8 digit can represent a group of three binary digits.
Generally, if N digit values are allowed, where N is a power of 2, each can
represent log2 N binary digits. Hence,

length of binary string

length of base N string
= log2 N

This result can also be seen to follow from our conclusion that naming one
of N equiprobable possibilities involves an information of log2 N bits. That
is, one base N digit can convey log2 N bits.

For long messages, the above ratio between the lengths of binary and base
N representations holds approximately for any N , even if N is not a power
of 2. The Huffman and Arithmetic constructions generalize directly to any
N > 2, with the result that the length of a base N string optimally encoding
a message of probability p satisfies

length ≤ −(log2 p)/(log2 N) + 1

≤ − logN p + 1

We will have little or no need to consider the use of non-binary message
strings. However, it will later be convenient to use a measure of information
which can be thought of as the “length” of a message string employing e =
2.718 . . . possible digit values, where e is the base of natural logarithms. The
information conveyed by one such “digit” is

log2 e = 1.44 . . . bits

This unit is termed the nit (for “natural bit”) or, by some writers, the nat.
It is often a more convenient unit than the bit. The information conveyed
by a message of probability p is − ln(p) nits. Often, approximations used in
computing p and its logarithm yield expressions directly involving natural
logarithms rather than logs to base 2. There is no distinction in principle
between information measured in nits and information measured in bits. It
is merely a matter of choice of unit.
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2.1.9 The Subjective Nature of Information

The information content of a message, as we have defined it, is the negative
log of its probability, i.e., the probability of the event or data or proposition it
conveys. As our view of probability is subjective, it follows that the informa-
tion content is also a subjective measure. A message which tells us something
we already know conveys no information, a message which tells us something
we regarded as improbable gives us a great deal of information. This view
may appear to be at odds with objective concepts such as the information-
carrying capacity of a telegraph channel, or the information-storage capacity
of a magnetic disc. However, such measures relate to the physical capability
of a medium to store or transmit information. Whether the medium actu-
ally conveys or stores that much information depends on the code used and
the prior expectations of the receiver. What the physical limit means is that
it is the maximum amount of information which can be conveyed using a
code which maximizes the expected amount of information given the prior
expectations of the receiver. If some other code is employed, the amount of
information which one can expect to store or convey will be less than the
physical capacity. The actual information conveyed in a particular instance
may in fact exceed the physical capacity, but this can occur only if the code
gives high probability, and hence a short code string, to a proposition which
the receiver regarded as improbable. If the receiver’s prior expectations are
not unfounded, such an accident is expected to be rare.

Note that a receiver may well be able to decode information coded using
a code which is far from optimal, given his prior expectations. The receiver
must normally have prior knowledge of the code in order to be able to decode
the strings he receives. Whether or not he regards the code as efficient is im-
material. A receiver may even be able to decode strings in a code of which he
has imperfect prior knowledge. Humans often use codes, such as natural lan-
guages, which are not optimal for any set of prior expectations. In such codes,
many strings may have no meaning, i.e., be nonsense conveying no message,
and the meaningful strings may exhibit regularities of structure such as rules
of grammar and spelling, which do not serve to convey information. Given
messages in such a redundant code, a receiver may be able to discover much
of the coding rules, especially if he has strong and well-founded expectations
about the content of the messages, and the code is not optimized for these
expectations. For instance, a coded message may announce that gold has
been found in Nowheresville. The message may be intended for an audience
with little reason to expect such an announcement, and hence be coded as
a rather long string. A receiver who happens already to know of the gold
discovery, but does not know the code, may be able work out the code using
this knowledge. Cryptoanalysis, the art of “breaking” codes designed to be
obscure, relies heavily on the redundancies of natural languages and on prior
expectations about the content of the messages.
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There are good reasons for natural languages to be less than “optimal”
when regarded as codes. One reason is that spoken language is transmitted
from speaker to listener via a noisy channel. The listener may not be able to
hear correctly all the words spoken. Codes with substantial redundancy can
tolerate some degree of corruption without becoming unintelligible, whereas
optimal codes, in which every digit matters, are very sensitive to corrup-
tion. Most possible symbol sequences (possible vocal utterances in the case
of speech) are ruled out by the grammar and vocabulary of natural languages.
Thus, if a listener hears something like “Today the weather is very kelled”,
the listener knows the sentence must have been mis-uttered or misheard, be-
cause it does not conform to the rules of English. The listener may guess
(probably correctly) that he should have heard “Today the weather is very
cold”, because this sentence, out of all legal sentences, sounds most like what
he heard. Artificial codes for information transmission and storage are often
designed so that legal strings conform to a strict pattern while most strings
do not. A corrupted received string can then be corrected by replacing it by
the nearest legal string, provided the degree of corruption is not too great. Al-
though of great practical importance, such error-correcting codes are outside
our concerns.

Another reason for the inefficiency of natural languages is that they must
serve for communication among the members of a large and diverse popu-
lation. It is not normally possible for a speaker to have detailed knowledge
of the prior expectations of her listener(s), and quite impossible for a broad-
caster or journalist even to know who are the listeners and readers. Thus, the
use of an optimal code is impossible, since a code can be optimized only with
knowledge of the receiver’s subjective probabilities for possible messages. A
code intended for receipt by a wide and imperfectly known audience cannot
be based on strong assumptions about the probabilities of different messages.
Rather, it must allow every message a string length comparable to the neg-
ative log of the lowest probability accorded the message by any receiver. A
receiver of a message whose length is less than the negative log of the prob-
ability which that receiver gave to the message will tend to find the message
unintelligible or unbelievable. Thus, we find that users of natural languages
will typically tend to frame the meaning they wish to convey as a long ut-
terance or text when addressing an unknown or unfamiliar audience, but in
a much shorter form when addressing a person whose prior expectations are
well-known. Also, allowing some redundancy can make coding and decoding
much simpler.

The implications for our present concerns are that, when discussing or
calculating an amount of information, we must be careful to specify what
prior knowledge we are assuming on the part of the receiver. We must be
prepared to enter arguments as to whether it is or is not reasonable to as-
sume certain prior knowledge or expectations and to modify our calculations
of information content accordingly. However, for our purposes we need not
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consider errors in the transmission of messages, and hence need not be con-
cerned with error-correcting codes.

To summarize this section, the information content of a message is the
negative log of the (subjective) probability of the propositions conveyed. With
negligible error, the content in bits equals the length of the binary string
encoding the message in an optimal code. We are suspicious of measures
advanced as measures of “information” unless it can be demonstrated that
the measure equals the length of a message conveying a specified proposition
to a receiver with specified prior expectations. To illustrate the grounds for
this suspicion, and the importance of specifying the receiver, we give an
example discussed by Boulton [6].

2.1.10 The Information Content of a Multinomial Distribution

Suppose we have a bag containing a very large number of balls of K different
colours. Balls of the same colour are identical for our purposes. Let N balls
be drawn in sequence from the bag, where N is a very small fraction of the
number of balls in the bag. The result of the draw can be represented as a
sequence of N colour symbols, each naming one of the K colours. Suppose
the draw yielded Mk balls of colour k (k = 1, . . . , K,

∑

k Mk = N) so the
sequence has Mk symbols for colour k. At least two expressions have been
proposed and used as measures of the “amount of information” in such a
multinomial sequence. At least two others have some claim to the title. By
examining these measures and attempting to relate them to the lengths of
optimally coded messages, we can show the importance of the message length
concept in measuring information.

Measure A is given by

A = log
N !

∏

k Mk!

It is the logarithm of the number of ways the N balls could be arranged in
a sequence. A is the log of the number of colour sequences which could be
drawn to yield Mk balls of colour k for all k. If the balls are picked in such
a way that each ball remaining in the bag is equally likely to be picked next,
each of those colour sequences is equally likely, so A is the log of a number of
equally likely events. Thus, A matches one of the ideas described before as a
measure of information.

Suppose that the sequence of colours drawn from the bag is to be encoded
as a message. Then it is certainly possible for a message of length A to inform
a receiver of the sequence, provided that the receiver already knows N and
the colour counts {Mk : k = 1, . . . , N}. The message could be encoded in
several ways. One way would be simply to number all the possible colour
sequences with a binary number, using some agreed enumeration, and then
to transmit the binary digits of the number specifying the actual sequence



82 2. Information

obtained. Another way of some interest is to construct the message from N
segments, each segment giving the colour of the next ball in the sequence.
Suppose that n balls have already been encoded, of which mnk had colour
k (k = 1, . . . , K). Then the number of balls remaining is N − n, of which
Mk −mnk are of colour k. The probability that the next ball will be of colour
k is then (M −mnk)/(N −n), so a segment announcing that the next colour is
k should optimally have length − log{(Mk−mnk)/(N −n)}. It is easily shown
that, using this ball-by-ball encoding, the total message length is exactly A,
whatever the order of colours in the sequence. The receiver of the message
can decode it segment by segment. After decoding the first n segments, he
will know mnk for all k. Knowing {Mk} a priori, he can then calculate the
probabilities (M − mnk)/(N − n) for all k, and hence decode segment n + 1,
which is encoded using these probabilities.

Thus, A deserves to be regarded as a measure of information: the infor-
mation needed to convey the sequence to a receiver who already knows the
exact number of each colour.

Measure B has the form

B = −
∑

k

Mk log rk

where rk = Mk/N . (Here and elsewhere, we take x log x to be zero when
x = 0.) It is N times the “entropy” of the frequency distribution of colours in
the sequence if the fractions {rk} are regarded as probabilities of the various
colours. This form again is familiar as an expression for a message length. It
is the length of an optimally coded message conveying a sequence of events
(the colours in this case) where each “event” is one of a set of K possible
events, and the probability of event type k is rk independently of whatever
events have preceded it. That is, B is the length of a message conveying the
colour sequence to a receiver who does not know the exact number of each
colour, but who believes the next ball has probability rk of being colour k
regardless of the preceding colours. For instance, the receiver might believe
that a fraction rk of the balls in the bag had colour k. Thus, B is again a
message length, and hence a measure of information, but one which assumes
different, and weaker, prior knowledge on the part of the receiver. Hence,
B > A, as we will see below.

Form B is questionable as a measure of the information in the colour
sequence, in that it assumes a receiver who happens to believe the population
colour probabilities {pk : k = 1, . . . , K} have values which exactly equal the
relative frequencies {rk : k = 1, . . . , K} of the colours in the actual sequence.
More realistically, we might suppose that the sender and receiver know the
true bag population colour probabilities {pk}, and that the actual colour
counts {Mk : k = 1, . . . , K} result from the random sampling of N balls
from the bag. In that case, the frequencies {rk} would be expected to differ
somewhat from the population probabilities {pk}. The message length, using
a code optimal for the known probabilities, is then −∑k Mk log pk, which is
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greater than −
∑

k Mk log rk = −
∑

k Mk log(Mk/N) unless pk = rk for all k.
For any given set of probabilities {pk}, it is easily shown that for a random
sample of N balls, the expected difference

E[−
∑

k

Mk log pk +
∑

k

Mk log rk]

is approximately (K − 1)/2. It might therefore be argued that a better indi-
cation of the information needed to inform a receiver who already knows the
probabilities is

B1 = −
∑

k

Mk log rk +
(K − 1)

2

Forms C and D again differ from A and B in the assumptions made about the
receiver’s prior knowledge. For both C and D, we will assume that the receiver
knows N but neither the exact numbers {Mk} nor the probabilities {pk}.
Rather, we assume the receiver to believe initially that all colour mixtures
are equally likely. That is, the receiver has a uniform prior probability density
over the continuum of possible probability tuples ({pk} :

∑

k pk = 1, pk > 0
for all k). It is easily shown that with this prior density, all colour-number
tuples ({Mk} :

∑

k Mk = N, Mk ≥ 0 for all k), are equally likely a priori.
One way of optimally encoding a message conveying the colour sequence to
such a receiver is as follows.

A first part of the message can convey the tuple of colour counts
{Mk : k = 1, . . . , K}. For N balls, the number of possible tuples is

(

N+K−1
K−1

)

,
and under the prior expectations of the receiver, all are equally likely. Hence,
the length of the first part is the log of the number of possible tuples:

log
(N + K − 1)!

(K − 1)!N !

Once the receiver has received this part, he knows the colour counts and so
can understand a second part framed in form A. The total message length is
thus

C = log
(N + K − 1)!

(K − 1)!N !
+ log

N !
∏

k Mk!

= log
(N + K − 1)!

(K − 1)!
∏

k Mk!

An Incremental Code. Another way of encoding the message for such a
receiver who knows neither the probabilities {pk} nor the counts {Mk} is
also of interest. The message can be encoded in segments each giving the
colour of the next ball. For the first ball, the receiver must expect all colours
with equal probability, so the length of the first segment is log K. However,
after receiving the first n segments, the receiver will no longer have a uniform
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prior density over the possible colour probability tuples. Rather, he will have
a posterior density

Dens({pk : k = 1, . . . , K}) = G

K
∏

k=1

pmnk

k (pk > 0;
∑

k

pk = 1)

where G is a normalization constant. He will therefore consider the probabil-
ity that the (n + 1)th ball will have colour k to be

Pn+1(k) =

∫ ∫ ∫

∑

K−1

i=1
pi<1,pi≥0

· · ·
∫

[(

G

K
∏

i=1

pmni

i

)

pk

]

dp1dp2 · · · dpK−1

=
mnk + 1

n + K

The length of segment (n + 1) encoding colour k using an optimal code is
thus − log((mnk + 1)/(n + K)). The total message length is the negative log
of the product of all the N progressive probabilities used in the N segments.
The denominators of the probability fractions range from K to (N + K − 1)
as n ranges from 0 to (N − 1). The Mk segments announcing colour k give
numerators ranging from 1 to Mk. Hence, the product of all the fractions is

∏

k Mk!

K(K + 1)(K + 2) . . . (K + N − 1)
=

(
∏

k Mk!)(K − 1)!

(N + K − 1)!

giving the same measure C as before.

It is important to note that the probabilities {Pn+1(k) =
mnk + 1

n + K
} used

in encoding the colour of the (n + 1)th ball need not be interpreted as es-
timates of the population probabilities of the colours. The receiver may, if
interested, use some such expression to obtain progressive estimates of the
population probabilities but such estimates would be immaterial to the de-
coding of the message. The probability Pn+1(k) is the probability that the
next ball will have colour k, given the initial uniform density over colour dis-
tributions and the numbers of the different colours {mnk} so far known. It is
not an estimate.

As form C assumes less prior knowledge on the part of the receiver, we
must expect the message to be longer than for forms A or B, as is seen later.

An Explanation Code. Form D is the length of a message which assumes
the same prior knowledge as C, i.e., a uniform prior over population proba-
bilities. However, the message is encoded differently. For form D, we assume
that the message comprises two parts, as in form C, but their content is dif-
ferent. The first part asserts a set of colour probabilities {p̂k : k = 1, . . . , K}.
The second encodes the colour sequence using a code similar to that of form
B. That is, the code is optimal if the probability that the next ball is colour



2.1 Shannon Information 85

k equals p̂k and is independent of preceding balls. The length of the second
part is thus

−
∑

k

Mk log p̂k

The calculation of the length of the first part is not trivial and is discussed
in later chapters.

Form D assumes the same prior knowledge as does form C. It is slightly
longer than form C because it is somewhat redundant. Once the details of
how the coding is to be done have been agreed by sender and receiver, form C
provides just one message string for each possible colour sequence (as do forms
A and B). Form D, however, permits a colour sequence to be represented by
any of several message strings, all intelligible to the receiver. To use form
D, sender and receiver must have agreed on a way of encoding tuples of
colour probabilities, for use in the first part of the message. When the sender
wishes to transmit a colour sequence, there is nothing to stop her choosing
any codeable probability tuple to be encoded in the first part and used in
the second part for encoding the colours, provided only that the chosen tuple
does not state a zero probability for some colour which actually appears in the
sequence. The length of the second part, −∑k Mk log p̂k, will be minimized if
the sender chooses a probability tuple closely matching the actual frequencies
of colours in the sequence to be sent, i.e., if she chooses a tuple with p̂k ≈ rk

for all k. However, a message encoding the sequence (albeit a longer message)
can still be constructed if she makes some other choice of tuple.

The redundancy inherent in form D can be viewed another way. The
receiver of a form-D message can decode it to discover the colour sequence.
But he also discovers something else, not deducible from the colour sequence.
He discovers that the sender has estimated the population colour probabilities
to be those she stated in the first part of the message. Thus, form D is a
very simple example of what we have defined as an explanation. Its first
part asserts a simple “theory” about the origins of the colour sequence, viz.,
that the colours were drawn from a source which produces colour k with
probability p̂k, for all k. The second part of the message then encodes the
colour sequence using a code which would be optimal were the theory true:
it encodes an occurrence of colour k with a segment of length − log p̂k.

Strictly speaking, the value of the form-D message length should not be
regarded as a measure of the information in the colour sequence, since a form-
D message informs the receiver not only about the sequence, but also about
a theory which is not implied by the sequence. However, the extra length of
form D over form C is small when the best possible “theory” is used. Thus, in
situations where it is easier to compute the length of form D than the length
of form C, there is little error in using the former as an approximation to the
latter.

Comparison of Measures of Information. The values of the message
lengths for forms A, B, C and D are shown below. For forms A and C, we
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have used Stirling’s approximation

log(n!) = (n +
1

2
) log n − n +

1

2
log(2π) + O

(

1

n

)

Here, the logs are natural logs, to base e. The resulting lengths below are
given in nits rather than bits, and all logs are natural. We have also used the
approximation

log(x + d) ≈ log x +
d

x
+ O

(

d2

x2

)

to manipulate the expressions into forms showing their differences most
clearly. All the expressions below are accurate to order 1/Mk, so if every
colour appears at least 10 times in the sequence, the error is less than one
nit.
Form A: Exact colour counts already known.

A ≈ −
∑

k

Mk log rk − 1

2

∑

k

log rk − K − 1

2
log N − K − 1

2
log(2π)

Form B: Colour probabilities already known.

B1 ≈ −
∑

k

Mk log rk +
K − 1

2

Form C: Uniform prior on colour probabilities.

C ≈ −
∑

k

Mk log rk − 1

2

∑

k

log rk +
K − 1

2
log N −

K − 1

2
log(2π) − log(K − 1)!

Form D: Uniform prior on colour probabilities. Message is explanation using
best estimates of probabilities.

D ≈ C +
1

2
log((K − 1)π) − 1

In all of the above, rk = Mk/N for all k.
All of the expressions A to C are measures of information about the same

set of data. They differ only in what is assumed to be already known about
the data. They all agree in the dominant term, which is proportional to the
size of the data set, i.e., the length N of the sequence. However, the differences
are not trivial, being of order 1

2 log N .
We will consider one more case to emphasize the importance of the re-

ceiver’s prior knowledge. Here, we suppose that the receiver is already sure
that the colours are independently selected from a population with probabil-
ities {pk : k = 1, . . . , K} which he already knows. In this case the optimal
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message length for a colour sequence is −
∑

k Mk log pk. The message can
take the form of N segments each coding a ball’s colour, where each segment
uses a fixed code encoding colour k with a string of length − log pk. This
result obtains regardless of what the sequence of colours might be, or how
many times each colour occurs. It might be thought that, if the actual colour
frequencies {rk = Mk/N, all k} differ greatly from the probabilities {pk}, a
shorter message could be obtained using a version of form C. That is, we
can send the message in two parts, the first giving the actual colour counts
{Mk} and the second encoding the sequence using this information. As shown

above, the length of the second part is given by form A: log
N !

∏

k Mk!
. The

length of the first part, however, now depends on the receiver’s probabilities
{pk}. The first part announces that, in a sample of known size N , colour k
occurred Mk times (for all k). Given the receiver’s beliefs, he expects such
an event to occur with probability

N !
∏

k Mk!

∏

k

pMk

k

and hence the optimal coding of the first part has length

− log
N !

∏

k Mk!
−
∑

k

Mk log pk

The total length of this form of message is thus −
∑

k Mk log pk exactly as
before. This case is an example of a general result. If a receiver has a fixed
belief that the data to be sent in a message will conform to a fixed, prob-
abilistic pattern (or no pattern at all), there is no advantage in terms of
message length in using a code which states and then exploits any other
probabilistic pattern. Even if the data to be sent appear to exhibit a different
pattern, adoption of which could give a short encoding of the data, the mes-
sage must begin with a statement of this pattern. As the receiver believes the
true pattern to be otherwise, he will regard the apparent different pattern
as a statistical fluke of low probability. The first part, stating the apparent
pattern, will therefore require a long code string, of length the negative log of
this low probability. The resulting length of the complete two-part message
will thus not be shorter than a message which ignores the apparent pattern
and codes the data in accord with the pattern believed by the receiver.

2.1.11 Entropy

Entropy is a term borrowed from classical thermodynamics. As originally
used, the term could be defined as follows.

(a) When a body at an absolute temperature T is given a small amount of
heat ∆E , its entropy H increases by the amount ∆H = ∆E/T .
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(b) The entropy of a body at absolute zero temperature is zero.

Among the many important properties of entropy is the famous Second Law
of thermodynamics: the entropy of a closed system cannot decrease. Later,
it was shown that the entropy of a body in thermal equilibrium could be
expressed as

H = k log Z

where k is Boltzmann’s constant and Z is the number of distinct micro-states
in which the body might exist consistent with its macroscopic thermodynamic
state (macro-state), as defined by its total energy and momentum and any
other macroscopically observable features. Here, a micro-state of the body
means a full specification of the position and velocity of each of its constituent
particles.

Shannon noted that − log Z equals the amount of information which
would be needed to specify the micro-state of the body to a receiver who
knew only its macro-state (assuming all micro-states consistent with the
macro-state to be equally probable). He was thus led to suggest that in-
formation could be regarded as negative entropy, if physical units are chosen
such that Boltzmann’s constant k has the value one. The inevitable increase
in the entropy of a closed system undergoing irreversible thermodynamic
change is mirrored by the fact that whatever information we may have had
about its micro-state is destroyed by the random or quasi-random interac-
tions among the particles in the system. As the system approaches thermal
equilibrium, its classical entropy increases towards a maximum, the number
of micro-states in which it might be increases, and so an observer measuring
only the macro-state becomes more and more ignorant of the micro-state.

The term has been adopted into Information Theory in accord with Shan-
non’s suggestion. However, it should be treated with caution, as it has been
used rather loosely, and with a variety of related but not exactly equivalent
meanings. Roughly, these meanings have paralleled the various measures of
information content of a multinomial sequence discussed above.

(a) The entropy of a multinomial collection. Suppose a collection of N balls
is known to contain Mk balls of colour k (k = 1, . . . , K;

∑

k Mk = N).

The entropy of the collection can be defined as Ha = log
N !

∑

k Mk!
In this definition, there is an implicit equation of the set of colour counts
{Mk} with the macro-state of an isolated thermodynamic body, and of a
particular arrangement or sequence of the balls with a particular micro-
state. Ha measures the amount of information needed to specify a micro-
state given prior knowledge of the macro-state. H is given in bits if the
base of logs is 2, in nits if natural logs are used. Pro tem, we assume base
2.

(b) The entropy of a discrete distribution. Consider a random variable x
drawn from a discrete probability distribution over the values 1, . . . , K,
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where Pr(x = k) = pk (k = 1, . . . , K;
∑

k pk = 1). The entropy of the

distribution is often defined as Hb = −∑k pk log pk.
It equals the expected amount of information needed to specify the
value x, given prior knowledge that it is drawn from the distribution.
Equivalently, if a message is a sequence of symbols drawn from the set
{1, . . . , K}, and symbol k occurs with probability pk for all k, indepen-
dently of previous symbols, then the message can on average convey Hb

bits (or nits) of information per symbol.
Again, if a discrete distribution has entropy Hb, the expected length of
a message naming a value drawn from the distribution equals Hb when
an optimal code is used.
Clearly, Hb is not directly comparable with Ha, since it is a per-instance
measure. However, even if applied to a sequence of N instances, giving a
total entropy NHb = −N

∑

k pk log pk, this measure still differs from Ha

by an amount of order log N , or (log N)/N per instance.
The quantity NHb is analogous to a thermodynamic quantity, namely
the entropy of a body which is not isolated, but in equilibrium with a
“heat bath” of known temperature. In this case, the exact macro-state of
the body is unknown, but the expected value of the macro-state variable
Mk is pkN , where N is the number of particles in the body and pk is
related to the temperature. In thermodynamic applications, the fractional
difference of order (1/N) log N between Ha and NHb is negligible, as
N is typically very large. However, in dealing with the statistics and
information of typical data sets, the difference may be significant.

(c) The entropy of a density distribution. If x is a real-valued random variable
taking values drawn from a probability density f(x), the term “entropy”
is sometimes applied to the quantity

Hc = −
∫

f(x) log(f(x)) dx

Hc may be regarded as the limiting value of the entropy Hb of the discrete
distribution

Pr(xk ≤ x < xk + δ) =

∫ xk+δ

xk

f(x) dx (xk = kδ, k integral)

as δ→0. Its use in this way is unexceptionable, but it must be noted that
the interpretation relies on the discretization interval δ being uniform,
i.e., not dependent on x. A non-uniform discretization of the density f(x)
will yield a different limit for Hb, no matter how fine the discretization.
Equivalently, if y is a random variable defined as a monotonic invertible
function of x, y = g−1(x), x = g(y) say, the Hc entropy of the density
of y will differ from the Hc entropy of the density of x. The density of y
is

fy(y) = f(g(y))ġ(y)
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where ġ(y) = dx/dy, and

∫

fy(y) log fy(y) dy �=
∫

f(x) log f(x) dx

Thus, the entropy Hc of a probability density depends on the choice of
random variable. In any use of Hc, one must be careful that the variable
x is such that a uniform discretization is appropriate, and that it is to
be preferred to any functionally equivalent variable y = g−1(x).

It is this dependence on choice among functionally equivalent variables
which vitiates “maximum entropy” arguments for deriving “uninformative”
priors for real-valued model parameters. However, the use of a maximum
entropy argument for approximating a probability distribution over a data
space when the true data distribution is unknown, except for some known
constraints, is valid and useful.

Example. It is sometimes stated that the Normal or Gaussian density is
the “maximum entropy” density distribution for given mean µ and given
second moment µ2 + σ2. Maximizing Hc = −

∫

f(x) log f(x) dx subject to
the constraints

∫

f(x) dx = 1 (Normalization)
∫

xf(x) dx = µ (First moment)
∫

x2f(x) dx = µ2 + σ2 (Second moment)

indeed leads to the solution

f(x) =
1√
2πσ

e− 1

2
(x−µ)2/σ2

= the Normal density N(x|µ, σ2)

However, were we to define a variable y by y3 = x (sign y = sign x), and
obtain the “maximum entropy” density for y subject to the corresponding
constraints

∫

fy(y) dy = 1
∫

y3fy(y) dy = µ
∫

y6fy(y) dy = µ2 + σ2

we would obtain a density of the form

fy(y) = exp(−1 − λ0 − λ1y
3 − λ2y

6)

implying a density for x of the form

1

3x2/3
exp(−a0 − a1x − a2x

2)

which is clearly not Normal.
In thermodynamics, the fact that the maximum entropy density for x

subject to the constraints is Normal has been used to conclude (correctly)
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that the velocity component distribution in the molecules of a gas in thermal
equilibrium has Normal form, since the constraints used correspond to the
given macro-state momentum and energy. However, the argument succeeds
only because the true distribution (for an enclosed gas) is in fact discrete
and the discrete possible velocity components allowed by quantum mechanics
are evenly spaced. Under conditions where the discrete values are unevenly
spaced, e.g., at temperatures high enough to involve relativistic velocities,
the maximum (thermodynamic) entropy distribution is not Normal.

To summarize this section, the importation of the term “entropy” into
discussions of information brings some benefits, but can lead to confusion
arising from subtly different uses of the term. In particular, the use of Hc in
connection with probability densities is dangerous.

In cases where all that is known of a discrete probability distribution can
be expressed as one or more constraints on the probabilities of the possi-
ble variable values, a distribution which maximizes the Hb entropy of the
distribution subject to the known constraints can reasonably be accepted as
representing our knowledge of the variable. In a useful sense, it is the weakest
assumption that can be made about the distribution of the variable, in that it
maximizes the expected amount of additional information needed to specify
a value of the variable.

2.1.12 Codes for Infinite Sets

Sometimes the set of possible messages which might be sent in some defined
communication is potentially infinite. We say “potentially” because in any
real-world communication, the length of the message string must be bounded
if it is to be sent and read in bounded space and time. As the number of
binary strings of lengths not exceeding some bound is finite, so is the number
of different messages which might be sent. However, there are interesting
situations in which no bound on message length can easily be set, or where
at least the analysis would be complicated by setting a bound. In such cases
we may prefer to ignore the limitations of human life and consider a code for
an infinite set of messages.

Note that the set must be countable. The set of finite (but unbounded)
binary strings can be enumerated, for instance by enumerating them in order
of increasing length, as shown in Figure 2.9. The string represented by integer
n is just the binary form of n with the leading one deleted.

An uncountably infinite set cannot be mapped 1-to-1 onto the set of finite
binary strings.

Given that the set is countable, there is no difficulty in principle in map-
ping onto a set of finite strings and so producing a code (not necessarily effi-
cient) for the set of messages. We need only ensure that the set of strings has
the prefix property, and thereby that the string for each message is unique.
Without loss of generality, we can simplify the discussion by first establishing
an enumeration of the set of possible messages, i.e., we can label each message
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Index String
1 Λ (the empty string)
2 0
3 1
4 00
5 01
6 10
7 11
8 000
...

...
15 111
16 0000
...

...

Fig. 2.9. Set of binary strings in order of increasing length.

with a unique, finite, positive integer. Then the task of constructing a code
for the set of messages can be reduced to the construction of a code for the
positive integers. Many prefix codes for the integers can be constructed. Two
examples are shown below.

2.1.13 Unary and Punctuated Binary Codes

The unary code for integer n is a string of (n − 1) 0s followed by a 1. The
string length equals n.

Integer “Unary” code “Punctuated Binary” code
1 1 01
2 01 11
3 001 0001
4 0001 0011
5 00001 1001
6 000001 1011
7 0000001 000001
8 00000001 000011
9 000000001 001001
10 0000000001 001011

Fig. 2.10. Unary code and Punctuated-Binary code.

The Punctuated Binary code string (shown in Figure 2.10) for integer n is
constructed as follows: First, note that any integer n > 0 can be written as a

binary integer with digits dk, dk−1, . . . , d2, d1, d0 such that n =

k
∑

i=0

2idi. The

usual binary form uses digit values 0 and 1 for the digits. However, a binary
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representation of n > 0 can also be written using the digit values 1 and 2 as
shown in Figure 2.11. (In general for any base B, n > 0 can be written using

Decimal Number Binary Form
1 1
2 2
3 11
4 12
...

...
47 21111

Fig. 2.11. Binary representation of n > 0 using digit values 1 and 2.

digits 1 . . . B rather than the more usual form using digits 0 . . . (B − 1).)
To form the Punctuated Binary string for n, express n in the above “in-

flated binary” form as a string of 1s and 2s. Then change all the 1s to 0s, all
the 2s to 1s. Finally, insert a zero after each digit save the last, and add a one
after the last digit. These inserted symbols act as punctuation: an inserted
zero means the string continues, the final inserted one acts as a full stop. The
resulting string length is 2⌊log2(n+1)⌋, where ⌊x⌋ means the greatest integer
≤ x.

Both the above codes clearly are prefix codes, and include all the positive
integers. Many other constructions are possible.

2.1.14 Optimal Codes for Integers

Just as for codes over finite sets, we will be interested in optimal codes for
infinite sets, and will discuss optimal codes for the positive integers as ex-
amples. As before, we define optimal codes as those of least expected length,
given some specified probability distribution over the set of messages (inte-
gers). Let pn be the probability of integer n > 0, and ln the length of the
binary code string for n. Then an optimal code minimizes

∞
∑

n=1

pnln

We of course require the probability distribution {pn : n > 0} to be proper,
i.e.,

∑∞
n=1 pn = 1 and pn ≥ 0 for all n. (To accommodate the possibility that

pn = 0 for some n, we define pnln as zero whenever pn = 0, no matter what
the value of ln.)

For finite sets, an optimal code exists for every proper probability dis-
tribution, namely the Huffman code having li ≈ − log2 pi. Such a code
gives an expected string length close to the entropy of the distribution,

−
∑

i

pi log pi However, there exist proper distributions over the integers for
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which (−
∑

n

pn log pn) is infinite. Such infinite entropy distributions do not

admit of optimal codes, at least in our sense. An infinite entropy distribution
may be thought implausible in the real world, since, using any code at all, the
expected length of the message announcing a value drawn from the distribu-
tion must be infinite. However, for some infinite entropy distributions, there
may be a very high probability that, using a suitable code, the announcement
of a value will require a string of less than, say, 100 digits. Hence, infinite
entropy distributions cannot be totally dismissed as unrealistic.

For codes over finite sets, we have shown that an optimal code represents
a value or event i of probability pi by a string of length close to − log2 pi.
Equivalently, a code which encodes event i by a string of length li is optimal
for an implied probability distribution {pi = 2−li ; ∀i}. These relations may
be extended to cover codes for infinite sets, whether or not the given or
implied probability distribution has finite entropy. That is, we may regard
use of a code encoding integer n by a string of length ln as “optimal” if and
only if pn = 2−ln , whether or not

∑

pnln is finite. This extension of the
notion of optimality to cases where the expected string length is infinite can
be rationalized as follows.

Consider some distribution pn over the integers. For any integer N > 0,
we may derive a distribution over the finite set {n : 1 ≤ n ≤ N} defined by

p1
n = pn for n < N , p1

N = 1 −
∑N−1

n=1 p1
n. This distribution is in effect the

distribution obtained by lumping all integers ≥ N into the one value “N”,
which now just means “big”. The distribution {p1

n : n = 1, . . . , N} is over a
finite set and has finite entropy. Hence, it admits of an optimal code in the
sense of least expected length, and in such an optimal code,

ln = − log p1
n = − log pn for 0 < n < N

That is, if all integers N or greater are lumped together, a code encoding
n < N with length − log pn is optimal in the usual sense. Since N may be
chosen as large as we please, we may always choose N to be greater than
any integer n actually encountered, and so conclude that a code is optimal
if it encodes n with length ln = − log pn for all finite n. Conversely, we may
have reason to adopt a code characterised by the string lengths {ln : n > 0}
and be entitled to regard it as good if we are satisfied that the probability of
finding integer n is about 2−ln , even if this implied distribution has infinite
entropy.

Note that a distribution of infinite entropy may, but need not, imply a
non-zero probability of drawing an infinite integer. The “Unary” code above
has ln = n. Hence, it is optimal for, or implies, the probability distribution
pn = 2−n(n > 0). The entropy of this distribution is 2 bits. The “Punctuated
Binary” code has ln = 2⌊log2(n + 1)⌋. Hence, all the 2k integers between
2k − 1 and (2k+1 − 2) have ln = 2k, pn = 2−2k for all k > 0. They contribute
a value

2k(2−2k)(2k) = 2k/2k
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to the entropy sum. The total entropy is thus

2
∞
∑

k=1

k/2k = 4 bits

A Binary Tree Code. We now consider a code for the set of binary trees
rather than the set of integers. Here, a binary tree is either a single (leaf)
node, or is a node with two dependents, a left subtree and a right subtree,
each subtree being itself a binary tree. For this example, the trees

----O---- and ----O----

| | | |

A B B A

are regarded as different if the subtrees A and B are different. This set of trees
corresponds to the set of code trees defining non-redundant binary prefix
codes, so a code for this set is also a binary prefix code for the set of binary
prefix codes. The particular code for trees which we consider is defined as
follows:

The string for a leaf is 0.
The string for a non-leaf tree is 1 followed by the string for its left

subtree followed by the string for its right subtree.

Some example trees and their code strings are given in Figure 2.12.

0 * -----O----- * -------O--------
* | | * | |
* O O * ---O--- -----O-----
* * | | | |
* * O O ---O--- O
* * | |
* * O O

Code * Code * Code
0 * 1 0 0 * 1 1 0 0 1 1 0 0 0

Fig. 2.12. Sample trees and their code strings.

As before, the code implies a probability distribution over binary trees,
i.e., that distribution for which the code is optimal. As the code uses
one binary digit for each node of the tree, the probability of a tree is

2−(number of nodes). Note that the number of nodes, and hence the string
length, is always odd.

To calculate the entropy of this distribution, we may note that, as for any
optimal code, the entropy is the expected string length. In this case, the string
length equals the size of the tree measured in nodes, so we should calculate
the expected tree size. Assume for the moment that any node independently



96 2. Information

has probability a of being a leaf, and (1 − a) of having dependent subtrees.
Then the expected size L of a tree is given by

L = a × 1 (if the node is a leaf)

+(1 − a)(1 + 2L) (if the node has dependents)

Hence, L = 1/(2a − 1) We may also calculate the probability q that the tree
is finite, noting that it is finite only if it is a leaf or if both its subtrees are
finite. Thus,

q = a + (1 − a)q2

This equation has solutions q = 1 and q = a/(1−a). Noting that, since q is a
probability, 0 ≤ q ≤ 1, it is clear that for a > 1/2, the only solution is q = 1.
For a < 1/2, q = a/(1 − a).

The implied distribution of a code is the distribution for which the code is
optimal. But in any string of an optimal binary code, each digit independently
of all others has probability 1/2 of being 0. Since, in the tree code, a node is
encoded by the digit 0 if it is a leaf, the probability that a node is a leaf in
the implied distribution is also 1/2. That is, a = 1/2. Hence, L = ∞, q = 1.
The expected tree size, and hence the entropy of the distribution, are infinite,
but the probability of drawing an infinite tree from the distribution is zero.

This code for binary trees could also be used as a code for the positive
integers by labelling every tree with a unique integer. One way of doing this
is to label the code strings for the trees in lexographic order, within order of
increasing string length. This leads us to the code shown in Figure 2.13 for the
integers. The corresponding trees are also shown for the first few numbers.

This code for the integers has infinite entropy, but assigns a zero prob-
ability to the set of all infinite integers. Being itself a prefix binary code,
the code has a (infinite) binary code tree. This tree is represented by a code
string beginning

1 0 1 1 0 1 1 0 1 1 0 1 1 0 . . . .

2.1.15 Feasible Codes for Infinite Sets

For some infinite sets, it may be difficult in practice to construct an optimal
code. Let the set be the set of integers, with a known probability distribu-
tion {pn : n > 0}. To construct an optimal code, we would have to choose a
unique string for each integer, having length ln ≈ − log2 pn, with no string
being a prefix of another. If the mathematical form of the distribution is at
all complicated, this could be a formidable task, and we may well be content
to settle for something less than optimality. In particular, if the distribution
{pn : n > 0} has finite entropy, we may be content to use some binary
prefix code encoding n with length ln (n > 0) provided it leads to a fi-
nite expected message length. For a given distribution {pn} of finite entropy
H =

∑

n pn log2 pn, we will define a code as feasible if its expected string
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Number String Tree

1 0 O (The null tree)

2 1 0 0 ----O----
| |
O O

3 1 0 1 0 0 ----O----
| |
O ---O---

| |
O O

4 1 1 0 0 0 ----O----
| |

---O--- O
| |
O O

5 1 0 1 0 1 0 0 ----O----
| |
O ---O---

| |
O ---O---

| |
O O

6 1 0 1 1 0 0 0

7 1 1 0 0 1 0 0

8 1 1 0 1 0 0 0

9 1 1 1 0 0 0 0 etc.

Fig. 2.13. Code for positive integers and their corresponding trees.



98 2. Information

length E(l) =
∑

n pnln is finite. Of course, E(l) > H unless the code is op-
timal, and feasible codes do not exist for distributions of infinite entropy. It
might be thought that if H is finite, any code optimal for some finite-entropy
distribution would give finite E(l), but this is not the case. For instance, the
Unary code described in Section 2.1.13 is not feasible for the distribution {pn

proportional to 1/n2}, since the Unary code has ln = n, and
∑∞

n=1 n/n2 is
infinite. But the distribution {pn proportional to 1/n2} has finite entropy.
The punctuated binary code is approximately optimal for it, and gives an ex-
pected length of only a few digits. On the other hand, the punctuated binary
code is feasible for the distribution implied by the unary code, that is, for the
distribution pn = 2−n. It gives an expected string length for this distribution
of

2

∞
∑

n=1

2−n⌊log2(n + 1)⌋ ≈ 2.52 digits

which is little more than the 2 digits expected if the optimal unary code is
used.

Any finite-entropy distribution over the integers must give integer n a
probability pn which decreases with n for n greater than some integer K.
That is, any finite-entropy distribution must eventually “tail-off” for large
integers. (Of course, the “tailing off” need not be monotonic: we could have
a finite-entropy distribution such that p2n+1 > p2n for all integer n.) More
precisely, if {pn : n ≥ 0} is a finite-entropy distribution, there must exist some
finite K and some monotonically decreasing function f(n) such that pn ≤
f(n) for n > K. Generally speaking, a code optimal for some distribution
{pn} will be feasible for some finite-entropy distribution {qn} only if {pn}
“tails off” no more rapidly than {qn}.

2.1.16 Universal Codes

An interesting code for the positive integers has been discussed by Leung-
Yan-Cheong and Cover (1978). Any integer n > 0 can be written in ordinary
binary form as a string of k digits, where k = ⌊log2 n⌋ + 1. The first digit of
this string is always 1. Of course, these strings themselves do not form a code
for the integers, as they lack the prefix property. For instance, the string for
n = 5 is 101, but this string is a prefix of the string for 10, (1010) among
others. To devise a prefix code, first define a function head(n) from integers
to strings as:

head(1) = Λ (the empty string)

For n > 1 a k-digit binary number

head(n) = head(k − 1) followed by the k digits of n

Thus, for n = 3 (k = 2), head(3) = head(1).11 = Λ.11 = 11 .
For n = 9 (k = 4), head(9) = head(3).1001 = 111001 , etc.
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The prefix “log *” codeword for n is

Code word for n = head(n) followed by 0

A few examples are shown below

n : code string
1 : 0
9 : 1 1 1 0 0 1 0

501 : 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0

Decoding a string in this code is easy. The steps are shown below.

1. Set n = 1, and begin at the start of the string.
2. If the next digit is 0, exit with n. Otherwise, read this digit and the

following n digits as a binary number m.
3. Set n = m and return to Step 2.

Recalling that k = ⌊log2 n⌋ + 1, the length h(n) of the string head(n) is
given by

h(n) = h(k − 1) + k = h(⌊log2 n⌋) + ⌊log2 n⌋ + 1

where we take h(0) = 0. For large n,

h(n) = h(⌊log2(⌊log2 n⌋)⌋) + ⌊log2(⌊log2 n⌋)⌋ + 1 + ⌊log2 n⌋ + 1

Of course, for any n, the code string length ln = h(n) + 1. Rissanen [34] has
suggested the approximate length function

log∗ n ≡ log2 n + log2 log2 n + log2 log2 log2 n + . . . + C

where the series is continued up to the first term which is less than or equal
to one, and C is a normalization constant chosen to satisfy

∞
∑

n=1

2− log∗ n = 1

That is, C is chosen to make the implied probability distribution {pn = 2−ln}
normalized, and the fact that the “string lengths” {ln = log∗ n} are in general
not integers is disregarded.

The log* code, and the distributions over the integers implied by it or by
the length function log∗ n, are in a certain sense universal. The implied distri-
bution has infinite entropy:

∑∞
n=1 l(n)2−l(n) is infinite. That is, the probabil-

ity pn = 2−l(n) tails off more slowly than does any finite-entropy distribution.
In consequence, if the integer n is in fact selected from some finite-entropy dis-
tribution {qn : n = 1, 2, . . . , }, the expected string length required to encode
n using the log* code is finite. The log* code is feasible for all finite-entropy
distributions.
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There are other “universal” codes over the integers. All universal codes
correspond to probability distributions of infinite entropy. An example is the
code derived from the binary prefix code for binary trees discussed in Sec-
tion 2.1.14. It again has infinite entropy, and is feasible for any finite-entropy
distribution. In fact, Rissanen (1983) has shown that in a sense all infinite-
entropy distributions which tail off after some finite integer are equivalent.
Let pn and qn be two such distributions. Suppose an integer is drawn from
{pn} and encoded using a code for qn Define

LN = −
N
∑

n=1

pn log qn , HN = −
N
∑

n=1

pn log pn

Then lim
N→∞

LN/HN = 1 .

This result proves only a rather weak equivalence among universal codes.
The expected string lengths arising when a number from a finite-entropy dis-
tribution is encoded using different infinite-entropy codes may differ greatly.

The “binary tree” code and the log* code are actually very similar in their
length functions. Numerical calculations show that the lengths in either code
of an integer differ by only a few digits for integers at least up to 21000000.

Universal codes are of interest in that they allow us to attach a “prior
probability” to an unknown integer parameter in some model about data.
If we have almost no well-founded prior expectations about the likely value
of the integer, use of a “universal” prior still allows us to encode the integer
with a string whose expected length is finite, provided we at least have reason
to believe that the unknown integer can be represented by a finite string.
Similarly, a universal code can be used to define a prior over any infinite
countable set. For instance, the set of finite binary strings can be encoded by
a string which first gives the length of the given string, then a copy of the
given string. Such a code might have length L + log∗ L for a binary string of
length L, thus assigning the string a probability

2−L × 2− log∗ L

2.2 Algorithmic Complexity

This section introduces a slightly different approach to the measurement of
information. We again suppose that we have data recorded in a given binary
string, and ask how we might recode it more briefly in another binary string
for transmission to a receiver. The measure of “information” in the given
data is again the length of the recoded string. We depart from the earlier
treatment, in which the receiver was characterized by prior expectations de-
scribed by probability distributions, by now supposing that the receiver is a
specified Turing machine, i.e., a computer.
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2.2.1 Turing Machines

For our purposes, a Turing machine is a machine with

(a) A clock which synchronizes all its activities. The machine performs one
(possibly complicated) action or step every time the clock ticks. The
period of time from just after one tick up to and including the next tick
is called a clock cycle.

(b) A finite set of internal states. What the machine does in a clock cycle
(i.e., what action it performs in synchronism with the tick ending the
cycle) depends in part on its internal state. The state remains constant
during a cycle, but the machine may change to a different state at the
tick. The set of states is indexed by the integers 1 to S, where S is the
number of states. We assume the machine starts in state 1.

(c) A binary work tape. This is a recording medium like a magnetic tape,
divided lengthways into cells. Each cell records a binary digit. The action
of the machine at a tick depends in part on the value of the digit recorded
in the work-tape cell which is under the machine’s work-tape head. The
action may involve changing the digit recorded in this cell, and possibly
moving the work-tape one cell to the left or right, so that a different
cell will be under the head during the next cycle. The work-tape extends
infinitely in both directions. Note every cell of this infinite tape always
holds either a “1” or a “0”. There is no such thing as a blank cell. For
simplicity we may assume the work tape is initially all zeros.

(d) A one-way binary input tape. This is the part of the machine which will
receive the binary message string, which we imagine to be recorded in the
cells of a tape similar to the work tape. The machine has an input tape

head and its action in a cycle may depend on the binary value recorded
in the cell of the input tape currently under this tape head. The action
may also involve moving the input tape by one cell to the left, so the
next cell can be read. However, the machine cannot move the input tape
to the right, and so can never re-read a cell of the input tape. Initially,
the first binary digit of the received message is under the input head.

(e) A one-way binary output tape. The machine can, as part of its action on
a clock tick, write a binary digit into the cell of the output tape under its
output tape head and move the tape to the left. It cannot read or change
what it has written on its output tape. Initially, the first cell of the output
tape is under the output tape head, and its contents are undefined.

(f) A list of 4S instructions. The action taken at each clock tick depends
on the current state, the binary digit under the work-tape head, and the
binary digit under the input-tape head. Thus, for a machine of S states
there are S × 2 × 2 = 4S possible situations. The instruction list contains
one instruction for each situation. The instruction dictates the machine’s
action at the next tick. The instruction has four parts:
Next state: a number in (1, . . . , S) specifying the next internal state.
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Work write: a binary digit to write into the current cell of the work
tape.

Work move: a symbol indicating one of the three choices: move work-
tape left, move work-tape right, or do not move it. The move takes
place after the write action.

Input/Output: two binary digits controlling the input and output
tapes, by selecting one of the four options:

(00) Do nothing
(01) Move input tape one cell to the left
(10) Write “0” on the output and move it one cell to the left
(11) Write “1” on the output and move it one cell to the left

Those familiar with computer design will recognise the instruction list as
equivalent to the microcode of a microcoded computer. In our discussion,
different Turing machines differ only in their numbers of states and their
instruction lists.

When we use a Turing machine (TM) as receiver, we suppose that we
encode the given binary information or data into a binary string which is
written on the input tape. This string is the “transmitted message”. The
TM is then started, and it begins to read the input tape, write and read its
work tape, and eventually writes some binary string onto its output tape. We
consider that the TM has correctly decoded the message if the final content
of its output tape is an exact copy of the given binary information or data.
Thus, given a binary string A representing some data or information, we
propose that the amount of information in A (in bits) equals the length of
the shortest input tape which will cause the TM to output a copy of A. This
definition of the information in A is called the Algorithmic Complexity of A.
The idea was first proposed by Kolmogorov and later refined by Chaitin [9].
Note that the algorithmic complexity of a binary string A can be entirely
divorced from any interpretation of A as a body of data, propositions or
other sort of meaningful information. The string A is treated simply as an
uninterpreted string of binary digits. However, we will be using the notion of
algorithmic complexity principally for strings which do represent data.

2.2.2 Start and Stop Conditions

For the definition of Algorithmic Complexity to be complete, we need to
impose some technical conditions.

(a) The machine must start in some specified state, say, state 1, with zeroed
work tape.

(b) There are two versions of this condition. Which version we choose to
impose will depend on whether the data string A is regarded as a unique
data object (version (b1)), or a sample of data from some process which
might well produce more data later (version(b2)).
(b1) Immediately after outputting the last digit of A, the machine will
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stop (by entering a state whose next state is itself regardless of input and
work digits, and which performs no tape action).
(b2) Immediately after outputting the last digit of A, the machine will
attempt to read input beyond the end of the input I.

(c) No proper prefix of I will cause the machine to output A and also meet
condition (b).

If (b1) applies, the conditions effectively require the allowed input sequences
for all possible A to form a prefix set. That is, no input I which is allowed
as an encoding of A can be the prefix of an input J which is allowed as the
encoding of A or any other string.

If instead we require (b2), then if I is an allowed encoding of A, I may
be a prefix of an allowed input J which encodes B if and only if A is a prefix
of B.

We will say a TM accepts an input I if and only if, according to the above
rules, I encodes any string. Note that, whichever version of condition (b) is
adopted, I must allow the Turing machine to “know” when it has completed
the decoding of I and the production of A.

2.2.3 Dependence on the Choice of Turing Machine

Obviously the definition of the algorithmic complexity of a string depends
on the choice of the TM. Indeed, if the TM is poorly chosen, there may be
no input which will cause it to output a given string. In general, we will be
interested only in TMs which are capable of producing any arbitrary string.

There is an obvious correspondence between TMs and efficient coding
schemes such as Huffman and Arithmetic codes. For any such code, there is
a TM which decodes it. Thus, the Algorithmic Complexity concept embraces
all the coding schemes based on probabilities which were mentioned in the
discussion of Shannon information. An “optimal” coding scheme which gives
the minimum expected message length given certain prior expectations can
be decoded by a TM which, in effect, can compute the message probabilities
implied by those prior expectations. A coding scheme of the “explanation”
type which begins each coded message with an assertion inferred from the
data, then codes the data using an optimal code for the probability distribu-
tion implied by the assertion, can be decoded by a TM which can interpret
the assertion and then compute the implied probability distribution. Hence,
it appears that the Algorithmic Complexity formulation is no more than an
unduly complicated way of re-formalizing Shannon’s approach to informa-
tion, in which the prior expectations are expressed in the design of a TM
rather than directly as probability distributions.

2.2.4 Turing Probability Distributions

If we adopt condition (b1), which requires a TM to stop after producing a
finite string A by decoding an acceptable input I, any TM can be regarded
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as defining a probability distribution over the set of finite binary strings. The
definition follows from equating the Shannon measure of the information in
a string with the Algorithmic Complexity measure. Let A be a finite binary
string and T a TM. We have defined the Algorithmic Complexity (AC) mea-
sure of the information in A as the length of the shortest input I which will
cause T to output A (assuming the conditions of Section 2.2.2 above). Write
the length of I in binary digits as |I|. Then, with respect to T ,

AC(A) = |I|

The Shannon measure is defined with respect to a probability distribution
P () over strings as

Info (A) = − log2 P (A)

Equating the measures gives

PT (A) = 2−|I| = 2−AC(A)

We can interpret PT (A) as a probability distribution over strings inherent in
the design of T . Loosely, it is that distribution over finite strings for which T
decodes an optimal code. Note that PT (A) is not normalized. The sum over
all finite strings of PT (A) is in general less than one.

If instead we adopt the “stopping rule” (b2), which requires the TM
to attempt to read more input after decoding I to A, the AC measure so
defined does not define a probability distribution over the set of finite strings,
since the set of allowable inputs which decode to finite strings no longer has
the prefix property. A string I which decodes to the finite string A may
be a proper prefix of a string I.J which decodes to A.B. However, when
we consider a TM as the “receiver” which must decode an “explanation” of
some data string A, the data string A is normally a member of a prefix set
of possible data strings, and the receiver may be presumed to have sufficient
knowledge of the set to determine when A is complete. No transmission of
the data, in “explanation” or any other form, would be possible unless the
receiver can tell when the transmission is complete. It is thus reasonable to
suppose that the set U of strings A for which the TM is required to decode
compressed inputs form a prefix set. If so, then the form of Algorithmic
Complexity assuming stopping rule (b2) defines a probability distribution
over U again of the form

PT (A) = 2−|I| = 2−AC(A) (A ∈ U)

Thus far, for either stopping rule, there appears to be no useful advantage
of the Turing-Machine formulation of information, and its derived probability
distributions, over the Shannon formulation which takes probability distri-
butions as given, and derives measures of information from them. The new
formulation does, however, have a new feature not normally apparent in the
Shannon approach. The new feature arises from the existence of certain spe-
cial Turing Machines called Universal Turing Machines.
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2.2.5 Universal Turing Machines

Despite the simplicity of the formal description of a Turing Machine, it in fact
enables the description of machines equivalent in most respects to a modern
computer. A modern computer differs from the kind of TM we have described
only in that it has less restricted input/output facilities, and in particular, by
using magnetic discs rather than a tape for its “work-tape”, can move much
more rapidly between distant cells. Otherwise, the random-access memory,
central processing unit and control units of a computer all fit within the TM
formalism of a finite set of internal states with a list of fixed rules (the TM
instruction list) for moving from state to state and reading and writing cells
of input, output and work-tape. The set of internal states of a real computer
is usually very large, of the order of 101000000, and so could not feasibly be
described in the conceptually simple way we have outlined, but a computer
is still no more than a TM.

Computers as we know them today have an important property which can
also be exhibited by much simpler TMs. Given the right input, a computer
can be forced into a state, defined both by its internal state and what it has
written onto its work-tape, such that it thereafter behaves like a different
TM. That is, the initial input it is given will cause no output, and the output
produced in response to any further input will be exactly the same as would
be produced by the different TM given that input. The computer may not
operate as rapidly as would the TM it imitates: it may require many clock
cycles to imitate what would be done in one cycle by the imitated TM, but
the final output will be the same. In terms familiar to computer users, we
can get computer X to initiate TM Y by inputting to X an “interpreter”
program containing a table of constants representing the instruction list of
Y. In general, the interpreter program will have to copy this table onto X’s
work-tape, while leaving room on the tape to imitate Y’s work-tape, but this
is not difficult. The interpreter program then, in essence, uses some further
work-tape cells to remember the number indicating the current state of Y,
consults the table to determine what Y would do next, then does it.

A computer or TM which can be programmed (i.e., given an input pro-

gram) to imitate any specified TM is called universal. The use of a Universal
Turing Machine (UTM) as the “receiver” in a communication opens up the
possibility of coding schemes not obvious in the Shannon formalism. In par-
ticular, the coded message, which is the input to the UTM, can begin with
an interpreter program effectively changing the receiver into a different TM.
Thus, if the sender of the message determines, after seeing the data, that the
“prior expectations” inherent in the design of the receiver TM are inappropri-
ate, she can begin the message with a string effectively redefining the receiver
to have different “expectations”. The sender may, after inspecting the data
to be sent, form a theory that the data conforms (at least probabilistically)
to some pattern or regularity. She can devise a coding scheme which would
be optimal were the theory true, and begin the coded message with a string
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programming the receiver to become a decoder for this scheme. The coded
message can then continue with the optimally coded form of the data.

The ability to make a UTM imitate any other TM (including any other
UTM) using an “interpreter” program of finite length suggests a general-
ity to the Algorithmic Complexity definition of information not apparent in
the probability-based definition. In the latter definition, the information in a
message is defined in terms of the probability of the events or propositions
conveyed by the message. As the probability is subjective, and depends on the
prior expectations of the receiver, the numerical value of the information con-
tent so defined also depends on the receiver, and the assumption of different
receivers can change the value to an arbitrary extent. No obvious bounds can
be placed on the ratio between the probabilities assigned to the same message
by two different receivers, and hence no bound can be placed on the difference
between the two corresponding measures of information, which is the log of
the probability ratio. The same arbitrarily large differences in information
measure can occur if arbitrary TMs are substituted for the receivers. In par-
ticular, some TMs may be incapable of producing certain output strings. In
effect, their design assigns a zero probability to these strings, and so leads to
an infinite value for their “information content”. However, if we consider two
UTMs as alternative receivers, the situation is somewhat different.

First, any UTM can, given the right input, produce any output. At worst
the input to a UTM can begin with a program which simply copies the
remaining input to the output. Thus, any output can be produced encoded
as a “copy” program followed by a copy of the desired output.

Secondly, for any string A and any two UTMs, the difference between the
lengths of the shortest input I1 which will cause UTM 1 to output A and
the shortest input I2 which will cause UTM 2 to output A is bounded. The
length of I2 need never exceed the length of I1 by more than the length of
a program which will make UTM 2 imitate UTM 1. That is, if we know a
short input I1 for UTM 1, we can make an input I2 for UTM 2 which begins
with an interpreter program making UTM 2 imitate UTM 1, and continues
with a copy of I1. Hence, the difference in the information measures of a
string A defined with respect to UTM 1 or UTM 2 is bounded, and the bound
is independent of A. The bound is the length of a program to make one
machine behave like the other. The length of such programs depends on the
designs of the two UTMs, but is finite and independent of any string the
machines may be later required to produce.

For sufficiently long messages, the differences in information content aris-
ing from different choices of receiver UTM become a small fraction of the
information measure. This fact suggests that the choice of UTM is relatively
unimportant in the Algorithmic Complexity definition of information, at least
for long strings having a very high information content. That is, all UTMs
have in a sense the same “prior expectations”. It is tempting to conclude that
we can therefore arrive at a non-subjective definition of information. A non-
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subjective AC definition of information would then imply a non-subjective
definition of the probability of a data string via the relation Information =
− log(Probability). Unfortunately, in most practical situations the differences
between UTMs are not negligible. The length of the “interpreter” required
to make one UTM imitate another can often be large. For example, consider
the two UTMs which respectively accept and execute programs written in the
two computer languages “C” and “Fortran”. These languages are not very
different, and the lengths of the two inputs required to make a “C machine”
and a “Fortran machine” give the same specified output A are found in prac-
tice to be quite similar. That is, whether a program is written in C or Fortran
makes little difference to its length, whatever the nature of the computation
performed. Hence, the two UTMs must be regarded as being broadly simi-
lar, and equivalent to rather similar probability distributions over the set of
finite output strings. However, the length of the interpreter (written in C)
required to make a “C machine” behave exactly like a “Fortran machine” is
many thousands of binary digits. Even after allowing for the facts that the
C language is fairly redundant and that practical interpreter programs are
usually written to satisfy other requirements as well as brevity, it seems un-
likely that the interpreter could be expressed in less than 1000 digits. Hence,
the common universality of both UTMs can probably guarantee an equality
of C-based and Fortran-based measures of information only to within ±1000
bits. Many data sets from which we might wish to infer theories or estimates
might contain only a few thousand bits of information (by any measure), so
such a large difference cannot be ignored.

An equivalent way of expressing the importance of the chosen UTM is
that the same string will have different probabilities with respect to C and
Fortran UTMs, and the universality argument only guarantees that these
probabilities will not differ by more than a factor of about 21000. As we are
accustomed to regard probability ratios over 1000:1 as being important, such
a guarantee gives no comfort.

2.2.6 Algorithmic Complexity vs. Shannon Information

The algorithmic complexity (AC) of a string is the length of the shortest
input required to make a given TM output the string. The Shannon Informa-
tion of a string is minus the log of its probability in a given distribution over
strings. For any given computable distribution over strings P(S), there is a
TM such that the AC agrees with the Shannon information for all strings S,
at least to within one bit. Informally, the TM is a computer programmed to
decode a Huffman or similar optimal code for the distribution P(S). For non-
computable distributions, no such agreement can be guaranteed. However,
in practice we would expect to deal only with distributions which are either
computable or capable of being approximated by computable distributions.
Other distributions, by definition, would not allow us to compute the proba-
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bility of a string, nor to compute its Shannon information. Thus, in practice,
the AC model of information can subsume the Shannon model.

If the AC is defined with respect to a given UTM T , and the Shannon
information defined with respect to a given probability distribution P (), the
AC of a string S may exceed − log P (S), but only by a constant CTP de-
pending on T and P , and independent of S. The constant is the length of the
interpreter required to make T imitate a TM which decodes an optimal code
for P . Thus, the AC of S is never much more than the Shannon information
defined by the given distribution P . However, the AC of S may be consid-
erably less than − log P (S), since the UTM T is not required to imitate a
decoder for an optimum code for P . Instead, the shortest input to T which
outputs S may have any form. It may, for instance, comprise an interpreter
for a TM based on some other computable distribution Q, followed by S
encoded in an optimal code for Q. Thus, the algorithmic complexity of S
cannot exceed

min
Q

[− log Q(S) + CTQ]

where Q ranges over all computable distributions over strings. This relation
can be used to set an upper limit on ACT (S) by defining Q(S) as follows:

There are 2L strings of length L. If these are regarded as equiprobable,

Q(S) = Pr
Q

(S|L) × Pr
Q

(L) = Pr
Q

(|S|) × 2−|S| where |S| = Length(S)

The Universal “log*” code of Section 2.1.16 defines a computable probability
distribution over the strictly positive integers given by Pr

log ∗
(N) = 2− log∗(N).

Let Pr
Q

(L) = Pr
log∗

(L). Then

ACT (S) ≤ − log Q(S) + CTQ

≤ − log Pr
Q

(|S|) − log 2−|S| + CTQ

≤ + log∗(|S|) + |S| + CTQ

Hence, for any choice of UTM T , ACT (S) can exceed |S|+log∗(|S|) only by
a constant independent of S.

If we map the set of finite strings onto the positive integers by the lexo-
graphic enumeration of Table 1.1, the integer N(S) corresponding to string
S is

N(S) = 2|S|+1 − 1; |S| ≈ log N(S) − 1

Hence, if we regard T as “decoding” an input string I to produce a string S
representing the integer N(S), the above bound on ACT (S) shows that |I|
need not exceed

l(N) = ACT (S) ≤ |S| + log∗(|S|) + CTQ

≤ log N + log ∗(log N) + CTQ

≤ log∗(N) + CTQ
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Hence, the shortest input I causing T to output S representing the integer
N(S) defines a Universal code for the integers, albeit a defective one in that
not all input strings will represent any integer, as some may fail to give any
finite output and many will decode to the same integer.

There are some long, finite strings whose AC will be small for almost any
choice of UTM. These are the strings which can be easily generated by a short
computer program. Examples are strings of all zeros, strings of alternating
zeros and ones, strings representing the first N binary digits of easily com-
puted irrationals such as π, e,

√
2, etc., and strings which exhibit significant

departures from the statistics expected in a sequence of tosses of an unbiased
coin, such as strings containing many more ones than zeros. Chaitin [8] has
proposed that such strings be termed non-random. More precisely, a finite
string S is non-random (with respect to some UTM T) if AC(S) < |S| − δ,
where δ is some fixed value indicating a threshold “significance” or “degree”
of non-randomness. Intuitively, this definition regards a string as random if
(in our terms) there is no acceptable explanation of the string. Note that the
number of strings with ACT (S) ≤ K cannot exceed 2K+1, since each such
string must have an input string for T of length ≤ K, and there are only
2K+1 such strings. Thus, of all strings of length L, at most 2L+1−δ can have
ACT ≤ L− δ, and hence at most a fraction 2−δ can be non-random. If we set
the threshold δ = 20 say, at most one string in a million can be non-random.

This definition of the “randomness” of a finite string may seem strange.
Definitions of randomness traditionally relate to processes which produce
strings rather than to any finite output of such a process. For instance, we
may regard the tossing of an unbiased coin as a process for producing strings
of binary digits (1 for a head, 0 for a tail) and regard it as a random process
because our (subjective) probability that the next toss will yield a head is
(at least in practical terms) 0.5, and is independent of the results of all pre-
vious tosses. We regard a binary-output process as somewhat non-random
if (possibly using knowledge of the producing process and of previous out-
puts) we can give probabilities other than a half to subsequent digits, and
find that when these probabilities are used to encode the output string, the
encoded form is consistently shorter than the raw output. Our judgement
of the non-randomness of a process is thus related to the compressibility
of its output, suggesting that the AC definition of the randomness of finite
strings is in line with the process-oriented definition. The notable difference
is that a process will be regarded as (partially) non-random if its output is
compressible in the limit of long strings, so the “cost” of specifying the na-
ture of its non-randomness (in effect the length of the compression algorithm
used) is immaterial. The AC definition, since it is quite independent of the
process producing the finite string and does not regard the string as part of
a potentially infinite output, includes the specification of the nature of the
non-randomness in the compressed string.
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It is important to realize that a random process can produce a string
which is non-random in the AC sense, but its probability of doing so is small.

2.3 Information, Inference and Explanation

This section concerns the connexions among Bayesian inference (Section 1.13),
the notions of information discussed in Sections 2.1 and 2.2, and the “expla-
nation message” introduced in Section 1.5.2.

Given a body of data represented in a finite binary string D, an “expla-
nation” of the data is a two-part message or binary string encoding the data
in a particular format. The first part of the message (the “assertion”) states,
in some code, an hypothesis or theory about the source of the data. That is,
it asserts some general proposition about the data source. The second part
(the “detail”) states those aspects of the data which cannot be deduced from
this assertion and prior knowledge. Section 1.5 suggested that out of all pos-
sible theories which might be advanced about the data, the best inference is
that theory which leads to the shortest explanation. The measures of infor-
mation introduced in Sections 2.1 and 2.2 now allow the length of such an
explanation to be defined and calculated.

2.3.1 The Second Part of an Explanation

As noted in Sections 1.4 and 1.5, the “theory” asserted of some data is to
be read as expressing a relationship or pattern which is expected to hold
approximately for data as observed or measured. That is, even if the theory
is conceived as an absolute universal and exact relationship (e.g., force =
mass × acceleration), the practical application of the theory to real-world
data must allow for imprecision, measurement error and (perhaps) outright
mistake. Thus, the practical use of a theory requires that it be regarded as
expressing an approximate relationship. Such an interpretation of a theory
θ, when applied to a body of data x, can well be described by a probability
distribution Pr(x) = f(x|θ). (Here we assume pro tem that x is discrete.)

That is, f(x|θ) tells us that if we believe the theory θ, certain values for
the data are unsurprising (high probability) and certain other values, if found,
should be regarded as very surprising or even flatly unbelievable (probability
low or zero).

For example, suppose the data comprised triples (zi, mi, ai) being the
forces, masses and accelerations measured in a series of experiments on dif-
ferent objects, all measured to about 1% accuracy. Then the theory “force
= mass × acceleration”, when applied to such data, really means that in
each experiment, we expect the measurement for zi to be within about 1.7%
of the product miai. Of the possible values for zi (recalling that the value
will have been measured and recorded with only a limited number of binary
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digits), the value closest to miai will be regarded as the most probable, if
we believe the theory, but other values close to miai will not be regarded
as improbable, and even values differing from miai by 10% or more not im-
possible. Thus, given two measured values mi, ai, the theory is interpreted
as implying a probability distribution over the possible values of zi, having
most of the probability concentrated on values close to miai.

Note that this distribution, which might be written as

Pr(zi) = f(zi|θ, mi, ai)

is tacitly conditional not only on the theory θ and the values mi and ai, but
also on some “background knowledge” or (in the language of Section 1.5.2)
“prior premises”. In this case, the background knowledge at least includes
knowledge that each data triple comprises a force, a mass and an acceler-
ation, in that order, and that each is subject to about 1% measurement
error. Such background knowledge will normally be available with all data
sets for which explanations are attempted, and will have some effect on the
probability distribution f(x|θ) implied by theory θ. However, we will not
explicitly include it in our notation for the distribution. Instead of writing
f(x|θ, prior premises), we write simply f(x|θ), since in considering different
theories which might be inferred from the data, the same prior premises will
obtain for all theories and all possible data values.

Returning to the example, note that for a triple (zi, mi, ai), the distribu-
tion f(zi|θ, mi, ai) is not the full expression for the probability of the data
triple xi = (zi, mi, ai). The distribution f(zi|θ, mi, ai) encapsulates what the
theory θ says about the relationship among zi, mi and ai but the theory im-
plies nothing about the actual masses or accelerations which might be used
in the experiments. The full expression for the probability of a data triple
assuming theory θ can be written as

Pr(xi|θ) = Pr(zi, mi, ai|θ)
= Pr(zi|mi, ai, θ) Pr(mi) Pr(ai)

= f(zi|θ, mi, ai)gm(mi)ga(ai)

Here, we are assuming that background knowledge suggests that different
masses will occur in the experiments with probability conforming to the dis-
tribution gm(), and different accelerations will occur with probability distri-
bution ga(), independently of the masses. For instance, gm() and ga() might
both be uniform distributions bounded by the largest masses and acceler-
ations our instruments are capable of handling. Since the theory θ (force
= mass × acceleration) implies nothing about the experimental selection of
masses and accelerations, neither distribution is conditioned on θ. We have
also assumed that each triple in the data set is independent: a new mass and
acceleration was chosen in each case.

The conclusion to be drawn from the above example is that the probability
of a data set x assuming some theory θ, although written simply as the
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distribution f(x|θ), will in most cases be conditioned on a large amount
of tacitly assumed background knowledge to do with the selection of data,
accuracy of measurement and so on. This dependence need not often be made
explicit, since we will be concerned with how the distribution changes with
differing choices of θ, and not on how it might change with a different choice
of experimental protocol or measuring instruments.

With these preliminaries, it is now possible to define the length of the
second part of an explanation, which encodes the data assuming the truth of
some theory θ. From Section 2.1.2, if θ is assumed to be true, the length of
a binary string encoding data x using an optimal code is log2 f(x|θ) binary
digits.

If the data are not surprising, given θ and the background knowledge,
the second part will be short. If the data are very surprising (assuming θ)
the second part will be long. Here, “short” should not be taken to mean
very short. Much of the given data may concern matters which θ does not
attempt to “explain”, and this unexplained detail may require thousands of
binary digits to encode. If the (force, mass, acceleration) data set comprised
1000 triples, the encoded values of mass and acceleration might alone require
several thousand binary digits. Since θ implies nothing about the distribution
of these values, their encoding cannot be shortened by use of the theory. The
coding of the forces zi might also have taken some 7000 digits in the original
data string (1000 values × 7 digits to give each value to a precision of 2−7 or
1/128 ≈ 1%). However, by assuming the theory θ, the second part can now in
effect encode a force zi by encoding just its small difference from the product
miai. If the theory that “force = mass × acceleration” is correct (within the
1% measurement error) then the actual distribution of zi given mi and ai will
have most of its probability concentrated on 3 or 4 values close to miai, and
only two or three binary digits will be needed to encode zi. Thus, assumption
of θ may shorten the encoding of the data by four or five thousand digits,
but this is still only about a third of the original data string length.

2.3.2 The First Part of an Explanation

The first part of an explanation specifies, in some code, the theory θ being
asserted of the data. The coding of this part, and the calculation of its length,
require careful attention. First, it is usually the case, at least in the limited
contexts in which automatic inductive inference is currently feasible, that the
set Θ of possible theories to be entertained is heavily restricted. Normally,
a good explanation is sought by exploring only a single family of possible
theories, all of which have similar structure and mathematical form. The
family may be as simple as the family of Normal distributions with unknown
mean and variance. It may be rather more complex, such as the family of
all finite-state automata or the set of all binary trees, but even in these
cases, a single kind of structure is the basis of all members of the family. In
discussing the first part of an explanation message, we will assume that these
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restrictions on the kind of theory which can be asserted are well-known to the
receiver of the message, and are accepted as “background premises” which
need not be detailed in the explanation, and which will not be modified by
the explanation.

For example, suppose that some data x were obtained, and an explanation
of x were sought within a restricted set Θ of possible theories comprising just
ten theories θ1, . . . , θ10. Here, x might be data collected in investigating an
Agatha Christie murder mystery, and the ten theories might correspond to
ten suspects who might possibly be the murderer. Assume that “background
premises” rule out all other possibilities. An explanation message would then
have a first part simply identifying one of the “theories” or suspects, say, θ̂,
and a second part encoding x in a code which would be optimal were θ̂ indeed
correct. (The length of the second part would be − log Pr(x|θ̂).)

In this simple case, a optimal coding of the first part, naming θ̂, need only
encode one of ten possibilities, the possible theories θ1, . . . , θ10. An optimal
code (in the sense of least expected string length) would, as described in
Section 2.1.2, encode theory θi using a string of length − log Pr(θi). Note that

the first part of the explanation naming the inferred theory θ̂ must be decoded
by the receiver of the message before the receiver knows the data x. The
receiver can only discover x by decoding the second part of the explanation,
but since the second part uses a code based on the asserted theory θ̂, it
cannot be decoded until the receiver knows θ̂, i.e., until after the receiver has
decoded the first part. Thus, the form “Pr(θi)” in the expression for the length
of the first part means the probability which the receiver places on theory θi

before knowing the data x. This probability is just the prior probability of θi

occurring in a Bayesian account of the situation (Section 1.13). It is a measure
of how probable the theory is thought to be based on considerations other
than the present data x. Since “Pr(θi)” can be identified with the Bayesian
prior probability of theory θi, we will use the notation h(θi) for it, and hence

obtain length of first part = − log h(θ̂) where θ̂ is the theory identified by the
first part. To expand on the “murder mystery” analogy, the data x might be
a collection of facts obtained by the detective such as:

X1: Edith says she found the front door unlocked at 11.28 pm.
X2: The victim’s will was not found in his desk.
X3: The victim was shot no later than midnight.
X4: Thomas was found drunk and unconscious in the kitchen at 7 am
etc.

These are the data to be explained. Background premises, not requiring ex-
planation and not encoded in the message, but assumed known to the receiver
might include:

B1: Edith is the victim’s mother.
B2: Besides the victim, only Edith, Thomas, . . . , etc. were in the house.
B3: Thomas is the butler.
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B4: Mabel is the victim’s widow.

Background information, together with previous knowledge, might suggest
prior probabilities for the theories “Edith did it”, “Thomas did it”, etc. in-
corporating such considerations as:

h(θ1 = Edith did it): Low. Edith highly reputable person, and mothers
rarely murder sons.

h(θ2 = Mabel did it): Higher, because a high fraction of murders are com-
mitted by spouses, and Mabel known to dislike her husband.

h(θ3 = Thomas did it): Very high, by convention.
etc.

These priors depend on background B but not on data X. The conditional
probabilities used in encoding the second part of the message are probabilities
of the form Pr(x|θ) and represent the probability that the data would be
as it appears, on the assumption of a particular theory. Factors in these
probabilities might be probabilities such as

Pr (Mabel would remove the will if she were the murderer)
Pr (Thomas would get drunk if Edith were the murderer)
etc.

These probabilities are based on our understanding of how the people might
have behaved on the assumption that a particular person was the murderer.
They are probabilities of getting the data observed, assuming all background
premises and a theory premise.

2.3.3 Theory Description Codes as Priors

In the simple case above, where the set of possible theories is discrete and
small, it is easy to imagine how background knowledge could lead to an
a priori probability for, or willingness to believe in, each theory. In more
complex situations, there might be no obvious, intuitive way of assigning
prior probabilities. Suppose for instance that each possible theory could be
represented by a different, finite, binary tree with every non-leaf node having
two child nodes, and suppose that each such tree represented a different
possible theory. It could well be that with such a complex family of theories,
prior experience could give no guidance as to the prior probabilities of the
possible theories, except perhaps for a belief that the tree was not likely to
be huge. In such a case it might be decided, faut de mieux, to encode the first
part of an explanation using some code chosen simply on the basis that it
had the prefix property, and its strings could be mapped one-to-one onto the
set of binary trees by a simple algorithm. That is, the code might be chosen
on the basis that its strings could be easily interpreted as straightforward,
non-redundant descriptions of binary trees. A possible candidate code is the
“binary tree code” of Section 2.1.14. A string of this code gives a direct
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representation of the structure of a tree, and is coded and decoded by trivial
algorithms. The code length for a tree of n nodes is n binary digits. Hence,
this code would be optimal if the prior probability distribution over the set
of trees gave probability 2−n to a tree of n nodes.

More generally, the adoption in the first part of an explanation of a par-
ticular code for the set of possible theories can be regarded as the tacit accep-
tance of a particular prior probability distribution h(θ), where for every the-

ory θ, h(θ) = 2−(length of code for θ). Provided the code is non-redundant,
i.e., gives only one way of representing each theory, the implied prior is nor-
malized. In practice, a small amount of redundancy in the code may be ac-
ceptable, in which case the implied prior is sub-normalized:

∑

θ∈Θ

h(θ) < 1 where Θ is the set of possible theories.

The general point being made here is that even when prior knowledge does
not lead by any obvious path to a prior probability distribution over the
set of possible theories, the choice of a prior may be re-interpreted as the
choice of a code for describing theories. If a prefix code can be devised which
is non-redundant, and which prior knowledge suggests to be a sensible and
not inefficient way of describing the kind of theory likely to be useful in
an explanation, then that code can well be adopted for the first part of
explanations. In constructing such a code, some thought should be given
to the behaviour of the “prior” which is implied by the lengths of the code
strings for different theories. If the code turns out to use longer strings for the
theories thought a priori to be less plausible, its implied prior may well be an
acceptable encapsulation of vague prior beliefs. If however the code assigns
long strings to some plausible theories and short strings to implausible ones,
it does violence to prior beliefs and should be modified.

In later chapters describing some applications of Minimum Message
Length inference, there are several examples of coding schemes for theories
which have been constructed as fairly direct representations of the theories,
and which lead to intuitively acceptable implied priors over quite complex
theory sets.

2.3.4 Universal Codes in Theory Descriptions

In constructing a descriptive code for a complex set of theories, one may
encounter a need to devise a code for naming a member of a potentially
infinite set. In the example of the preceding section, if the set of possible
theories can be regarded as the set of finite binary trees, there may be no
obvious upper limit on the number of nodes in the tree, so the adopted code
should impose no such limit. Similarly, if the data is a time sequence of values
of some random variable observed at regular intervals, one might adopt the
set of Markov processes as the set of possible theories, but there may be no
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obvious prior grounds for limiting the order of the process. If the investigator
is reluctant to impose an arbitrary prior on such an infinite set, there is a
case for using an appropriate universal code (Section 2.1.16) since such a
code guarantees that for any finite-entropy prior over the set, the expected
code length will at least be finite. For instance, whatever finite-entropy prior
truly represents our prior knowledge about the set of binary-tree theories,
the use of the code of Section 2.1.14 at least guarantees that we can expect
the length of the first part of an explanation to be finite.

There is a weak objection to the use of universal codes in encoding theo-
ries, and in fact to the use of any codes for infinite sets. Given any finite body
of data represented as a binary string, we are interested only in explanations
which lead to a shorter encoding of the data. Thus, we will never infer a
theory whose specification, as the first part of an explanation, is itself longer
than the original data. This fact sets an upper limit to the number of binary
digits within which the inferred theory can be stated, namely the number of
binary digits in the original representation of the data. The number of differ-
ent theories which can be coded in strings no longer than this upper limit is
of course finite, and so in principle the set of theories which can possibly be
entertained given some finite data is itself finite. It follows that codes for in-
finite theory sets are never strictly optimal in framing explanations for finite
bodies of data.

The above objection, while valid, is only weak. A universal code for “bi-
nary tree” theories allows the representation of trees with millions of nodes,
and so cannot be ideal if the limited volume of data available implies that
no tree with more than 1000 nodes will be used. However, redesigning the
code to eliminate strings for trees with more than 100 nodes, while keep-
ing the relative probabilities of smaller trees unchanged, would make only
a small difference to the code lengths for the remaining trees, of order 0.12
of a binary digit. In practice, universal codes can provide simple and conve-
nient codes for integers, trees and other structures, and in some cases their
implied probability distributions are not unreasonable reflections of a vague
prior preference for the “simpler” members of the set.

2.3.5 Relation to Bayesian Inference

From Section 2.3.2, the length of the first part of an explanation for data x,
asserting an inferred theory θ̂ selected from a discrete set of possible theories
Θ, is − log h(θ̂), where h(θ̂) is the Bayesian prior probability of theory θ̂. From
Section 2.3.1, the length of the second part, which encodes x using a code
which would be optimal if θ̂ were correct, is − log f(x|θ̂), where f(x|θ̂) is the

probability of obtaining data x given that θ̂ is correct. The total explanation
length is thus

− log h(θ̂) − log f(x|θ̂) = − log(h(θ̂)f(x|θ̂))
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But, from Bayes’ theorem, the posterior probability of θ̂ given data x is

Pr(θ̂|x) =
h(θ̂)f(x|θ̂)

Pr(x)

For given data x, Pr(x) is constant. Hence, choosing θ̂ to minimize the ex-

planation length is equivalent to choosing θ̂ to maximize Pr(θ̂|x), i.e., choosing
the theory of highest posterior probability.

If this were the only result of the Minimum Message Length approach,
it would represent no real advance over simple Bayesian induction. About
all that could be claimed for the MML approach would be that it might
assist in the construction of prior probability distributions, by establishing a
correspondence between the language or code used to describe a theory and
the prior probability of that theory, as in Section 2.3.3. However, the exact
equivalence between MML and simple Bayesian induction is apparent only
when the set Θ of possible theories is discrete. When the set is or contains
a continuum, e.g., when the theories have unknown real-valued parameters,
the straightforward equivalence breaks down.

As described in Section 1.13, it is then not possible to assign non-zero prior
probabilities to all theories in the set, and h(θ) becomes a prior probability
density rather than a prior probability. Similarly, by direct use of Bayes’
theorem, we can no longer obtain posterior probabilities for theories, but
only a posterior probability density

p(θ|x) =
h(θ)f(x|θ)

Pr(x)

As discussed in Section 1.13, it is then not clear that choosing θ̂ to max-
imize the posterior density p(θ̂|x) is a sensible or acceptable inductive pro-
cedure, since the result depends on exactly how the continuum Θ has been
parameterized. The mode of the posterior density is not invariant under non-
linear transformations of the parameters used to specify θ.

As will be fully discussed in later chapters, MML overcomes this problem.
Essentially, minimizing the length of the explanation message requires that
the first part may specify real-valued parameters to only a limited precision,
e.g., to only a limited number of binary or decimal places. The more severely
the stated parameter values are rounded off, the fewer binary digits are needed
to state the values, thus shortening the first part of the explanation. However,
as the stated parameter values are more severely rounded off, they will deviate
more and more from the values which would minimize the length of the
second part of the message, so the length of the second part will be expected
to increase. Minimization of the message length involves a balance between
these two effects, and results in the parameters of theories being rounded off
to a finite precision. It will be shown that the best precision gives round off
errors roughly equal to the expected estimation errors, i.e., to the errors in
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estimating the parameters likely to arise from random sampling and noise
effects in the data.

The fact that an MML explanation message states estimated parameters
to limited precision, using only a limited number of binary digits, means that
it becomes conceptually possible to attach a non-zero prior probability to
the stated values. Again roughly, the prior probability of an estimate value
stated as 3.012, using only three decimal places, is given by 0.001 times the
prior density h(3.012). It approximates the total prior probability contained
in the interval of values 3.0115 to 3.0125, as all values within this interval
round to 3.012.

In effect, the MML approach replaces a continuum of possible theories or
parameter values by a discrete subset of values, and assigns a non-zero prior
probability to each discrete theory or value in the subset. Since each theory
now has a non-zero prior probability, a posterior probability can be defined
for it, given the data, and the explanation length minimized by choosing the
discrete theory or parameter value having the highest posterior probability.
Thus, MML reduces the continuum-of-theories problem to a discrete-theories
problem, allowing simple Bayesian induction to proceed. Although it is not
obvious from this brief account, the resulting MML inferences are invariant
with respect to monotonic non-linear transformations of the parameters, as
will be shown in Chapter 3.

The non-zero “prior probabilities” which MML gives to a discrete subset
of a continuum of theories are clearly not identical to any prior probability ap-
pearing in the initial concept of the continuum of possible theories. However,
it appears to be useful and legitimate to treat them as prior probabilities,
and similarly to treat the resulting posterior probabilities as genuinely indi-
cating the relative merits of competing explanations of the data. That is, if
two competing explanations of the same data using two theories θ1 and θ2

have lengths l1 and l2 binary digits respectively, it is still possible to regard
the difference in lengths as indicating the log posterior odds ratio between
the theories:

l1 − l2 = log2

Pr(θ2|x)

Pr(θ1|x)

Pr(θ1|x)

Pr(θ2|x)
= 2(l2−l1)

2.3.6 Explanations and Algorithmic Complexity

Section 2.3.5 has shown a close relation between conventional Bayesian induc-
tion and MML induction based on minimizing the length of an explanation.
In that section, the treatment of message length was based on Shannon’s the-
ory of information. This section discusses the consequences of basing message
lengths on the theory of Algorithmic Complexity. As shown in Section 2.2.4,
the definition of the Algorithmic Complexity (AC) of a string with respect
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to a Universal Turing Machine T can be related to Shannon’s theory by re-
garding T as defining a probability distribution over binary strings P (S) such
that

PT (S) = 2−AC(S) for all strings S

The fact that PT (S) as so defined is sub-normalized, i.e., that
∑

S PT (S) <
1, is of no particular concern. This relation between AC and Shannon infor-
mation suggests that Minimum Message Length induction can be based on
AC measures of message length instead of Shannon measures, and indeed this
is so.

Given some UTM T and a body of data x represented by a non-null finite
binary string D, we will define an “explanation” of D with respect to T as
a shorter input I such that I encodes D. That is, when given input I and
started in state 1, T reads I and outputs D, then tries to read more input (the
formal conditions were stated in Section 2.2.2). As with the Shannon-based
treatment, we impose a further condition on the coded message I, namely
that it has a two-part format (Sections 1.5.2, 2.3 and 2.3.5). In the Shannon-
based treatment of Section 2.3.5, the first part is an (encoded) statement

of a theory or estimate θ̂ about the data, and the second part an encoded
representation of x using a code which assumes θ̂. However, given a UTM
T , a binary representation D of x, and an input string I which causes T
to output D, it is not clear how or whether we can interpret I as stating
some theory about x and then using that theory to encode D more briefly.
The “meaning” of an input string to a UTM can be quite obscure, making
it very difficult for a human to determine what part of I, if any, constitutes
a “statement of theory”. We therefore impose some formal conditions on I
to ensure that it can properly be regarded as an explanation. Stating these
conditions will be facilitated by some further definitions.

– For any TM T and any input I accepted by T using the second stopping
rule (2.2.2), define O(T, I) as the string output by T when given input I.
If T does not accept I, O(T, I) is undefined.

– Two TMs T1 and T2 are equivalent iff, for all inputs I, O(T1,I) = O(T2,I).
Equivalence is written as T1 ≡ T2.

– For any TM T and any I accepted by T , define N(T, I) as denoting any
one of a set of equivalent TMs such that for all strings J , O(T, I.J) =
O(T, I).O(N(T, I), J) where “.” denotes concatenation. That is, N(T, I) is
a TM which behaves just as T does after T has accepted I. When T accepts
I, it produces output O(T, I) and thereafter behaves as if it were the TM
N(T, I). We may say that I, when input to T , not only causes output
O(T, I) but also programs T to imitate a different TM N(T, I). Note that
even if T is universal, N(T, I) may not be, and if T is not universal, N(T, I)
is not.

We now define an explanation of data string D with respect to a UTM
T . A string I is an explanation of D iff
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C1: |I| < |D|
C2: O(T, I) = D

and I has the form A.B, where

C3: neither A nor B is null,
C4: O(T, A) = Λ (The null string),
C5: N(T, A) ≡ N(T, I), and
C6: A has no proper prefix A1 such that A1.B is an explanation of

D.

Informally, these conditions require that

– A produces no output, but programs T to behave like N(T, A); B, when
input to N(T, A), is accepted and gives output D, but leaves the TM
N(T, A) unchanged. That is, N(T, A) in no sense remembers B.

– The division of an explanation I into parts A and B is unique. Suppose it
were not. Then I could be divided into three non-null segments. I = X.Y.Z
with both divisions {A1 = X, B1 = Y.Z} and {A2 = X.Y, B2 = Z}
satisfying C1–C6.

Using the second division, C5 ⇒ O(T, X.Y.Z.Z) = D.D .
Using the first division, C5 ⇒ N(T, X.Y.Z) ≡ N(T, X) .
Hence, O(T, X.Z) = D contradicting C6.
The intention of these conditions on I is to ensure that it comprises a part

A identifiable as a theory about the data, and a part B which encodes the data
string D using a code based on that theory. Consider the TM equivalent to
N(T, A). Let us call it H. When B is input to H, H accepts B and outputs D,
and is not changed by so doing. Thus, O(H, B) = D and O(H, B.B) = D.D .
We can regard H as a mechanism which decodes the string B to produce D.

2.3.7 The Second Part

Since H is a TM, it defines a (possibly sub-normalized) probability distribu-
tion over all data strings S

PH(S) = 2−ACH(S)

where ACH(S) is the length of the shortest input accepted by H and produc-
ing output S. Thus, H defines a probabilistic “theory” about the source of
the data. If the data D is probable, given this theory, i.e., if PH(D) is large,
then it is possible to find a short second part B such that O(H,B) = D, with
|B| = ACH(D) = − log2 PH(D). However, if D is improbable in the proba-
bility distribution PH(), the shortest string B causing H to output D will be
long. In the extreme case that PH(D) = 0, no such string B will exist.

Since H = N(T, A) defines a probability distribution PH() over the pos-

sible data, it can be regarded as embodying a probabilistic theory θ̂ about
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the data which can formally be represented by the conditional probability
function

f(x|θ̂) = PH(D)

where string D represents data x, and H embodies θ̂.

2.3.8 The First Part

In an explanation I = A.B using a given TM T , it is the first part (A) which

determines H. Thus, A may be interpreted as describing the theory θ̂ to T ,
or, equivalently, A is an encoding of θ̂ which is decoded by T . Given the close
relation between Algorithmic Complexity and Shannon information and the
logarithmic relation between Shannon information and probability, we can
reasonably define the “probability” of the TM H with respect to T as

QT (H) = 2−|A|

where A is the shortest string such that

O(T, A) = Λ and N(T, A) ≡ H

(Observe that, if I = A.B is the shortest explanation of data string D, and
if N(T, A) = H, then A must be the shortest string such that N(T, A) ≡ H,
and B must be the shortest string such that O(H, B) = D .)

Thus, just as a TM T defines a probability function PT (S) over strings,
so T also defines a probability function QT (H) over TMs. But as with PT (),
the normalization of QT () requires special mention. We have observed (Sec-
tion 2.2.4) that, using our preferred (second) stopping rule, PT () defines a
probability distribution over a prefix set of strings rather than over the set
of all finite strings, and is (sub-)normalized over the prefix set. If we adopt
QT (H) as defining a “probability” of TM H with respect to TM T , the
function QT () is certainly not normalized (or sub-normalized) over the set
of all TMs. For instance, QT (T ) = 1, since no input is required to make T
behave like T . Rather, we must interpret QT () in the same way as we might
define and interpret a probability function over a set of propositions or asser-
tions which are not necessarily mutually exclusive nor together exhaustive.
If L = {wi : i = 1, 2, . . .} is such a set of propositions, a probability function
P () may be defined over subsets of L so that P (Λ) = 1 where Λ is the empty
subset, P (wi) represents the probability that wi is true, P (wi

∧

wj) is the
probability that both wi and wj are true, and so on. (Here, “

∧

” means logi-
cal conjunction.) Such a probability function is meaningful even although it
obviously does not satisfy either

∑

wi∈L

P (wi) = 1 or
∑

subsets of L

P (subset) = 1
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Such a probability function may well be appropriate for expressing subjective,
or “prior”, probabilities which a person may attach to subsets of a set of non-
factual general propositions about the real world such as

“The U.N. will in future intervene in all international conflicts in-
volving more than one million civilians.”

“World food production will match population growth at least to
2100.”

“Unregulated international trade in goods and services will damage
developing nations.”

“Nation states will be irrelevant in 100 years.”
“Vegetarian diets lead to less aggressive populations.”
etc.

In a similar way, QT () can be viewed as defining a probability function over
a set of Turing Machines which, in a sense, are not mutually exclusive. A TM
which can execute FORTRAN programs and which has an extensive matrix-
manipulation library is certainly different from a TM which can only execute
FORTRAN, but in a useful sense the latter is a subset of the former. The
latter “knows” the propositions defining FORTRAN, the former “knows”
these and also the propositions defining matrix arithmetic.

When we consider explanation messages intended to be decoded by some
TM T , the first part of the explanation I = A.B is both a description of the
TM H = N(T, A) and an encoding of a “theory” about the data. In conven-
tional Bayesian induction, the set of possible theories is normally required to
be a set of mutually exclusive and together exhaustive models, so the prior
probability function or density over the set is properly normalized. However,
in more general scientific induction, we do not necessarily regard theories as
mutually exclusive. Rather, some theories may be regarded as additions to
other theories, or completely independent. The theory of electromagnetic phe-
nomena expressed by Maxwell’s equations is somewhat dependent on New-
ton’s theory of motion, but is an addition to Newton’s theory rather than an
alternative. A reasonable 19th-century assessment of prior probabilities would
regard the prior probability of (Newton.Maxwell) as smaller than prior (New-
ton), but would not treat (Newton.Maxwell) as an alternative to (Newton).
Rather, it would give priors related by

Prior(Newton) = Prior(Newton.Maxwell)

+ Prior(Newton.All other electromagnetic theories)

Further, given Newton’s theory of motion, his theory of gravity would
be regarded as having a prior probability almost independent of the prior
probability of Maxwell’s theory, as the two deal with different phenomena. I
say “almost” because the occurrence in both the gravitational and electro-
magnetic theories of an inverse-square law would suggest to most people that
believing the truth of one theory would incline one favourably to the other,
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but on the other hand, the assumption in Maxwell’s theory of interactions’
being mediated by local effects propagating with finite speed would, if ac-
cepted, cast doubt on Newton’s model of instantaneous gravitational action
at a distance.

The above discussion suggests that, if we regard the length of the first
part of an explanation I = A.B as indicating a prior probability

2−|A| = QT (H)

for the “theory” embodied in the TM H = N(T, A), the fact that QT () is not
normalized should be of no concern. The “theory” embodied in H may be
the conjunction of several “theories”, each individually expressible in some
TM. As theories are not necessarily mutually exclusive, the sum of their
(prior) probabilities is meaningless. We can properly regard QT (H) as being
the prior probability, with respect to T , of the theory embodied by H. QT ()
cannot as it stands be regarded as a probability distribution over all TMs.

2.3.9 An Alternative Construction

The definition of an AC-based explanation given in Section 2.3.6 leads, as
shown above (Section 2.3.8), to the conclusion that the first part of the ex-
planation does not necessarily nominate one of a set of mutually exclusive
models or theories. Rather, it may encode a set of mutually compatible the-
ories, in effect asserting that all of these theories are true of the data. This
interpretation goes beyond the usual Bayesian assumption that the models
to be entertained are mutually exclusive, and may be seen as a useful en-
richment of the usual framework. However, a relatively minor re-definition
of a TM-based explanation message can be made which narrows the differ-
ence between the two formalisms. Given a TM T and a data string D, the
alternative definition of an explanation string I = A.B is:

C1: |I| < |D|
C2’: O(T, I) = ‘0’.D
C3: Neither A nor B is null.
C4’: O(T, A) = ‘0’
C5: N(T, A) = N(T, I)

In the above, only C2’ and C4’ differ from the original conditions of Sec-
tion 2.3.6, and the original C6 is no longer necessary. The effect of the
change is that T , on accepting A, must output a single binary zero and
immediately begin to read B. With this change, the set of possible first-
parts A clearly form a prefix set, since the output of the initial zero signals
the end of A. Hence, the probability function over the set of Turing ma-
chines H : H = N(T, A), O(T, A) = ‘0’ defined by QT (H) = 2−|A| is (sub-
)normalized, and QT (H) may be regarded as a conventional prior probability
for H, or the “theory” which it embodies.
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With this definition, it is still possible, given a sufficiently powerful T ,
to choose A in ways which result in H “knowing” different combinations of
Newton’s theory of motion, his theory of gravity, and/or Maxwell’s electro-
magnetic theory. The only difference is that now the first part of the expla-
nation is required explicitly to announce its own completion. In general, if
one defines some input string J for a given TM by requiring J to cause some
specified output O(T, J) or final state N(T, J), imposing on J the further
requirement that it be a member of a prefix set has the effect of requiring
some lengthening of the input. Without the additional requirement, J need
encode only the specified output string or final TM. With the requirement,
J must also in effect encode its own length. Thus, if J1 satisfies the original
definition, and J2 satisfies also the prefix condition, we in general expect

|J2| ≈ |J1| + log∗ |J1|

where the log* term represents the additional information needed to specify
|J |. However, in changing the definition of an explanation as outlined above,
we may expect little change in the length of the explanation. The change now
requires part A to determine its own length, which will in general require part
A to be slightly longer than with the original definition of Section 2.3.6. But
in that definition, the second part B of the explanation had to convey to
the TM that the TM was to make no permanent change of state dependent
on B, but rather to decode B and forget it. With the alternative definition
of this section, B need not convey this fact to the TM, since the ending of
A is already known to the TM. Overall, it is difficult to see that the two
different ways of defining an explanation would lead to significantly different
explanation lengths or inferred “theories”.

2.3.10 Universal Turing Machines as Priors

In the Algorithmic Complexity formalism, we assume a Turing Machine T is
to be the receiver of the explanation message. The choice of T is equivalent to
the adoption of prior probability distribution QT () over the possible inferred
models which might be used in the explanation. For most induction problems
which can feasibly be automated, the set of possible models entertained is
severely limited, usually to a relatively sample family of parameterized data
probability functions {f(x|θ) : θ ∈ Θ}. In such cases, the Turing Machine
which embodies a reasonable prior over Θ will not need to be very powerful.
It need only have sufficient power to decode the “theory description code”
(Section 2.3.3) used to nominate the inferred theory θ̂, and then to compute

the resulting data probability function f(x|θ̂). For this purpose, a finite state
machine or stack machine will usually suffice, and when the explanation-
decoding process is simulated on a conventional computer, the processing and
memory demands are small. Further, the theory description code will usually
be quite simple, and be such that the end of the theory description is obvious.
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That is, the possible first-parts of explanations will form a prefix set, so the
distinction between the alternative explanation definitions of Sections 2.3.6
and 2.3.9 becomes irrelevant. The implied prior probability function QT () is
usually properly normalized.

Although the above simple situation obtains in most currently feasible
applications of MML induction, the possibility of using a Universal Turing
Machine (UTM) as the receiver is of some interest for the philosophy of
induction.

When a UTM is the receiver, the implied prior probability function over
possible theories cannot be normalized. It is well known that there is no
algorithm which can always determine whether a given program for a given
UTM will ever cause output. Hence, however we design the UTM, there will
be input strings which never cause output, and so do not correspond to any
meaningful assertion, and we can have no general method for weeding them
out.

Although it is not normalized, the “prior probability distribution” over
possible assertions or theories about the data which is implied by a UTM
has a unique virtue. It allows the assertion of any theory giving rise to a
computable probabilistic model of the data. This scope arguably includes all
theories at present seriously considered in scientific enquiry. That is, it can be
argued that the scientific community does not accept any theory which does
not lead to probabilistic expectations about what data might be observed,
or such that the expectations implied by the theory cannot be computed at
least in principle. We admit that such an argument cannot at present be
compelling. There are current theories which cannot as yet be expressed as
computable probability distributions over the set of possible raw data which
an investigator might observe, and yet these theories are widely accepted as
meaningful, if not necessarily correct. For example:

“In recent years the personal language of symbolic forms with which
he invests his constructions has been simplified and clarified, his
compositions are more controlled, and his colour has become richer,
denser and more flexible.”
(Bernard Smith, writing about the artist Leonard French, in Aus-

tralian Painting 1788-1970, 2nd edition, OUP Melbourne, 1971, p.
311.)

This passage asserts a general proposition about a change over time in the
observable characteristics of a time-series of coloured images. It is intended
to be, and probably is, meaningful to anyone with a cursory knowledge of
modern art, and would lead the reader to have different expectations about
earlier and later images in the series. Most readers would be able to decide,
after seeing the images, whether the data conformed to these expectations
or not. Thus, we must accept the passage as making an assertion about the
data series which implies a kind of pattern or regularity capable of verification
(or falsification). However, the science of cognition and the art of computing
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are still nowhere near being able to express the assertion as a computable
probability distribution over a time-series of digitized colour images.

To give another example of more “scientific” character, a theory propos-
ing an evolutionary tree for a group of plant species might purport to explain
observed characteristics of their leaves, flowers, seeds, etc. At present, reli-
able identification and measurement of parts like stamens and anthers from
raw photographic data is probably beyond the competence of computerized
pattern recognition. Hence, such a theory cannot at present be held to make
a computable assertion about photographic data.

As there is yet no compelling evidence to the contrary, we may reason-
ably believe that theories using terms like “flexible colour” and “anther” may
eventually be shown to have computable implications about raw image data.
However, at the present stage of computer and software technology, it must
be admitted that there are many important and respected inductive theo-
ries which can be formally represented as probabilistic models of data only if
we accept as “data” the interpretations and inferences of human observers.
We cannot restrict the idea of explanations to messages conveying only raw
data about visual fields, instrument readings, air pressure waves, etc. The
informed human must be accepted as an indispensable instrument for trans-
lating such data into terms admitting formal analysis. Thus, in applying our
theory of “explanations” to data concerning visual images, sounds and other
phenomena at present beyond full automated analysis, we will suppose that
the data string to be encoded as an explanation has already been processed
by human interpretation. The data string presented for an “explanation” of
the grammatical forms of spoken English will not be the sampled pressure-
wave values as recorded on a compact disc, but rather the sequence of spoken
words written in the usual 26-letter alphabet. The data presented for an “ex-
planation” of the evolutionary relationships among a family of plant species
will not be a binary string representing digitized photographs of the various
plants, but rather a binary string representing the “characters” and mea-
surements of the plants as determined by a competent botanist. At present,
any theory about natural language grammars, evolutionary trees and the like
can be represented as a probability distribution or TM decoder only for such
pre-processed data expressed in terms whose interrelationships are more or
less understood. Although, as humans, we are obviously capable of extracting
word sequences from sounds, and formal character-lists of plants from visual
images, we do not as yet fully understand how we do this preprocessing, and
cannot incorporate an account of the preprocessing into a formal theory.

The above proviso applies equally whether theories are framed in terms
of probability distributions or Turing machines or any other way admitting
formal analysis. Thus, while the proviso limits the scope of the approach
to inductive inference presented here, it seems to us to limit equally the
scope of all other approaches known to the author. Henceforth we assume
all data to be available in a pre-processed, or “interpreted”, form. Thus,
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we will assume that any scientific theory about the data is expressible as a
computable probability distribution over the set of possible data strings.

With this assumption, the use of a UTM as receiver allows an explana-
tion message to assert and use any scientifically meaningful theory whatso-
ever about the data. Equivalently, we may say that any given UTM implies
an (un-normalized) prior over possible theories which gives a non-zero prior
probability to every meaningful theory and estimate. Further, the results of
computability theory show that no receiver which is less powerful than a
UTM can accept all computable probability distributions. Equivalently, no
computable prior can assign a non-zero prior probability to every possible
theory unless it corresponds to the prior implied by some UTM.

In less abstract terms, if we choose to frame explanations of data in such a
way that any meaningful theory can be asserted, then the explanations will be
decodable only by receivers which are at least as powerful as a UTM. The code
used to assert the inferred theory will necessarily be redundant, i.e., capable
of asserting nonsense theories, and will therefore imply an unnormalized prior
over the set of meaningful theories. The lack of normalization is unfortunate,
but is an inevitable consequence of the fact that it is not in general possible
to compute whether a given input string for a given UTM will ever result in
output. That is, because of the “halting problem”, there is no computable
method of excluding “meaningless” theories from the code used to assert
theories.

Strictly speaking, the UTM is too powerful to serve as a realistic model of
the receiver of an explanation. A UTM has an unbounded work-tape, which
serves as an unbounded memory capable of storing any finite number of bi-
nary digits. In the real world, no computer or human has access to such
an unbounded memory, nor has the luxury of the unbounded time needed
to use it. Any computation or act of inference performed by any person or
computer has been performed using limited memory and time. When bounds
are placed on the memory and/or computation time of a TM, it cannot be
universal. In fact, such a bounded machine is reduced in principle to a much
more limited kind of machine called a finite-state machine (FSM). In the
theory of computability, a FSM is the simplest and most lowly of comput-
ing machines. It can compute only a limited set of functions, called regular

expressions, and can at best be made to imitate only a small range of other
FSMs, all simpler than itself. If the real world only offers us FSMs as possible
receivers of explanations, it may seem curious to base an account of induction
and explanation on a model using UTMs which do not exist, and which have
very different theoretical properties. This objection to our approach must be
conceded as valid. If we assume a UTM as the receiver of an explanation, we
allow in principle that the explanation may assert and use in encoding the
data a theory whose consequences could never be computed by any present
human or computer. That is, we allow in principle explanations which can-
not be decoded within feasible limits of memory and time. A fully developed



128 2. Information

account of inductive inference should incorporate such limits. Although there
is a growing body of theory, called the theory of Computational Complexity,
which characterizes what can and cannot be computed within specified limits
of memory and time, we have not attempted here to extend our account to
allow for such limits. There are arguments in our defense. Firstly, the limits
on available memory and computation effort are (for machines) determined
by current techniques, and are improving rapidly. Thus, it would be hard to
fix on specific values for the limits. Secondly, Computational Complexity is
not as yet able to characterize the resource needs of computations very well.
For many computations of interest in inductive inference, it is not known
whether the needs grow exponentially or only as a polynomial function with
increasing volumes of data. Thus, the boundaries of the “feasible” are not
well defined. Thirdly, while any one human or computer has only finite mem-
ory and computational power, scientific inference is not really an activity of
a single agent. Rather, scientific investigation is an activity carried out by a
culture, and the memory and information processing power available to the
culture grow as time goes by. In accounting for the history of the inductive
inferences formed in such a culture, it is not unreasonable to suppose that
the culture has been able to record in its “work-tape” of libraries and human
skulls whatever information it has needed to record. That is, the unbounded
memory of a UTM, while clearly not available to an individual or single
computer, is in some sense available to a lasting culture. Finally, while an
individual or computer may be only a FSM in the terms of Computability
Theory, a sufficiently large and powerful FSM can imitate a UTM within
the limits of its resources. Unless the computational resources required to
decode an explanation exceed these limits, a powerful FSM can decode the
explanation in the same way as a UTM. In practice, working out how some
given data can best be encoded as an explanation appears to be much more
difficult than decoding the resulting explanation. Informally, it seems harder
to make a good inductive inference than it is to compute its consequences.
Our account of inductive inference does not directly concern how inferences
are formed, but rather attempts merely to characterize “good” inferences as
ones which allow a concise explanation of observed data. If induction is com-
putationally harder than the deduction involved in decoding an explanation,
it is reasonable to expect that the receiver of a real-world explanation will
need less computational power than the sender who had to make the induc-
tion used in the explanation. Hence, we might expect that any explanation
framed by a human could be decoded by a human. We do not expect in the
real world that a receiver will often encounter explanations whose decoding
is beyond the limits of the receiver’s computational resources.

Some theories current in science might appear to be counter-examples to
the above argument. For instance, it is widely believed that quantum me-
chanics gives an accurate theory of the electron motions in atoms, and how
these interact to bind atoms together as molecules. Yet the theory is compu-
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tationally so difficult that no exact solutions of its equations have yet been
computed for any non-trivial molecule. (Here, we mean by an exact solu-
tion not an algebraic solution in closed form, which may well not exist, but
a computational algorithm capable of providing a numerical solution to an
accuracy comparable with the accuracy of observed data.) But in this case,
practical explanations of observed data on, say, the absorption spectra of
molecules, do not directly encode the data in terms of quantum mechanics.
Rather, the explanations assert and use approximate “theories” derived from
quantum mechanics but using grossly simplified terms and variables whose
behaviour is computationally simpler than that of the variables actually ap-
pearing in the original theory. For example, the explanation of some data
concerning lithium atoms, which have three electrons, may describe these
electrons as occupying distinct “orbits” around the nucleus of the atom. The
notion of an “orbit” or state for an electron derives from exact solutions
to the quantum-mechanical equations describing a single electron orbiting a
nucleus. These solutions show that such a single electron must exist in one
of a discrete set of states, or orbits. To assume that the three electrons of
a lithium atom will occupy three such states is a distortion and simplifica-
tion of the theory. Strictly, the theory only allows the definition of complex
“states” involving all three electrons: the trio of electrons can exist in one
such complex state out of a set of states. Describing such a complex state as
being the result of three separate electrons individually occupying three dis-
tinct single-electron states amounts to replacing quantum mechanics proper
with a simplified but different “theory” which, fortunately, happens to work
quite well. The conclusion of this digression is this: there certainly are current
theories whose consequences cannot feasibly be computed as yet. However,
explanations of data purporting to use these theories will usually be found
to encode the data using approximate, derived theories rather than the pure
theory. The derived theories are not feasibly deducible from the pure theory:
if they were, the explanation could begin with the pure theory. Typically, the
derived theory will introduce terms having no exact definition in terms of the
pure theory, and its “laws” are not deduced from the pure theory. Rather,
the terms and laws of the derived theory are themselves inductive inferences
based on observed regularities in the data. They may be suggested or inspired
by the pure theory, or may even have been formed before the pure theory,
but their acceptance is based on their own explanatory power as much as
on their in-principle relationship to the pure theory. For example, the theory
of atomic interactions uses terms such as “orbitals” having no strict inter-
pretation in quantum dynamics. The thermodynamics of gasses uses terms
such as “collision”, “viscosity” and “temperature” having no strict definition
in atomic interaction theory. Gas flow dynamics uses terms such as “tur-
bulence” not directly definable in thermodynamics. Meteorology uses “cold
front” and “cyclone”, terms not exactly definable in flow dynamics. Thus,
while we may argue that meteorological phenomena are ultimately explica-
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ble in terms of quantum mechanics, no such explanation (as we have defined
the term) has ever been given, or is likely in the near future. Assertion of the
laws of quantum mechanics is in practical terms useless in attempting a brief
encoding of weather data, even if we have reason to believe that encoding
based on quantum mechanics should be possible, and would be decodable by
a UTM.

To summarize this discussion, the assumption of a UTM as receiver allows
an in-principle extension of our account to cover any theory with computable
consequences. It offers a formal definition of a prior over all computable the-
ories. However in practical terms, we are unable to use theories in an expla-
nation if the computational effort becomes excessive. The limits on available
computing or reasoning resources are more likely to be reached in trying to
frame explanations than in decoding them. While the UTM is a useful ab-
stract model, real explanations are unlikely to tax the computing power of
modern computers when used as receivers, even though these computers are
only FSMs. The limits on what is computationally feasible provide one limit
on how far reductionism can be pushed in explanations.

2.3.11 Differences among UTMs

We have noted above that one of the attractions of proposing UTMs as re-
ceivers of messages, and basing measures of information on the lengths of
messages decodable by a UTM, is that the ability of one UTM to imitate
another bounds the differences between information measures based on dif-
ferent UTMs. Because the bound depends only on the UTMs, and not on
the content or length of the message, some writers have concluded that the
differences among UTMs are essentially negligible. For very long messages,
the differences in message length arising from different choices of receiver
UTM become a very small fraction of the lengths. However, as we have also
noted, the differences in absolute terms are not necessarily small, and can
easily be several thousand binary digits. Recall that the difference in length
between two explanations corresponds to the difference in the logarithms of
their posterior probabilities, so an absolute difference in length of 100 digits
corresponds to a huge probability ratio, even for explanations of millions of
digits. It is particularly important to note that the differences can never be
neglected when we are considering explanation messages.

When we frame an explanation of some data for a given UTM receiver,
the explanation message begins with an assertion of a theory inductively
inferred from the data. This assertion may be regarded as an interpreter
program which programs the receiver to imitate a different TM (also perhaps
universal). We will call the new TM the “Educated Turing machine” (ETM)
since it now “understands” the asserted theory. The ETM is designed to
decode the rest of the explanation message, which conveys the data in a code
which is optimal if the asserted theory is true. That is, the ETM expects the
data to be coded assuming the truth of the theory.
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In comparing the merits of competing theories about some given data, our
approach is to take each theory in turn, and use it to frame an explanation
of the data. We then prefer the theory which gave the shortest explanation.
The same receiver UTM is assumed for all theories. Clearly, the length of
the first part of each explanation, which asserts the theory, is an important
component of the explanation length, and cannot be neglected. If we were
to neglect it, and so assess theories purely on the basis of the lengths of the
second part of the corresponding explanations, we would always be able to
find a “theory” (i.e., an ETM) such that the given data was an inevitable
consequence of the theory, and the length of the second part was zero. That is,
we could always find an explanation whose first part transformed the receiver
UTM into an ETM designed to output the given data without reading any
input. Our preferred inference would then be “the world is such that the data
has to be <given data string>”. That is, the data would be built into the
“theory”. It is only the inclusion of the length of the first part of the message,
asserting the theory, in the assessment of explanations which prevents such
nonsense, and provides a balance between the complexity of the theory and
its ability to account for the data. Hence, in comparing explanation lengths,
we cannot neglect the first part.

However, when a UTM is used as receiver, the first part is precisely an
interpreter which transforms the UTM into the ETM. Its length is the differ-
ence in length between an encoding of the data for one UTM (the assumed
receiver) and for another (the ETM). If, as shown above, this difference is vi-
tal, we must conclude that, at least for explanation messages, the differences
in length arising from different choices of receiver are not in general negligible.
It is just such a difference which prevents the inference of absurdly complex
theories which have all the data built in.

Having shown that differences between receiver UTMs are not in general
negligible, we must now ask how should the receiver UTM be chosen. Exactly
the same considerations apply as in the specification of a prior in Bayesian
inference. The length of the interpreter required to make the receiver UTM
imitate the ETM which accepts an optimal data code given some theory
may be equated to the negative log prior probability of that theory. That
is, the design of the receiver UTM embodies and defines a prior probability
distribution over the set of possible theories. We should choose our receiver
UTM so that the prior it defines accords well with our prior knowledge.
The only real difference between choosing a receiver UTM and choosing a
prior in a conventional Bayesian analysis is that the UTM “prior” admits all
computable theories, and so is not normalized.

There is, however, a useful cosmetic change in the way we may think about
the choice of prior. If we use the conventional Bayesian approach, we will
probably think of the different possible theories as parameterized members
of different families of data probability distributions, which of course they
are. However, this line of thought does not seem to lead in any obvious way
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to attaching prior probabilities to the different families or their members,
except when we can draw on a history of many previous similar data sets,
each of which has been somehow identified as coming from a particular family.
In this probably rare situation, we might well equate the prior probability of
a family to the fraction of previous data sets identified as coming from this
family. More generally, it might be difficult to translate our prior knowledge
into a prior probability distribution over possible theories.

Regarding the receiver as a UTM gives us another way of thinking about
priors which can be helpful. For example, suppose our data concerns the
observed vibrations of various points on a building which is subjected to an
impact at some point. We might be interested in inferring from the data a
theory about the internal structure of the building and the mass and stiffness
of its structural members. Assuming the receiver to be a UTM, we realize that
our explanation will begin with an inferred description of the structure, and
that the UTM will have to compute from this description things such as the
natural modes of vibration of the structure, their frequencies, amplitudes and
phases at each point in the building, and the rates at which the vibrations
decay. Before we even think of prior probabilities over different structural
arrangements, it is clear that we expect the UTM to have to deal with vectors,
sine waves, exponential decay functions, forces, positions, masses and so on.
If the UTM is to embody our prior knowledge of the form the theory is likely
to take, it should be a computer already equipped to perform high-precision
arithmetic, to calculate trigonometric and exponential functions, to handle
matrices and eigenvalue calculations, etc. If it is so equipped, we can now
concentrate on designing it to accept structural descriptions in some code
matched to the kinds of structure that prior knowledge leads us to expect.
The code might encode horizontal and vertical members more briefly than
oblique ones, since we expect the former to be more common. It might build
in expectations that the structure will fill only a small fraction of the volume
of the building, that the members will be more massive low in the building,
that slab members will more often be horizontal than vertical, and so on.
But if we consider the length of input required to bring an initially naive
UTM up to the specifications we want in our receiver, we will probably find
that most of the input is concerned with the basic mathematical functions
we want the UTM to perform, rather than the expectations we have about
specific structural details. That is, we may find that the important parts of
our prior (in terms of determining the length of our encoded theory) are
not to do with just what kind of building we expect to infer, but rather
with the expectation that the explanation will use the kind of mathematics
previously found to be applicable to structures in general. In other words,
thinking about the receiver as a UTM makes us realize that, in specifying a
prior, a very important part is specifying a language in which we can hope to
describe our inferences concisely. The choice of language for the first part of
the explanation can greatly affect its length, and should be made on the basis
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of our prior experience in stating propositions of the kind we expect to infer
from the data. Of course, any further and more specific prior expectations
can be incorporated in the UTM design: our expectations about the kind of
structure to be found in an office block, in a small domestic residence, or in
an aircraft hangar are rather different.

When the set of possible theories is sufficiently restricted, a UTM may
be unnecessarily powerful as the receiver of an explanation. Rather, the ex-
planation may be decoded by a non-universal TM or FSM. In such a case,
rather than considering the detailed design of the receiver as embodying our
prior, it is usually more convenient to think in terms of the code or language
which will be used to assert the inferred theory in an explanation. This code
must, of course, be decoded or “understood” by the receiver machine, and in
fact, specifying the language to be accepted by the receiver is just another
way of specifying its machine design. In later chapters we give examples of
explanations and discuss the choice of theory-description language in each ex-
ample. Generally, if the receiver is not universal, it will be possible to specify
a non-redundant theory-description language, corresponding to a normalized
prior over theories. It appears in practice that thinking about what kind of
theory-description language should be efficient, given our prior expectations,
is less confusing and more “natural” than attempting to specify the prior
directly.

2.3.12 The Origins of Priors Revisited

We have argued in Section 1.15 that conventional Bayesian statistical rea-
soning gives no satisfactory account of how we might come to have a prior
probability distribution over possible theories or estimates. It does show how
an original prior is modified by data to give a posterior, and that this poste-
rior is an appropriate prior for the analysis of further data, but fails to give
any line of reasoning leading to the original prior. We now argue that, by
considering the prior to be inherent in the choice of a receiver UTM, we can
reason soundly about the original prior.

We saw that an attempt to choose a conventional Bayesian prior express-
ing “complete ignorance” founders when the set of possible theories is or
includes a continuum. What might be regarded as expressing prior ignorance
about one parameterization of the continuum (e.g., a uniform or minimum-
entropy density) is not colourless in a different parameterization of the same
continuum. However, if we consider the explanation receiver to be character-
ized by a UTM design rather than by a prior, the picture is different. The
TMs we have described are specified by an instruction list, containing four
instructions for every internal state of the TM. Hence, the complexity of a
TM is monotone increasing with its number of states. An overly simple TM,
say one with only one or two states, cannot be universal. There must be,
and is, a simplest UTM, or a small set of simplest UTMs. Adoption of such
a UTM as receiver can reasonably be regarded as expressing no expectation
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about the theory or estimate to be inferred, save that it will be computable
(i.e., imply a computable probability distribution over possible data strings.)
Adoption of any UTM (or TM) with more states seems necessarily to assume
something extra, i.e., to adopt a “less ignorant” prior. We therefore suggest
that the only prior expressing total ignorance is that implied by a simplest
UTM.

This definition of total ignorance avoids the objections raised to maximum-
entropy priors and other uninformative priors over continua of theories. Even
if we choose to regard a theory as a member of a parameterized continuum,
to be identified by one or more real-valued parameters, the theory must be
specified to the receiver UTM by an assertion of finite length. Since the set of
finite binary strings is countable, the set of theories which can ever be used in
the explanation of any data is also countable, i.e., discrete. For the simplest
UTM (or indeed any specified UTM), the theory to be asserted will have a
shortest assertion, and its prior probability (as implied by the UTM) is just

2−length of this assertion

Questions of non-linear transformation of parameters simply do not arise.
When we choose to regard a theory as being identified by parameter values,
i.e., co-ordinates in a continuum, the continuum and its parameters are ar-
tifacts of our own devising. For a UTM receiver, every theory which can be
asserted is a discrete entity having a shortest assertion and hence a non-zero
prior probability. Whether we choose to regard two computable theories as
near or distant neighbours in some continuum is of no consequence, and has
no direct effect on their relative prior probabilities as defined by the UTM.

(Note, however, that in an explanation of the kinematic behaviour of many
bodies, the theory may well involve hypothesising a “mass” for each body,
and it to be expected that examination of the UTM “program” asserting
this theory will be found to deal with these quantities using representations
recognizable as masses rather than logs, arctans or cubes of masses. That
is, the “theory” may effectively assert a “natural” parameterization of what
humans would recognize as concepts involved in the theory.)

The definition of the “simplest” UTM which we have offered could be
questioned, since it assumes a particular way of describing a UTM, viz., its
instruction list. Other methods of description are possible, and would lead
to a different scale of simplicity. For instance, real-world machines represent
their current internal state as a pattern of binary values called state variables

held in electrical circuits. Our form of description treats this pattern sim-
ply as a binary number indexing the entries in the instruction list. However,
in most real computers, at least some of these state variables have specific
meanings which are relatively independent of the values of other state vari-
ables. That is, the state variables of the machine are such that the values
they will assume in the next cycle, and the actions taken by the machine,
can be expressed as relatively simple Boolean functions, each involving only
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a few of the state variables and perhaps the input and work-tape digits. Ma-
chines are often designed in this way because it is cheaper or faster to build
circuits to compute these simple Boolean functions than to store and refer
to an arbitrary instruction list. If this style of design is followed rather than
the instruction-list style, the machine may well require more states to do the
same job, but less actual hardware. Hence, it is at least arguable that the
complexity of a machine should be judged by the number of Boolean logic
circuits needed to build it rather than by its number of states.

We concede the uncertainty in the notion of “simplest UTM” resulting
from alternative design styles and the possibility of ties on whatever criterion
is used. However, it seems plausible that a UTM accepted as “simplest”
by any reasonable criterion will incorporate no significant prior knowledge
about any sort of data. Any such machine, and its implied prior, should be
acceptable as an expression of prior ignorance. It would, for instance, require
an input of many digits simply to give it the ability to perform addition and
multiplication of integers.

The model we propose for a wholly uninformative prior avoids the ob-
jections raised to the conventional Bayesian proposals. It is primitive in an
absolute sense which cannot directly be applied to priors expressed as prob-
ability densities or distributions over enumerable sets of theories. An aspect
of its primitive nature is that it excludes no computable theory about data
strings. In a conventional Bayesian analysis, considerable care may be given
to choosing an uninformative prior density for the parameters of a model
family, yet the usual restriction of the analysis to a single family of models
is equivalent to the assumption of an extremely “informative” prior which
eliminates all other potentially applicable families. However, our proposed
primitive prior is too primitive to be usable in most explanations, because in
fact we have some prior knowledge about virtually all data sets we encounter.
We offer the model only to show that, if the measurement of information is
based on a UTM, the existence of a simplest UTM provides a basis on which
Bayesian reasoning can build without having to resort to leaps of faith or
arbitrary choices of parameterization.

2.3.13 The Evolution of Priors

It is of some interest to consider how Bayesian reasoning or inductive inference
of the form we propose could lead in the real world from a most-primitive
prior to the development of scientific theories as we know them today. We
will attempt to sketch such a development based on our explanation model
of induction.

Suppose we start with a primitive UTM, say, UTM 0, and obtain some
data. Since UTM 0 requires a long string to make it imitate an ETM of any
significant complexity, it is likely that the shortest explanation of the data
will assert only a simple inferred theory about it. Indeed it is possible that no
explanation will be possible, i.e., that no input to UTM 0 which is shorter than
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the data string can cause UTM 0 to output the data string. However, as more
data accumulates, an explanation will eventually become possible if the data
exhibits any computable pattern. Suppose this first body of explicable data
D1 has a shortest explanation comprising an interpreter for an “educated”
TM, ETM 1 say, and a second part or “detail” encoding D1 as an input to
ETM 1. In other words, the detail encodes D1 using a code which would be
optimal were the theory embodied in ETM 1 true. If we like to translate into
Bayesian terms, the length of the assertion (the interpreter) is the negative
log of the prior probability of the theory in the prior distribution defined by
UTM 0. The length of the detail is the negative log of the probability of the
data, given the asserted theory. The total explanation length is the negative
log of the joint probability of theory and data, as shown in Figure 2.14.

length of assertion = − log Pr(Theory ETM 1)
length of detail = − log Pr(Data D1|ETM 1)
length of explanation = − log Pr(ETM 1) Pr(D1|ETM 1)

= − log Pr(ETM 1, D1)
= − log Pr(D1) − log Pr(ETM 1|D1)

Fig. 2.14. Length of explanation.

Since Pr(D1) does not depend on the theory, choosing ETM 1 to mini-
mize the explanation length is equivalent to choosing the theory of highest
posterior probability given data D1.

In a purely Bayesian inference, we would at least in principle carry for-
ward the entire posterior distribution Pr(Theory|D1) into the analysis of
further data. We suggest that a more realistic model of scientific enquiry is
to suppose that what is carried forward is not the whole of the posterior,
but rather the Educated Turing Machine ETM 1 which is effectively built by
reading the assertion of, or interpreter for, ETM 1 into the primitive UTM 0.
This suggestion requires that we impose a new condition on ETM 1, namely
that it be universal. The condition is not onerous, and need not involve any
significant increase in the length of the interpreter for ETM 1. In its simplest
implementation it requires only that, after reading the detail and outputting
D1, the interpreter for ETM 1 should go to the initial internal state of the
primitive UTM 0, but leaving a copy of itself on the UTM 0 work-tape. A
more sophisticated implementation would design ETM 1 to recognize a spe-
cial bit sequence on the input tape, different from any sequence used for
encoding data in the detail, and signalling that the machine should accept
any following input digits as defining a new interpreter or modifying the
ETM 1 interpreter. Reserving such an escape sequence in the code decoded
by ETM 1 necessarily increases slightly the length of the detail encoding a
data string, since the detail must avoid this sequence. However, by using a
sufficiently long escape sequence, the increase in detail length can be made
as small as we please.
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We suggest, then, that when the best explanation of data D1 is found,
using theory ETM 1, the receiver Turing machine is left as a UTM, but is
now ETM 1 rather than the primitive UTM 0. New data D2 will be analysed
using ETM 1 as the receiver rather than UTM 0. Thus, rather than carrying
forward a posterior derived from data D1, in our suggested model we carry
forward only the theory inferred from D1. In analysing new data D2, we
will seek the shortest explanation which, when input to ETM 1, will cause
it to output D2. If D2 comes from exactly the same source as D1, but is
an independent and less voluminous sampling from that source, we may well
find that the shortest explanation of D2 has no assertion part, but consists
simply of a detail using the code expected by ETM 1. That is, D2 gives no
reason to change or elaborate the theory ETM 1 already inferred from D1.
More generally, D2 may have a shortest explanation whose assertion part
slightly modifies the machine ETM 1, e.g., by refining some parameter es-
timate embodied in ETM 1. If D2 is much more voluminous than D1, and
is drawn from a wider and/or different range of phenomena, the explana-
tion of D2 may assert a quite new theory ETM 2, which however uses some
concepts and laws already embodied in ETM 1 as subroutines. In this case,
while ETM 2 may be a new theory, its assertion to ETM 1 may be much
shorter than the assertion required to program UTM 0 to imitate ETM 2,
since ETM 1 already contains subroutines useful in imitating ETM 2. Note
that this economy in the description of ETM 2 may be found even when the
data D2 concerns phenomena totally different from the source of D1. For in-
stance, suppose D1 was an extensive list of (mass, force, acceleration) triples
observed in experiments applying forces to particles. No matter how the data
is presented in D1, it seems inevitable that the inferred theory ETM 1 would
involve some form of addition and multiplication operations. The detail of
the explanation of D1 could then condense each triple into the form (mass,
acceleration, force − mass × acceleration) where the third component of each
triple, being typically very small, could be encoded briefly. That is, we can
confidently expect that the “computer” ETM 1 would contain routines for
addition and multiplication. Suppose then that a second body of data D2 is
obtained concerning the length, width, soil type, rainfall and harvest yield
of a set of paddocks. An explanation of D2 might assert some subtle theory
about the interaction of soil type and rainfall, but it would surely also relate
the yield of a paddock to its area, i.e., length × width. The presence in ETM 1
of a routine for multiplication would make the interpreter for ETM 2 shorter
when the receiver is ETM 1 than when the receiver is UTM 0, since ETM 1
would not have to be instructed how to multiply. It is quite possible that D2
would be inexplicable to UTM 0, because the shortest input encoding D2 for
UTM 0 was longer than D2, yet D2 would be explicable to ETM 1.

It is noteworthy that our model permits data about particle dynamics to
modify the “prior” used in analysing crop yields. Such an accumulation of
prior knowledge is difficult to account for in the conventional Bayesian frame-
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work, but emerges naturally when probability distributions are modelled by
Turing machines and their inputs. In principle, it appears that our model of
induction provides for the inductive inference of all mathematics useful in
the explanation of real-world data.

The idea that nothing is retained from the analysis of previous data save
the ETMused in its explanation is over-simplified. The retention and recon-
sideration of some previous data clearly play a role in scientific enquiry. To
consider an extreme situation, if data is acquired in small parcels, the first
parcel may have no acceptable explanation for receiver UTM 0, so consid-
eration of the parcel leaves UTM 0 unchanged. The same may apply to all
subsequent parcels. No theory will ever be formed unless sufficient parcels
are retained and encoded in a single explanation. Even when the first body
of data D1 permits an explanation asserting ETM 1 to UTM 0, and a second
body D2 permits an explanation asserting ETM 2 to receiver ETM 1, it may
well be that the shortest explanation of the combined data (D1, D2) which
can be decoded by UTM 0 asserts a theory ETM 3 different from ETM 2. In
that case we should prefer ETM 3 to ETM 2, as giving the shorter explana-
tion of the whole data. In a Bayesian analysis, it would make no difference
whether we considered the whole data sequentially, first D1 then D2, or as
a single body of data (D1, D2). In the sequential analysis, the complete pos-
terior distribution Pr(Theory|D1) would be taken as the prior in analysing
D2, and no relevant information in D1 would be lost. However, in the model
we propose, the educated machine ETM 1 resulting from the analysis of D1
does not capture quite all of the relevant information in D1. Hence, when
it is used as the prior, or receiver machine in analysing D2, the final the-
ory ETM 2 cannot in general be expected to be the best possible given all
the data. Moreover, the final theory ETM 2 may depend on which of the two
data sets D1 and D2 was analysed first. Ideally, a process of scientific enquiry
based on our model should not discard data once it has been used to infer
a theory, but rather accumulate all data. Periodically, a revision of current
theory should be performed to see whether, if all the data is considered at
once and encoded for transmission to the original primitive UTM 0, some
theory may be found yielding a shorter explanation than that given by the
currently accepted, and incrementally developed, ETMn. This ideal would
bring our model back into line with the ideal Bayesian analysis, in that no
information would be lost, and the order of presentation of the data would
not matter.

The actual practice of scientific enquiry seems to fall somewhere between
the extremes of, on the one hand, a purely incremental approach where only
the current “best” theory is carried over into the explanation of new data, and
on the other hand, retention of all data and requiring any new theory to be
inferred from the entire data set without reference to previous theory. Some
old data is certainly retained and used as evidence to be explained by new
theory, especially when the new theory involves discarding a previous theory
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based on the old data. But much data which has led to scientific theories
is never re-examined after the theory has been accepted. A proponent of
a new theory of gravitation would feel little need to demonstrate that the
raw data used by Kepler could be explained by the new theory (if the data
are still available). Rather, old bodies of data are often treated as being fully
summarized by the theories inferred from them, with perhaps some anomalies
noted. A new theory is then regarded as explaining the old data if it can be
shown deductively that any data explicable by the old theory necessarily
admits of an equally brief detail when encoded using the new theory. The
new theory may also, one hopes, be capable of explaining the data regarded
as anomalous under the old theory.

In the physical sciences, the pattern of enquiry seems in the twentieth
century to have followed the incremental model rather well. Few of the new
concepts and patterns enunciated in theories accepted in the twentieth cen-
tury seem to have been discarded in later, more successful theories. This
assertion is just an impression based on a modest education in the physi-
cal sciences, and might well be disputed by those better informed. However,
we can at least observe that a great number of concepts and patterns used
in 19th century physics are still to be found in present theory. In Turing
Machine terms, our present Educated Turing Machine uses many of the im-
portant subroutines of its 19th century predecessors.

Lastly, a slightly different form of incremental theory development may,
and I think does, occur. Suppose, as above, that some data D1 admits of
an explanation I1 accepted by the primitive UTM 0, and that I1 comprises
an assertion part A1 followed by a detail part X1. Let ETM 1 denote the
UTM N(UTM0, A1), i.e., the Educated Turing Machine which results when
UTM 0 is fed the theory A1. More packets of data D2, D3, D4, etc. are
collected, and it is found that each admits of explanation by the theory A1.
That is, detail packets X2, X3, X4, etc. can be found, each shorter than the
corresponding data packet, which when fed to ETM 1 cause it to output the
data packets. It may be that none of the additional data packets is sufficient
to justify scrapping assertion A1 and replacing it by a new theory. That
is, none of the new data packets admits of an explanation to UTM 0, but
each admits of a null-assertion explanation to ETM 1. Now suppose that,
although the original data packets are not carried forward into new analysis,
the detail packets are. It may then be noted that the concatenation of the
details X2.X3.X4 . . . seems to have some regularities. Then this string may
admit of a two-part explanation to ETM 1. That is, there may exist an input
string I2 which begins with an assertion part A2 and which, when input to
ETM 1, causes it to output X2.X3.X4 . . . .

Now, if a program for a UTM causes it to read an input, process it and
output a results string, the program can easily be modified to make the
UTM remember the results string instead of outputting it, and then behave
as if it had been given this string as input. Thus, if there exists a string
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I2 = A2.Y 2 which when input to ETM 1 makes it output X2.X3.X4 . . .
there exists a trivially different string J2 which when input to ETM 1 makes
ETM 1 compute and remember the string X2.X3.X4 . . . then “read it back”
and produce the output string D2.D3.D4 . . . . The final situation then is that
a string has been found with the structure

I3 = A1.J2 = A1.A2.Y 2

which when input to UTM 0 makes it produce the string D2.D3.D4 . . . .
What we are suggesting is that, after some theory A1 has been inferred

from data D1, and found to explain further data D2, D3, etc. fairly well, it
may be noticed that the ‘details’ required by these additional data, when con-
sidered in toto, exhibit significant regularities. A further theory A2 is inferred
from these regularities, allowing an acceptable explanation of these details to
be framed for input to a UTM which already uses theory A1. That is, the
original theory A1 is not rejected or even substantially modified. Rather, a
further theory A2 is inferred, which succeeds in more briefly explaining the
new data, using the concepts and regularities already embodied in A1.

An example may clarify. The “wave” theory of optics successfully ex-
plained numerous properties of light, including refraction, diffraction, colours,
the resolution limits of telescopes, etc. but “details” in these explanations
needed to provide unexplained values for things like the speeds of light in
different media and the dispersion of different colours. Maxwell’s electromag-
netic theory used the wave-motion theory, but allowed many of the details
unexplained in the original theory to be explained in terms of the dielectric
and magnetic properties of different media. The modern quantum theory uses
all the terms of wave motion and Maxwell, but allows explanation of much
that Maxwell’s theory left as unexplained detail (besides accounting for phe-
nomena such as the photo-electric effect which Maxwell’s theory could not
account for quantitatively). In this history, later theories did not really su-
percede the earlier ones, which remain valid theories. Rather, they built upon
their predecessors by finding regularities in what for the earlier theory were
unexplained “details”.

An alternative (but I think equivalent) account of this form of evolution
arises from regarding a theory as the definition of a new language, or at least
a tightening of the “grammar” of an existing one. Data observed must be
recorded in some “observational” code or language, say, L0. When a UTM
is used as the receiver of data, it defines a new language L1: the set of
input strings which will it can translate into meaningful L0 strings. In the
simplest situation, L1 differs little from L0, but when the UTM is given an
“explanation” message with a non-trivial assertion part, its reading of the
assertion changes it into a different (educated) UTM which will now accept
a language L1 which (if the explanation is acceptable) allows a more concise
representation of data strings actually observed, and which it can translate
back into the original language of observation L0. If regularities are found
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in the sentences of L1 which encode real data, the UTM may be further
“educated” by a new assertion to understand a yet more concise language L2
which it can now translate first into L1 and then into L0. The new assertion
does not replace the old one. In fact, the new assertion is couched in the
language L1 defined by the old assertion, and in general would not even be
acceptable to the original uneducated UTM.

The above is an account in mechanical terms of what seems to have hap-
pened during the evolution of scientific theories. Old theories, if they had
explanatory power, are not usually wholly discarded. They introduced new
language and concepts in which their “detail” accounts of observations were
expressed, and this new language was often used to express new theories.
Most modern accounts of the physical world still use terms such as mass,
energy, wavelength, density, cause, etc. with pretty much their old meanings,
and we would probably be reluctant to scrap our current scientific language
in favour of one which made no use of them.



3. Strict Minimum Message Length (SMML)

This chapter begins the development of methods for constructing short expla-
nation messages, and hence obtaining statistical or inductive inferences from
data. Actually, the detailed construction of an explanation as a sequence of
binary digits will not be developed. Rather, as our interest lies in the infer-
ences to be drawn, we will need only to develop methods for computing the
lengths of explanations based on different possible inferences. The preferred
inference is that giving the shortest explanation message, and the difference
in length between two explanations based on different hypotheses can be
used as a measure of the relative posterior probabilities of the hypotheses.
The actual digit sequences need not be computed.

The discussion will be based on Shannon’s theory of information, using
the relation

information = − log(probability)

and assuming use of coding techniques such as Huffman and Arithmetic codes
which give message lengths closely approximating the ideal

length in binary digits = information in bits = − log2(probability)

The Algorithmic Complexity theory of information will not be needed.
The chapter begins by defining the assumptions and functions which are

taken as describing the induction problem to be addressed. Essentially, these
are the assumptions and functions conventionally used in describing a sta-
tistical estimation problem in a Bayesian framework, but the conventional
view of parameter spaces is slightly generalized so that our treatment encom-
passes model selection or “hypothesis testing” as well as estimation in the
same framework.

The main result of the chapter is an exact formal characterization of esti-
mator functions which exactly minimize the expected length of explanations,
and derivation of certain relations which must be satisfied by the estimators.
Such estimators are called “Strict Minimum Message Length” (SMML). Un-
fortunately, these relations are in general insufficient to allow calculation of
the SMML estimator, and in fact the estimator function has been obtained
for only a few very simple problems. Some of these simple cases are used as
illustrative examples, as despite their simplicity, they give some insight into
the general nature of MML estimators.
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Later chapters will develop approximations to SMML estimators which
can feasibly be calculated for a wide range of problems.

3.1 Problem Definition

Our aim is to construct a brief (ideally the briefest possible) explanation
of given data, where an explanation is a message conveying first, a general
assertion about the source of the data, and second, the data itself encoded
in a code which would be optimal were the assertion true. We now consider
what is involved in the construction of such a message.

The assertion inferred from the data, and stated in the first part of the
message, will in general imply a probabilistic model for the data, i.e., proba-
bility distribution over the set of all data values which might be observed if
the assertion were true. Even when the inference embodied in the assertion is
not inherently probabilistic, it will still imply such a probability distribution
in most cases. For instance, if the data comprises many independent triples,
each comprising a voltage, current and resistance observed in an experiment
on direct current electricity, the basic inference conveyed in the first part
might be voltage = current × resistance, which asserts a deterministic rather
than a probabilistic relationship. However, we would not expect the triple of
numbers representing the measured voltage, current and resistance exactly
to satisfy this relation. Inevitable measurement error, and the finite precision
of the numbers representing the measurements, would cause some variation
around the ideal relation. Thus, in practice the assertion would have to take
the form of a probabilistic relation, e.g., “The measured voltage is a random
variate from a Gaussian distribution with mean V = measured current times
measured resistance and standard deviation 0.001×V +0.01 volt”. Although
later we shall extend our discussion to include the possibility of truly deter-
ministic assertions, we shall now assume that the inferred assertion always
implies a probability distribution over the set of possible data values. We
will write this distribution as the function f(x|θ̂), where x is a data value

and θ̂ denotes an inference. Note that the data value x will usually be a set
of numbers (or other types of value such as Boolean values). For instance,
x could be a set of 100 triples, each triple being a voltage, a current and a
resistance expressed in suitable units.

3.1.1 The Set X of Possible Data

Initially, we shall depart from the usual treatment of data in statistics by
assuming that the set of possible values which the data x might take is finite.
That is, we regard x as a discrete variable, not as continuously variable. (At
this point we admit to a confusion of notation: in some contexts we use x to
mean a data value, and in other contexts, e.g., in the distribution function
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f(x|θ̂), we use x to denote a random variable, rather than a value which
might be taken by that variable. The intent of each use of x should be clear
enough from the context.)

The assumption of discrete data values may appear restrictive: surely we
must be able to deal with data about quantities such as length, tempera-
ture and mass, which can take any value in a continuum. However, we are
concerned with the construction of a message which conveys observed data;
and any observed data presented for analysis will be presented in some form,
be it a set of numbers, a picture, a sequence of sounds, etc., which can be
represented by or translated into a finite string of symbols from a finite al-
phabet. Certainly, any observation which can be conveyed from one person
to another via telecommunication media is often so represented during its
transmission. One may argue perhaps that data presented for analysis by the
analyst’s own direct sense impressions need not be so representable, but even
in this case, it is plausible that the sequence of nerve impulses which carry
data from sense organs to the analyst’s brain can be represented without loss
of information by a sequence of numbers representing, with finite frequency
and precision, the time-varying action potentials of the nerve cells involved.
Thus, if we assume that any data value must be representable by a finite
string in a finite alphabet, we are actually making our model of the inference
problem more rather than less realistic.

If every possible data value can be represented as a finite string in a finite
alphabet, it can be represented as a finite string in a binary alphabet, i.e.,
as a finite string of “0s” and “1s”, using standard coding techniques. Since
the set of finite binary strings is countable, it follows that the set X of all
possible data values which may arise in a given inference problem is countable.
We could, indeed, argue that X is not only countable but finite. There are
experimental procedures which could in principle yield any one of an infinite,
countable set of data strings. For instance, we could decide to record as our
data the sequence of head or tail outcomes in a coin-tossing experiment, and
to continue tossing until we produce either a run of 10 heads or a run of 10
tails. As there is an infinite number of binary strings containing no group of
10 consecutive 0s or 10 consecutive 1s, the set of data strings which could
in principle be obtained is infinite. But in the real world, we may be sure
that no analyst will ever be given an infinite data string, since transmitting
it would take an infinite time, and if none of the really possible data strings
is infinite, the set X of all really possible strings must be finite.

While the finiteness of X is assured in the real world, we do not need
this property, but will assume countability. Since the set X of possible data
values which can arise in any given inference problem is countable, we may
index its members. Normally, we will use the index i, and write

X = {xi : i = 1, 2, 3, . . .}
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3.1.2 The Probabilistic Model of Data

For any inference θ̂ asserted in the first part of the explanation message,
there must be, as we have noted, an implied probability distribution function
f(x|θ̂).

For given θ̂, f(x|θ̂) must be defined for all x ∈ X and satisfy 0 ≤ f(x|θ̂)
and

∑

x∈X f(x|θ̂) = 1.

We assume that the statement of θ̂ in the first part of the explanation is
sufficient to define the corresponding function f(x|θ̂) to the receiver of the
message. In the simplest problems of statistical estimation, the mathematical
form of f() may be assumed to be given, and already known to the receiver.

In such cases, the assertion θ̂ need only give the estimated value(s) of any free
parameter(s) of the distribution function. For example, the data may consist
of the outcomes of a sequence of 100 tosses of a coin, and it may be accepted
without question that these outcomes are independent Bernoulli trials, i.e.,
that each outcome has probability p of being a head, and probability (1 − p)
of being a tail, where p is some unknown probability characteristic of the coin
and the tossing apparatus.

All this is accepted as given, is not subject to further inference, and is
assumed already known to the receiver of the explanation. Thus, both sender
and receiver of the message know that the probability of obtaining a partic-
ular data string containing n heads and (100 − n) tails has the form

pn(1 − p)(100−n)

What is not known is the value p of the probability of heads. The framer of
the explanation must form some estimate of p, assert that estimate in the first
part of the explanation, then encode the data sequence using a code based
on that estimate. Thus, in this case, the assertion or inference θ̂ is simply a
single number p̂, the estimate of p, and this is sufficient, given what is already
known to the receiver, to define the probability distribution f(x|θ̂) as

p̂n(1 − p̂)(100−n)

where p̂ = θ̂ and n is the number of heads in the sequence x.
Our early development and examples will concentrate on just such simple

cases, where θ̂ is no more than a set of estimated parameter values. Later,
we will consider more complex problems, where the assertion θ̂ asserts one
of a number of possible forms for the function f(), as well as any parameters

for the chosen form. Ultimately, we consider inferences where θ̂ comprises, in
effect, an arbitrary computer program for computing f().

3.1.3 Coding of the Data

The first part of an explanation message asserts some inference or estimate θ̂
which implies a probability distribution f(x|θ̂) over the set X of possible data
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values. Having chosen θ̂ and constructed the first part, the transmitter of the
message can now construct an optimum code for the distribution f(x|θ̂), and
hence encode the actual data value as the second part of the explanation. The
explanation message is readily decodable by any receiver. Having received and
decoded the first part (the coding of which is discussed later), the receiver

can compute the distribution function f(x|θ̂) and hence construct the same
optimum code over X as was used by the sender. Knowing this code, the
receiver can now decode the second part of the explanation, and so recover
the data value x.

Since the code used in the second part is chosen to be optimal for the
distribution f(x|θ̂), the coding probability for data x is f(x|θ̂), and the length

(in nits) of the second part is − log f(x|θ̂).
This simple result will be used in all our calculations of explanation

lengths. Once a probabilistic model has been specified by the inference θ̂,
there is no further complication in principle to the construction and use of
an optimal code for the data. We now turn to the problem of coding the first
part of the message, which asserts θ̂. This problem is not so straightforward,
and various approaches to it will be the main concern of this work.

3.1.4 The Set of Possible Inferences

The value θ̂ asserted in the first part of the message specifies a particular
probabilistic model f(x|θ̂) for the data. In any one inference problem, the
range of models considered possible before the data is seen will usually be
quite restricted. In simple estimation problems, it will have been decided a

priori that the only models to be considered are those within a parameterized
family of fixed mathematical form. For instance, it may be accepted a priori

that the data will be modelled as a set of 100 values drawn independently
from a Normal distribution, so the set of possible models is just the family
of distributions spanned by some possible range of values for the mean and
standard deviation of the Normal. In this case, θ̂ need only specify the esti-
mated values of the mean and standard deviation: the sample size (100), the
assumption of independence, and the mathematical form of the Normal dis-
tribution are not in question, and are assumed already known to the receiver
of the explanation.

In an even simpler case, the set of models considered may be discrete,
with no free real-valued parameters. For instance, where the data is a coin-
toss sequence, knowledge of the circumstances may dictate that the only
models to be considered are (a) that the sequence is a Bernoulli sequence
with Pr(head) = 1/2, and (b) that it is a Bernoulli sequence with Pr(head)

= 1/3. In this case, θ̂ need only have two possible values, naming options (a)
and (b) respectively. The form of the probability distributions, and their two
Pr(head) values, are not in question and need not be included in the first
part of the message.
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More complex problems may involve a much more complex set of possi-
ble models for the data. For instance, it may be believed that the data, a
sequence of numeric values, are independently drawn from a probability dis-
tribution which is a mixture of a number of different Normal distributions,
but the number, means, standard deviations and relative abundances (or

mixing proportions) of these Normals are all unknown. Then θ̂ must specify
the number of component Normals inferred from the data, and estimates of
the parameter values of each component. The set of possible models is the
union of several sets. The set of one-component models is a two-dimensional
continuum spanned by the mean and standard deviation of the one Normal.
The set of two-component models is a continuum of five dimensions, the
means, the SDs and the relative abundance of the two Normals. The set of
three-component models is a continuum of eight dimensions, and so on.

Whatever its structure, we will denote the set of possible inferences (or
data models) by Θ, and use θ to mean a variable taking values in Θ, and also
to denote a specific value in Θ.

3.1.5 Coding the Inference θ̂

The first part of the message encodes an inference or estimate θ̂ which, to-
gether with assumptions already known to the receiver, specifies a probabilis-
tic model for the data. If we aim to produce the shortest possible explanation,
the code used to encode θ̂ must be chosen with some care. We have seen that,
to name one of a countable set of possibilities each having a known probability
of occurrence, techniques exist for constructing a code which gives minimal
expected message length, and that such codes have the property that the
message asserting some possibility has a length of minus the logarithm of the
probability of that possibility. However, in attempting to devise an optimum
code for the set Θ, two difficulties emerge.

Assume pro tem that Θ is discrete. The construction of an optimal code
for Θ requires that we know the probability Pr(θ) for every θ ∈ Θ. However, it
is not obvious what the meaning of Pr(θ) is, nor how the analyst might come
to know this probability if it indeed exists. We have mentioned an example,
in which the inference θ was (a form of) Newton’s second law of motion,
supposedly inferred from measurements of the accelerations of various par-
ticles. What sense can we apply to the notion of the “probability” of such
an inference? A modern physicist would consider the assertion false (prob-
ability approaching zero), as there is abundant evidence that the assertion
only approximates the truth when the particles’ speeds are small, and that at
high speeds, relativistic “laws” are more accurate. More reasonably, consider
the situation in Newton’s own time, when Newton or a follower might have
made the assertion in an explanation of experimental data. The sender of the
explanation likely considered the assertion to be very probably true (Prob
→1) but, as we have seen, the coding probabilities used in the construction of
a code must reflect the expectations of the receiver. What probability might
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have been assigned to the assertion of Newton’s second law by an intelligent
person prior to Newton, assuming that person to be already familiar with
the terms mass, force and acceleration, and with simple mathematics?

We might argue that such a receiver could conceive of an infinite number
of possible relations, e.g., F = m + a, F = ma1.03, F = ma if motion
upwards but F = 1

2ma if motion downwards, etc. Given an infinite number
of possible relations, why should the receiver assign a non-zero probability
to any particular relation? This argument would suggest that the receiver’s
“probability” would be zero for any arbitrary relation.

In fact the difficulties raised by such arguments are, in this context, only
apparent. We are concerned with assigning probabilities to possible infer-
ences only for the purpose of devising a code capable of efficiently encoding
the assertion of an inference. We may imagine this code to be negotiated
and agreed between the sender and the receiver of the explanation before the
data is acquired and an inference made from it. It is only necessary that we
define a code which, in the light of the rational expectations of the receiver
based on knowledge of the circumstances of the data collection and any other
relevant prior knowledge, cannot be materially improved. In other words, we
turn the question on its head and ask, not what is the probability of every
possible inference given the receiver’s prior knowledge, but rather what code
for inferences will the receiver accept as efficient? We may then, if we wish,
regard an inference coded with a string of length l binary digits as having a
“prior probability” of 2−l. In practice, the question of how inferences might
efficiently be encoded appears to raise fewer philosophical arguments and ob-
jections than the question of assigning probabilities to inferences. Our view
is that the questions are in fact equivalent, but we accept that treating the
“probability” of an assertion as being reflected in the code or language a
rational person would use in making the assertion is at odds with some inter-
pretations of “probability”. To avoid confusion with situations where prior
knowledge allows the assignment of prior probability having a conventional
frequentist interpretation, we will use the term “coding probability” for the
quantity 2−l, or more generally for the probabilities implied by adoption of
a particular code.

In the “Newton’s Law” example, for instance, we need only ask, what
kind of language or code might Newton’s peers have accepted as likely to
be efficient for specifying a universal relation among the quantities involved
in particle dynamics. It is not unreasonable to suppose that the language of
mathematics, in which the operations of addition, multiplication and expo-
nentiation are coded very concisely, reflected quite well the prior expectations
of Newton’s contemporaries as to what kinds of quantitative relations would
prove to be useful in explaining the physical world. That is, we may reason-
ably suppose the relations concisely represented in the mathematical notation
of the time to be those then regarded as having a high probability of appear-
ing in the assertion of inferred “natural laws”. Thus, even though the set of
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conceivable relations among the quantities of dynamics might have been infi-
nite, the language conventionally used in discussing the subject corresponded
to a probability distribution over the set placing most probability on relations
involving elementary mathematics.

Given a code accepted as efficient for naming one of a discrete set of pos-
sible inferences, the probability implied by the length of the string encoding
an inference will be termed the “coding probability” of that inference. Alter-
natively, in situations where we have more conventional statistical evidence,
e.g., a history of previous similar situations, for the probability of a particular
inference being true, we will regard that probability as the “prior probabil-
ity” of the inference, and adopt a code for the first part of the explanation
which encodes the inference with a string of length

− log (Prior Probability)

That is, we will use a coding probability equal to the prior probability. An
example of the latter situation is the diagnosis of a disease θ̂ given some
patient symptom data x. The relative frequency of occurrence of the disease
θ̂ in the population may be taken as the prior probability of the disease
θ̂, being in fact the probability that a randomly selected member of the
population would have the disease. (Here, “population” should be defined
as the population of persons presenting for diagnosis, rather than the entire
population.)

3.1.6 Prior Probability Density

Often the set of possible inferences considered will be or include a continuum
spanned by one or more “parameters”. An example is the set of all Nor-
mal distributions, which is a continuum with two parameters, the mean and
standard deviation. Since such a set is not discrete, it is not possible to asso-
ciate non-zero prior probabilities with its members. Equivalently, an arbitrary
member of the set can be specified only by a message giving its parameter
values to infinite precision, which in general would require an infinitely long
message.

Instead of a prior probability for each possible inference, we must consider
a Prior Probability density, which we will write as h(θ) (θ ∈ Θ). The meaning
of h(θ) is that, for any subset t of Θ, the prior probability that θ lies in t is

∫

θ∈t

h(θ) dθ

We will use the density h(θ) in a generalized sense to include problems
where the set Θ includes continua of different dimensionality. For instance,
the set of models for some data x comprising 100 scalar values might be that
the values are independently and randomly drawn from a population which
either has a single Normal distribution with mean µ0, SD σ0, or is the sum of
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two equally abundant subpopulations having different Normal distributions
with parameters respectively (µ1, σ1) and (µ2, σ2), the two possibilities being
equally likely.

Then Θ is the union of two continua, a two-dimensional continuum Θ
for the one-Normal case and a four-dimensional continuum Θ2 for the two-
Normal case. When θ ∈ Θ1, the element dθ = dµ0dσ0; when θ ∈ Θ2, dθ =
dµ1dσ1dµ2dσ2. Since the two cases are equally likely a priori, we would have

∫

θ∈Θ1

h(θ)dθ =

∫

θ∈Θ2

h(θ)dθ =
1

2

Although formally this generalized definition of h(θ) allows us to deal with
unions of continua in a single expression, in practice it is usually expedient
to deal with the various continua in a complex Θ separately.

For the next several sections it will be sufficient to consider Θ to be a single
continuum spanned by some vector parameter θ of fixed dimensionality. For
discrete sets Θ we regard the assignment of prior probabilities to members of
the set as equivalent to choosing an efficient code for the set. The equivalence
does not extend directly to a continuum set Θ because neither a non-zero
probability nor a finite code string can be determined for arbitrary points in
a continuum.

However, if we consider some partition of Θ into a countable set S of
regions {sj : j = 1, 2, . . .}, a probability pj =

∫

θ∈sj
h(θ) dθ can be associ-

ated with each region, and, given that the receiver knows the details of the
partition, an efficient code for naming regions will encode region sj with a
string of length − log pj . We may therefore regard as equivalent the choice of
a prior probability density h(θ) and the choice of a family of codes for naming
the regions in any agreed partition of Θ. A family of codes is involved since
different partitions require different codes.

In the usual practical case for Θ with one dimension and a scalar param-
eter θ, the equivalence is very simple.

Suppose we wish to encode values of θ as integer multiples of some small
unit ∆. (For instance, we may wish to encode values of a temperature to
the nearest 0.1◦C, i.e., as integer multiples of a tenth-degree unit.) Then,
if we consider θ to have a prior density h(θ), we should accept as an effi-
cient code one which encodes value θ with a string of length approximately
− log(h(θ)∆). In this context, a string encoding some value θ̂ would be in-

terpreted as asserting that θ lay in the interval θ̂ − ∆/2 ≤ θ < θ̂ + ∆/2.
A later chapter will discuss the questions involved in selection of a prior

distribution or density, especially when there is little prior knowledge about
the possible models. For the time being, we take the prior density as given
as part of the inference problem specification.



152 3. Strict Minimum Message Length (SMML)

3.1.7 Meaning of the Assertion

An explanation consists of two parts: a string encoding the assertion of a
model for the data, and a string encoding the data using a code which would
be optimal were the assertion true. Henceforth, we will often use “assertion”
to refer to the first string, and “detail” to refer to the second.

If it is agreed a priori to restrict the possible models to a continuum
Θ, then the detail will encode data x using a code based on some model
distribution f(x|θ̂), θ̂ ∈ Θ, and the assertion will encode the chosen model

or parameter θ̂.
Given that an assertion of finite length cannot name an arbitrary θ̂ ∈ Θ, it

is tempting to interpret an assertion which encodes θ̂ to some finite precision
∆ (e.g., to one decimal place if ∆ = 0.1) as meaning only that the data

conforms to some model in the range θ̂±∆/2. But if we interpret the assertion
in this way, as specifying an interval rather than a value for θ, we can no longer
suppose that the distribution f(x|θ̂) defines an optimal code for the data

values expected if the assertion is true. Given only that θ̂−∆/2 ≤ θ < θ̂+∆/2,

the probability of obtaining data value x is not f(x|θ̂) but rather

Pr(x|θ̂ ± ∆/2) =

θ̂+∆/2
∫

θ̂−∆/2

h(θ)f(x|θ)dθ

θ̂+∆/2
∫

θ̂−∆/2

h(θ)dθ

We will write the numerator as Pr(x, θ̂ ± ∆/2). It is the joint probability

that θ lies in θ̂ ± ∆/2 and the data x has value x. The denominator, Pr(θ̂ ±
∆/2) is the prior probability that θ ∈ θ̂ ± ∆/2. Using this interpretation

of the assertion θ̂, the length of the assertion is − log Pr(θ̂ ± ∆/2), and the

length of the detail is − log Pr(x|θ̂ ± ∆/2), giving a total message length

− log
(

Pr(θ̂ ± ∆/2) Pr(x|θ̂ ± ∆/2)
)

= − log Pr(x, θ̂ ± ∆/2)

= − log
∫ θ̂+∆/2

θ̂−∆/2
h(θ)f(x|θ)dθ

For fixed x and θ̂, this expression is a monotonically decreasing function
of ∆. Thus, our aim of obtaining a short encoding of the data would lead us
to choose ∆ as large as possible, i.e., to choose the interval θ̂ ± ∆/2 to cover
the entire set Θ. The “assertion” would then mean only “θ ∈ Θ”. It would
have zero length, and would tell us nothing not already known a priori. The
message length for data x would be

− log
∫

h(θ)f(x|θ)dθ
= − log r(x), say.
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There is nothing wrong with this mathematics. Indeed, a code for X
chosen with no objective other than to minimize the expected message length
would encode x with a string of the above length, since r(x) is just the
probability of obtaining data x from any model in Θ. The expected length
of such an optimally coded representation of the data is a quantity of some
interest, which we write as

I0 = −
∑

X

r(x) log r(x)

It gives a lower bound for the expected length of any code for X.
The above argument shows that, if we treat the assertion as specifying an

interval ∆ of models for the data, conciseness gives no basis for choosing ∆,
and no basis for inferring any non-trivial assertion about the source of the
data. We therefore insist that the assertion in an explanation be interpreted
as asserting a single model θ̂ for the data, and that the detail encode the data
using this single model f(x|θ̂), rather than some mixture of models centred

on θ̂.

3.2 The Strict Minimum Message Length Explanation
for Discrete Data

We are now in a position to define the construction of explanations of minimal
expected length, called SMML explanations, but first rehearse our assump-
tions.

An inference problem is specified by:
X a discrete set of possible data values.
x a variable taking values in X.
x the actual data value.
Θ a set of possible probabilistic models for the data.

We assume initially that Θ is a simple continuum of
some known dimension D.

θ a variable taking values in Θ.
The values in Θ are probabilistic models of known
mathematical form. Hence, Θ may be regarded as
the continuum of a D-component vector parameter θ.

f(x|θ) the function embodying the mathematical form of
the data models. For a model characterized by
parameter value θ, f(x|θ) gives the probability
distribution over X implied by that model.

h(θ) a prior probability density over Θ.

X, Θ and the functions h(θ), f(x|θ) are assumed to be known a priori

to both sender and receiver of the explanation message. Before the data is



154 3. Strict Minimum Message Length (SMML)

acquired, the sender and receiver agree on a code for X, using knowledge
only of X, Θ, h(θ) and f(x|θ). Messages in the code are required to be
“explanations”. That is, a message begins with an “assertion” naming an
inferred model θ̂ ∈ Θ, then continues with a “detail” encoding data x using
the model f(x|θ̂). We will seek that code giving least expected explanation
length.

Useful quantities derived from the problem specification include:

r(x) =

∫

h(θ)f(x|θ)dθ

the marginal prior probability of data x. We usually call it simply the
marginal probability. We sometimes write ri for r(xi).

I0(x) = − log r(x)

the length of a string encoding data x in the optimal, non-explanation, code
for X.

I0 = −
∑

x∈X

r(x) log r(x)

the expectation of I0(x).
The assertion, being a finite string, can name at most a countable subset

of Θ. Let Θ∗ = {θj : j = 1, 2, 3, . . .} be this subset. The code for Θ∗ may
encode the different possible assertions with strings of different length.

The choice of the code for Θ∗ is equivalent to adopting a coding proba-
bility distribution over Θ∗ : Pr(θj) = qj > 0 : j = 1, 2, 3, . . ., with

∑

j qj = 1.
(Summation over index j will be taken to be over the set {j : θj ∈ Θ∗}.)
That is, the length of the string encoding assertion θj is − log qj . We will
sometimes write q(θj) instead of qj .

The choice of Θ∗ and {qj} determine the code for the assertion part of
an explanation. The code for the detail is determined by the data model
f(x|θ̂). If some data value xi ∈ X is “explained” using assertion θ̂ = θj ,
the length of the detail is − log f(xi|θj), and the length of the explanation is
− log qj − log f(xi|θj). These codes are agreed between sender and receiver
before the actual data is known.

The agreed explanation coding scheme will in general allow a data value
xi ∈ X to be encoded in any of several ways, i.e., by making any of sev-
eral assertions. For data xi, and any θj ∈ Θ∗ for which f(xi|θj) > 0, an
explanation asserting θj will have finite length and will correctly encode xi.
Since the sender of the explanation is trying to make the explanation short,
we assume that the sender will, given data xi, choose to make the assertion
which minimizes the explanation length. This choice can be described by an
“estimator function” m(x) mapping X into Θ∗ so that

− log q(m(xi)) − log f(xi|m(xi)) ≤ − log qj − log f(xi|θj)

∀j : θj ∈Θ∗, θj �=m(xi)
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We will later show the inequality to be strict, so there is no ambiguity in this
definition of m().

Then the length of the explanation for data x is

I1(x) = − log q(m(x)) − log f(x|m(x))

and the expected length is

I1 = −
∑

x∈X

r(x) [log q(m(x)) + log f(x|m(x))]

We now consider how Θ∗ and the coding distribution {qj : θj ∈ Θ∗}
should be chosen to minimize I1, i.e., to allow the shortest possible explana-
tion on average.

Define tj = {x : m(x) = θj}. That is, tj is the set of data values any of
which results in assertion θj being used in the explanation. Then I1 can be
written as

I1 = −
∑

θj∈Θ∗

∑

xi∈tj

ri [log q(m(xi)) + log f(xi|m(xi))]

= −
∑

θj∈Θ∗

∑

xi∈tj

ri [log qj + log f(xi|θj)]

= −
∑

θj∈Θ∗

⎛

⎝

∑

xi∈tj

ri

⎞

⎠ log qj −
∑

θj∈Θ∗

∑

xi∈tj

ri log f(xi|θj)

The first term gives the expected length of the assertion, and the second
gives the expected length of the detail. The first term is minimized, subject
to
∑

j qj = 1, by choosing coding probabilities

qj =
∑

xi∈tj

ri

That is, the coding probability assigned to assertion or estimate θj is the
sum of the marginal probabilities of the data values resulting in estimate θj .
It is the probability that estimate θj will actually be used in the explanation.

The second term is the expected length of the detail encoding x using the
inferred model. If we consider the contribution to this expectation from the
set tj , i.e.,

−
∑

xi∈tj

ri log f(xi|θj)

this is the only contribution to I1 which depends on the value θj , and I1 is
minimized by choosing θj to minimize this expression. It will be recognized
that θj then maximizes the logarithmic average of the likelihood function
f(xi|θj) over xi ∈ tj .
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3.2.1 Discrete Hypothesis Sets

Even when the set Θ of possible models is discrete, each member having a
non-infinitesimal prior probability, it may well happen that the minimum
expected message length for some set X of possible data is achieved using a
set Θ∗ of assertable hypotheses which is a proper subset of Θ. This outcome is
likely if the information expected to be obtained from the data is insufficient
to distinguish all members of Θ with much reliability. By omitting some
hypotheses from Θ∗, the coding probability of the assertable hypotheses is
increased, leading to a shorter assertion, and the increase in detail length
resulting from a more limited choice of models for the data may on average
be a less important effect.

Note that in such a case, the “coding probability” qj used for some model
θj ∈ Θ∗ will not in general equal the discrete prior probability h(θj). In fact,
even if Θ∗ = Θ, in general qj �= h(θj) for some or all hypotheses.

3.2.2 Minimizing Relations for SMML

We have found above three necessary relations which must be satisfied by
SMML explanations.

Obeyed by the estimator, m():

R1: q(m(x))f(x|m(x)) ≥ qjf(x|θj) for all x and all θj �= m(x)

The estimator m() “explains” data x using the assertion of highest posterior
probability.

Obeyed by the code for assertions, represented by q():

R2: q(θj) =
∑

x:m(x)=θj

r(x) =
∑

x∈tj

r(x)

The code for assertions is optimal for the probability distribution over Θ∗

expressing the probability that an assertion will occur in an explanation.
Obeyed by the assertions or estimates {θj}:

R3: θj maximizes
∑

x∈tj

r(x) log f(x|θj)

These three relations are unfortunately insufficient fully to define the
SMML explanation code, as will appear in the first example below.

Using R2, we can write

I1 = −
∑

θj∈Θ∗

qj log qj −
∑

θj∈Θ∗

∑

xi∈tj

ri log f(xi|θj)

but in general there will be many choices of Θ∗ and m() which satisfy R1
and R3, yet do not minimize I1.
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For many non-optimal choices of Θ∗ and m(), it may be that no re-
assignment of a single data value x to a different estimate will decrease I1, so
R1 is satisfied; no adjustment of any one coding probability qj will decrease
I1, so R2 is satisfied; and no adjustment of any one estimate value θj will
decrease I1, so R3 is satisfied. Reduction of I1 may only be possible by a
simultaneous change to many assignments of data to estimates, and to many
coding probabilities and estimates.

3.2.3 Binomial Example

The data consist of the outcomes of 100 ordered trials, each giving success
(S) or failure (F). Thus, the data x can be written as a string of 100 S or
F symbols and X is the set of binary strings of length 100. It is believed
that the outcomes are independent of one another, and that the probability
of success in a trial is some fixed value θ, which is unknown. The family of
possible data models is therefore

f(x|θ) = θn(1 − θ)100−n

where n is the number of successes in the string x.
The unknown parameter θ is considered equally likely a priori to have

any value in Θ, the interval 0 to 1, so h(θ) = 1.
An explanation will begin with an assertion asserting some estimated

value θ̂ for θ. The detail, encoding x, can consist of 100 segments, each en-
coding one outcome. A success will be encoded by a segment of length − log θ̂,
a failure by a segment of length − log(1− θ̂). The length of the detail is there-
fore

−n log θ̂ − (100 − n) log(1 − θ̂) = − log f(x|θ̂)
The marginal probability of obtaining a particular data vector x with n suc-
cesses is

r(x) =

∫ 1

0

f(x|θ)h(θ)dθ

=

∫ 1

0

θn(1 − θ)100−ndθ

=
n!(100 − n)!

101!

=
1

101
(

100
n

)

The minimum expected non-explanation message length
I0 = −∑x r(x) log r(x) = 51.900 nits.

We now consider the construction of an explanation code for X. We
might first consider the naive choice defined by the estimator θ̂ = n/100.
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For this estimator, the set of possible estimates Θ∗ = {θj : θj = j/100, j =
0, 1, 2, . . . , 100} has 101 members. The set tj of data values x resulting in
estimate θj is just {x : j successes }, so

qj =
∑

x∈tj

r(x)

=

(

100

j

)

1

101
(

100
j

)

=
1

101
for all j

The explanation length for data x with n successes is:

I1(x) = − log qn − log f(x|θ̂)
= − log qn − log

[

(n/100)n(1 − n/100)100−n
]

and the expected length is

I1 =

100
∑

n=0

1

101

[

log 101 − log((
n

100
)n(1 − n

100
)100−n)

]

= 54.108 nits

This choice of Θ∗ and m() satisfies all relations R1–R3, but it does not
minimize I1. It is substantially less efficient than the non-explanation code:
I1−I0 = 2.208 nits. Consider for example the two sets of data strings with 20
and 21 success counts respectively. The explanation lengths of data strings
with 20 or 21 success counts are respectively:

n Assertion Detail Total
length

20 log 101 = 4.615 −20 log 0.20 − 80 log 0.80 = 50.040 54.655
21 log 101 = 4.615 −21 log 0.21 − 79 log 0.79 = 51.396 56.011

Suppose now we modify Θ∗, replacing θ20 = 0.20 and θ21 = 0.21 by a single
estimate θ20.5 = 0.205. We also modify the estimator so that m(x : n =
20) = m(x : n = 21) = θ20.5 That is, t20.5, the set of data strings resulting in
estimate θ20.5, includes all strings with 20 or 21 successes, and q20.5 = 2/101.
The rest of Θ∗ and m() is left unaltered, leaving the explanation lengths of
all other data strings unchanged. The explanation lengths for strings with
n = 20 or 21 are now:

n Assertion Detail Total
length

20 − log(2/101) = 3.922 −20 log 0.205 − 80 log 0.795 = 50.045 53.970
21 − log(2/101) = 3.922 −21 log 0.205 − 79 log 0.795 = 51.403 55.325
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The new choice of Θ∗ and m() gives reduced lengths for n = 20 or 21.
For each set of strings, the detail has become slightly longer, because the
new estimate θ20.5 is not exactly optimal for either set. However, the new
estimate has coding probability 2/101 rather than 1/101, since it will occur
as the assertion whenever the data shows either 20 or 21 successes. The length
of the assertion is thus reduced by log 2 for these data strings, outweighing
the increased detail length. Since the new code gives unchanged explanations
for other strings, on average it gives shorter explanations than the original
code, i.e., a lower value of I1, and hence is preferable.

The grouping together of data strings with different but similar success
counts into the same tj set can be carried further with advantage. If carried
too far, however, the estimates available in Θ∗ for use in assertions become
so few, and so widely separated in value, that no good detail code may be
found for some values of n. As an extreme case, consider the code with only
one member of Θ∗, θ50 = 0.50. As this estimate will perforce be used for
all data strings, it has coding probability 1.0, giving a zero assertion length.
However, the detail length, which will be the same for all strings, is

−n log 0.5 − (100 − n) log(1.0 − 0.5) = −100 log 0.5 = 69.3 nits

This value for I1 is much worse than for even the naive code (I1 = 54.108).
The optimum explanation code represents a compromise between a large

number of possible estimates (which gives shorter details but requires long
assertions) and a small number (which gives short assertions but longer de-
tails). The optimum for the simple Binomial SMML problem can be found by
an algorithm due to Graham Farr, which will be described in Section 3.2.8.
The solution is not unique, as discussed later in Section 3.2.5.

Table 3.1 shows one of the optimal solutions. There are 10 possible esti-
mates in Θ∗. The column headed tj shows the range of success counts in the

Table 3.1. Success count ranges and estimates.

j tj θj

1 0 0
2 1–6 0.035
3 7–17 0.12
4 18–32 0.25
5 33–49 0.41
6 50–66 0.58
7 67–81 0.74
8 82–93 0.875
9 94–99 0.965
10 100 1.0

strings resulting in estimate θj . These ranges may seem surprisingly wide. In
fact, they are not unreasonable, and do not lead to implausible explanations
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of the data. For instance, if the data results in the assertion “θ̂ = 0.41”, it
would not be surprising to find anything from 33 to 49 successes. The proba-
bility that 100 trials with θ = 0.41 would yield exactly 41 successes is 0.0809,
and the probabilities of 33 and 49 successes are 0.0218 and 0.0216 respec-
tively, which are over a quarter that of the most probable value 41. We will
see later that the spacing of the estimates {θj} in Θ reflects the expected
error in estimating θ.

The solution of Table 3.1 gives I1 = 52.068, which is very little more than
the length of the optimal non-explanation code: I1 − I0 = 0.168. Recall that
for the naive code with 101 possible estimates, I1 − I0 = 2.208. Moreover, for
increasing sample size, i.e., more trials, I1 − I0 for the naive code increases
roughly as 1

2 log N , whereas I1 −I0 for the SMML code approaches a limiting
value of 1

2 log(πe/6) = 0.176 . . . .

3.2.4 Significance of I1 − I0

For any data value x resulting in SMML estimate θ̂ = m(x), the explanation
length is

I1(x) = − log(q(θ̂)f(x|θ̂))
For the same data x, the length of its encoding in the optimal non-explanation
code is

I0(x) = − log r(x)

The difference

I1(x) − I0(x) = − log
q(θ̂)f(x|θ̂)

r(x)

is formally identical to the negative log of the Bayes posterior probabil-
ity of estimate θ̂ given data x. If the set of possible models were discrete,
with Θ = Θ∗ and q(θ) the prior probability of model θ, the correspondence
would be exact. However, when Θ is a continuum and Θ∗ a discrete subset of
Θ, q(θ ∈ Θ∗) is not the prior probability that “θ is true”: indeed no non-zero
probability could be attached to such a statement. Nonetheless, the difference
can play the role of a negative log posterior probability, and its expectation
(I1 − I0) is a good measure of the “believability” of the estimates.

I1 exceeds I0 because an explanation conveys not only the data but also
something not logically deducible from the data, viz., the estimate. The ex-
planation code permits the encoding of x using any model or estimate in Θ∗

for which f(x|θ) > 0. The explanation chosen for the data tells the receiver
the data, and also which of these possible estimates was chosen. It is therefore
necessarily longer than a message which encoded the data and nothing more.

In the binomial example, a string of outcomes with n = 8 say is optimally
explained using θ̂ = 0.12, with an explanation length 30.940 (vs. I0(x) =
30.56). The same string could also be encoded in the same agreed code using

θ̂ = 0.035 with a length of 32.766, or using θ̂ = 0.25 with a length 39.46,
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or even using θ̂ = 0.965 for a length 311.53. Any of these “explanations” of
the string conveys the choice of estimate as well as the string itself, and the
choice of estimate is not dictated by the code.

3.2.5 Non-Uniqueness of Θ
∗

The optimum choice of Θ∗ is not necessarily unique. For instance, in the
binomial example, the inference problem is exactly symmetric with respect
to success and failure. However, the Θ∗ shown in Table 3.1 is not symmetric.
Indeed, no partition of the 101 possible success counts into ten sets t1, . . . , t10
could be symmetric. Thus, the “mirror image” of the SMML estimator shown
in this table gives a different but equally efficient explanation code. However,
it is easily shown that for any given optimal choice of Θ∗, the estimator
function is unique. Equality in relation R1, which would allow an alternative
optimal m(), cannot occur.

Different optimal choices of Θ∗ will, of course, give different estimator
functions. The non-uniqueness of SMML estimators has little practical con-
sequence. The different optimal estimators will give different estimates for
some data values, but the different estimates are always plausible.

3.2.6 Sufficient Statistics

Usually, the data value x is a vector comprising many component numbers
and/or discrete values. For some families of model distribution f(x|θ) it is
possible to find a function s(x) such that the model distribution function
f(x|θ) can be factored into the form

f(x|θ) = g(s(x)|θ)v(x)

where g(s|θ) =
∑

x:s(x)=s f(x|θ) is the probability of obtaining data yielding

function value s, and where the function v(x) does not depend on θ. Such a
function s() is called a “sufficient statistic”, and its value for some x contains
all the information about θ which can be recovered from x. In particular, if
θ1 and θ2 are different estimates which might be asserted,

f(x|θ1)

f(x|θ2)
=

g(s(x)|θ1)

g(s(x)|θ2)

The data x itself is of course always a sufficient statistic, but for some model
families there exists a sufficient statistic s(x) having fewer components than
x. The value s(x) is then a more compact representation of all the information
in x relevant to θ.

For any choice of Θ∗ and q(θ), where θ ∈ Θ∗, the estimator m() is deter-
mined by relation R1, which may be written as

q(m(x))f(x|m(x))

q(θ)f(x|θ) > 1
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for all θ ∈ Θ∗, θ �= m(x).
If s = s(x) is a sufficient statistic, relation R1 becomes

R1:
q(m(x))g(s|m(x))

q(θ)g(s|θ) > 1

whence it follows that m(x) depends on x only via the sufficient statistic s.
Further, since all data values x having the same value s for s(x) clearly result
in the same estimate, we can write the estimator as

m(x) = ms(s(x))

or simply ms(s), and we can define for all θ ∈ Θ∗

ts(θ) = {s : ms(s) = θ}

and
rs(s) =

∑

x:s(x)=s

r(x)

Clearly, the coding probability q(θ) is the same whether we work with the
raw data x or the sufficient statistic s:

q(θ) =
∑

s:ms(s)=θ

rs(s) =
∑

x:m(x)=θ

r(x)

Defining S as the set of possible values of s,

S = {s : s = s(x), x ∈ X}

the entire estimation problem, and its SMML solution, can be expressed in
terms of Θ , h(θ), S and g(s|θ) (s ∈ S, θ ∈ Θ). That is, we need not consider
the set of all possible data values at all, only the set of all possible sufficient
statistic values. We then choose Θ∗, ms(s) and q(θ) (θ ∈ Θ∗) to minimize

I1s = −
∑

s∈S

rs(s) [log q(ms(s)) + log g(s|ms(s))]

Of course, I1s �= I1. I1s is the expected length of a message encoding s only,
not x. In fact

I1 = I1s −
∑

x∈X

r(x) log v(x)

where the second term is the expected length of a message segment encoding
x for a receiver who already knows s(x). Since v(x) does not depend on θ,
this length does not depend on the choice of Θ∗ or the estimator and so can
be ignored in constructing the SMML estimator.

In message-coding terms, the use of a sufficient statistic s suggests that an
explanation of x can be encoded in three parts. The assertion of the estimate
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θ̂ remains as previously discussed. The detail now comprises a part encoding
s, of length − log g(s|θ̂), and a part encoding x using a code which assumes

knowledge of s(x), of length − log v(x). This third part is independent of θ̂,
and can be ignored in choosing the assertion. However, its contribution to
I1(x) cannot be ignored if we wish for instance to compare the length of an
explanation of x assuming the model family f() with explanations assuming
some other model family. A function s(x) which is a sufficient statistic for
the family f() may not be a sufficient statistic if some other model family is
assumed.

A sufficient statistic is particularly useful if it has no more components
than θ. Such a statistic can be called a “minimal sufficient statistic”. In
some of the literature, the word “sufficient” seems to be reserved for minimal
sufficient statistics. When a minimal sufficient statistic exists, it is a function
of the data no more complex than the unknown parameter, but gives all the
information about the parameter which can be extracted from the data.

3.2.7 Binomial Example Using a Sufficient Statistic

The binomial example, where the data consist of an ordered list of outcomes
from 100 trials, each independently having Pr(success) = θ, can be reframed
to use a sufficient statistic. If x denotes the binary string representing the
outcomes,

f(x|θ) = θn(1 − θ)100−n

where n is the number of successes in the string x. The success count n is
clearly a (minimal) sufficient statistic, since we can write

f(x|θ) =

[(

100

n

)

θn(1 − θ)100−n

]

·
[

1
(

100
n

)

]

The first factor is g(n|θ), the probability of obtaining a success count n re-
gardless of the order of the n successes and (100−n) failures, and the second
factor v(x) is independent of θ. (In this simple problem, v(x) happens to
depend on x only via n, but this is not in general the case for other models.)

The set S is just the set of integers {0, . . . , 100},

rs(n) =
∑

x:n successes

r(x) =
1

101

and

I1s = −
100
∑

n=0

1

101
[log q(ms(n)) + log g(n|ms(n))]

Minimization of I1s by choice of Θ∗ and ms() gives exactly the SMML esti-
mator of Table 3.1, with I1s = 4.783 nits.



164 3. Strict Minimum Message Length (SMML)

A form of message encoding the full outcome sequence x can easily be
developed using the sufficient statistic. The message would have three parts:
an assertion of an estimate θ̂, a statement of the success count n, and an
encoding of x assuming knowledge of n. The first two parts have a combined
expected length of I1s. The third part, encoding x using knowledge of n, can
be done as follows:

Define nk as the number of successes in the first k outcomes, with n0 = 0
and n100 = n. Then encode each outcome in turn. Encode a success on trial k
with a string of length − log((n − nk−1)/(101 − k)) and a failure with length
− log(1 − (n − nk−1)/(101 − k)). It is easily seen that the length of this part,

for a string with n successes, is log

(

100

n

)

, i.e., − log v(x). Also the length of

the second and third parts together exactly equals the length of the original
detail, which was encoded without use of the sufficient statistic.

3.2.8 An Exact Algorithm for the Binomial Problem

The binomial problem is one of the very few for which an exact, compu-
tationally feasible algorithm is known for finding an optimal SMML code.
The following algorithm is due to Graham Farr [15]. Suppose N trials are
conducted, yielding n successes. We take the datum to be just the sufficient
statistic n, as in Section 3.2.7. Assume some prior is given on the unknown
success probability, and that this leads to the marginal success count proba-
bilities {r(n) : n = 0, . . . , N} Assume that the optimum code results from a
partition of the success counts into a number of groups, each group contain-
ing a set of consecutive values of n. Let such a group be denoted by [k, m],
meaning the group

{n : k ≤ n ≤ m} (0 ≤ k ≤ m ≤ N)

For this group, the coding probability is given by

qk,m =

m
∑

n=k

r(n)

The SMML estimate is

θk,m =
1

Nqk,m

m
∑

n=k

n r(n)

and the contribution of the group to I1 is

G(k, m) = −qk,m log(qk,m) −
m
∑

n=k

r(n) log

(

N

n

)

−Nqk,m [θk,m log(θk,m) + (1 − θk,m) log(1 − θk,m) ]
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The expected message length I1 is then the sum over all groups in the parti-
tion of G(, ). The algorithm is based on the observation that, if the partition
has a group starting at n = m, then the contribution to I1 of all success
counts in the range m ≤ n ≤ N , and hence the optimum sub-partition of this
range, is independent of how success counts less than m are partitioned. Let
Q[m] denote an optimum partition of the range m ≤ n ≤ N , let T (m) denote
its cost, i.e., the contribution to I1 of counts in this range, and let Q[N ] be
the singleton group [N, N ]. Then it follows from the above observation that
for all m < N , Q[m] consists of a group [m, k] followed by the optimum par-
tition Q[k +1] for some k in the range m ≤ k ≤ N , where we define Q[N +1]
as void, T (N + 1) = 0, and its cost T (m) = G(m, k) + T (k + 1).

Hence, the successive partitions Q[m] can be determined in order of de-
creasing m. Each determination requires only a linear search for the value km

which minimizes T (m). In fact it can be shown that for all m, km ≤ km−1,
which limits the number of values which need to be tried. As this number is
of order N

1

2 , and as successive values of G(m, k) can be found in constant

time, the overall complexity of the algorithm is of order N
3

2 .
The final SMML solution is given by Q[0], and I1 by T (0). Q[0] is easily

reconstructed from the values of km. Unfortunately, the algorithm does not
generalize readily to trinomial and higher-order distributions.

3.2.9 A Solution for the Trinomial Distribution

The Farr algorithm used to find the SMML estimator for Binomial distribu-
tions is applicable to any problem where there is a scalar sufficient statistic
with a finite range. There is as yet no known feasible algorithm for the exact
SMML solution for problems outside this very limited family. The trinomial
distribution, where the data is a finite sequence of N symbols which can take
three rather than two possible values, say, 1, 2 and 3, and the log likelihood
is

LL =

3
∑

i=1

ni log pi

where the sequence contains ni occurrences of symbol i, and
∑

i pi = 1 has
no known exact SMML solution.

Figure 3.1 shows an approximate solution for N = 60 and a Uniform
prior over the two-dimensional space of probabilities. The sufficient statistic
(n1, n2, n3) is represented by a point in a triangular grid, with the apex point
representing (60, 0, 0), the left bottom corner (0, 60, 0) and the central point
(20, 20, 20). The figure shows a partition of the sufficient-statistic set found
by attempting to minimize I1 by simulated annealing. Data points in the
same data group are marked with the same mark and would result in the
same estimate (which suitably scaled would correspond to the centroid of
its group). There are 37 groups, so Θ∗ comprises 37 possible estimates. The
groups are generally hexagonal near the centre of the diagram, but become
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distorted near the edges. The partition is no doubt not an optimal solution,
but must be quite close, as it leads to I1 −I0 ≈ 0.294 nit, rather less than the
large-sample “lower bound” shown for two-parameter estimators in Table 3.4.
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Fig. 3.1. Partition for the Trinomial Distribution, N = 60.

3.3 The SMML Explanation for Continuous Data

We have noted, perhaps pedantically, that all data available for analysis are
necessarily discrete. A model of a real-valued quantity conventionally treats
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the quantity as continuously variable, and uses a probability density rather
than a discrete probability distribution. In such a case, we think of the discrete
value appearing in actual data as the result of a rounding-off or quantization
of the underlying real-valued model quantity. For instance, when we measure
a temperature, we usually conceive of it as being able to take values in a
continuous range. We will treat a temperature datum “297.2◦K, measured
to the nearest 0.1◦K as meaning that the temperature lies somewhere in
the interval 297.15◦K to 297.25◦K. If our probabilistic data model implies
a probability density ρ(T ), then we consider the (discrete) probability of
obtaining the datum 297.2 to be

∫ 297.25

297.15

ρ(T ) dT

Provided the rounding-off quantum ∆ (in this case 0.1◦K) is small compared
with the width of any peak or other feature of the density ρ(T ), we may
adequately approximate the above integral by ρ(297.2)∆. More generally,
provided the rounding quantum is independent of the measured value, the
discrete probability for any measured value T can be taken as ρ(T )∆.

Assuming a small, constant quantum ∆, the SMML approach can be
recast to use, instead of a discrete model distribution f(x|θ) over a discrete
set X of possible data values, a model probability density over a continuum
of possible data values. We will re-use the symbolic forms f(x|θ) for the
density of a real-valued (possibly vector) data variable x over a continuum
X. Similarly, we redefine

r(x) =

∫

Θ

h(θ)f(x|θ) dθ

as the marginal probability density of x. As before, we seek an estimator
m(x), x ∈ X, mapping data values into Θ∗, a discrete subset of Θ. The set of
possible estimates Θ∗ must remain discrete and countable, so that the cho-
sen estimate can be encoded in an assertion of finite length. Thus, we still
associate a non-zero coding probability q(θ) with each possible estimate. The
length of the explanation of some rounded-off data value x is then approxi-
mately

− log q(m(x)) − log [f(x|m(x))∆]

= − log q(m(x)) − log f(x|m(x)) − log ∆

If the marginal probability of the rounded-off data value x is approximated
by r(x)∆, the expected message length becomes

−
∑

rounded-off
data values

∆r(x) [log q(m(x)) + log f(x|m(x)) + log ∆]
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For sufficiently small ∆, this sum over the discrete set of actual possible
rounded-off data values can be approximated by an integral over the contin-
uum of unrounded values:

I1 = −
∫

X

r(x) [log q(m(x)) + log f(x|m(x)) + log ∆] dx

= − log ∆ −
∫

X

r(x) [log q(m(x)) + log f(x|m(x))] dx

Similarly, the length of the optimum non-explanation code for the set of
rounded values can be approximated by

I0 = − log ∆ −
∫

X

r(x) log r(x) dx

and the difference by

I1 − I0 = −
∫

X

r(x) log
q(m(x))f(x|m(x))

r(x)
dx

The difference (I1 − I0) does not depend on the rounding-off quantum ∆,
so if ∆ is small enough to make the above approximations valid, its actual
value can be ignored and the SMML estimator constructed by minimizing
(I1 − I0). In dealing with problems involving continuous data, we will often
omit mention of ∆ altogether, and write simply

I0 = −
∫

X

r(x) log r(x) dx

I1 = −
∫

X

r(x) log(q(m(x))f(x|m(x))) dx

These expressions no longer give expected message lengths, but as we will
usually be concerned only with the differences in explanation lengths using
different models or estimates, no confusion should arise.

Note that the difference (I1 − I0) for continuous data retains its formal
correspondence with the expected negative log of a posterior probability.

For small ∆, the set tj of rounded-off values resulting in some estimate
θj ∈ Θ∗ may be regarded rather as a region of the continuum X, and the
sum

∑

x:m(x)=θj

r(x) =
∑

x∈tj

r(x)

in the minimizing relation R2 replaced by an integral:

R2: q(θj) =

∫

x∈tj

r(x) dx

The other minimizing relations become



3.3 The SMML Explanation for Continuous Data 169

R1: q(m(x))f(x|m(x)) > qjf(x|θj) for θj �= m(x)

R3: θj maximizes

∫

x∈tj

r(x) log f(x|θj) dx

where now f(x|θ) is a probability density on X.

3.3.1 Mean of a Normal

The data x are an ordered set of N real scalar values x = (y1, y2, . . . , yn, . . . , yN )
which are believed to be independently drawn from a Normal density of un-
known mean θ and known standard deviation σ, so

f(x|θ) =

N
∏

n=1

1√
2πσ

e−(yn−θ)2/2σ2

− log f(x|θ) =
N

2
log(2π) + N log σ +

1

2σ2

∑

n

(yn − θ)2

Define the sample mean ȳ = 1
N

∑

n yn. Then

∑

n

(yn − θ)2 = N(ȳ − θ)2 +
∑

n

(yn − ȳ)2

Hence,

− log f(x|θ) =
N

2
log(2π) + N log σ +

N(ȳ − θ)2 +
∑

n(yn − ȳ)2

2σ2

and f(x|θ) can be written as

[

1√
2π

√
N

σ
e−(ȳ−θ)2N/2σ2

]

·
[

(

1√
2πσ

)N−1
1√
N

e−
∑

(yn−ȳ)2/2σ2

]

The first factor is the density of ȳ given θ, g(ȳ|θ), and is a Normal density with
mean θ and standard deviation σ/

√
N . The second factor does not depend

on θ, so ȳ is a (minimal) sufficient statistic.
Purely to keep this example simple, we assume h(θ) has a uniform density

1/L over some range L ≫ σ/
√

N . Then the marginal density rs(ȳ) is also
uniformly 1/L except for smooth “shoulders” near the ends of the range,
which we shall ignore. The uniformity of these assumed forms over the range
L implies that, except near the ends of the range, Θ∗ will be a uniformly
spaced set of values within the range. Let the separation between adjacent
members θ̂j and θ̂j+1 of Θ∗ be w, and ignore possible variation of w near the

ends of the range. Then the set ts(θ̂) of ȳ values resulting in estimate θ̂ ∈ Θ∗

is just
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ts(θ̂) = {ȳ : θ̂ − w/2 < ȳ < θ̂ + w/2}
and q(θ̂) = w/L.

This choice of Θ∗ clearly satisfies the relations R1–R3.
Since all members of Θ∗ and all sets ts(θ̂) are similar, the expected ex-

planation length I1s is just the average length for ȳ values within one ts set.
Consider the set ts(θ̂) for some θ̂ ∈ Θ∗. Then

I1s = −
∫ θ̂+w/2

θ̂−w/2

1

w

[

log(w/L) + log

{

1√
2π

√
N

σ
e−N(ȳ−θ̂)2/2σ2

}]

dȳ

= − log
w

L
− log

(

1√
2π

√
N

σ

)

+
1

w

∫ θ̂+w/2

θ̂−w/2

[

N(ȳ − θ̂)2/2σ2
]

dȳ

= − log
w

L
+

1

2
log(2πσ2/N) +

Nw2

24σ2

Choosing w to minimize I1s gives −1/w + Nw/(12σ2) = 0, w2 = 12σ2/N ,

I1s = log L +
1

2
log

2π

12
+

1

2
= log L +

1

2
log(πe/6)

The optimum non-explanation code for ȳ gives

I0s = log L

since rs(ȳ) is uniformly 1/L.
Hence, I1s − I0s = I1 − I0 = 1

2 log(πe/6) = 0.176 . . . nit = 0.254 . . . bit.
This example was chosen for its extreme simplicity, but it shows some

general features which appear in many SMML estimators.
First, the spacing w between adjacent estimates in Θ∗ is perhaps surpris-

ingly large, and the ts(θ̂) sets correspondingly wide. The estimate θ̂ = ms(ȳ)
may differ from the sample mean by as much as w/2 = 1.73σ/

√
N . The exact

difference (θ̂ − ȳ) will depend on the exact location of the possible estimates
in Θ, which will be dictated in this example by the fall-off of rs(ȳ) near the
ends of the range. For most values of ȳ, far from the ends of the range, it
is more instructive to consider the average value of (θ̂ − ȳ)2. The difference

(θ̂−ȳ) will be equally likely to take any value in ±w/2, so the average squared
difference is w2/12. But if the N data values were drawn from a Normal with
mean θ, the expected squared difference between θ and the sample mean ȳ
is σ2/N . The SMML code chooses w2/12 = σ2/N . Thus, as measured by
average squared difference, the SMML estimate will differ from the sample
mean no more than will the true mean θ. This is an example of a general
property of SMML estimators, which will be further discussed later: on aver-
age, the relation between the SMML estimate θ̂ and the data closely mimics
the relation between true parameter θ and the data.

Second, the spacing w does not depend much on the value of the prior
probability density: in this simple case, not at all. The spacing is determined
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by a trade-off between two terms in I1 (or I1s). The term (− log w) favours
large w, because large w results in a short assertion. The term (Nw2/24σ2)
favours small w, and arises from the increase in the average detail length as
a large spacing forces some data to be encoded with an estimate which does
not fit the data well. The factor (N/σ2) arising in this simple problem shows

how rapidly the detail length − log g(ȳ|θ̂) increases as θ̂ is displaced from its
minimizing value ȳ.

3.3.2 A Boundary Rule for Growing Data Groups

The argument used in the preceding section to find the optimum size for a
group tj of data (or sufficient statistic) values mapping into a single estimate

θ̂j can be generalized. The resulting construction does not in general give a
strictly optimal explanation code, but usually comes close.

Let θ̂ be some estimate in Θ∗. We can attempt to form its associated data
group t = {x : m(x) = θ̂} so as to minimize the average value in the group
of I1(x) − I0(x), i.e., to maximize

A =
1

q

∑

x∈t

r(x) log[qf(x|θ̂)] − 1

q

∑

x∈t

r(x) log r(x)

=
1

q

∑

x∈t

r(x) log[qf(x|θ̂)/r(x)]

where q =
∑

x∈t r(x).

A = log q +

(

1

q

)

∑

x∈t

r(x) log[f(x|θ̂)/r(x)]

Consider the effect on A of adding to t some data value y not at present in
t. We consider θ̂ to be fixed.

The new average is

A1 = log q1 +

(

1

q1

)

∑

x∈t1

r(x) log[f(x|θ̂)/r(x)]

where t1 = t ∪ {y},
q1 = q + r(y)

Writing r(y) = δ, and assuming δ ≪ q, the difference A1 − A is given to first
order in δ by

A1 − A ≈ δ

q
− δ

q2

∑

x∈t

r(x) log[f(x|θ̂)/r(x)] +
δ

q
log[f(y|θ̂)/r(y)]

≈ δ

q

{

1 − 1

q

∑

x∈t

r(x) log[f(x|θ̂)/r(x)] + log[f(y|θ̂)/r(y)]

}



172 3. Strict Minimum Message Length (SMML)

So, A1 > A if

log[f(y|θ̂)/r(y)] >
1

q

∑

x∈t

r(x) log[f(x|θ̂)/r(x)] − 1 > A − log q − 1

i.e., if log[qf(y|θ̂)/r(y)] > A − 1 .
Recalling the definition of A, this condition can also be written as

I1(y) − I0(y) < Avx∈t[I1(x) − I0(x)] + 1

Thus, it improves the average of [I1(x)− I0(x)] to add to the group any data
value y for which [I1(y) − I0(y)] exceeds the group average by less than 1.

We will term this the “boundary rule”.
The binomial explanation code of Table 3.1 was exactly reproduced by

growing a group, starting with n = 0, until a further addition of an n value
would not reduce the average I1(n)−I0(n) in the group. As the added values
of n had r(n) = 1/101, which is not small compared to the q value of the
group, each new average A1 was computed exactly, with a revised estimate
value, rather than using the boundary rule.

In general, the boundary rule works well for the binomial problem. The
exact solution, as given by Farr’s algorithm (Section 3.2.8), is found in most
cases, and when it is not, the boundary rule gives a solution with I1 exceeding
the optimum by only 0.01 or less.

When the data (or sufficient statistic) set is continuous rather than dis-
crete, the marginal probability of an added value is infinitesimal, so the
boundary rule may be used. It is easy to show that, for the Normal prob-
lem of Section 3.3.1, the test is exactly satisfied by the code derived in that
section. All sufficient statistic sets have the form

θ̂ − w/2 ≤ ȳ < θ̂ + w/2

where w2 = 12σ2/N .

For some θ̂ ∈ Θ∗, the average value of I1 − I0 in the set t(θ̂) was shown
to be

A =
1

2
log(πe/6)

For any value ȳ in the set, we have

I1s(ȳ) = − log q(θ̂) − log g(ȳ|θ̂)

= − log
w

L
+

1

2
log(2πσ2/N) + N(ȳ − θ̂)2/2σ2

and I0s(ȳ) = log L .
Substituting w2 = 12σ2/N gives

I1s(ȳ) − I0s(ȳ) =
1

2
log(πe/6) − 1

2
+ N(ȳ − θ̂)2/2σ2

= A − 1

2
+ N(ȳ − θ̂)2/2σ2
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For ȳ a data value at the upper or lower boundary of a set, |ȳ − θ̂| = w/2,
hence

I1s(ȳ) − I0s(ȳ) = A − 1

2
+ N(w2/4)/2σ2

= A − 1

2
+ N(12σ2/4N)/2σ2

= A + 1

Thus, the boundary rule is exactly satisfied by the SMML code.
This boundary rule is only a rule of thumb, and in general will not lead

to a strictly optimal explanation code. If the data groups are grown one after
another, choosing the latest group to minimize Av(I1(x) − I0(x)) within it is
a rule which has no regard to the consequences for groups not yet grown, and
so cannot be expected to achieve a global minimization of I1 − I0. However,
the rule of thumb gives some insight into the size of data group to be expected
in an optimal code. It can also be used to construct codes which, while not
optimal, are often very close.

3.3.3 Estimation of Normal Mean with Normal Prior

The data are N independent values drawn from a Normal with unknown
mean θ and known standard deviation σ. The prior density h(θ) is also of
Normal form, with mean zero and S.D. α.

f(x|θ) =

N
∏

n=1

1√
2πσ

e−(yn−θ)2/2σ2

h(θ) =
1√
2πα

e−θ2/2α2

As before, the sample mean ȳ = 1
N

∑

yn is a sufficient statistic, so we deal
with it alone, replacing f(x|θ) by

g(ȳ|θ) =
1

√

2πσ2/N
e−N(ȳ−θ)2/2σ2

For simplicity of notation, we will treat ȳ as the data, and write rs(ȳ) as r(ȳ),

ts(θ̂) as

t(θ̂) = {ȳ : m(ȳ) = θ̂}
and so on.

Without loss of generality, we scale the problem so that σ2/N = 1.
The marginal density of data is

r(ȳ) =
1√
2πβ

e−ȳ2/2β2
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where β2 = α2 + 1
Consider some estimate θ̂ ∈ Θ∗ and its associated data group t(θ̂), which

will be an interval a < ȳ < b.
Define

q =

∫ b

a

r(ȳ) dȳ

s2 =

∫ b

a

ȳ2r(ȳ) dȳ

Then, within the group t(θ̂)

Av(ȳ − θ̂)2 = s2/q − θ̂2

Av(ȳ2) = s2/q

so

Av(I1(ȳ)) = − log q +
1

2
log(2π) + (s2/q − θ̂2)/2

Av(I0(ȳ)) =
1

2
log(2πβ2) + (s2/q)/2β2

Av(I1(ȳ) − I0(ȳ)) = (s2/2q)(1 − 1

β2
) − log β − log q − θ̂2/2

At the lower end of the data group, ȳ = a, and

I1(a) = (θ̂ − a)2/2 +
1

2
log(2π) − log q

I0(a) = a2/2β2 +
1

2
log(2πβ2)

I1(a) − I0(a) = (θ̂ − a)2/2 − a2/2β2 − log β − log q

Applying the “boundary rule” rule of thumb from Section 3.3.2 at a gives
a “boundary condition” BCa:

I1(a) − I0(a) = Av(I1(ȳ) − I0(ȳ)) + 1

BCa : (θ̂ − a)2/2 − a2/2β2 = (s2/2q)(1 − 1/β2) − θ̂2/2 + 1

Similarly applying the rule at the upper boundary ȳ = b:

BCb : (b − θ̂)2/2 − b2/2β2 = (s2/2q)(1 − 1/β2) − θ̂2/2 + 1

We also have the minimizing relation R3, which must be obeyed by any
optimal code:

θ̂ maximizes

∫ b

a

r(ȳ) log g(ȳ|θ̂) dȳ
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which in this case reduces to θ̂ = Av(ȳ):

R3: θ̂ =

∫ b

a

ȳr(ȳ) dȳ/q

Whereas, in the similar example with h(θ) constant, the optimum code
satisfied the group boundary conditions as well as R1–R3, we now find that
the three equations BCa, BCb and R3 are incompatible, except for a single
data group with θ̂ = 0, a = −b. If we wish to use the boundary condition
rule of thumb to construct a good, but not exactly SMML estimator for this
problem, we can use any two of the three equations for growing groups, but
these groups will not in general satisfy the third equation. We show below the
estimators constructed by group growth using two of the possible choices of
equations. In both cases, the construction began with the central data group
(j = 0) satisfying all three equations:

θ̂0 = 0; a0 = −b0;

b2
0 = s2

0/q0 + 2β2/(β2 − 1) (from BCb)

= s2
0/q0 + 2β2/α2

The next group, j = 1, has lower limit a1 = b0 fixed, and its estimate
value θ̂ and upper limit b1 obtained by simultaneous solution of either BCb
and R3, or BCa and BCb. Then the group j = 2 is grown and so on. The
complete estimator is symmetric about ȳ = 0. For the calculations leading
to the estimators shown below, the marginal distribution r(ȳ) was truncated
beyond ±30β, i.e., thirty standard deviations.

The third pair of equations, BCa and R3, leads to the growth of groups
which are well-sized near the middle of the marginal distribution of x, but
which become over-large, eventually unbounded, for |ȳ| > 2β. This failure is
not surprising, as growing a new group from lower bound a to satisfy BCa
and R3 is seeking to choose an upper bound b so that the lower boundary a
(which is fixed) should not be moved!

The results shown are for σ2/N = 1, α = 2. That is, the width of the
prior density peak is only twice the width of the distribution of ȳ about the
true mean θ. The prior density is thus far from constant, and changes by
large factors over the width of a single data group.

As well as showing the estimators grown by the rule of thumb, Table 3.2
also shows an estimator very close to the exact SMML solution. It was formed
by iterative relaxation of one of the rule-of-thumb estimators. Holding the
group boundaries {bj} constant, the estimates {θ̂j} and their prior proba-
bilities {qj} were calculated using minimizing relations R3 and R2. Then,
holding the {θj} and {qj} constant, the boundaries were recomputed using
relation R1. The process was repeated until convergence.
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Table 3.2. Estimators for Normal mean with N (0, 4) prior grown by boundary
rule, and exact SMML.

Using R3,BCb Using BCa,BCb Exact SMML

j θ̂j bj θ̂j bj θ̂j bj

0 0 1.893 0 1.893 0 1.920
1 3.056 5.797 3.074 5.792 3.091 5.980
2 6.499 10.482 6.503 10.465 6.667 10.884
3 10.923 16.838 10.909 16.808 11.311 17.544
4 17.125 25.979 17.097 25.934 17.821 27.113
5 26.169 39.444 26.125 39.377 27.295 41.196
6 39.570 59.466 39.503 59.381 41.317 62.145
7 59.550 67.082 50.585 67.082 62.225 67.082

I1 − I0 = 0.17559 I1 − I0 = 0.17567 I1 − I0 = 0.17531

Table 3.3. Estimate separations and data group sizes for boundary rule and
SMML.

Using BCa,BCb Exact SMML

j θ̂j − θ̂j−1 bj − aj θ̂j − θ̂j−1 bj − aj

0 3.074 3.787 3.092 3.841
1 3.074 3.899 3.092 4.059
2 3.429 4.673 3.576 4.904
3 4.407 6.344 4.644 6.660
4 6.188 9.126 6.510 9.569
5 9.027 13.443 9.474 14.083
6 13.379 20.004 14.022 20.948

All estimates shown have the same highest boundary, b7 = 67.082. This is
fixed by the truncation of the marginal density r(ȳ) to 30 standard deviations,
and so the j = 7 entries are not correct. However, the effect of this error on
estimates and boundaries for j < 7 is minute. Changing the truncation of
r(ȳ) from 30 to 32 standard deviations changes b6 by less than 0.001. The
most obvious feature of Table 3.2 is that the “boundary rule” constructions
give expected message lengths exceeding the optimum by only a negligible
0.0004 nit or less.

While Table 3.2 shows that, even with the strongly non-uniform prior of
this example, the boundary rule construction gives an estimator close to the
SMML estimator, we are more directly interested in its ability to approximate
the optimum sizes of data groups. Table 3.3 compares the widths (bj −aj) of

the data groups, and the spacing (θ̂j − θ̂j−1) between members of Θ∗, for the
(BCa, BCb) approximation and the SMML estimator. It will be seen that
the boundary rule gives data group sizes and estimate spacing quite close to
those of the SMML estimator, and varying with ȳ in much the same way.

Table 3.3 shows how the very non-uniform prior affects the SMML code
as compared to the case of a flat prior. In the latter, the width of each data
group, and the spacing between adjacent members of Θ∗, are constant with
value

√
12 ≈ 3.464. For the tight Normal prior, the estimates in Θ∗ are a
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little closer together near the peak of the prior, with spacing about 3.1 but
become more widely separated in the tail of the prior. The data groups are
a little wider near the peak and much wider in the tail. I suspect that a high
slope in the prior induces large data groups, and that, to the extent that
data group enlargement leaves possible, a negative second derivative in the
log-likelihood function induces closer spacing of estimate values, but have not
studied the matter.

The most notable effect of the non-uniform prior is the shift of estimates
towards higher-prior values. Whereas for a flat prior, the estimate for a data
group lies midway between the upper and lower ȳ limits of the group, the
estimate θ̂4 in Table 3.2 is 17.82, much closer to the lower boundary a4 =
b3 = 17.54 than to the upper limit b4 = 27.11.

3.3.4 Mean of a Multivariate Normal

The Normal example with uniform prior density can be extended to cover the
multi-dimensional Normal distribution. Now, the data are an ordered set of
N real vector values x = (y

1
, y

2
, . . . , y

N
) with mean ȳ, believed to be drawn

from a multivariate Normal with unknown mean θ and known covariance
matrix M. The dimension of data and mean is D. Henceforth we will drop
the vector indication and write data values, sample mean and population
mean simply as yn, ȳ, θ. Then the model density is

f(x|θ) =

(

1√
2π

)ND
(

1
√

|M|

)N N
∏

n=1

e−0.5(yn−θ)T
M

−1(yn−θ)

It is convenient to define a non-singular linear transformation of the data
and θ spaces

z = A−1y, φ = A−1θ

such that AT M−1 A = ID, the D × D identity matrix. Then the model
density of the transformed data xA = {z1, . . . , zN} is

fA(xA|φ) =

(

1√
2π

)ND N
∏

n=1

e−(zn−φ)2/2

and the model density of the sufficient statistic z̄ = 1
N

∑N
n=1 zn is

g(z̄|φ) =

(
√

N

2π

)D

e−N(z̄−φ)2/2

For simplicity, we assume the prior density of θ to be uniform in some
large region. Hence, the prior density of φ and the marginal density r(z̄) of
z̄ are
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h(φ) = r(z̄) =
1

V

As before, we are neglecting “edge effects” near the boundary of V .
In the one-dimensional case, the set Θ∗ of possible estimates was an evenly

spaced set of values, and the data group t(θ̂) associated with an estimate θ̂
was an interval of sample mean values, all intervals having the same width
w. We assume without proof that in D dimensions, the set Φ∗ of possible φ̂
estimates is a regular lattice of points in Φ, the space of φ, and that every
data group t(φ̂) = {z̄ : m(z̄) = φ̂} has the same size and shape.

Let w be the volume of a data group t(φ̂). Then the total marginal prob-

ability of z̄ values within t(φ̂) is w/V , and by R2, the coding probability

q(φ̂) = w/V for all φ̂ ∈ Φ∗.
As all data groups are similar, the average value I1s equals the average

value of I1s(z̄) over any one data group. Hence,

I1s = − log q(φ̂) − Avz̄∈t(φ̂) log g(z̄|φ̂) for some φ̂ ∈ Φ∗

= − log(w/V ) + (D/2) log(2π/N) + (N/2) Avz̄∈t(φ̂) (z̄ − φ̂)2

But I0s = −Av log r(z̄) = log V

I1s − I0s = − log w + (D/2) log(2π/N) + (N/2) Avz̄∈t(θ̂) (z̄ − φ̂)2

The quantity Avz̄∈t(φ̂) (z̄ − φ̂)2 depends on both the volume w and the

shape of the group t(φ̂). Because q(φ̂) is the same for all groups, it is clear

that t(φ̂) is the Voronoi region of φ̂, i.e., the set of values closer to φ̂ than to
any other estimate in Φ∗, where closeness is measured by Euclidean distance.
The shape of a group is thus determined by the geometry of the lattice Φ∗.
If the lattice geometry and group shape are held constant, and the volume
w of the groups is changed, the average squared distance of points within a
group from its centre φ̂ will vary with w as Avz̄∈t(φ̂) (z̄ − φ̂)2 = DκDw2/D

where κD depends on the lattice geometry

I1s − I0s = − log w + (D/2) log(2π/N) + (N/2)DκDw2/D

which is minimized when w = (NκD)−D/2, (N/2)DκDw2/D = D/2, and

Avz̄∈t(φ̂) (z̄ − φ̂)2 = D/N .

I1 − I0 = I1s − I0s

= (D/2) log(2π/N) + (D/2) log(NκD) + D/2

= (D/2){1 + log(2πκD)}

The best choice of lattice geometry will minimize κD. A lattice with minimal
κD is called an optimum quantizing lattice. Quantizing lattices have been
discussed by Conway and Sloane [11]. For general D, the optimum lattice is
unknown. However, following Zador [61], we can establish bounds on κD.
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Suppose w = 1. The volume of a hypersphere of radius r is rD πD/2/(D/2)!
where by n! we mean, for non-integral n, Γ (n+1). Then the radius of a sphere
with unit volume (w = 1) is

r = {(D/2)!}1/D/
√

π

and the average squared distance of points within the sphere from its centre
is

r2D/(D + 2) = D
{(D/2)!}2/D

(D + 2)π

Of all regions with unit volume, the hypersphere has the smallest average
squared distance. But the Voronoi region of a lattice cannot be spherical.

Hence,

κD >
{(D/2)!}2/D

(D + 2)π

The upper bound is obtained by considering Φ∗ to be not a lattice but a
random selection of points in Φ with unit average density. For some z̄, let a
be the distance from z̄ to the nearest point in Φ∗, i.e., a2 = (z̄ − φ̂)2. The
probability that a > b is the probability that there is no member of Φ∗ within
a sphere of radius b and centred on z̄.

Pr(a > b) = exp(−πD/2bD/(D/2)!)

Density(a) =
πD/2

(D/2)!
D aD−1 exp(−πD/2aD/(D/2)!)

Av(a2) = ((D/2)!)2/D(2/D)! / π

With probability one, a random choice of Φ∗ can be improved by iterative
application of relations R1–R3. Hence,

κD < ((D/2)!)2/D(2/D)! / (πD)

As D increases, both bounds approach 1/(2πe) from above.
Using Stirling’s approximation in the form

log(n!) = (n + 1/2) log n − n + (1/2) log(2π) + O(1/n)

the lower bound gives

log κD >
2

D

[

D + 1

2
log

D

2
− D

2
+

1

2
log(2π)

]

− log(D + 2)

− log π + O(1/D2)

> (log(Dπ) − 2)/D − log(2πe) + O(1/D2)

Similarly, and using log(ǫ!) = −γǫ + O(ǫ2) for small ǫ > 0, where γ is Euler’s
constant, the upper bound gives
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log κD < (log(Dπ) − 2γ)/D − log(2πe) + O(1/D2)

Substituting in I1 − I0 = (D/2){1 + log(2πκD)}:

1

2
log(Dπ) − γ > (I1 − I0) >

1

2
log(Dπ) − 1 to order 1/D

Table 3.4 gives upper and lower bounds on κD for a few values of D, and,
where available, the best known value κD. It also gives for the multivariate
Normal the lower bound on (I1 − I0) implied by the lower bound on κD,
and the approximate form (I1 − I0) ≈ 1

2 log(2πD) − γ. For D > 1, this
approximation falls between the upper and lower bounds, approaching the
upper bound for large D. It is above the value achieved by the known lattices
for D = 2 and 3. It may therefore be regarded as a slightly pessimistic
approximation for D > 1.

Table 3.4. Bounds and approximations for Lattice Constant κD.

D Lattice Constant κD I1 − I0

Upper Bound Known Lower Bound Lower Bound Approx
1 0.5000 0.08333 0.08333 0.17649 -0.00485
2 0.15916 0.08019 0.07958 0.30685 0.34172
3 0.11580 0.07697 0.41025 0.54446
10 0.07614 0.06973 0.82869 1.14644
100 0.06133 0.06080 1.88649 2.29773
1000 0.05896 0.05891 3.02741 3.44903
10000 0.05860 0.05860 4.17765 4.60032

This is a remarkable result. The problem of estimating the mean θ of
a multivariate Normal with known covariance can be transformed (as was
done above) to one of estimating the mean φ of a multivariate Normal with
covariance matrix ID. For this problem, the model density g(z̄|φ) can be
factored as

g(z̄|φ) =

D
∏

k=1

√

N/(2π) exp(−N(z̄k − φk)2/2)

where z̄k and φk are the kth components of the D-dimensional vectors z̄ and
φ. This separation into independent factors shows that the problem can be
seen as D independent problems. Each is a simple univariate problem: to
estimate φk given a sample with mean z̄k. Since we have assumed h(φ) to be
uniform, the D different problems do not interact through either the prior
or the likelihood: they are entirely separate. Conversely, if we are presented
with D independent problems, each concerned with estimating the mean of
a univariate Normal with known standard deviation, we can, if we choose,
bundle them all together as a single multivariate problem.
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If each component problem were considered separately, we would obtain
D separate explanation messages. Each would assert one component of φ̂,
and encode one component of the N z-vectors. Each explanation would have
I1 − I0 = 1

2 log(2πe), and so if the explanations were concatenated to provide
a single message encoding all the data, the expected length of that message
would be (D/2) log(2πe) longer than the shortest non-explanation message
for all the data. That is, we would have, for the whole message encoding all
the data,

I1 − I0 =
1

2
D log(2πe)

If all the data is encoded in one explanation, we would obtain the same
(I1 − I0) difference, growing linearly in D, if we chose a rectangular lattice
for the set Φ∗. However, the rectangular lattice is not an optimum quantizing
lattice for D > 1, having κD = 1/12 for all D. Use of an optimum lattice,
or failing that a random selection of Φ∗, gives a smaller I1 − I0 growing only
logarithmically with D.

Even if D univariate mean estimation problems are completely indepen-
dent, we do better to encode their data in a single explanation. Closely par-
allel results are well known in Information Theory. If several analogue quan-
tities are to be digitized for storage or transmission, the digitizing process,
by representing each quantity to only a fixed number of digits, inevitably
introduces a “quantization noise”. By quantizing several quantities at once,
treating them as forming a vector and choosing their digital representation
from a quantizing lattice, the mean quantizing noise is reduced without use
of extra digits.

A curious consequence of combining independent problems in this way is
that now the SMML estimate for one problem depends on data from other,
unrelated problems. Consider a possible set of φ̂ values for D = 2. For two
dimensions, an optimum quantizing lattice consists of hexagonal t(φ̂) Voronoi
regions. Note that there is no reason for the lattice to be aligned with the
component axes. Supposing the two components of the problem are indepen-
dent, the model distribution for the first component z̄1 is Normal with mean
φ1, S.D. 1/

√
N . The second component z̄2 has a Normal distribution, with

mean φ2, S.D. 1/
√

N .
If the data for problem 1 happened to yield a sample mean z̄1 = a, the

SMML estimate φ̂ = (φ̂1, φ̂2) could take any of a range of values. Which value
would be estimated for φ1 would depend on the sample mean z̄2 obtained in
the unrelated second problem.

This behaviour of SMML estimators may appear bizarre. Note, however,
that all possible values for the estimate φ̂1, given z̄1 = a, are believable. Their
average squared difference from the sample mean a is 1/N , exactly equal to
the expected squared difference of the true mean φ1 from the sample mean.
For any D, we have
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Av (z̄ − φ̂)2 = D/N =

D
∑

k=1

Av (z̄k − φ̂k)2

As there is no distinction among the D components, each component should
contribute equally to the average. Hence, Av (z̄k − φ̂k)2 = 1/N for any com-
ponent k.

Although the shape of the optimum Voronoi region for large D is un-
known, the close approximation of the optimum lattice to the behaviour of
spherical regions suggests that the optimum SMML data group t is nearly
spherical in this problem for large D. Making this assumption, and using for
the optimum volume w, gives a region of radius r =

√

(D + 2)/N . Consider

one component (φ̂k − z̄k) of the difference between sample mean and esti-
mate. As noted above, this may take many different values, depending on
the values of all components of z̄. Indeed, without knowledge of the other
components of z̄, all that can be said of the vector difference (φ̂ − z̄) is that
it lies in a sphere centred on the origin and radius r. Thus, if the values of
other components of z̄ are thought of as random variables selected from their
respective (uniform) marginal distributions, the value of (φ̂k − z̄k) for given
z̄k can be regarded as a random variable generated by projecting a random
point within this sphere onto the k axis. The density of (φ̂k − z̄k) is then
proportional to

{r2 − (φ̂k − z̄k)2}(D−1)/2 = {(D + 2)/N − (φ̂k − z̄k)2}(D−1)/2

For any D, this density has mean zero and standard deviation 1/N , as
already noted. For large D, it closely approximates a Normal shape. Hence,
the density of the SMML estimate φ̂k is (approximately) Normal(z̄k, 1/N).

But consider the ordinary Bayes posterior density of φ̂k given z̄k,

Post(φ̂k|z̄k) = hk(φ̂k)

√

N

2π
exp{−N(z̄k − φ̂k)2/2} / rk(z̄k)

As hk(φ̂k) and rk(z̄k) are both uniform, this is also Normal(z̄k, 1/N).
Thus, for this problem, the SMML estimator gives estimates for individual
components of the parameter which behave very much like values selected at
random from the posterior distribution of the component.

Although this result was derived only for multivariate Normal problems
(or, equivalently, a number of unrelated scalar Normal problems considered
together), and for a Uniform prior, we will show later a much more general
version of the result.

The exact properties of the SMML code discussed here depend on the
very simple nature of the multivariate Normal problem. The form of the
model f(x|θ) and the assumption of a Uniform prior lead to use of a Θ∗

set which is very regular, with constant spacing of estimates throughout the
model space. Most multi-parameter problems do not have this property, and
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so their optimal Θ∗ sets will not be regular lattices. However, the broad thrust
of the conclusions reached here do carry over to more general multivariate and
multi-parameter problems. In particular, the surprisingly good performance
of random Θ∗ sets does not depend on the simplicity of the present problem.
A random selection of points in a model space has no preferred orientation, no
regular structure, and indeed only one property: the mean density of points
as a function of position in the space. Provided this mean density is chosen
correctly, a random Θ∗ will achieve an expected message length very close to
that of a truly optimal SMML code, with efficiency increasing with increasing
model space dimension D and with (I1−I0) close to the 1

2 log(Dπ) behaviour
of the Normal model.

3.3.5 Summary of Multivariate Mean Estimator

The SMML estimator for the D-dimensional mean of a multivariate Normal
with known covariance has an excess expected message length I1−I0 bounded
by

1

2
log(Dπ) − γ + O(1/D) > (I1 − I0) >

1

2
log(Dπ) − 1 + O(1/D)

assuming a Uniform prior density for the mean. Thus, (I1−I0) grows only log-
arithmically with D. If the data and mean coordinate systems are such that,
or are transformed so that, the covariance matrix is diagonal, the estimator
problem is equivalent to D unrelated component problems, each concerned to
estimate the mean of a univariate Normal. Nonetheless, the SMML estimate
for each component mean depends on data for all components. For large D, if
the data for components other than k are treated as random, the estimate for
component mean k behaves roughly as if randomly selected from its Bayes
posterior distribution given the data component k.

Further, if the D component problems are treated separately, the overall
expected message length excess

(I1 − I0) = D log
√

πe/6

grows linearly with D.
These results apply approximately to many multivariate problems and

sets of univariate problems where the log likelihood has an approximately
quadratic behaviour near its maximum and the prior is slowly varying.

3.3.6 Mean of a Uniform Distribution of Known Range

The foregoing examples have all dealt with model distributions having a min-
imal sufficient statistic. For such models, it is not surprising that an estimator
can be found whose estimates capture most of the relevant information in the
data. We now treat a problem without a minimal sufficient statistic.
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The data x = {yn : n = 1, . . . , N} are an ordered set of N values drawn
from a Uniform density of known range (which for simplicity we take to be
one) and unknown mean θ. The data are given to a precision δ ≪ 1/N .

Define a = min{yn : n = 1, . . . , N}; b = max{yn : n = 1, . . . , N} .
We assume that the rounding of data to precision δ is such that (b−a) ≤ 1.

Then

f(x|θ) =

{

δN if (θ − 1
2 ) ≤ a ≤ b ≤ (θ + 1

2 )
0 otherwise

Clearly, the pair (a, b) is a sufficient statistic, but is not minimal as it has
two components. No minimal sufficient statistic exists. However, rather than
using (a, b), we will use the pair (c = (a + b)/2, w = (b − a)), which is also a
sufficient statistic as it is a one-to-one function of (a, b). Then

f(x|θ) =

{

δN if c − 1
2 (1 − w) ≤ θ ≤ c + 1

2 (1 − w)
0 otherwise

We assume the prior density h(θ) of the mean is uniform in some range
L ≫ 1, and ignore effects arising near the end of this range. Hence, the
marginal density of the sample centre m is also substantially uniform in the
same range.

The marginal distribution of the data is

r(x) =

∫

L

h(θ)f(x|θ) dθ

=

∫ c+(1−w)/2

c−(1−w)/2

(1/L)δN dθ

= (δN/L)(1 − w)

and the length of the shortest non-explanation message encoding x is

I0(x) = log L − N log δ − log(1 − w)

To obtain I0, the average value of I0(x) over all x, note that for given θ,
the marginal distribution of the sample range w is easily shown to be

gw(w|θ) = δN(N − 1)(1 − w)wN−2

Since this is independent of θ, the prior marginal distribution of w has the
same form:

rw(w) = δN(N − 1)(1 − w)wN−2

Averaging over this distribution (using an integral to approximate the sum)

I0 = log L − N log δ − N(N − 1)

∫ 1

0

(1 − w)wN−2 log(1 − w) dw

= log L − N log δ − W (say)
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The integral

W = N(N − 1)

∫ 1

0

(1 − w)wN−2 log(1 − w) dw =

N
∑

k=2

1/k

is rational, but is well approximated by

W ≈ log(N +
1

2
) − 1 + γ ≈ log(N +

1

2
) − 0.42278 . . .

where γ is Euler’s constant.
The approximation is within 0.006 for N ≥ 2, so we may take

I0 = log L − N log δ + log(N +
1

2
) − 0.423

Now consider the construction of an explanation code. If the explanation
asserts an estimate θ̂, the detail will encode each value yn (n = 1, . . . , N)

independently, to precision δ in the range θ̂ ± 1
2 . The length of the detail,

− log f(x|θ̂), is just (−N log δ), provided every yn value lies in the range

θ̂ ± 1/2. Values outside this range cannot be encoded in the detail. Thus,

given data x with sample range w and sample centre c, any estimate θ̂ in
the range c± 1

2 (1−w) will give the same detail length, but estimates outside
this range are unusable. This estimation problem is unusual in that the range
of estimate values with which a given data value might be encoded can be
extremely small. Indeed, as w approaches 1, the range of usable estimates
approaches zero. As this may happen for any c, the set Θ∗ must have a very
close spacing of estimate values everywhere. The spacing necessary to ensure
that a usable estimate can be found for every possible x is δ/2. It might seem,
therefore, that as δ→0, the expected assertion length needed to specify one
of such a closely spaced estimate set would grow without bound. However,
this does not happen.

The best known SMML code Θ∗ comprises a hierarchy of estimate val-
ues {θ̂} with differing coding probabilities and different sizes of data groups

{t(θ̂)}. At the top of the hierarchy, with the largest coding probabilities

{q(θ̂)}, is a set of estimate values spaced at unit intervals in Θ. We may

take these as having integer values of θ̂ (although their actual values would
depend on location of the prior range L). Each of these top-level (level 0)

estimates θ̂ has a data group t(θ̂) comprising all members x of X for which

f(x|θ̂) > 0.
For all lower levels of the hierarchy (levels 1, 2, . . . , K, . . .), estimates at

level K are odd multiples of 2−K and each θ̂ at level K has a data group
including all x for which f(x|θ̂) > 0 and which are not included in some
data group at a higher level (less than K). This code is not known to be
optimal, but obeys all three optimizing relations R1, R2, R3. Clearly, this
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construction of Θ∗ results in all estimates at the same level having equal
coding probabilities q(), and in the q() at level (K + 1) being less than the
q() at level K. The lowest level of the hierarchy has 2−K ≤ δ, as at that point
Θ∗ contains estimates at intervals at most δ/2 everywhere. In a prior range
L ≫ 1, there are approximately L level 0 estimates, L level 1 estimates, 2L
level 2, 4L level 3, and so on.

The effect of this choice of Θ∗ and the resulting partition of the sufficient
statistics (c, w) plane is that a data vector x results in an estimate θ̂ which, if
expressed as a binary number, has just sufficient digits following the binary
point to ensure that f(x|θ̂) > 0. For a sample size N , the most probable
value of w is about 1 − 2/(N + 1), so most of the marginal probability of
data is concentrated in data with similar values of w. Since the estimate can
differ from the sample centre c by at most ±(1 − w)/2, the number of digits

after the binary point in θ̂ (which equals the hierarchic level K) is typically
about log2(N). Note however that the data group of an estimate at a high
level (small K) still includes some data vectors with values of w close to
one. Estimates at levels near log2(N) have collectively most of the coding
probability, but since there are many of them for large N , their individual
coding probabilities may be small.

Calculation of the message lengths for data requires a series of integrations
to evaluate the q() values of the estimates at each level. The difference I1 −I0

depends weakly on N . A few values are shown in Table 3.5. These results were
obtained for the limit of small δ, treating the variate values as continuous.

Table 3.5. Message lengths for Uniform distribution.

Sample Size I1 − I0

2 0.463
3 0.528
5 0.579
10 0.617
30 0.642
100 0.651

N → ∞ 0.655

The Uniform problem is an example where an efficient SMML code must
provide a code for assertions which can specify an estimate with a range of
precisions. In this case, the estimated mean θ̂ is stated to just enough binary
digits to ensure that f(x|θ̂) > 0. (Note, however, that the assertion string
used to encode an estimate has a length (in bits) different from the length of
this binary representation, as the probability than an estimate will require k
fractional binary digits is not proportional to 2−k.)

It will be seen that, although the SMML estimate is a single number, it
usually manages to capture much of the information in both components of
the sufficient statistic (c, w). The resulting I1 − I0 difference is worse (i.e.,
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greater) than is the difference for the more regular Normal problem, but is
still less than log 2. Thus, the estimates produced have (loosely) posterior
probabilities greater than 0.5 in logarithmic average.

3.4 Some General Properties of SMML Estimators

The SMML estimator m(x) minimizes the expected explanation length

I1 = E I1(x) = −
∑

j

qj log qj −
∑

j

∑

x∈tj

r(x) log f(x|θ̂j)

where r(x) =
∫

h(θ)f(x|θ) dθ ,

Θ∗ = {θ̂j : j = 1, 2, . . . ; ∃x : m(x) = θ̂j}

tj = {x : m(x) = θ̂j}; qj =
∑

x∈tj

r(x)

or, if x is treated as continuous, the SMML estimator minimizes the difference
between the expected explanation length of the data and the length I0 of the
optimal non-explanatory coding, that is,

I1 − I0 = E (I1(x) − I0(x))

= −
∑

j

qj log qj −
∑

j

∫

x∈tj

r(x) log
(

f(x|θ̂j) / r(x)
)

dx

where now f(x|θ) and r(x) are densities rather than probabilities, and

I0 = −
∫

X

r(x) log r(x) dx; qj =

∫

x∈tj

r(x) dx

3.4.1 Property 1: Data Representation Invariance

I1 and the estimator m() are invariant under one-to-one changes in the repre-
sentation of the data. That is, if, instead of being represented by the value x,
the data is represented by a value y = u(x) where u is an invertible function,
and the SMML process applied to y yields an estimator my(y), then for all x

my(u(x)) = m(x)

and I1 − I0 is unchanged.
For discrete data, i.e., when the set X of possible values of x is countable,

this property is obvious. The transformation y = u(x) amounts simply to
a relabelling of the discrete values, and for any θ, the model probabilities
of an x value and its corresponding y value are equal. Hence, the marginal
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probabilities r(x) and ry(y = u(x)) are also equal. The model and marginal
probabilities are the only ways in which the data enter the definition of I1

and the construction of the estimator.
When the data are treated as continuous, so that f(x|θ) and r(x) are

densities on X, data representation invariance (data invariance for short)
still holds, providing the model and marginal densities of y = u(x) are ap-
propriately transformed:

fy(y|θ) =
dx

dy
f(x|θ); ry(y) =

dx

dy
r(x)

For continuous data, I1 is strictly speaking undefined, but the difference (I1−
I0) is defined. The invariance property is, of course, shared by all estimation
processes in which the data enters the process only via the model distribution
f(x|θ).

3.4.2 Property 2: Model Representation Invariance

I1 and the estimator m() are invariant under one-to-one changes in the rep-
resentation of the models. If the representation of models is changed from
θ to φ = g(θ) where g() is an invertible function, and an SMML estimator
mφ() constructed to estimate φ, then for all x, mφ(x) = g(m(x)), and I1 is
unchanged. Note that the prior density of φ, hφ(φ), must be the appropriately
transformed density:

hφ(φ) =
dθ

dφ
h(θ)

This property follows by observing that (a) the model distribution f(x|θ) is
unchanged:

fφ(x|g(θ)) = f(x|θ)
and (b) the prior density h() enters the definition of I1 only via the integral

r(x) =

∫

Θ

h(θ)f(x|θ) dθ =

∫

Φ

hφ(φ)fφ(x|φ) dφ

The marginal distribution of data r(x) depends on our prior expectations
about the possible models of the data, and how the data might behave under
each of these models, but is not affected by how we choose to describe or
parameterize the models.

Model representation invariance (model invariance for short) is lacking in
some commonly used estimation methods. For instance, choosing an estima-
tor to have zero bias is not model-invariant: the bias E(θ − θ̂) of an estimator
is defined with respect to a particular parameterization of the model. For θ
a scalar parameter, an estimator which had zero bias for θ would in general
have non-zero bias for an alternative parameter φ = g(θ). Similarly, choos-

ing an estimator to have small variance E((θ − θ̂)2) is tied to the particular
parameterization θ.
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Among Bayesian methods, minimum-cost estimation, which seeks to min-
imize the expected value of a loss function L(θ, θ̂) given the data, is model
invariant, but choosing as the estimate the mean or mode of the posterior
density h(θ)f(x|θ)/r(x) is not.

Unless there are very good grounds for preferring one parameterization of
the models over all others, induction and estimation methods which are not
model-invariant appear undesirable. In essence, an induction or estimation
method asks the data a question, and obtains an inference or estimate as an-
swer. Changing the model representation amounts to changing the language
used to frame the question and answer. If the method is not model-invariant,
changing the language will change not merely the representation but the
meaning of the answer.

3.4.3 Property 3: Generality

The SMML method can be used for a wide variety of problems. Many other
methods are restricted in the classes of models to which they can be applied.
For instance, the classical method of seeking a “Minimum-Variance Unbi-
ased” estimator succeeds only for a small family of model distributions, and
only for particular parameterizations of these models.

The Maximum Likelihood method requires the set Θ of possible models
to be either countable or a continuum of fixed dimension. That is, it cannot
directly be used to choose among models with different numbers of parame-
ters.

By contrast, the SMML method requires only that (a) the data can be
represented by a finite binary string: (b) there exists a language for describing
models of the data which is agreed to be efficient, i.e., there exists a prior
density h(θ): (c) the integrals r(x) exist for all possible data values, and
satisfy r(x) ≥ 0,

∑

X r(x) = 1.

3.4.4 Property 4: Dependence on Sufficient Statistics

If y = y(x) is a sufficient statistic, then the SMML estimate is a function
of y. That is, if y is known to contain all the data information relevant to
θ, the SMML estimate depends on no aspect of the data other than y. This
property is shared by all methods in which the data enters only via the model
distribution f(x|θ).

3.4.5 Property 5: Efficiency

In inductive and statistical inference, we attempt to infer from a body of data
a hypothesis or estimate which we hope will hold for all similar data from
the same source. Typically, perhaps always, the inference asserts that the
data conforms to some pattern or model and is to this extent non-random.
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However, we rarely expect the pattern to entail all details of the given data.
There will remain fluctuations in the data, ascribable to sampling, measure-
ment error and the like, for which we offer no detailed account, and which
we can only regard as random, unpredictable noise.

The given data contains information about both the pattern to which
it conforms and the “noise”. The task of an inductive or statistical infer-
ence procedure may be regarded as the separation of the data information
into “pattern” and “noise” components. The former, suitably represented,
becomes the inference or estimate.

The SMML method attempts the separation of pattern and noise infor-
mation explicitly. The data is recoded into a two-part message, in which the
first part (assertion) concerns pattern, and the second part (detail) encodes
whatever details of the data cannot be deduced from the assertion. We now
argue that, by choosing the shortest possible explanation, we effect the best
possible separation between pattern and noise.

The essential theorems for the argument are the classic results of Infor-
mation Theory: (a) the expected length of a message encoding data from
some source is minimized when the probability model assumed in the encod-
ing agrees with the probability distribution characterizing the source; and
(b) when data from some source is encoded optimally, the encoded string has
the statistical properties of a purely random sequence.

The separation of pattern and noise information into the assertion and
detail parts of an explanation can fall short in basically two ways. The asser-
tion may contain noise as well as pattern information, and the assertion may
fail to contain all the pattern information.

Suppose the latter, i.e., that the assertion does not contain all the pattern
information which is present in the data. The explanation encodes the data in
its entirety, and so any pattern information not present in the assertion must
appear in the detail. But, if the detail exhibits any pattern, it cannot have the
statistical properties of a purely random sequence, and so cannot be the result
of optimal coding. Hence, the explanation as a whole cannot be optimally
coded, and so cannot be the shortest possible. Hence, the shortest explanation
cannot fail to include in its assertion all available pattern information.

Suppose the former, i.e., that the assertion contains some noise informa-
tion. By “noise”, we here mean some information not relevant to knowledge
of the true value of θ. Since the SMML estimate θ̂ is a deterministic function
of the data x, the content of this noise information cannot be extraneous.
That is, it cannot concern some random choice made by the statistician or
some random event affecting the computation of the estimate. Rather, the
noise content must concern some proposition M(x) which happens to be true
of x but which is uninformative about θ. Now, the detail encodes x using a
code optimal if θ = θ̂. But if the assertion, as well as estimating θ, contains
the proposition M(x), then an optimal code for the detail would be a code

optimal if θ = θ̂ and M(x). Since the code actually used to encode the detail
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does not assume M(x), but this proposition is true of x, the evidence of the
truth of M(x) is recoverable from the detail. Thus, the information about
M(x) is repeated in the explanation: it occurs both in the assertion and in
the detail. It follows that the explanation cannot be the shortest possible,
since it repeats some information. Since an SMML explanation is by defini-
tion and construction the shortest possible, the assumption that its assertion
contains noise information cannot be true.

The above arguments, that the SMML assertion contains all and only
the information relevant to θ which can be recovered from the data, are
inexact. Ideally optimal coding of information into a binary string is in general
impossible, since it would in general require a non-integral number of binary
digits. The arguments thus only imply that the assertion lacks at most one
bit of the relevant information, and contains at most one bit of noise.

An illustration may clarify the argument. Suppose the data comprise 12
values independently sampled from a Normal distribution with S.D. known
to be 1.0, and unknown mean µ, and that the prior density of µ is uniform
over some large range, say, ±100. Let the observed data have sample mean
m = 13.394. . . . If an explanation were coded so that the estimated mean was
rounded to the nearest 10, the shortest available explanation would assert
µ̂ =10. The 12 data values would then be encoded in the detail as if drawn
from N(10, 1). The receiver of the explanation would be able to decode the
explanation without difficulty, but might then notice that the sample mean
m differed from µ̂ by 3.394, although the RMS difference to be expected with
12 values and S.D. = 1 is only about 0.3. The receiver might well consider
this good evidence that the true mean differed significantly from 10, and that
more information was available about µ than had been given in the assertion.

On the other hand, suppose the code was chosen to state µ̂ rounded
to the nearest 0.1. The explanation would state µ̂= 13.4 so as soon as the
receiver read the assertion, she could conclude that the sample mean lay in
the range 13.35 < m < 13.45. The detail, encoding the 12 values as if drawn
from N(13.4, 1), could encode with almost equal brevity any set of 12 values
whose sample mean lay within 13.4 ± 0.3. Thus, as far as the coding of the
detail is concerned, some of the information in the detail is used in conveying
the fact that m lies within the narrower range 13.4 ± 0.05, thereby repeating
information already contained in the assertion. The repeated information,
which is essentially the “.4” in the estimate µ̂ = 13.4, is almost uninformative
about µ, since under the conditions assumed, we can only expect to estimate
µ to roughly the nearest integer.

In fact, the SMML explanation will state µ̂ to the nearest integer
(σ
√

12/N = 1), i.e., µ̂ = 13. Its estimate is accurate enough to capture
almost all the information about µ, and when the receiver discovers that
m = 13.394, the difference gives no grounds for rejecting the SMML estimate.
Further, in the SMML explanation, there is little repetition of information.
The detail does in fact use some of its information to repeat the fact that
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12.5 < m < 13.5, which has been already implied by the assertion, but the
amount of information involved is small. Given that N = 12, σ = 1 and
µ = 13 (the assumptions used in coding the detail), the probability of the
proposition “12.5 < m < 13.5” is so high (0.92) that little information is
wasted in repeating it (0.13 bit).

If it were exactly the case that the SMML assertion extracted from the
data all and only the information relevant to θ, it would be a universally suf-
ficient estimate, in the sense of Section 3.2.6. Since some distributions do not
admit minimal sufficient statistics, this is in general impossible. However, as
the example of Section 3.3.6 on the Uniform distribution shows, the SMML
assertion can convey some information about the sufficient statistics even
when they are more numerous than the number of parameters estimated.
In that example, the assertion states only one parameter estimate, the esti-
mated mean, yet the manner of its encoding conveys information about both
sufficient statistics, the sample midrange and the sample range.

3.4.6 Discrimination

In the SMML explanation code, assertions are encoded in a strictly opti-
mal fashion. The length of the assertion of θ̂ is − log q(θ̂), where q(θ̂) =
∑

x:m(x)=θ̂ r(x) is the probability that θ̂ will be asserted. One result is that

q(θ̂) bears no direct relation to the prior probability density h(θ) at or in

the vicinity of θ = θ̂. The SMML construction “sees” h(θ) only through its
convolution with f(x|θ), i.e., through the data marginal distribution r(x). In
general, r(x) does not preserve special features of h(), as these get blurred
by the convolution. An embarrassing consequence is that, while SMML esti-
mators can be constructed for model sets Θ which are the nested union of
continua of different dimensionality, the SMML estimator may not behave
as we might wish. By a “nested union” we mean a model set comprising
two or more continua of increasing dimensionality where a low-dimensioned
continuum is a zero-measure subset of a higher-dimensioned member of the
model set, for instance when the low-dimensioned member is equivalent to a
higher-dimensioned member with one or more parameters of the latter fixed
at special values. An example is the model set comprising all first-, second-
and third-degree polynomials in some variable z, where the space of second-
degree polynomials is equivalent to the subset of the space of third-degree
polynomials in which the coefficient of z3 is zero, and the space of first-degree
polynomials is equivalent to the subset of the space of second-degree polyno-
mials which has the coefficient of z2 (and z3) zero. Although these subsets
have zero measure in the space of third-degree polynomials, we may have a
reasonable prior belief that the “true” model for the data in hand has a finite
probability of lying in one of these subsets. For instance, we may believe the
probabilities that the true degree is 1, 2 or 3 are respectively 0.5, 0.3 and 0.2.
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Normally, if Θ contains several nested model classes of different dimension,
i.e., different numbers of parameters, we would like an estimator to tell us
which of these classes (most likely) contains the model of the data source. In
general, the SMML estimator will not do so.

3.4.7 Example: Discrimination of a Mean

Suppose that the data are a set of N values drawn from a Normal population
of known Standard Deviation σ and unknown mean µ. Our prior belief might
be that there is probability 1/2 that µ = a, a known value, and that if
µ �= a, then µ is equally likely to lie anywhere in some range b ≤ µ ≤ c, with
(c − b) ≫ σ/

√
N Then Θ is the union of two sets: a singleton set, dimension

zero, containing the value a, and a one-dimensional continuum containing all
values from b to c. The two sets have equal prior probability 1/2. In the first
set it is a mass on a, in the second it is spread uniformly over the interval b
to c. We suppose b < a < c.

There is no great difficulty in constructing an SMML code. The receiver
is assumed to know the distinguished value a already. The marginal density
r(ȳ) of the sample mean can be easily computed. It has a smooth peak of
width roughly σ/

√
N centred around ȳ = a, falling off smoothly to a uniform

plateau over most of the interval b to c, with smooth shoulders near the ends.
Either by using the “boundary rule of thumb” followed by relaxation using
R1–R3, or otherwise, an optimal estimate set Θ∗ can be found and the ȳ line
divided into the corresponding intervals {t(µ̂) : µ̂ ∈ Θ∗} .

In general, no member of Θ∗ will have µ̂ = a. There will, of course, be
some member of Θ∗ close to a, with a high q value, and the two members of
Θ∗ immediately above and below a may be unusually far apart, but a itself
will not in general be a possible assertion. Thus, the SMML estimator will,
whatever the data, select a model from the continuum, and never choose the
distinguished model µ̂ = a. We show this effect in the following example,
where for simplicity we have taken σ/

√
N = 1, so the sample mean has a

distribution Normal(µ, 1) for true mean µ. We have taken h(µ) to be

h(µ) =
1

2
Normal(0, 100) +

1

2
δ(µ − 4.0)

where δ() is the Dirac delta function. Thus, we have a prior belief that µ is
equally likely to be 4.0 or to have a value sampled from a Normal density
with zero mean, S.D. = 10. Table 3.6 shows part of the SMML estimator,
giving the data groups tj , estimates µ̂j , coding probabilities qj , and the width
of each data group.

The estimate 3.991 is close to the distinguished value 4, and has a large
q. Any data mean in the range 1.33 < ȳ < 6.73 gives this estimate, in
effect accepting the hypothesis µ = 4, but the estimate is not actually the
distinguished value.
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Table 3.6. SMML Estimator for Normal Mean, with Prior Normal plus Delta.

tj µ̂j qj Width of tj

−12.52 . . . −9.04 −10.67 0.039 3.48
−9.04 . . . −5.56 −7.22 0.053 3.48
−5.56 . . . −2.08 −3.78 0.064 3.48
−2.08 . . . 1.33 −0.33 0.069 3.41
1.33 . . . 6.73 3.991 0.59 5.39
6.73 . . . 10.14 8.31 0.049 3.41
10.14 . . . 13.62 11.76 0.034 3.48
13.62 . . . 17.11 15.21 0.022 3.49
17.11 . . . 20.60 18.67 0.012 3.49

The same unwillingness to choose simple distinguished models or model
classes, even of high prior probability, will be found in all SMML estima-
tors. The trouble arises because of the very generality and model invariance
properties which are attractive features of the SMML method. The SMML
construction, so to speak, cares so little for how models are represented that
it does not notice a condensation of prior probability on some distinguished
subset of Θ, and treats a model near the distinguished subset as just as ac-
ceptable an assertion as one in the subset. The marginal data distribution
on which the SMML code is constructed has almost the same form as for a
prior density h() which, instead of placing condensed probability mass in the
subset, merely has a high, narrow, but finite peak around the subset.

The cure for this lack of discrimination in SMML estimators is simple.
If we wish the assertion to discriminate among two or more subsets of Θ
which we regard as conceptually distinct or representing different kinds of
hypothesis about the data, we can constrain the encoding of the assertion so
that it makes a definite choice among the subsets.

The assertion is now encoded in two parts. The first part names one of the
subsets of Θ, using a string of length the negative log of the prior probability
of the subset. The second part of the assertion, specifying a member of the
subset, and the detail encoding the data, are constructed by the standard
SMML method using the prior density, model data distribution and data
marginal distribution appropriate to the named subset. To take the simple
example above, the explanation will take the following form:

The first part of assertion names either the distinguished subset θ = a or
the continuum [b, c]. Since both subsets have equal prior probability 1/2, the
length of this part is log 2 in either case.

If the continuum was named, the second part of the assertion, naming
some µ̂ in [b, c], and the detail giving the N data values, use an SMML code
constructed for the estimation of a Normal mean µ given known σ, a sample of
size N , and a prior density h(µ) uniform in [b, c]. The sample mean marginal
distribution r(x̄) will be uniform in [b, c] except near the ends, and the SMML



3.5 Summary 195

code construction is entirely unaffected by the distinguished value a, since
this has been ruled out by the first part of the assertion.

On the other hand, if the distinguished subset µ = a was named, the
second part of the assertion is null, since the data model is now fully specified,
and the detail encodes the data using the model N(a, σ2).

In effect, we have modified the code so that the explanation first names
the estimated structural or model class, then uses an SMML code which
assumes the data indeed came from some member of the named class.

Note that the modification has introduced a fundamental shift in the
way assertions are coded. In the unmodified SMML method, the coding of
estimates or models is based on a partition of the data set X into subsets
{tj : θ̂j ∈ Θ∗}, and the coding probability q(θ̂) of an estimate, and hence
the length of its assertion, is based on the total marginal probability of its
associated subset. In the modified code, however, the coding of an assertion is
in part based on a partition of the model space Θ into subsets, and the coding
probability of a subset is taken simply as the total prior model probability
within the subset. Thus, the coding of the first part of an assertion, which
names a subset of Θ, is much more directly and intuitively tied to the prior
density h(). The resulting explanation code is slightly less efficient than the
unmodified SMML code, for two reasons. First, the assertion of a model class
is based on the prior probability of that class, which may not exactly equal
the total marginal probability of all those data sets in X which will lead
the estimator to assert that class. Second, the modified SMML code may
provide for estimates which in fact will never be used. In our simple example,
the SMML code for the model class b ≤ µ ≤ c, h(µ) = 1/(c − b) may well
have a Θ∗ containing some estimate µ̂ very close to a. This estimate will
never be asserted, as any sample mean close enough to µ̂ to fall within its
t(µ̂) data group will instead be encoded using the µ = a model class. The
inefficiencies arising from both causes are small, and decrease with increasing
sample size. They are too small to outweigh the greater clarity and simplicity
of the modified code.

Henceforth, in any problem requiring discrimination among nested model
classes, we will assume the modified code, which begins by asserting an in-
ferred class, is used.

3.5 Summary

The Strict Minimum Message Length (SMML) estimator exactly minimizes
the expected length of an explanation within a Bayesian framework (except
for a small inefficiency when the explanation begins by asserting a model class
within a nested set of model classes). The given set Θ of possible models is
replaced by a discrete subset Θ∗ of models which may be used in explanations.
The coding probability, analogous to a prior probability, given to each model
in Θ∗ is just its probability of being asserted in an explanation. The SMML
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estimator partitions the set X of possible data into subsets, one for each
model in Θ∗. All data strings in a subset result in estimating that model.

The SMML estimator is very general, being defined even when Θ is the
union of several (possibly nested) continua, and is invariant under one-to-one
measure-preserving transformations of Θ. Its estimates capture almost all
information in the data which is relevant to the choice of model. Unlike most
Bayesian estimators, it neither requires use of a “cost” or “utility” function,
nor depends on how Θ is parameterized.

Its difficulties are great computational difficulty, discontinuous behaviour
of the estimator function, and an inability (unless modified) to make an un-
equivocal choice among nested continua of possible models. A further appar-
ent disadvantage is that when several scalar parameters are to be estimated,
the SMML estimate of one of them will depend somewhat on aspects of the
data relevant only to other parameters. However, this dependence is small,
and does not result in the estimate of a parameter being inconsistent with
the data relevant to that parameter.



4. Approximations to SMML

This chapter develops a couple of approximations to the Strict Minimum
Message Length (SMML) method of estimation and model selection. The
SMML method developed in the previous chapter, while having many desir-
able properties, is computationally very difficult and yields parameter esti-
mates which are discontinuous functions of the data, even when the data are
treated as continuously variable real-valued quantities. Similarly, the expla-
nation lengths given by an SMML estimator are rather bumpy functions of
the data. A data value which happens to fall close to the centre of an SMML
data group will tend to have a smaller, perhaps even negative, value of “ex-
cess” message length (I1(x|θ̂)− I0(x)) than a data value near the edge of the
data group.

For practical use, we would prefer to use methods which, while retaining
as much as possible of SMML’s virtues, result in smoother estimator functions
and smoother dependence of message length on the data, even if this means
accepting some approximation error in the calculation of message length and
of the parameter estimates which minimize the length. Here, two approximate
methods are presented. The first leads to parameter estimates which are
continuous functions of continuous data, but does not directly lead to an
approximation to the length of the explanation based on these estimates.
The second method gives a smooth approximation to the explanation length,
but does not directly lead to estimates of the parameters. Both approximate
methods avoid the need, present in SMML, to construct a partition of the
set X of possible data into data groups.

Sections 4.1 to 4.9 deal with the approximate estimator, its application
to a somewhat difficult problem, and the performance of a couple of other
estimators on this problem. Section 4.10 deals with the message length ap-
proximation.

4.1 The “Ideal Group” (IG) Estimator

This method of constructing an estimator was suggested by David Dowe.
In a genuine SMML code, the three minimizing relations R1, R2 and R3 of
Section 3.2.1 apply to all data groups in the partition. The approximation
considered here constructs an “ideal” group with estimate θ̂ = θ which obeys
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only the “Boundary” rule of Section 3.3.2. It ignores the fact that in a real
SMML code, the various data groups must together form a partition of the set
X of possible data vectors, that is, that the groups must fit together without
overlap and without omitting any member of X. This constraint on a real
SMML code, together with relations R1, R2 and R3, results in the selection
of a set of data groups and their associated set of estimates Θ∗ which are
sensitive to the behaviour of the prior h(θ) over the entire hypothesis space
Θ, including regions of Θ which contain no credible estimate for the current
observed data vector.

4.1.1 SMML-like codes

As has been seen in the previous chapter, there are for most estimation
problems many near-optimal partitions of X which, although having different
choices of Θ∗, give expected message lengths only insignificantly worse than
the strictly optimum code, and indeed message lengths I1(x) for every x ∈ X
which differ insignificantly from the lengths given by the true SMML code. I
shall call such near-optimal codes “SMML-like”. In some problems, some of
these near-optimal codes even obey the three relations. The features of a code
which are really important in determining the expected message length I1 are
the sizes and general shapes of the data groups. The approximation aims to
abstract these important determinants of message length while avoiding the
need to construct a complete partition of X.

4.1.2 Ideal Data Groups

An “ideal” data group which obeys the Boundary Rule optimizes, for some
given estimate value θ̂, the expected code length of data vectors within the
group, or more precisely, the expected difference between the code length
I1(x) and the length I0(x) = − log(r(x)) of the best non-estimating code
for x. Such a data group may be expected to resemble in size and general
shape the data group which would be found in an SMML-like code if the
given θ̂ happened to occur in the estimate set Θ∗ of the SMML-like code. In
particular, the total marginal probability of the data vectors within the ideal
group may well approximate the “coding probability” q(θ̂) which θ̂ would

have in an SMML-like code. Note that the estimate θ̂ for an ideal group
need not in general satisfy relation R3. It does not necessarily maximize the
average log-likelihood for the data in the group.

The Boundary Rule says that a data group t should ideally be such that

x ∈ t iff I1(x|θ̂) − I0(x) < Avy∈t[I1(y|θ̂) − I0(y)] + 1

where
I0(x) = − log r(x)
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r(x) =

∫

θ∈Θ

h(θ)f(x|θ)

I1(x|θ̂) = − log q(θ̂) − log f(x|θ̂)

q(θ̂) =
∑

y∈t

r(y)

The Rule may be re-written as

x ∈ t iff g(x|θ̂) < Avy∈t[g(y|θ̂)] + 1 where g(y|θ) = log(r(y)/f(y|θ))
Thus, for any given θ ∈ Θ, the Boundary Rule allows us to construct an
ideal data group having θ as its estimate, and hence to compute a “prior
probability” q(θ) which approximates the coding probability θ would have
were it to occur in the estimate set of some near-optimal SMML-like code.

In the form originally suggested by Dowe, the function g(y|θ) was taken
simply as − log f(y|θ), omitting the marginal data probability r(y). This
form is incorrect, for instance because it yields different results depending on
whether y is taken as the full data set or a sufficient statistic derived from
the full data. The inclusion of the dependence on r(y) removes this defect.

4.1.3 The Estimator

The Ideal Group estimator, given data x, chooses as its estimate that value
θ̂ ∈ Θ which minimizes

DI1(x|θ̂) = − log(q(θ̂)) − log(f(x|θ̂))

where q(θ̂) is computed via the ideal data group having θ̂ as its estimate. It
should be obvious that the coding probability thus computed for any θ ∈ Θ is
not altered by non-linear transformations of the hypothesis space, and that
hence the Ideal Group estimator preserves the invariance property of the
SMML estimator. It is also clear that the Ideal Group estimate is a function
of the sufficient statistics only.

Like the SMML estimate, it has the inconvenient property that when the
hypothesis space is a nested set of continua with different dimensionality, it is
unlikely that the estimate will ever lie in a low-dimension subspace, because,
like SMML, the approximation sees the structure of the hypothesis space
and its prior density only via the smeared-out form of the marginal data
distribution r(x). It therefore does not automatically answer the question of
what order of model should be inferred from the data. As with SMML, this
difficulty may be overcome by requiring the imaginary explanation to begin
by naming the model order or dimension with a message fragment of length
the negative log of the prior probability given to the stated model subspace.
To find the best explanation, one finds the best estimate (or its Ideal Group
approximation) for each model order, considering only hypotheses within
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that order in computing r(x) for data vectors. The message length achieved
by the best estimate for each model order is increased by the length of the
fragment needed to name the order, and the order giving the shortest total
length chosen. However, as noted below, the value of DI1(x|θ̂) defined above
cannot be used directly as the message length for a given model order with
best estimate θ̂, but requires a correction term.

As yet the general properties of the Ideal Group estimator have not been
explored. When applied to specific estimation problems, it appears to give
good results. An example of some interest is given in the next section. The
message length defined as DI1(x|θ̂) will generally be less than the length
I1(x) given by a true SMML code. DI1() is optimistic, in that it assumes
a code is used which just happens to have available in its estimate set Θ∗

an estimate ideally tailored to encode the given data. A true SMML code
has only a limited estimate set, so the true SMML message for the data will
in general have to use an estimate differing from the ideal value found by
the Ideal Group. For estimation problems with sufficiently regular likelihood
functions, the correction appears to be an increase in length of 0.5 nit for
each real-valued parameter of the model. More generally, one might use as
an additive correction to DI1() the expression

Averagey∈t(− log(f(y|θ̂)/r(y))) + log(f(x|θ̂)/r(x))

where t is the ideal data group using the estimate θ̂, x is the given data, data
vector y ranges over t, and y’s contribution to the average is weighted by
r(y).

4.2 The Neyman-Scott Problem

The Neyman-Scott problem is quite simple, yet it presents difficulties for some
normally satisfactory principles for estimation such as Maximum Likelihood
(ML). The given data comprises N instances. Each instance comprises J
data values drawn from a Normal density peculiar to that instance. It is
believed that the Normal densities for the different instances all have the same
Standard Deviation σ, but different means. The different instance means are
not believed to have any relation to one another, nor to be clustered. The
mean of the density for instance n (n = 1, . . . , N) will be denoted by µn

and the N -vector of these means simply by µ. The (N +1) parameters of the
model are therefore σ and the N components of µ. All (N + 1) parameters
are unknown, and are to be estimated from the data.

Let the data values found in instance n be xn,j , (j = 1, . . . , J). Define

mn = (1/J)
∑

j

xn,j
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s2 = (1/NJ)
∑

n

(xn,j − mn)2

The N -vector of instance data means (mn : n = 1, . . . , N) will be written
as m. Then s and m are together sufficient statistics for the problem. It will
be convenient to treat the given data as comprising just these statistics, and
to define the data marginal distribution and likelihood function in terms of
these rather than the raw xn,j values.

We assume the vector of means µ to have a Uniform prior density over
some large region of N -space, and assume σ to have the usual non-informative
prior density (1/σ) over some large range. The priors are of course unnor-
malized. With these priors, it is easily shown that the marginal distribution
of the sample mean vector m is Uniform in N -space, and, independently,
the marginal density of s is proportional to (1/s). Hence, the marginal data
density (unnormalized) can be written as

r(m, s) = 1/s

For given parameters µ and σ, the sample means vector m has an N -
dimensional Gaussian density with mean µ and covariance matrix Diag(σ2/J).
Independently of m, the average within-instance variance s2 is distributed
so that NJs2/σ2 has a Chi-Squared distribution with N(J − 1) degrees of
freedom. Hence, the negative log probability density of m, s can be written
(neglecting constant terms) as:

− log(f(m, s|µ, σ))

= (N/2) log(σ2/J) + (J/(2σ2))
∑

n

(mn − µn)2 − log(2s)

+ NJs2/(2σ2) − ((NJ − N)/2 − 1) log(NJs2/σ2) + 2 log σ

= NJ log σ + (J/(2σ2))(
∑

n

(mn − µn)2 + Ns2)

− (NJ − N − 1) log(s) − (N/2) log(J)

− 1

2
(NJ − N − 2) log(NJ) − log 2

The final (constant) three terms in the latter form will be dropped.

4.3 The Ideal Group Estimator for Neyman-Scott

Given the Uniform prior on µ and the scale-free 1/σ prior on σ, we do not need
to explore the details of an ideal group with estimate (µ, σ). It is sufficient
to realise that the only quantity which can give scale to the dimensions of the
group in (m, s)-space is the Standard Deviation σ. All (N + 1) dimensions
of the data space, viz., ((mn : n = 1, . . . , N), s) are commensurate with σ.
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Hence, for some N and J , the shape of the ideal group is independent of µ and
σ, and its volume is independent of µ but varies with σ as σN+1. Since the
marginal data density r(m, s) varies as 1/s, the coding probability q(µ, σ),
which is the integral of r(m, s) over the group, must vary as σN . The Ideal
Group estimate for data (m, s) obviously has µ̂ = m, and the estimate of σ
is found by maximizing q(µ, σ)f(m, s|m, σ) as

σ̂2
IG = Js2/(J − 1)

This estimate is consistent, since for true σ, the expected value of s2, is
(J − 1)σ2/J . This result is not critically dependent on the prior assumed for
σ. For instance, if a Uniform (and hence scale-free) prior is assumed, the
above argument shows that q(µ, σ) then varies as σN+1, giving

σ̂2
IG = NJs2/(N(J − 1) − 1)

Although biased towards high values, this estimate is still consistent, as its
expected value still converges towards the true σ2 as the number of instances
increases (but it no longer exists for N = 1, J = 2).

A numerical computation of the ideal group and estimate gives some
further details of the estimator’s behaviour. For the 1/σ prior and J = 2, we
find that the group includes data with widely varying values of s2/σ2. With
just one instance (N = 1), the ratio ranges from 0.002 to 3.59 with a mean
of 0.5 and Standard Deviation of 0.7. With more data (N = 100), the range
contracts slightly to [0.07, 1.6], again with mean 0.5 but now with a lower
SD of 0.07. This shows that the mean squared difference of s2/σ2 from its
expected value (0.5 for J = 2) varies as N−1/2. That is, the IG estimate, if it
occurred as an estimate in an SMML code, would be used for any of a group
of data vectors whose within-instance variance have a spread of the same
order as would be expected were the data obtained from a source whose σ
equalled the given IG estimate.

Similar behaviour is found with larger J , but of course as J increases, the
range of s within an ideal group becomes smaller.

The numerical solutions showed that the formula in Section 4.1.3 for an
additive correction to DI1() indeed gave values within 0.1 nit of half the
number of parameters estimated for either prior. The difference dropped to
less than 0.002 nit when N = 100.

4.4 Other Estimators for Neyman-Scott

The Neyman-Scott problem is of interest because it is a simple example of an
estimation problem in which the number of unknown parameters increases
with increasing data sample size. Each additional instance gives J more data
values, but introduces an additional parameter, the instance mean µn. The
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approximate MML methods of the next chapter have been applied to the
problem by Dowe and Wallace [13] and shown to be consistent, but problems
with this character prove difficult for some otherwise respectable estimation
principles.

4.5 Maximum Likelihood for Neyman-Scott

The Maximum Likelihood (ML) estimate for the Neyman-Scott problem
chooses estimates which maximize f(m, s|µ, σ). This gives µ̂ = m, which

is fine, but σ̂2 = s2 for any J and N . The latter estimate is inconsistent, and
for fixed J will not converge towards the true σ2 no matter how large N may
be.

Maximum Likelihood estimators are generally prone to under-estimation
of parameters of scale, such as σ. In most problems, this tendency results in
no more than a modest bias which decreases with sample size and does not
lead to inconsistency. However, when new data brings with it more unknown
parameters, the bias may never be overcome with enough data, as in the
Neyman-Scott problem. Other, more realistic, estimation problems with this
character appear in later chapters.

4.5.1 Marginal Maximum Likelihood

In problems where each new data instance brings another unknown parame-
ter, such parameters are sometimes termed “nuisance” parameters. If Maxi-
mum Likelihood attempts to estimate the nuisance parameters (the instance
means µn in Neyman-Scott) simultaneously with the “global” parameters
(the common SD σ in Neyman-Scott), inconsistent estimation of the global
parameters can result. However, it is sometimes possible to find a statistic
z(x) whose probability distribution depends only on the global parameters,
and which is a sufficient statistic for the global parameters. If so, maximizing
the likelihood of the global parameters given z(x) and ignoring all other as-
pects of the data may give a consistent estimate. Such an estimate is called a
Marginal Maximum Likelihood estimate. In the Neyman-Scott case, the total
within-instance variance NJs is such a statistic. The probability density of
NJs is

(1/σ2) χ2
NJ−N (NJs/σ2)

i.e., (NJs/σ2) has a Chi-Squared distribution with (NJ − N) degrees of
freedom independently of the nuisance parameters. If this probability density
is maximized for given s, the resulting marginal maximum likelihood estimate
of σ is Js/(J − 1), which is consistent.

The success of Marginal Maximum Likelihood depends on the existence
of such a statistic, which may not always be available. Further, if estimates of
the nuisance parameters are required, there is no general reason to suppose
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that good estimates of them will be got by maximizing the total data proba-
bility assuming that the global parameters have their marginal ML estimate
values, although this practice is sometimes used. In the Neyman-Scott case
it succeeds.

If no statistic such as NJs can be found, a partial Bayesian approach
may be used. If γ is the set of global parameters and η the vector of nuisance
parameters, and there is a reasonable Bayesian prior density h(η|γ), the nui-
sance parameters can be integrated out to give a marginal likelihood for the
global parameters, namely

Pr(x|γ) =

∫

f(x|γ, η) h(η|γ) dη

Maximization of this with respect to γ may then give a good estimate of γ̂,
but it remains the case that there is then no valid reason to estimate the
nuisance parameters by maximizing f(x|γ̂, η) with respect to η.

4.6 Kullback-Leibler Distance

This is a convenient place to introduce a new function which has many uses.
It will lead to a new estimator which will be compared with the Ideal Group
estimator.

The Kullback-Leibler distance (KLD) is a measure of the difference of one
probability distribution from another distribution for the same variable. Let
a(x) be a probability distribution of a discrete random variable x and b(x)
be another. Then the Kullback-Leibler distance of b() from a() is defined as

KLD(a, b) =
∑

x

a(x) log(a(x)/b(x))

If x is real-valued or a vector of real-valued components, then a(), b() are
probability densities rather than discrete distributions, and

KLD(a, b) =

∫

a(x) log(a(x)/b(x)) dx

Note that in the latter case, KLD(a, b) is not altered by a 1-to-1 non-linear
transformation of the random variable, as such a transformation does not
change the ratio of the densities.

In either case, KLD(a, b) is zero if and only if a() and b() are identical,
and is otherwise positive. It can become infinite if there is no value of x for
which both a(x) and b(x) are non-zero, that is if a(x)b(x) = 0 everywhere.
The distance is not symmetrical: in general, KLD(a, b) �= KLD(b, a).

KLD is a useful measure of difference, in part because of its invariance
under transformations of the variable, but importantly it is a measure of the
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bad effects of assuming x is distributed as b(x) when in fact it is distributed as
a(x). KLD(a, b) tells us how surprising observed values of x will appear if we
think they are being generated according to b() when in fact they come from
a(). KLD commends itself as a general-purpose “cost function” giving a cost
of mistaking a() for b(), since it does not depend on how the distributions are
parameterized, unlike for instance cost functions which depend on the squared
difference between estimated and true parameter values. In a message-length
context, KLD(a, b) shows how much longer, on average, an encoding of x
will be if we use a code optimized for b() rather than the true distribution
a(). Whatever the real cost of mistaking a() for b(), which may be unknown
when we try to estimate the distribution of x, it is likely to increase with
increasing distance of the estimated distribution from the true one.

For these reasons, it is attractive to consider estimating the distribution
of x by trying to find a model distribution g(x) with a small KLD from
the unknown true distribution f(x). Assuming that f(x) is believed to be
some member f(x|θ) of some set Θ of models with unknown parameter θ and
prior probability h(θ), and that we wish to select g(x) from the same set, so

g(x) = f(x|θ̂), Bayesian Decision Theory (Section 1.14) suggests we choose

the estimate θ̂ which minimizes the expected KLD “cost” of the estimate
from the unknown “true” value. Since we do not know the true value, we can
only minimize the expectation with respect to the posterior distribution or
density of the true value.

4.7 Minimum Expected K-L Distance (MEKL)

The expected KLD of estimate θ given data x is

EKLD(θ|x) =

∫

φ∈Θ

p(φ|x)dφ

∫

X

f(y|φ) log(f(y|φ)/f(y|θ))dy

=

∫

φ∈Θ

p(φ|x)dφ

∫

X

f(y|φ) log f(y|φ)dy

−
∫

φ∈Θ

p(φ|x)dφ

∫

X

f(y|φ) log f(y|θ)dy

where X is the range of x, p(φ|x) = h(φ)f(x|φ)/r(x) is the posterior density
of φ given x, and r(x) is, as usual, the marginal data distribution. Drop-
ping terms not involving θ, it suffices (subject to regularity) to minimize the
expression

∫

X

R(y|x) log(y|θ) dy

where

R(y|x) =

∫

φ∈Θ

p(φ|x) f(y|φ) dφ
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Thus, R(y|x) is the probability of obtaining new data y averaged over the
posterior of the unknown parameter. It is the probability (or probability
density) of new data, given the known data x. In the Bayesian literature, it is
called the predictive distribution. The predictive distribution can be regarded
as the probability distribution of a data value y generated by a two-step
random sampling process: first sample a parameter value θ from the posterior
of θ given x, then sample y from the conditional distribution f(y|θ).

The expression to be maximized in getting the MEKL estimate is there-
fore the expected log likelihood of new data, the expectation being taken
over the predictive distribution of new data. The minimizing estimate is a
maximum expected log-likelihood estimate, based not on the data we have,
but on what data we might expect to get from the same source. N.B. The
predictive distribution in general is not of the same mathematical form as the
conditional data distribution f(x|θ). That is, there is in general no θ ∈ Θ
such that for given data x, f(y|θ) = R(y|x) for all y ∈ X. The estimate so
found is called the “Minimum Expected K-L Distance” estimate, or MEKL.
Strictly speaking, it is a minimum-expected-cost value deduced from the data
rather than an inductively justified guess at the true model, but it can cer-
tainly be used as an estimate and has some virtues, e.g., invariance under
re-parameterization, reliance on sufficient statistics, and the fact that in a
useful sense it minimizes the difference between the estimated and true data
sources.

4.8 Minimum Expected K-L Distance for Neyman-Scott

The MEKL estimator for the Neyman-Scott problem will now be obtained.
For N data instances each of J data values, (using the same assumptions as
in Section 4.3) the data may be replaced by the sufficient statistics {mn =
(1/J)

∑

j xn,j} and S =
∑

n

∑

j(xn,j − µn)2. Obviously, the MEKL estimate
will have µ̂ = m. Hence, the MEKL estimate of σ will maximize the expected
likelihood of new data {yn,j} by choosing

σ̂2 = (1/NJ)E (
∑

n

∑

j

(yn,j − mn)2)

To evaluate the expectation above, first note that for arbitrary (µ, σ),

E (
∑

j

(yn,j − mn)2) = J E ((µn − mn)2) + Jσ2

Now, the posterior for σ2 is independent of m and µ, since S is a sufficient
statistic for σ. Thus, to sample (µ, σ) from their joint posterior, one may first
sample σ from its posterior, then sample µ from the posterior for µ given m
and σ. Suppose a value σ has been randomly chosen from its posterior. Then
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the posterior for µn is Normal(mn, σ2/J), so J E ((µn − mn)2) = σ2 for all
n. Hence, summing over the N instances,

E

⎛

⎝

∑

n

∑

j

(yn,j − mn)2

⎞

⎠ = N(J + 1)σ2

It remains to find the expected value of σ2 when σ2 is sampled from its
posterior.

For given σ, S/σ2 has a Chi-Squared density with N(J − 1) degrees of
freedom. Writing D = (N(J − 1)/2):

Dens(S|σ2) = (1/(2Dσ2 Γ (D)))(S/σ2)(D−1) exp (−S/2σ2)

Writing C = 1/σ2, and using the uninformative prior h(σ) = 1/σ which
implies the prior on C is 1/C, the posterior density of C given data S can be
found as

Dens(C|S) = (S/(2D Γ (D))) (SC)(D−1) exp (−SC/2)

Hence, the expected value of σ2 = 1/C is:

E(σ2|S) = (S/(2D Γ (D)))

∫

(1/C) (SC)(D−1) exp (−SC/2) dC

= (S/(2D Γ (D))) 2(D−1) Γ (D − 1)

= S / (2(D − 1))

= S / (NJ − N − 2)

Substituting this expected value of σ2 gives

E

⎛

⎝

∑

n

∑

j

(yn,j − mn)2

⎞

⎠ = (NJ + N) S / (NJ − N − 2)

and hence
σ̂2 = (1/NJ) (N(J + 1)) S / (N(J − 1) − 2)

Now, if the data were obtained from a distribution with true σ = σT , the
expected value of S is N(J − 1)σT , giving an expected MEKL estimate

E σ̂2 = σ2
T

N(J + 1) N(J − 1)

NJ (N(J − 1) − 2)

= σ2
T

J + 1

J(1 − 2/(NJ − N))

For fixed J , the estimate approaches (1+1/J)σ2
T from above as N increases,

so the MEKL estimate of σ2 is inconsistent, but, unlike the inconsistent
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estimate given by Maximum Likelihood, over-estimates rather than under-
estimates the true value. If N(J − 1) < 3, the expected value of the MEKL
estimate does not exist.

MEKL estimation appears to have a general tendency to over-estimate
parameters of scale such as σ. In most situations, the tendency produces
only a bias towards large values which reduces with increasing sample size,
but in the Neyman-Scott and similar situations, the bias is never overcome.
This result does not imply that MEKL is failing its task. MEKL aims to
find, within the set Θ of available models, the model which minimizes the
expected value of a cost function, namely the code length required by new
data. Equivalently, it minimizes the surprise expected to be occasioned by
new data, i.e., maximizes the expected log-likelihood of new data. As has been
pointed out before, such minimum-expected-cost techniques really belong to
Bayesian Decision Theory rather than to Statistical Induction. Their job is
to minimize an expected cost, not to make a good guess about the source of
the present data.

Note that MEKL is, in effect, trying to find that model θ ∈ Θ which best
approximates the predictive distribution of new data given present data. In
general, the predictive distribution will not have the same form as any model
in Θ.

4.9 Blurred Images

A comparison of the operations of Maximum Likelihood (ML), Strict Mini-
mum Message Length (SMML) or its IG approximation, and Minimum Ex-
pected Kullback-Leibler Distance (MEKL) can give some insight into why
often ML underestimates and MEKL overestimates parameters of scale, but
SMML appears not to. The following discussion is informal and proves noth-
ing, but at least suggests a reason.

Imagine a very simple estimation problem, with parameter θ ∈ Θ, prior
h(θ) varying only slowly in the region of interest, and data x ∈ X. Suppose
x is a minimal sufficient statistic for θ commensurate with θ and, really to
simplify the situation, suppose that for all θ, E(x) ≈ θ. Let the model form
be f(x|θ).

The real world has some true, unknown, θT . When we do an experiment
or observation, the Universe gives us some x which is a realization of f(x|θT ).
That is, it randomly (as far we know) picks x from a blurred image of θT ,
the density f(x|θT ). The task of an estimator is to attempt to recover θT

as far as possible. The Bayesian argument, given x, gives us a blurred idea
of θT , the posterior density P (θ|x) = h(θ)f(x|θ)/r(x). This image, by in a
sense mimicking the blurring of θT done by the Universe, gives us all the
information about θT which is available, but does not satisfy a pragmatic
need for a single good guess. The various estimator methods ML, SMML and
MEKL make such a guess.
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ML simply picks the value of θ which maximizes f(x|θ), ignoring the width
of the blurring done by the Universe (and also our prior beliefs). Blurring is
simply not addressed.

SMML tries to mimic, and thereby allow for, the Universe’s blurring. It
replaces Θ by a discrete subset of models Θ∗ and partitions X into subsets,
each being a blurred image of some model in Θ∗. The blurring is not quite
the same as done by the Universe, as each “image” in X is trimmed to a
finite size and made to fit with its neighbours, but the width of each SMML
image matches closely the RMS width of the blurring produced by f(x|θ).
The IG approximation is similar, but allows all θ ∈ Θ to have a blurred
image in X.

MEKL first makes a blurred image of x in Θ, i.e., the posterior, then makes
a blurred image of the posterior back in X, i.e., the predictive data distri-
bution given x. Finally, it picks the value of θ which maximizes the average
log-likelihood of data values in the doubly-blurred predictive distribution.

By not allowing for blurring, ML ignores the fact that fitting a location
parameter to the data such as a mean may reduce the apparent spread of
data values about their mean location, and hence lead to an underestimation
of the scale of the spread.

MEKL, by performing two blurring operations, in fact may double the
apparent spread around the mean, and so over-estimate the scale.

SMML does just one blurring, that which produces a blurred image in
X of a model θ, which at least roughly imitates what the Universe does in
producing x from θT . In so doing, it well compensates for the Universe’s
blurring and recovers a fair estimate of its scale.

I do not claim for this argument any more than an arm-waving plausibility.
At most it gives some reason to prefer estimation methods which involve just
one blurring operation by f(x|θ).

4.10 Dowe’s Approximation I1D to the Message Length

This section presents a fairly simple method of calculating an approximation
to the message length I1(x) which would be got when data x is encoded in an
explanation using an SMML code. It is similar in spirit to the IG approximate
estimator, which does not directly yield a message length, and the method
presented here does not directly yield an estimate. The approximation was
suggested by David Dowe and has been used in a number of applications
of MML, such as the inference of a univariate polynomial approximation to
noisy data points [16]. It emerges from the following scenario:

Consider an estimation problem with, in our usual notation, a prior h(θ)
over a set or space Θ of possible models parameterized by θ, a set X of
possible values for a data vector x, and a conditional probability model f(x|θ).
Imagine that a data value x has been observed, and is to be encoded in a
two-part message: an “assertion” stating an estimate θ̂ followed by a “detail”
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encoding x with length − log f(x|θ̂). The value x is given to a statistician
who is not expert in binary coding. She can work out the detail length for
any assumed estimate, but does not want to be involved in actually encoding
an estimate. She therefore, knowing x, Θ, h(θ) and f(x|θ), determines some
region Ax in Θ which she considers to contain good estimates. She describes
this region to a coding expert, and asks him to construct an assertion which
specifies a value of θ just precisely enough to ensure that the specified value
lies in Ax and then to use this specified value (θ̂ say) in constructing a detail
which encodes x. How should she choose the region Ax? If she chooses a large
region, the coder will be able easily to specify some θ within it using only a
short assertion, but the value he chooses may be a poor fit to the data. The
statistician’s best choice will depend on how she expects the assertion length
to vary with the size of Ax.

4.10.1 Random Coding of Estimates

There is a crude way the coder may use to find an assertion θ̂ which lies in
Ax and to encode it in a form decodable by the receiver. It does not require
him to use, or even know, the form of the probability model function f(x|θ).
He need only use the prior h(θ), which the receiver is also assumed to know.
The coder and receiver agree before the data x is known on a coding scheme
for assertions. They agree on a good pseudo-random number algorithm and a
seed value for starting it. The algorithm could be one such as is often used in
computer simulation programs, producing a sequence of real numbers which
appear to be randomly drawn from a Uniform distribution between 0 and
1. Using standard techniques, they further construct and agree on a derived
algorithm which will generate a sequence of values

θ1, θ2, θ3, . . . , θn, . . .

which appear to be drawn randomly from the prior density h(θ).
Now, given a region Ax ∈ Θ, the coder simply uses the generator to

generate the sequence of θ values until he finds one which lies in Ax. Suppose
this is θn, the nth in the sequence. He then chooses θ̂ to be θn and uses it
to encode x with a detail length of log f(x|θ̂n). To encode the assertion, he
simply encodes the integer n. If they are lazy, he and the receiver may agree
on a Universal code for the integers, in which case the length of the encoded
assertion is about log∗(n) ≈ log(n) + log log(n). If they care to use their
knowledge of the form f(x|θ) and this form is sufficiently regular, they can
work out a code with length about log n, which is a little shorter. The receiver
can decode n from the assertion, then use the agreed algorithm to generate
θn. Now knowing this estimate, the receiver can decode the detail to recover
the data x.
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4.10.2 Choosing a Region in Θ

If the statistician chooses a region Ax and the coder uses the coding scheme
above, the expected value of the sequence number n is easily shown to be
E(n) = 1/q(Ax) where q() is now defined as

q(Ax) =

∫

θ∈Ax

h(θ) dθ

Knowing how this method of choosing and coding assertions works, the statis-
tician expects that choosing a region Ax will result in an assertion length of
about − log q(Ax). She also knows that any θ within Ax may be employed
to code x in the detail, with values of θ having high prior density being more
likely to be chosen than those of low prior density. She therefore expects the
length of the detail to be

(1/q(Ax))

∫

θ∈A

h(θ) (− log f(x|θ))dθ

Hence, she should choose the region Ax to minimize

− log q(Ax) − (1/q(Ax))

∫

θ∈Ax

h(θ) log f(x|θ)dθ

An argument parallel to that used in 3.3.2 to derive the Boundary Rule for
SMML data groups shows that the minimum is achieved when

θ ∈ Ax iff log f(x|θ) > (1/q(Ax))

∫

φ∈Ax

h(φ) log f(x|φ) dφ − 1

That is, the region Ax should contain all models whose log-likelihood given
x is not less than the average log-likelihood within the region minus one.
The minimum value thus found is Dowe’s approximation to the explanation
length of the data x and will be written as I1D(x).

I1D(x) is quite a good approximation to the message length for data x
which would occur in an SMML code. In effect, the region Ax is constructed to
contain all those estimate values which might be used for x in an SMML-like
code, and uses the average detail length of these estimates as an approxima-
tion to the SMML detail length. The method departs from SMML in that
the “coding probability” whose negative log determines the assertion length
is based on the prior model probability within a region of the parameter space
Θ rather than on the marginal data probability within a region or subset of
the data space X. However, as should be evident from the scenario for the
construction of an explanation of x, the resulting message is quite efficiently
encoded despite the curious use of pseudo-random sequences. The expected
message length for x given by this construction is little more than the length
of the strictly optimal SMML explanation. The main source of inefficiency
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in the coding envisaged lies in the encoding of the estimate’s sequence num-
ber n. Use of a Universal code for n will never be optimal, and gives an
extra length of order − log(− log Ax) (which I have ignored in describing the
optimum region). In principle, if the coder used knowledge of the function
f(x|θ) as well as knowledge of the prior, he could work out the probability
distribution over n implied by these, and use a code for n optimized for this
distribution. This would not be easy, as the probability distribution over n
itself depends on the code used to encode n. In the approximation for the
message length described in this section, the slightly optimistic assumption
has been made that the code for n will have length only log n.

This method for approximating the explanation length I1(x) is rather
simpler than the IG approximate estimator, as it does not require calculation
of the marginal data distribution, and requires only one construction of a
region. The IG estimator, unless the problem permits an analytic solution,
requires an iterative search for the desired estimate, and the construction
via the Boundary Rule of a data group for each estimate considered in the
search.

The construction leading to I1D(x) however, does not yield an estimate.
It only yields a region in parameter space, not a unique point. It would be nice
if a general, invariant method could be devised for deriving from the region
a point estimate which fairly represented its “centre”, but no such method
has been found. However, the indecision about the best-guess model reflected
in the size of the region is not without excuse. At least roughly, the region
represents the set of estimates which might arise in SMML-like explanations
of x. Given x and the region Ax, it appears that for almost any θ ∈ Ax,
there will be some SMML-like code in which θ appears as the estimate for x.

The implication of the above argument is that, to the extent that it is
valid and Minimum Message Length a good principle, any point in Ax can
be regarded as an acceptable estimate of θ. If this is the case, the failure of
the method described here to yield a “region centre” as a point estimate is
of no great consequence. If a unique point estimate is desired, this argument
suggests that one may as well pick a random point in the region, e.g., by
sampling from the prior density distribution in the region. (This choice would
have the same effect as the method of finding and coding an estimate used
by the “coder” in our imaginary scenario.) Further, since the log-likelihood
of the worst-fitting models at the edge of the region have log-likelihoods only
one nit short of the average, no model in the region could be reasonably
rejected in the light of the data.

To sharpen this last point a little, suppose that the log-likelihood given x
has quadratic behaviour about its maximum, and that the prior on θ is slowly
varying. Then the region Ax will be a P -dimensional ellipsoid, where P is
the dimension of the parameter space, i.e., the number of scalar parameters.
It is then easily shown that the average log-likelihood of models in Ax is
less that the maximum log-likelihood by (P/2) nits, so the log-likelihood of
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every model in the region falls short of the maximum by at most P/2 + 1. A
standard significance test for the fit of a model θ to given data x is based on
the “log-likelihood ratio” λ defined as

λ = log(f(x|θML)/f(x|θ)) = log f(x|θML) − f(x|θ)

where θML is the Maximum Likelihood estimate from x. Under the conditions
assumed here, it is known that 2λ is distributed as a Chi-Squared variate with
P degrees of freedom. Hence, the likelihood-ratio test rejects the model θ if
2λ has a value exceeding what is probable for a χ2

P variate. For θ ∈ Ax, 2λ
never exceeds P + 2. But for no number P of free parameters is P + 2 an
improbably large value for a χ2

P variate. Hence, no model in Ax would be
rejected by a likelihood-ratio test.

4.11 Partitions of the Hypothesis Space

The Strict Minimum Message Length construction for an explanation code
is based on a partition of the set X of possible data into groups, and assigns
a single codeable estimate for each data group. However, when the set Θ of
possible models is the union of several distinct subspaces, e.g., the union of
several model classes with different structural forms or numbers of parame-
ters, we are prepared to modify the SMML code construction in order to force
the resulting estimator to assert an unambiguous choice of model subspace
(Sections 3.4.6 and 3.4.7). We force the explanation to begin by asserting a
subspace, using a code length which is the negative log of the prior probabil-
ity of all models within the subspace, and then proceed to encode the data
using an SMML code constructed as if the subspace were the entire set of
possible models. The first part of the explanation, asserting the subspace,
is thus based on the partition of Θ into regions (the subspaces) and uses a
coding probability given by the total prior probability within the asserted
region.

In early work on the development of MML, I attempted to develop an
approximation to SMML based entirely on a partition of Θ rather than on
a partition of X. I hoped that the code construction would be simpler than
SMML and have a more obvious relation to prior beliefs. In this coding
scheme, the set of possible models Θ is partitioned into a countable set of
regions {Rj : j = 1, . . .}. The set Θ∗ of codeable estimates has one member

θ̂j for each region Rj , and the coding probability qj = q(θ̂j) assumed for θ̂j

is equated to the prior probability within the corresponding region Rj . The
regions and codeable estimates are then chosen to minimize an approxima-
tion to the expected message length. In this approximation, the simplifying
assumption is made that any data generated from a source whose true model
is in region Rj will be encoded in an explanation which asserts estimate θ̂j .



214 4. Approximations to SMML

Hence, the partition of Θ into regions and the choice of codeable estimates
is made to minimize

I2 =
∑

j

∫

θ∈Rj

h(θ)

[

− log qj −
∑

x∈X

f(x|θ) log f(x|θ̂j)

]

dθ

= −
∑

j

qj log qj −
∑

j

∫

θ∈Rj

h(θ)

[

∑

x∈X

f(x|θ) log f(x|θ̂j)

]

dθ

where qj =

∫

θ∈Rj

h(θ) dθ.

The coding scheme is intuitively attractive in that each codeable esti-
mate θ̂j ∈ Θ∗ can be interpreted as representing an “uncertainty region” in
hypothesis space whose extent represents the likely estimation error, and is
coded with a coding probability which is the prior probability that the true
model in fact lies within this region. However, I no longer consider this code
construction to be generally advantageous.

For some estimation problems, the estimate set Θ∗ obtained by minimiza-
tion of I2 closely resembles in spacing and coding probabilities those given by
SMML. The quantity I2 is a pessimistic approximation to the expected mes-
sage length achieved by the coding scheme, since it assumes that data drawn
from a model in Rj will always be encoded using estimate θ̂j , even if the data
is such that some other member of Θ∗ would give a shorter explanation. In
fact, for simple model classes such as the Binomial and Normal distributions,
the scheme achieves an average explanation length within a small fraction
of a nit of an SMML code. Further, the notion of an “uncertainty region”
has proved useful in approximating the explanation lengths for many model
classes, even when the actual construction of an optimal partition of the
hypothesis space is infeasible. It also led to Dowe’s approximation I1D. Un-
fortunately, the code construction based on a partition of Θ into “uncertainty
regions” has flaws which vitiate the approach.

– A code for an estimation problem must be agreed before the data is known.
If it uses a partition of Θ, it is in effect deciding on the precision with
which the estimate is to be stated in a manner which may depend on the
estimate (different codeable estimates may have regions of different sizes)
but may not otherwise depend on the data. This restriction is tolerable
for models in the exponential family, for which sufficient statistics exist
having the same dimensionality as the parameter θ. The optimal precision
for stating an estimate must depend on the data only via the sufficient
statistics, and the estimate giving the shortest explanation for such models
approximately encodes the sufficient statistics. Hence, the best estimate
for some data determines its own precision. However, for model classes
having no minimal sufficient statistic, there may be no partition of Θ which
provides an appropriately precise estimate for all possible data. The size of
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the “uncertainty regions” of two different data sets, as found for instance
by Dowe’s I1D construction, may be quite different even if both data sets
can be well explained by the same estimate.

– For any model class, the construction of an SMML code need only be con-
cerned with the set of possible sufficient statistic vectors. When a minimal
sufficient statistic exists, this set has the same dimensionality as the param-
eter space, so a construction which partitions the parameter space is not
essentially simpler than the SMML construction. When a minimal suffi-
cient statistic does not exist, as noted above no generally efficient partition
of Θ may exist.

– In extreme cases, no feasible partition of Θ may exist. The partition con-
struction via minimization of I2 requires that for each region Rj a single

model θ̂j be found which can be used to encode any data sourced from any
model in Rj . If the model class is the Uniform distribution with unknown
mean µ and known range 1.0, the data which might be sourced from any
model within a finite range of µ will have highest and lowest values differ-
ing by more than 1.0, so no model within the model class can encode all
such data.

– The estimate θ̂j for some region Rj minimizes I2 when it is chosen to
give the highest possible average log likelihood over all data which could
come from models in Rj . If θ includes both a parameter of location and a
parameter of scale, the variation within Rj of model locations may make
the spread of all data sourced from models within Rj greater than the

spread expected from any one model in Rj . By fitting θ̂j to the collection
of all data sourced within the region, the construction may overestimate the
scale parameter. In fact, it can be shown that this construction, if applied
to the Neyman-Scott problem, results in an inconsistent overestimation of
the scale parameter σ similar to that shown by the MEKL estimator of
Section 4.8.

4.12 The Meaning of Uncertainty Regions

Although the idea of constructing an MML code via a partition of the hy-
pothesis space proved to be of very limited use, the associated idea that the
explanation of some given data can in some sense express an “uncertainty
region” in hypothesis space remains fruitful, and has been used in the MML
analysis of many complex models. Its principal application has been to ap-
proximate the length of the first part of an explanation by the negative log
of the total prior probability of all the hypotheses or models which lie within
the uncertainty region. This is a simpler approach than the strict one of us-
ing the negative log of the total marginal probability of all the data vectors
which would result in the asserted estimate, as is done in SMML. It also
gives a more direct and transparent connection between prior beliefs about
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the model and the length of the code needed to describe it. The idea of an
uncertainty region is, however, open to misinterpretation in its connection to
the construction and length of an explanation. The matter has been touched
upon in Section 3.1.7 but is worth another look. In thinking about how best
to encode some data (perhaps as yet unknown) in an explanation message,
an uncertainty region can be conceived in at least two ways.

4.12.1 Uncertainty via Limited Precision

Suppose the hypothesis space Θ is a one-dimensional continuum. The first
part of an explanation will encode an estimated parameter value θ̂ specifying
some model in Θ which fits the data well, but the need to keep the first part
short means that the estimate can be stated only to some limited precision.
Analysis of the effects of limiting the precision of θ̂ may reveal that the
explanation length will be (approximately) minimized if the estimated value
of θ is “rounded off” to the nearest value within a range of ±∆/2. If the
analysis falls short of actually constructing an SMML code with its set Θ∗ of
assertable estimates, the exact first-part estimate value θ̂ cannot be known,
but it is reasonable to suppose that, whatever it turned out to be, it could
be encoded fairly efficiently by giving it a code length equal to the negative
log of the total prior probability lying in an interval of size ∆ and centred on
the unrounded value we would ideally like to assert. This coding probability
is of course the prior probability that the true parameter value lies in the
interval, so should be a reasonable approximation to the probability (prior to
observing the data) that the unrounded estimate will lie in the interval, and
hence result in the assertion of the rounded-off value. This kind of approach
is developed in some detail in Chapter 5.

4.12.2 Uncertainty via Dowe’s I1D Construction

In Section 4.10, Dowe’s I1D approximation to the explanation length of some
given data x finds a region in Θ in which every model has a log-likelihood
log f(x|θ) no more than one nit worse than the (prior-weighted) average log-
likelihood in the region. The region so found may be considered an “uncer-
tainty region” and the I1D approximation supposes that the explanation of
x will assert some model in effect randomly chosen from the prior within the
region. Although the line of argument leading to the choice of region is some-
what different from that leading to a “precision” ∆, in model classes where
the “precision” approach is usable, the two types of region are numerically
very similar or identical.

4.12.3 What Uncertainty Is Described by a Region?

In both types of uncertainty region arising from the MML inference from
given data, the actual specification of the region does not form part of the ex-
planation message. The assertion in the explanation specifies a single model.
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It does not specify a range or set of models and should not be understood to
do so. The detail (second part) of the explanation encodes the data using a
code which would minimize the expected length of the detail were the data
generated randomly by the asserted model source. The coding of the detail
depends only on the single asserted model and not at all on the statistician’s
uncertainty about what the true model might be.

The uncertainty represented by an uncertainty region is the uncertainty
about what exact model might be asserted in an explanation of the data
using an SMML-like code. It should be seen as specifying a range or set
of models any one of which might be used in constructing an explanation
of the data with near-optimal brevity. Of course, were a genuine SMML
code constructed a priori and used in the explanation, there would be no
uncertainty: the asserted estimate would be the best available in the SMML
Θ∗ set of codeable estimates. Hence, the notion of an “uncertainty region”
does not appear in the SMML construction and there is no association of
regions of hypothesis space with the members of Θ∗. The uncertainty region
notion arises only with some SMML-like code constructions which aim to
achieve explanation lengths almost as short as a genuine SMML code by
simpler means.

As shown in Section 4.10.2, the I1D construction for well-behaved model
classes leads to an uncertainty region such that no model within the region
would be rejected in favour of the maximum-likelihood model by a conven-
tional likelihood-ratio statistical test. In fact, the region contains almost all
models which would be acceptable by such a test. The region thus corresponds
quite closely to the region in hypothesis space which conventional statistical
analysis would regard with fair “confidence” as containing the true model. A
similar result can be shown for uncertainty regions derived from the “preci-
sion” argument. Hence, although in their derivation uncertainty regions do
not in principle indicate the statistician’s uncertainty about the true model,
for many model classes these regions do correspond closely to regions of un-
certainty about the true model, at least if it is assumed that the model class
contains a model of the true source. Given this correspondence, it may seem
odd, even perverse, to insist that in an explanation message the assertion
should name a single model in the region, and that the detail be encoded
as if the data were drawn from just that exact model. If, after examining
the data, the statistician concludes with some confidence that the data came
from some model in the region, but cannot further pin the model down,
should we not allow the inductive inference stated in the assertion to assert a
confidence (or uncertainty) region of models and then encode the data using
a code which is optimized for the distribution of data expected to arise as
some sort of average over the distributions of the various models in the re-
gion? Such a message construction is entirely possible. However, as shown in
Section 3.1.7, minimization of the length of a message of this form does not
lead to a useful inference. The minimum is reached only when the uncertainty
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region expands to contain the entire hypothesis space. Of course, a more sen-
sible choice of region could be made by standard statistical techniques of
constructing “confidence” regions, and would lead to a message encoding the
data briefly. However, the message would not be the shortest possible mes-
sage which asserted a region, so minimization of explanation length could not
be used as an inference principle.

It appears that minimization of explanation length, as an inference prin-
ciple, works only if the explanation asserts a single model and uses only that
model in encoding the data in the detail. In later chapters, some models will
be discussed in which “nuisance” parameters occur whose number increases
with the data sample size. In these models, it is possible to remove the nui-
sance parameters from the likelihood function by summing or integrating
the likelihood of the data over the posterior distribution of these parameters
and then to estimate the remaining parameters using the modified likelihood.
Experience with these models has shown that MML estimates based on the
modified likelihood are somewhat less reliable than MML estimates based on
the original likelihood function in which all parameters appear and are esti-
mated. Although this experience is based on a small number of model classes,
it supports the principle that an MML assertion should specify a single, fully
detailed hypothesis, and suggests that the principle should be observed even
when the model class can apparently be simplified by the elimination of some
parameters of the original hypothesis space. However, the generality of this
idea has not been established.

4.13 Summary

This chapter has described two methods of approximating SMML estimation
which avoid the need to construct a complete partition of the set X of possible
data, and give results which are smoother functions of the given data. Both
methods retain the invariance property of SMML and much of its generality.

The Ideal Group (IG) estimator produces an estimated model by consid-
ering “ideal” data groups which do not form a partition. The construction
allows a finite coding probability to be associated with any model, not just
those models in the SMML set Θ∗, and then finds as estimate the model with
highest “posterior probability” calculated by taking the coding probability
of a model as its (finite) prior probability. The estimate it finds for the well-
known tricky Neyman-Scott problem is consistent. The estimates given by
two other methods, Maximum Likelihood and Minimum Expected Kullback-
Leibler Distance, are shown to be inconsistent in this problem. The inconsis-
tency of Maximum Likelihood can sometimes be corrected by marginalization
at the expense of losing estimates of nuisance parameters.

The IG estimator does not directly yield a good approximation to the
total message length. A length calculated as − log(q(θ̂)f(x|θ̂)) where θ̂ is

the IG estimate and q(θ̂) its coding probability is optimistic, and must be
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increased by an additive correction, which in regular cases is close to half a
nit per scalar parameter estimated.

The second method, due to David Dowe, gives an approximation I1D(x)
for the message length for data x by considering a region of parameter space
containing models of high likelihood. It then takes the assertion length as the
negative log of the total prior probability within the region, and the detail
length as the negative log probability of the data averaged over all models
within the region. The method does not yield an estimate from the data, but
suggests that any model within the region can provide an explanation of the
data with a length close to that which would be given by a true SMML code.

The notion of an “uncertainty region” of hypothesis space such as is de-
rived in the Dowe I1D approximation is discussed and contrasted with the
classical notion of a “confidence” interval or region. The assertion made in
the first part of an MML explanation is a single, exactly specified model,
and should not be read as asserting that the true model lies within an un-
certainty region. It is suggested that this principle may imply that nuisance
parameters should not be eliminated from the model space even when this
seems possible, but should be retained and estimated values specified in the
assertion.



5. MML: Quadratic Approximations to SMML

The previous two chapters have described how to construct estimate sets
Θ∗ and estimators which allow data to be encoded in explanations of short
expected length I1. The SMML method accurately minimizes I1, but requires
an intuitively obscure assignment of coding probabilities to assertions: the
coding probability of an assertion is taken as the probability that it will be
asserted. Further, it requires the generation of a code for the complete set X
of possible data sets before any estimation can be made for the data in hand,
and results in an estimator and an explanation length which are both bumpy
functions of the data. Chapter 4 offered approximations which avoid the
bumpiness and the need to generate a complete code book by concentrating
on just the on-average properties of the SMML estimate set Θ∗, but are still
computationally difficult and fail to reflect properties of SMML which arise
from the partitioning of X. Both SMML and the approximate methods are
data- and model-invariant, and the estimators depend on the data only via
sufficient statistics. The SMML estimator captures almost all and only the
information in the data which is relevant to the model.

None of these methods is suitable for ordinary statistical or inductive
inference, being mathematically difficult except in the simplest problems. In
short, the whole coding-based approach, as described in these two chapters,
seems to result in a great deal of pain for doubtful gain.

In this chapter, I attempt to develop approximate methods which avoid
the mathematical difficulties, but retain much of the generality, invariance,
and efficiency of SMML. It must be confessed that the attempt has only
limited success. No mathematically simple formula has been found for ob-
taining estimators which are continuous functions of continuous data, model-
invariant, and applicable to any form of model distribution. This goal, if it
can be achieved, must be reached by others. However, the methods presented
here are useable in sufficiently regular problems, are model-invariant or nearly
so, and have led to estimators which are competitive with and in some cases
superior to those obtained by more conventional methods.

Note that throughout this chapter, I assume that the hypothesis or model
space is a continuum of some fixed dimension and model probability function
f(x|θ). Choice among model spaces of differing dimension or functional form
must be made by finding the space which contains the model giving the
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shortest explanation, where the model estimation within each space ignores
the existence of the others, as described in Section 3.4.6 on Discrimination.

5.1 The MML Coding Scheme

Two simplifications to the SMML approach form the basis of this chapter.
The first changes the basis for assigning coding probabilities to assertable
estimates to a scheme based on the prior probability density h(θ) rather than
the marginal distribution of data r(x). The second is the use of a quadratic
approximation to the log-likelihood function log f(x|θ) in the neighbourhood
of θ.

The SMML coding scheme is based on partitioning the set X of possible
data into “data groups”, each being served by a single estimate in the set
Θ∗ of assertable estimates of θ. The construction of this partition is difficult,
and requires the computation of the marginal distribution r(x) over X, which
itself may be quite hard. The basic idea of the approximations in this chapter
is to avoid this construction. But if the data groups for assertable estimates
are not constructed, even in the “ideal” form of Section 4.1, we cannot equate
the coding probability q(θ̂) of an estimate to the total marginal probability
of its data group. Instead, we will attempt to relate the coding probabil-
ity of an estimate more directly to the prior probability density h(θ) in its
neighbourhood.

Initially, we will suppose that the model form f(x|θ) is such that an
SMML-like code would give a Θ∗ in which neighbouring estimates have sim-
ilar coding probabilities and a fairly even spacing. Such is the case with, for
instance, the simple Normal and binomial examples of Sections 3.3.1, 3.3.3
and 3.2.3. We defer for now problems such as the Uniform problem of Sec-
tion 3.3.6 where neighbouring estimates can have widely varying values of
q().

In the fairly regular cases assumed for the time being, we have seen that
the efficiency of an SMML-like code depends mostly on the sizes of data
groups rather than on the precise location of the boundaries between them.
In general, the larger the size of data groups, the fewer and more widely
spaced are the assertable estimates, so we may say that the efficiency of the
code is primarily dependent on the spacing, or density, of estimates in Θ∗.
We will therefore attempt to abstract from the code construction the effect of
varying the estimate spacing, without assuming anything about the precise
location of the estimates.

First, consider the case where θ is a single scalar parameter, so Θ is (some
interval of) the real line. Then Θ∗ is some set of points arranged along the
θ line. Different SMML-like codes could have different selections of points
without much affecting their efficiencies, but given some arbitrary point θ
on the line, the separation between the Θ∗ members immediately above and
immediately below θ will be about the same in all SMML-like codes. In
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other words, the spacing between assertable estimates in the vicinity of θ will
be roughly the same in all near-optimum codes. Thus, we can consider the
behaviour of SMML-like codes for the given problem to be summarized by
a function w(θ) defined for all θ ∈ Θ such that in any SMML-like code, the
separation between the assertable estimates bracketing θ is approximately
w(θ). This “spacing” function abstracts the notion of estimate spacing (or
equivalently data group size) which is common to all SMML-like codes for
the given problem, but the function contains no hint as to where precisely
the assertable estimates of a code might lie.

It is then natural to set the coding probability q(θ̂) of an assertable es-

timate θ̂ in some code equal to the total prior probability in an interval of
θ centred on θ̂ and of width w(θ̂). If the prior density h(θ) varies little over
an interval of this width, we can approximate the coding probability of an
estimate θ̂ by:

q(θ̂) = h(θ̂) w(θ̂)

With this assignment of coding probabilities to estimates, there is no guar-
antee that the coding probabilities of all estimates in Θ∗ will sum exactly
to one. However, the discrepancy should be small if the prior density and
spacing function vary only slowly from one estimate to the next. In any case,
the discrepancy will be ignored, as worse approximations are to come!

Imagine a statistician who wants to set up a coding scheme for two-part
explanation messages encoding data to be collected in a situation specified by
our usual X, Θ, h(θ) and f(x|θ), but (knowing little of binary coding tech-
niques) is not prepared to embark on the construction of a true SMML-like
code. Fortunately, she is assisted by a coder who, while knowing little about
statistical estimation, knows standard techniques for constructing efficient
codes for any specified probability distribution. It is believed that the model
family f(x|θ) is one for which SMML-like codes may be summarized by a
spacing function w(θ), but since the statistician cannot construct SMML-like
codes, the appropriate spacing function is unknown. The two agree to divide
the task of encoding the (as yet unknown) data between them. The statisti-
cian will devise some spacing function w(θ) and give it and the prior density
function h(θ) to the coder. He will use some standard algorithm for selecting

a set Θ∗ = {θ̂j : j = 1, 2, . . .} from the Θ line with spacing conforming to
w(), and will then construct an optimal code for the assertion based on the
probability distribution

Pr(θ̂j) = q(θ̂j) = h(θ̂j)w(θ̂j)

Then, when the statistician receives the data x, she will pick on some “target”
estimate θ′ and tell it and the data x to the coder. The coder will then pick
θ̂ as the assertion, where θ̂ is the member of Θ∗ closest to θ′, and encode x
using a standard-algorithm code for the distribution f(x|θ̂).

This cooperative procedure will result in an explanation length of
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I1(x) = − log(h(θ̂j)w(θ̂j)) − log(f(x|θ̂))

and does not require the statistician to be concerned with the exact placing
of Θ∗ estimates in Θ. It should be obvious that the resulting message is
decodable by a receiver who knows X, Θ, h() and f(|), the method used by
the statistician to choose the function w(θ) and the standard methods used
by the coder to select the members of Θ∗ given w() and to construct efficient

binary codings of the assertions and detail from the distributions q(θ̂j) and
f(x|θ).

Consider how the statistician should best choose her “spacing function”
w(θ) and (once the data is known) choose her “target” estimate θ′. (She must
of course choose w() without reference to the data.)

She would like to minimize I1(x) but this is a function of θ̂ which she

does not know. What she does know is that θ̂ is the member of Θ∗ closest
to her target θ′, so the difference or “roundoff error” ε = θ̂ − θ′ lies in a
range roughly ±w(θ′)/2. So she may get an approximate value for I1(x) by
expanding the expression for I1(x) as a power series in ε around θ′. For the
present, we will assume h(θ) and w(θ) to vary so slowly that, to second order
in ε, their variation may be neglected. Then

I1(x) = − log(w(θ̂)h(θ̂)) − log f(x|θ̂)

≈ − log(w(θ′)h(θ′)) − log f(x|θ′) − ε
∂

∂θ′ log f(x|θ′)

− 1

2
ε2 ∂2

(∂θ′)2
log f(x|θ′) + O(ε3)

The statistician may expect the rounding-off to be unbiased, and ε to be
equally likely to take any value in the range. Thus, she expects

Ecε = 0; Ecε
2 = w(θ′)2/12

where Ec denotes the expected result of replacing θ′ by the closest codeable
value θ̂. Then, the statistician expects

EcI1(x) ≈ − log(w(θ′)h(θ′)) − log f(x|θ′) − Ec(ε)
∂

∂θ′ log f(x|θ′)

− 1

2
(Ecε

2)
∂2

(∂θ′)2
log f(x|θ′)

≈ − log(w(θ′)h(θ′)) − log f(x|θ′)

− 1

24
w(θ′)2

∂2

(∂θ′)2
log f(x|θ′)

This expression is minimized with respect to w(θ′) by setting

w(θ′)2 = −12/

[

∂2

(∂θ′)2
log f(x|θ′)

]
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However, as mentioned above, the explanation code must be decided before

the data x is available, or, equivalently, be based only on information already
available to the receiver of the message. Thus, w(θ) must be chosen without

using knowledge of x, and hence without using the value of − ∂2

(∂θ′)2 log f(x|θ′).

While the exact value of this second differential is unavailable, the statis-
tician can compute its expectation

F (θ′) = −E
∂2

(∂θ′)2
log f(y|θ′)

= −
∑

y∈X

f(y|θ′)
∂2

(∂θ′)2
log f(y|θ′)

The function F (θ) is well known as the “Fisher Information”. It is a
function of θ whose form depends only on the form of the model probability
function f(y|θ). Being the expected value of minus the second differential of
the log likelihood, it indicates how sharply peaked we expect the negative log
likelihood to be, as a function of θ. If F is large for some θ, we expect to find,
in analysing data drawn from a source described by θ, that the negative log
likelihood will have a sharp and narrow peak. Thus, in framing an explanation
of such data, we expect to have to quote our estimate of θ quite precisely
in order to achieve a high value of f(x|θ̂), and hence a short detail. If F is
small, even quite large “rounding off errors” in coding assertion will not be
expected to increase the length of the detail much.

The use of the word “information” in the conventional name for F (θ) is
entrenched but slightly misleading. The quantity is not a measure of infor-
mation in its modern, Shannon, sense although it is clearly related to how
informative we expect the data to be about θ.

By analogy with this usage, the actual value of the second derivative of
the negative log likelihood is sometimes called the “observed” or “empirical”
Fisher Information, or just observed or empirical information. It is of course
a function of the data x as well as of the parameter θ, allowing the overloaded
but unambiguous notation

F (θ, x)
def
= − ∂2

(∂θ)2
log f(x|θ)

Using a “spacing function” w(θ) =
√

12/F (θ), we have, in expectation over
roundoff effects,

EcI1(x) = − log(w(θ′)h(θ′)) − log f(x|θ′) − 1

2

[

F (x, θ′)

F (θ′)

]

I1(x) ≈ − log h(θ′) − log f(x|θ′) +
1

2
log F (θ′) − 1

2
log 12

+
1

2

[

F (θ′, x)

F (θ′)

]
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≈
[

− log
h(θ′)

√

F (θ′)/12

]

+ [− log f(x|θ′)] +

[

1

2

F (θ′, x)

F (θ′)

]

(Formula I1A)

Formula I1A approximates the explanation length when data x is encoded
using asserted estimate θ̂ closest to θ′ in a set Θ∗ of assertable estimates
selected with spacing function w(θ) =

√

12/F (θ). The three square-bracketed
terms in the formula give respectively the length of the assertion, the ideal
length of the detail, and a “roundoff” term showing by how much the actual
detail length is expected to exceed the ideal length as a result of replacing
the target estimate θ′ by the nearest available assertable estimate θ̂.

Given data x, the statistician should choose her target θ′ to minimize I1A,
and this θ′ may be taken as the MML estimate. Note that for continuous data,
θ′ will be a continuous function of x, unlike the SMML estimate.

A further simplification is possible, convenient, and usually innocuous.
For model classes which have a minimal sufficient statistic s, we expect the
estimate θ′ to be an invertible function of s. That is, we do not expect two
different values of s to result in the same estimate, since the two values of s
say different things about θ and θ′ will be a smooth function of s. If indeed θ′

is an invertible value of s, then s is a function of θ′. Therefore, F (θ′, x) may
be expressed as a function of θ′ alone, since it depends on x only via s. And of
course the Fisher Information is a function of θ′ alone. Hence, we have both
the expected and empirical informations as functions of s alone. Barring a
very strong influence from the prior h(θ), we can reasonably assume the two
informations will be almost equal. Then we can approximate the empirical
information in the third term of I1A by the Fisher Information, giving the
simpler approximation for message length below.

I1(x) ≈
[

− log
h(θ′)

√

F (θ′)/12

]

+ [− log f(x|θ′)] +
1

2
(Formula I1B)

The estimate θ′ which minimizes I1B has sometimes been referred to as the
“MML87” estimate since this formula was first published in 1987 [55]. Al-
though its derivation involves some crude approximations, it has been used
with considerable success, as will be shown in some examples in later chapters.
However, it is important to understand the assumptions and approximations
made. In any intended application, one should check that the nature of the
problem does not seriously invalidate these simplifications.

5.1.1 Assumptions of the Quadratic MML Scheme

The assumptions underlying the derivation of formula I1A are:
(a) The form of the model class f(x|θ) is such that, were an SMML code
constructed, its Θ∗ could be described by a spacing function. Essentially, this
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means that if two data sets x1, x2 should result in the same target estimate
θ′, the same precision of specification for the estimate is acceptable in both
cases.
(b) For all x ∈ X, the likelihood function f(x|θ) has approximately quadratic
dependence on θ near its maximum.
(c) The space Θ is such that it has a locally Euclidian metric, permitting
the meaningful use of terms like “distance” and “nearest”.
(d) The Fisher Information is defined everywhere in Θ except perhaps at
boundaries of the range of θ.
(e) The prior density h(θ) and the Fisher Information F (θ) vary little over
distances in Θ of the order of 1/

√

F (θ).
The simpler formula I1B requires all of the above plus the further assumption:
(f) For all x ∈ X, if θ̂ is a reasonable estimate of θ given x, then F (θ̂, x) ≈
F (θ).

5.1.2 A Trap for the Unwary

Consider a data set of N independent cases, where the data for each case
xn comprises a binary value bn and some other, possibly vector-valued data
yn. The probability model is that the binary values have independently some
probability α of being 1, otherwise 0, and that yn is selected from a distri-
bution of known form f(y|θb) where the parameter θb is θ0 if bn = 0 but θ1

if bn = 1. The model parameters α, θ0 and θ1 are all unknown, with some
priors which need not concern us. Suppose the parameter θb has K scalar
components.

The expected Fisher determinant factorizes into three factors. The first is
just the Binomial-distribution form for the parameter α, viz., N/(α(1 − α)).
The second relates to θ0, so since this parameter has K components, the
second factor will contain the factor ((1 − α)N)K since the expected number
of cases relevant to θ0 is (1 − α)N . Similarly, the third factor, from θ1, will
contain the factor (αN)K . Overall, the Fisher Information will depend on
α via the factor (α(1 − α))K−1. If K is large, minimization of Formula I1B,
which contains half the log of the Fisher Information, will be biased by this
factor towards extreme values of α. If the sample contains n0 cases with b = 0
and n1 with b = 1, and either of these counts is not much larger than K,
minimization of I1B may give a silly estimate of α and of at least one of
θ0, θ1.

This deficiency in I1B was noted by P. Grunwald [18] who attempted to
circumvent it by assuming an unrealistic prior over α. The fault was not his,
since the article [55] from which he worked failed to make clear that I1B
is a sometimes dangerous simplification of the more accurate Formula I1A.
The problem of course arises because the sensitivity of the “detail” length
to roundoff of the θb parameters depends on the actual counts n0, n1, not
on their expected values (1 − α)N, αN . Use of I1A in some form solves the
problem.



228 5. MML: Quadratic Approximations to SMML

A simpler approach also solves the problem without recourse to I1A. In
the situation considered, the parameters θ0, θ1 are irrelevant to the model,
and hence the best coding, of the {bn : n = 1, . . . , N} data. We can there-
fore simply change the order of items in the explanation message. Instead of
insisting that the assertion of all estimated parameters precede any of the
data, we first encode the estimate of α as the probability parameter of a Bi-
nomial distribution with sample size N , then encode the bn values using the
asserted α. Having received this much, the receiver knows n0 and n1, so we
can now encode the estimates of θ0 and θ1 to the precision the receiver will
expect knowing the actual relevant sub-sample sizes. Finally, the yn values
are encoded using the appropriate θ estimate for each.

In general, there is no reason in framing an explanation message why the
assertion of a parameter should not be deferred until it is needed by the
receiver. The details of such of the data whose distribution does not depend
on the parameter may well precede the assertion of the parameter, and may
assist the receiver to know how precisely the parameter will be asserted. A
rearrangement of this sort is exploited in a later example (Section 7.4).

5.2 Properties of the MML Estimator

The discussion in this section mainly relates to the estimates found by min-
imizing formula I1B and the resulting explanation lengths. Where formula
I1A is discussed, it will be explicitly mentioned.

5.2.1 An Alternative Expression for Fisher Information

It is a well-known result that the Fisher Information F (θ) can also be ex-
pressed as the expectation of the square of the first derivative of the log
likelihood. By our definition,

F (θ) = −
∑

X

f(x|θ) ∂2

∂θ2
log f(x|θ)

But
∂

∂θ
log f(x|θ) =

(

∂

∂θ
f(x|θ)

)

/f(x|θ) = fθ(x|θ)/f(x|θ) say

∂2

∂θ2
log f(x|θ) =

(

∂

∂θ
fθ(x|θ)

)

/f(x|θ) − (fθ(x|θ)/f(x|θ))2

=

(

∂

∂θ
fθ(x|θ)

)

/f(x|θ) −
(

∂

∂θ
log f(x|θ)

)2

Hence,
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F (θ) = −
∑

X

∂

∂θ
fθ(x|θ) +

∑

X

f(x|θ)
(

∂

∂θ
log f(x|θ)

)2

= − ∂

∂θ

∑

X

fθ(x|θ) + E

(

∂

∂θ
log f(x|θ)

)2

= − ∂2

∂θ2

∑

X

f(x|θ) + E

(

∂

∂θ
log f(x|θ)

)2

= − ∂2

∂θ2
(1) + E

(

∂

∂θ
log f(x|θ)

)2

= E

(

∂

∂θ
log f(x|θ)

)2

Obviously, F (θ) ≥ 0 for all θ.
Note also that if the data are treated as continuous,

F (θ) = −
∫

x∈X

dx f(x|θ) ∂2

∂θ2
log f(x|θ)

=

∫

x∈X

dx f(x|θ)
(

∂

∂θ
log f(x|θ)

)2

5.2.2 Data Invariance and Sufficiency

This is obvious, since the data enter the estimation only via the model prob-
ability function f(x|θ).

5.2.3 Model Invariance

Formula I1B and the MML87 estimator which minimizes it are invariant
under one-to-one changes in the parameterization of the model space.

This follows because the function

h(θ)
√

F (θ)
f(x|θ)

is unchanged by such a change, as we will now show.
Let φ = g(θ) be a new parameterization of the model class, where g() is

an invertible function. Then in terms of the new parameter,

(a) The model probability function is f1(x|φ) where f1(x|g(θ)) = f(x|θ) for
all x, θ.

(b) The prior probability density is h1(φ) where

h1(g(θ)) =
dθ

dφ
h(θ) = h(θ)/

d

dθ
g(θ)
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(c) The Fisher Information is F1(φ), where

F1(φ) =
∑

X

f1(x|φ)

(

∂

∂φ
log f1(x|φ)

)2

Putting φ = g(θ),

F1(φ) =
∑

X

f1(x|g(θ))

(

∂

∂φ
log f1(x|g(θ))

)2

=
∑

X

f(x|θ)
(

dθ

dφ

∂

∂θ
log f(x|θ)

)2

=
∑

X

f(x|θ)
(

∂

∂θ
log f(x|θ)

)2(
dθ

dφ

)2

= F (θ)/

(

d

dθ
g(θ)

)2

Hence, for any x,

h1(φ)
√

F1(φ)
f1(x|φ) =

h(θ)/
(

d
dθg(θ)

)

√

F (θ)/
(

d
dθg(θ)

)2
f(x|θ)

=
h(θ)
√

F (θ)
f(x|θ)

So, if θ′ is the MML estimate maximizing the right hand side, φ′ = g(θ′)
maximizes the left hand side, and is the MML estimate of φ.

Formula I1A is not model-invariant.

5.2.4 Efficiency

Here, we ask how well explanations based on MML estimates approach the
minimum possible message length. No very general result is available, but
we can get an approximation which is useful for a number of common model
classes.

For some data value x ∈ X, the most efficient non-explanation code will
give a message of length I0(x) = − log r(x) where r(x) =

∫

θ∈Θ
h(θ)f(x|θ)dθ

We will attempt to obtain an approximation to r(x) in terms which
facilitate comparison with the MML explanation. Suppose that for given
x, the log likelihood log f(x|θ) has an approximately quadratic behaviour
about its maximum, and that this maximum occurs at θ = θ0 and has value
v = log f(x|θ0). Then, for values of θ close to θ0, we can approximate the log
likelihood by
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log f(x|θ) ≈ v +
1

2
(θ − θ0)

2 ∂2

∂θ2
log f(x|θ)

≈ v − 1

2
a(θ − θ0)

2 say

where a =

(

∂2

∂θ2
log f(x|θ)

)

θ=θ0

Hence, approximately, f(x|θ) = exp (v − a(θ − θ0)
2/2) , and assuming h(θ)

to be slowly varying near θ0, and that the main contribution to r(x) comes
from the vicinity of θ0,

∫

θ∈Θ

dθ h(θ)f(x|θ) ≈ h(θ0)

∫

θ∈Θ

exp (v − a(θ − θ0)
2/2) dθ

≈ h(θ0) exp(v)
√

2π/a

whence r(x) ≈ h(θ0)f(x|θ0)
√

2π/a and

I0(x) ≈ − log h(θ0) − log f(x|θ0) +
1

2
log a − 1

2
log 2π

By comparison, an explanation of x using the MML estimate θ′ has ex-
pected length

EcI1(x) = − log h(θ′) − log f(x|θ′) +
1

2
log(F (θ′/12) +

1

2

The MML estimate θ′ and the maximum-likelihood value θ0 are not in
general the same, but are usually quite close. In any case, since θ′ is chosen
to minimize EcI1(x), we have

EcI1(x) ≤ − log(h(θ0)f(x|θ0) +
1

2
log F (θ0/12) +

1

2

EcI1(x) − I0(x) ≤ 1

2
[log F (θ0) − log a + log(2πe/12)]

Recalling that −F is the expected second derivative of the log likelihood for
the parameter value θ0, and that −a is the actual second derivative of the
log likelihood for the given data x, we can conclude that, on average over all
x, the difference between the expected and actual second derivatives should
be very small. Hence, defining I1 as the expectation over all x of EcI1(x), we
have approximately

I1 − I0 ≈ 1

2
log(πe/6) ≈ 0.1765

This is the same difference as was encountered in several SMML single-
parameter estimators.

Thus, to within the approximation possible under our assumptions, we
are unable to distinguish between SMML and MML explanation lengths on
average.
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5.2.5 Multiple Parameters

The generalization of the MML approximation to model classes with sev-
eral parameters is straightforward. If θ is a vector with D components
(θ1, θ2, . . . , θk, . . . , θD) we define the Fisher matrix as the matrix of expected
second partial derivatives of the negative log likelihood.

F(θ) = [fkl(θ)] where

fkl(θ) = −
∑

x∈X

f(x|θ) ∂2

∂θk∂θl
log f(x|θ)

or, for continuous data

fkl(θ) = −
∫

x∈X

f(x|θ) ∂2

∂θk∂θl
log f(x|θ)dx

It is easily shown that F(θ) is symmetric and positive definite. Thus, for
any θ there exists a local linear non-singular transformation of the parameter
space

φ = A−1θ

such that the Fisher matrix for φ

F1(φ) = AT F(θ)A

is a multiple of the D-dimension identity matrix ID. We choose the transfor-
mation A to have unit Jacobian, i.e., unit determinant, so the determinants
of F1(φ) and F(θ) are equal. Then

F1(φ) = λID where λD = |F(θ)|

and the prior density of φh1(φ) = h(Aφ) = h(θ).
Paralleling the SMML solution for the Multivariate Normal problem dis-

cussed in Section 3.3.4, we find that the statistician must instruct the coder
to construct the estimate set Θ∗ so that, when transformed into φ-space, it
appears as a set Φ∗ which is an optimum quantizing lattice with Voronoi
regions of some volume w(φ). When the coder is given the statistician’s es-

timate θ′ based on data x, he is instructed to pick from Φ∗ the member φ̂
closest to φ′ = A−1θ′, and to use the corresponding member θ̂ = Aφ̂ of Θ∗ in
framing the explanation. Then the length of the detail formed by the coder
will be, to second order in (θ̂ − θ′),

− log f(x|θ′) +
1

2
(θ̂ − θ′)T F(θ′)(θ̂ − θ′)

where the first order term is omitted as it will have zero expectation.
In φ-space, the detail length is
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− log f1(x|φ′) +
1

2
(φ̂ − φ′)T F1(φ

′)(φ̂ − φ′) = − log f(x|θ′) +
1

2
λ(φ̂ − φ′)2

Hence, the increase in detail length due to the “rounding-off” of θ′ to the
closest codeable estimate θ̂ is 1

2λ(φ̂ − φ′)2.
The statistician knows only that φ′ is a point in the Voronoi region of

φ̂, and that this region, of volume w, is a Voronoi region of an optimum
quantizing lattice in D dimensions. Hence, her expectation of the roundoff
term is (following Section 3.3.4)

Ec[
1

2
λ(φ̂ − φ′)2] =

1

2
λEc(φ̂ − φ′)2 =

1

2
λDκDw2/D

where κD depends on the lattice geometry.
The coding probability associated with θ̂ is that associated with φ̂:

q(θ̂) = q1(φ̂) = wh1(φ̂) = wh(θ̂)

so the statistician expects the length of the assertion to be about − log(wh(θ′)).
The terms − log(wh(θ′)) and 1

2λDκDw2/D are the only terms through
which the choice of w affects the explanation length. Hence, the statistician
chooses w to minimize their sum, giving

−1/w + λκDw2/D−1 = 0

w = (λκD)−D/2

Ec[
1

2
λ(φ̂ − φ′)2] =

1

2
λDκDw2/D = D/2

Recalling that λD = |F(θ)|, we have w = (κD)−D/2/
√

|F(θ)|

q(θ̂) ≈ wh(θ′) = (κD)−D/2h(θ′)/
√

|F(θ′)|

Hence, the statistician, given data x, will choose the MML estimate θ′ to
maximize

h(θ′)
√

|F(θ′)|
f(x|θ′)

and the expected explanation length will be

EcI1(x)=− log h(θ′) +
1

2
log |F(θ′)| − log f(x|θ′) + (D/2) log κD + D/2

Note that the determinant |F(θ)| is the Fisher Information for multiple pa-
rameters and will henceforth be denoted by F (θ), as for a single parameter.
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5.2.6 MML Multi-Parameter Properties

The single-parameter arguments generalize directly to show that in the multi-
parameter case, the MML estimate using formula I1B is a function of suffi-
cient statistics, and is data- and model-invariant.

To consider the coding efficiency of multi-parameter explanations, we can
generalize the argument of Section 5.2.4 to obtain an approximation to the
marginal probability r(x) of the given data. If the log likelihood has approx-
imately quadratic behaviour about a maximum value v at θ0, we may write
for θ close to θ0

log f(x|θ) ≈ v − 1

2
(θ − θ0)

T B(θ − θ0)

where B is the matrix of partial second derivatives of log f(x|θ) at θ0. This
approximation leads to

r(x) =

∫

Θ

h(θ)f(x|θ) dθ

≈ h(θ0)

∫

Θ

exp(v − (θ − θ0)
T B(θ − θ0)/2) dθ

≈ h(θ0)e
v(2π)D/2/

√

|B|

whence I0(x) ≈ − log h(θ0) − log f(x|θ0) + 1
2 log |B| − (D/2) log 2π .

Making the same assumptions as in Section 5.2.4, most importantly that
on average B is close to its expectation F(θ) at θ = θ′, we find that, on
average over all x ∈ X,

Av(EcI1(x) − I0(x)) ≈ (D/2) log κD + D/2 − (D/2) log 2π

I1 − I0 ≈ (D/2)(1 + log(2πκD))

As shown in Section 3.3.4, the known bounds on κD then lead to

1

2
log(Dπ) − γ > (I1 − I0) >

1

2
log(Dπ) − 1

(Note that in the above we have tacitly re-defined the generic symbol I1

to stand, not for the average message length achieved by some particular
explanation code, but rather the average message length which we expect
to be achieved by an explanation code following the MML spacing function
w(θ) but otherwise unspecified. We will use I1 with this meaning in any
context concerned with the MML approach rather than a fully specified code.
Similarly, in an MML context, we may use I1(x) to stand for the explanation
length for data x which we expect to achieve using a code following the MML
spacing function. That is, we will use I1(x) to stand for EcI1(x).)

We again find that, to within the approximation of this section, the ex-
pected coding efficiency of the MML approach is indistinguishable from that
of the strictly optimal SMML code.
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It is worth remarking that the argument of this section suggests that the
coding efficiency of the MML approach for some specific data x differs from
its average value (I1 − I0) mainly to the extent that the determinant |B| =
F (θ′, x) of the actual log-likelihood differentials differs from the determinant
|F(θ′)| = F (θ′) of expected differentials at the estimated parameter value. For
well-behaved model classes, the sampling distribution of |B| for some fixed
θ should become concentrated around |F(θ)| as the sample size increases, so
for large samples we expect that the coding-efficiency achieved on the actual
data will approach the average. That is, we expect

I1(x) − I0(x)→I1 − I0 for large samples

5.2.7 The MML Message Length Formulae

As mentioned above, in use of the MML approach, we will in future drop
the “Ec” symbol denoting an averaging over all codes with the same spacing
function, and use simply I1(x) for the Ec expected length of an MML expla-
nation of data x, and I1 for the expected length of an explanation averaging
over all MML codes and all data.

5.2.8 Standard Formulae

The formula usually used in constructing MML estimators for D scalar pa-
rameters will be (from Section 5.2.5):

I1(x) = − log h(θ′)+
1

2
log F (θ′) − log f(x|θ′)+(D/2) log κD+D/2

= − log
h(θ′)

√

F (θ′)κD
D

− log f(x|θ′) + D/2

Here, the first term gives the length of the assertion; the second and third
give the length of the detail including an expected correction (D/2) for the

effect of rounding off θ′ to θ̂.
The first term is based on approximating the coding probability of

the assertion by the local prior density h(θ′) times a volume w(θ′) =
(

1/
√

F (θ′)κD
D

)

of Θ surrounding θ′. This approximation may be poor under

certain conditions, and some possible improvements are suggested below.

5.2.9 Small-Sample Message Length

If there is little data, the volume w(θ′) as given above may exceed the volume
of a local peak in the prior density h(θ′), or even exceed the volume of the
parameter space Θ. In such case, h(θ′)w(θ′) is a poor approximation to the
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total coding probability which should be accorded to θ′ and may even exceed
one. A crude but useful improvement is then to approximate the coding
probability by

q(θ′) = h(θ′)w(θ′)/
√

1 + (h(θ′)w(θ′))2

which at least cannot exceed one. This gives

I1(x) ≈ 1

2
log

(

1 +
F (θ′)κD

D

(h(θ′))2

)

− log f(x|θ′) + D/2

Note that this revised expression is still invariant under nonlinear transfor-
mations of the parameter.

5.2.10 Curved-Prior Message Length

If the prior density h(θ) varies substantially over the volume w(θ), its cur-
vature can affect the optimum choice of w(θ). For instance, if log h(θ) has a

large negative second derivative, the effect of a rounding-off error ε = θ̂ − θ′

will not only be to increase the detail length, but also, on average, to decrease
log h(θ̂) and hence increase the assertion length. If so, the expected message
length can be reduced by making the volume w(θ′) (and hence expected
roundoff effects) slightly smaller.

A rough correction for curvature in the prior can be made by replacing
the Fisher Information F (θ) by a corrected expression

G(θ) = |G(θ)|

where the elements of G are given by

gk,l(θ) = −
∑

x∈X

f(x|θ) ∂2

∂θk∂θl
log f(x|θ) − ∂2

∂θk∂θl
log h(θ)

That is, the second derivative of log h() is added to the expected second
derivative of the log likelihood.

A valid objection to this revision is that the resulting expression for I1(x)
is no longer invariant under transformations of the parameters. However, the
revision is capable of giving an improved approximation to I1(x) and an
improved estimate of θ in parameterizations where F (θ) varies only slowly.

In the special case that the prior has the invariant conjugate form (Sec-
tion 1.15.6)

h(θ) = Ch0(θ)f(z|θ)
where h0() is an uninformative prior (Section 1.15.4), z is some real or imag-
ined “prior data” and C is a normalization constant, the prior data z con-
tributes to the explanation length in exactly the same way as the given data
x. Thus, the calculation of F (θ) can properly be based on an effective sample
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size which includes both the size of x and the “sample size” of z. The F (θ) so
calculated then accounts for the expected curvature of log h(θ), and does so in
an invariant manner. Of course, the expected second derivative is a function
of θ and the sample size of the prior data, not of z, and so may differ from
the actual second derivative of − log h(θ).

5.2.11 Singularities in the Prior

If the prior density h(θ) becomes infinite at some point in Θ, say, θ0, the
approximation to the coding probability q ≈ h(θ)w(θ) will of course break
down at θ0 (unless F (θ)→∞ at θ0 in such a way as to compensate for the
singularity in h(θ)). A singularity in h(θ) may be removed by a non-linear
change in parameter to φ = g(θ), giving a non-singular prior density for φ,
but such a transformation will not remove the problem, since h(θ)/

√

F (θ) is
invariant under non-linear transformations. It follows that a similar difficulty
arises if for some θ1 ∈ Θ, F (θ1)→0 and h(θ1) > 0.

We have found no general remedy for this kind of problem within the
MML framework. Recourse to the more robust approximations of Chapter 4,
which do not use the Fisher Information, should give satisfactory results but
only with a fairly complex calculation.

5.2.12 Large-D Message Length

When the number of scalar parameters (D) is four or more, the approximation
to the lattice constant κD derived in Section 3.3.4 can be used to simplify
the expression for I1(x) based on formula I1B, giving

I1(x) ≈ − log
h(θ′)
√

F (θ′)
− log f(x|θ′) − (D/2) log 2π +

1

2
log(πD) − 1

with an error of less than 0.1 nit. Use of this approximation avoids the need
to consult tables of lattice constants.

5.2.13 Approximation Based on I0

For the multi-variate Normal distribution with flat prior, it was shown in
Section 5.2.6 that

1

2
log(Dπ) − γ > (I1 − I0) >

1

2
log(Dπ) − 1

Although the derivation was based on assumptions of large D, Normality and
a flat prior, the inequality has been found to hold approximately for many
forms of likelihood function and for non-uniform priors. Even for D = 1, it
is in error by less than one nit when applied to a Binomial distribution. In
calculating message lengths for complex models, we often need to calculate
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the length for some simple distribution which forms part of the model, but
have no great interest in the estimates of its parameters. For some simple
distributions, it can be easier or more convenient to calculate I0 rather than
I1. It is then useful to approximate the explanation length as

I1 ≈ I0 +
1

2
log(Dπ) − 0.4

Here, the constant 0.4 has been chosen to make the approximation correct
within 0.1 nit for D = 1 and Normal or Binomial distributions. The ap-
proximation becomes slightly pessimistic (over-estimating I1 by perhaps 0.5
nit) for large D and any likelihood function whose log has roughly quadratic
behaviour around its peak.

5.2.14 Precision of Estimate Spacing

The optimum spacing of MML estimates in a D-parameter model is approx-
imated in by choosing the spacing function w(θ) to minimize the sum of two
terms in the expected message length EcI1(x), viz.,

− log w + (C/2)w2/D

where we have dropped the dependence on θ for brevity. The first term,
arising from the coding probability of the estimate θ̂, favours large w, i.e.,
wide spacing. In the second term, C depends on the Fisher Information,
and the term represents the expected increase in detail length resulting from
rounding-off the MML estimate θ′ to the nearest available estimate θ̂. It
favours small w, i.e., fine spacing. These are the only terms in Ec I1(x) which
depend on w().

Minimization by choice of w gives w0 = (D/C)D/2, which results in the
second term’s having the value D/2. Now consider the consequences of a non-
optimal choice of w, say, w = w0β

D/2. Then the sum of the w()-dependent
terms becomes

− log(w0β
D/2) + (D/2)β

an increase over the minimum of

−(D/2) log β + (D/2)(β − 1) = (D/2)(β − log β − 1)

The message length, and hence the posterior probability of the explanation,
is not significantly degraded by an increase of, say, 0.5 nit, so a variation of
w causing an increase up to 0.5 would usually be tolerable. For a tolerable
increase of δ, the value of β must lie between the two solutions of

β − log β − 1 = 2δ/D

If these solutions are β1 < 1, β2 > 1, then the value of w may range over
a factor (β2/β1)

D/2 without exceeding an increase of δ nit. The linear di-
mensions of a coding region, which roughly speaking determine the roundoff
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precision for individual parameters, vary as w1/D, and hence can range over
a factor (β2/β1)

1/2. For δ/D ≪ 1,

β1 ≈ 1 − 2
√

δ/D, β2 ≈ 1 + 2
√

δ/D, β2/β1 ≈ 1 + 4
√

δ/D

Hence, the volume w may range over a factor of about

w2/w1 ≈ (1 + 4
√

δ/D)D/2 ≈ (2
√

δD)

and the linear dimensions over a factor of about

r2/r1 =
√

β2/β1 ≈ 1 + 2
√

δ/D

A few values r2/r1 and w2/w1 are shown in Table 5.1 for δ = 0.5.

Number of Parameters D r2/r1 w2/w1

1 4.45 4.45
2 2.80 7.81

10 1.57 89.7
30 1.30 2346

100 1.15 1397218

Table 5.1. Ranges of precision volume for < 0.5 nit change

Even for a single scalar parameter (D = 1) the coding region size can
vary over a 4:1 range with little effect on the message length, and for 100
parameters, the range exceeds one million to one. However, for increasing
D, the linear size of a coding region, i.e., the roundoff precision of a single
parameter, must be tightly controlled, as shown by the decreasing values of
r2/r1 at high D.

The above calculation assumes that the roundoff precisions of all param-
eters are varied by the same ratio. However, if the roundoff precisions of the
individual parameters differ randomly and independently from their optimum
values within a range of say, r0/α to r0α where r0 is the optimum precision
for the parameter, then the ratio of the resulting region volume w to its op-

timum w0 is expected to fall roughly in the range (1/α)
√

D to α
√

D. In this
case, to achieve an expected increase in message length of less than δ we need
only require

α
√

D < exp(
√

δD); α < exp(
√

δ)

Thus, for δ = 0.5, a random error in choosing the precision of each param-
eter of order α = exp(

√
0.5) ≈ 2 is probably tolerable, i.e., each parameter

precision may vary over a 4:1 range.
The conclusion of this analysis is that we need not be too fussy about

choosing the precision with which parameters are stated in an explanation,
getting each parameter precision within a factor of two of its optimum value
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will usually be good enough. By corollary, we may accept fairly rough approx-
imations in evaluating the Fisher Information in MML analyses, especially
for large D. For D = 100, an error of 1000:1 in calculating F (θ) will scarcely
matter. However, a systematic error in choosing the precisions of a large num-
ber of parameters can have a serious effect on the explanation length, and
may badly corrupt an MML comparison of competing models with widely
differing numbers of parameters.

5.3 Empirical Fisher Information

The MML approximation uses the expected second derivative of the nega-
tive log-likelihood, i.e., the Fisher Information F (θ), to determine the pre-
cision with which an assertion should specify real-valued parameters. It is
used because the parameter estimates must be asserted before the data
has been stated in the detail, and therefore the code used in the asser-
tion cannot depend on the data. In fact, the extent to which the length
of the explanation detail is affected by rounding-off estimates depends (ap-
proximately) on the actual second derivative of the negative log-likelihood,

F (θ, x) = − ∂2

∂θ2 log f(x|θ), which is, of course, a function of the data x.
For well-behaved likelihood functions, F (θ) is an adequate approximation
to F (θ, x) for values of θ which are reasonable estimates given x. However,
there are circumstances where it may be preferable to use the actual or “em-
pirical” information F (θ, x), or some other approximation to it, rather than
F (θ).

5.3.1 Formula I1A for Many Parameters

Even when the spacing function is based on the expected information F (θ),
the increase in detail length expected because of coding roundoff is better
estimated by the roundoff term of formula I1A of Section 5.1

1

2

F (θ′, x)

F (θ′)

rather than the simpler term 1
2 of formula I1B. (Both terms are for a single

scalar parameter.)
To generalize to the multi-parameter case with D scalar parameters (i.e.,

with Θ a D-dimensional space) appears to involve a complication. In D di-
mensions, both the expected and empirical Fisher matrices are D-by-D sym-
metric matrices. In dealing with the multi-parameter form for formula I1B
(Section 5.2.5), we used a local linear transformation of Θ to transform the
expected matrix F(θ) to a multiple of the identity matrix, so that in the trans-
formed space we did not need to worry about the direction of the roundoff
vector ε = φ̂ − φ′, only its length. However, there is no guarantee that the
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transform which makes the expected matrix have this form will make the em-
pirical matrix also have this form. Thus, it seems we have to try to estimate
the roundoff term in the transformed space by a term like

δT Fφ(φ, x) δ

where φ is the transformed parameter, δ is a roundoff vector which, in the
transformed space, has a uniformly distributed direction, and Fφ(φ, x) is the
empirical Fisher matrix in the transformed space, but is not necessarily a
multiple of the identity matrix.

This complication may be avoided if we are prepared to accept a code in
which, rather than making Θ∗ as nearly as possible an optimal quantizing
lattice having the Voronoi region volume for each θ̂ ∈ Θ∗ equal to w(θ̂), we
have as Θ∗ a random selection of points in Θ where the estimates are ran-
domly selected from a density given by 1/w(θ). As shown in Section 5.2.5,
such a selection does nearly as well as an optimum lattice, especially when
D is large. Suppose such a Θ∗ is used. To estimate the roundoff term for
some target estimate θ′, transform Θ by a locally linear unit-Jacobian trans-
formation to a space Φ in which the empirical information matrix Fφ (φ′, x)
is a multiple of the identity matrix, where φ′ is the transform of θ′. In this
new space, the random set Θ∗ will appear as a set Φ∗ which is randomly
distributed in Φ with local density near φ′ equal to 1/w(θ′), the same density
as in the original Θ space, because the unit-Jacobian transformation does not
change densities. Now we need only estimate the expected squared length of
the roundoff vector φ̂−φ′, where φ̂ is the member of Φ∗ closest to φ′ in terms
of ordinary Euclidian distance. This follows because Fφ (φ′, x) is diagonal
with equal diagonal elements

(Fφ(φ′, x))1/D = (F (θ′, x)1/D

It then easily follows that, with optimal choice of w(θ′), based on the expected
Fisher Information F (θ′), the roundoff term is expected to be the simple
expression

Roundoff term =
D

2

(

F (θ′, x)

F (θ′)

)(1/D)

The resulting multi-parameter version of Formula I1A is then

EcI1(x) ≈
[

− log
h(θ′)

√

F (θ′)/12
+

D

2
log κD

]

+ [− log f(x|θ′)]

+

[

D

2

(

F (θ′, x)

F (θ′)

)(1/D)
]

where κD is the constant appropriate for a random Θ∗ in D dimensions.
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5.3.2 Irregular Likelihood Functions

First, for some likelihood functions, F (θ, x) may differ greatly from F (θ) even
when θ is close to the “true” parameter value. In this case, a code whose Θ∗

set of assertable estimates is based on F (θ) may lead to assertions whose
estimates are much more precise, or much less precise, than is warranted by
the given data. As the analysis of Section 5.2.14 has shown, the explanation
length is little affected by changes in estimate precision by factors of two
or more, but for particularly difficult model classes, F (θ, x) and F (θ) may
well differ by orders of magnitude. If so, the length of the explanation may
be much longer if the estimate precision is based on F (θ) than it would be
were the precision tailored to F (θ, x). A possible remedy is then to adopt a
three-part explanation structure:

Part 0 specifies a precision quantum w.
Part 1 states an estimate θ̂ to precision w, e.g., using a Θ∗ code where

the Voronoi region of each estimate has volume about w, and hence the
estimate has a coding probability about h(θ̂)w, giving an assertion length

about − log(h(θ̂)w) .

Part 2 encodes the data as usual using a code optimal if θ = θ̂, and has
length − log f(x|θ̂) .

In practice, rather than having Part 0 specify the region volume w di-
rectly, it would often be better to have it specify one of a family of precision
functions, wm(θ), m = 1, 2, . . .. For instance, if F (θ) exists for the model
family f(.|θ) it may suffice to specify one of the family of spacing functions

wm(θ) = 4m/
√

F (θ), m = . . . ,−2,−1, 0, 1, 2, . . .

This family provides a choice of spacing functions with spacing in Θ near
θ based on F (θ), but varying by powers of 4. It would then always be possible
to choose a spacing within a factor of two of the spacing optimal for the actual
information F (θ, x).

The family of spacing functions should, if possible, be chosen so that the
marginal distribution of the optimum index m is independent of θ. If such a
choice can be made, Part 0 conveys no information about θ and so the coding
of Part 1, which assumes a prior h(θ) independent of m, remains efficient.
The index m, (or rather, that function of the data which leads the coder to
choose a value for m) plays a similar role to Fisher’s concept of an “ancillary
statistic”: it conveys some information about the likelihood function given x
(in this case, about the sharpness of its peak) but is not directly informative
about θ.

If a three-part explanation is used, a code for Part 0 must be determined,
based on the marginal distribution of the index m. That is, to produce an op-
timum version of this three-part code, it is necessary to calculate, for random
θ sampled from h(θ) and random x sampled from f(x|θ), how often we would
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expect to use the spacing function wm(θ). The Part 0 code for m would then
be based on this probability distribution over m. However, in many cases a
rough guess at the proper coding of the index m might be adequate, since the
length of Part 0 will typically be small compared to the other components of
the explanation.

5.3.3 Transformation of Empirical Fisher Information

There is a problem with expressions for explanation lengths which involve use
of the empirical Fisher Information, such as formula I1A and the three-part
message form above. The problem will carry over into estimator functions
which seek to minimize these expressions.

Formula I1B, which uses only the expected Fisher Information, is model-
invariant. Its value is not changed by a regular non-linear transformation of
the model space Θ with parameter θ to a different parameterization space
Φ with parameter φ, as was shown in Section 5.2.3. The invariance arises
because the Fisher Information F (θ) transforms to Fφ(φ) in the same way as
the square of a density. That is, in the one-dimensional case,

Fφ(φ) = F (θ)

(

dθ

dφ

)2

so ratios such as h(θ)/
√

F (θ) are unaffected by the transformation.
The empirical information does not transform as the square of a density.

In the one-dimensional case, if L = − log f(x|θ) = − log fφ(x|φ) then

Fφ(φ, x) =
∂2L

∂φ2
=

(

dθ

dφ

)2
∂2L

∂θ2
+

d2θ

dφ2

∂L

∂θ

=

(

dθ

dφ

)2

F (θ, x) +
d2θ

dφ2

∂L

∂θ

While the first term of the final right hand side shows variation as the square
of a density, the second term does not. It follows that expressions like formula
I1a and the purely empirical approximation

I1(x) ≈ − log

(

h(θ)
√

F (θ, x)
f(x|θ)

)

+ constants (Formula I1C)

are not model-invariant. However, the troublesome second term in the expres-
sion for Fφ(φ) is proportional to the first derivative of the log-likelihood with
respect to θ. For θ a reasonable estimate given the data x, we would usually
expect θ to be close to the Maximum Likelihood estimate, and hence expect
∂L/∂θ to be small. Moreover, if x is drawn from the distribution f(x|θT )
then
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E

[

∂L

∂θ

]

θ=θT

=
∑

X

{

f(x|θT )

[

∂

∂θ
(− log f(x|θ))

]

θ=θT

}

=
∑

X

{

f(x|θT )

[

∂

∂θ
(−f(x|θ))

]

θT

/ f(x|θT )

}

= −
∑

X

[

∂

∂θ
f(x|θ)

]

θT

and subject to regularity

=

[

∂

∂θ

∑

X

f(x|θ)
]

θT

=

[

∂

∂θ
(1)

]

θT

= 0

so the first-derivative term is expected to be small for θ ≈ θT , which we may
hope to be true of our estimate.

It appears that using the empirical Fisher in place of the expected Fisher
will result in a loss of model-invariance, but the loss may well be small enough
to be tolerable. Note that the loss can be expected to be small only when
the parameter values or estimates involved are close to their “true” values. It
could be dangerous to estimate θ by minimizing an expression like formula
I1C unless the search for a minimum is restricted to “reasonable” values.
For values of θ far from any “reasonable” estimate based on x, the empirical
information F (x, θ) may be grossly different from F (θ), or even negative.

5.3.4 A Safer? Empirical Approximation to Fisher Information

Suppose the data x is a sequence of N independent observations or cases
x = (y1, y2, . . . , yn, . . . , yN ). Then f(x|θ) =

∏N
n=1 g(yn|θ), and, using the

alternative form for the Fisher Information

F (θ) = E

(

∂

∂θ
log f(x|θ)

)2

= E

(

∑

n

∂

∂θ
log g(yn|θ)

)2

Writing sn for ∂
∂θ log(yn|θ) for some fixed θ,

F (θ) = E

(

∑

n

sn

)2

= E
∑

n

s2
n + 2

∑

n

∑

m 	=n

E(snsm)

But, since the data {yn : n = 1, . . . , N} are independent, {sn : n = 1, . . . , N}
are uncorrelated. Hence, E(snsm) = (Esn)(Esm) and we have seen that for
any distribution (subject to regularity) E[ ∂

∂θ log g(y|θ)] = 0. Hence,

F (θ) = E
∑

n

(
∂

∂θ
log g(yn|θ))2
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Assuming the observations {yn} are a typical sample from the distribution
g(y|θ), the expected sum above may be approximated by the empirical sum
over the actual data, giving the approximation

F (θ) ≈ Fe(θ, x) =
∑

n

(

∂

∂θ
log g(yn|θ)

)2

where x is included in the definition Fe(θ, x) as a reminder that the ex-
pression, while perhaps approximating the expected Fisher Information, is
actually an empirical function of the data.

The approximation can only be expected to be close if θ is close to the
true value or model which produced the data, but it has the virtue of being
guaranteed non-negative. Further, under regular non-linear transformations
of the model space, Fe(θ, x) transforms as the square of a density, so the
expression

h(θ)
√

Fe(θ, x)
f(x|θ)

is invariant under such parameter transformations, and leads to a model-
invariant means of approximating explanation lengths and finding estimates
which approximately minimize explanation lengths. We have found in a num-
ber of cases that estimates and message lengths obtained using Fe(θ, x) in
place of F (θ) in the MML method are acceptable approximations to the cor-
rect MML values. Also, use of Fe(θ, x) in place of F (θ, x) in the roundoff
term of Formula I1A makes the formula model-invariant.

There is a problem with the Fe form. While the empirical information
F (θ, x) depends on the data x only via sufficient statistics, Fe(θ, x) in gen-
eral depends on aspects of the data other than its sufficient statistics. That
is, Fe(θ, x) cannot in general be expressed as a function of θ and the suf-
ficient statistics alone. Hence, estimates of θ based on the minimization of
explanation length approximations involving Fe(θ, x) are in general affected
by properties of the data which convey no information about θ. Nevertheless,
the Fe form has been used without trouble in many analyses of identically
and independently distributed (i.i.d.) data sets.

Fe(θ, x) may be grossly different from F (θ, x) in extreme cases.
For instance, if the data {yn : n = 1, . . . , N} are values taken from a Normal
distribution of unknown mean µ and known Standard Deviation 1, it can
conceivably happen that all y values are the same, i.e., that yn = m for
all n. In that case, m is the obvious estimate for µ, but Fe(µ, x) = 0 when
µ = m, whereas F (µ, x) = 2N . The failure of the approximation in this case
occurs because the y values do not resemble at all a typical or representative
selection of values from Normal(m, 1). When the supposedly i.i.d. data are
found to depart so strongly from what might be expected from any model
g(y|θ) : θ ∈ Θ, the statistician, rather than abandoning the Fe() form, might
reasonably begin to doubt whether the true source of the data lies within the
model space she is supposed to assume.
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5.4 A Binomial Example

For the binomial problem with N trials, s successes and unknown success
probability p, s is a minimal sufficient statistic and we will take it as the data
value. Then the negative log likelihood is

L = − log f(s|p) = −s log p − (N − s) log(1 − p) − log

(

N

s

)

and

dL

dp
= −s/p + (N − s)/(1 − p)

F (p, s) =
d2L

dp2
=

s

p2
+

N − s

(1 − p)2

F (p) = EF (p, s) =
Np

p2
+

N(1 − p)

(1 − p)2
=

N

p(1 − p)

With the flat prior h(p) = 1 (0 ≤ p ≤ 1) the explanation length is (using the
simple MML formula I1B)

I1(s) = − log h(p) + (1/2) log F (p) − log f(s|p) + (D/2) log κD

+ (D/2) − log

(

N

s

)

=
1

2
log

N

p(1 − p)
− s log p − (N − s) log(1 − p)

+
1

2
log

1

12
+

1

2
− log

(

N

s

)

=
1

2
log N − (s +

1

2
) log p − (N − s +

1

2
) log(1 − p)

− log

(

N

s

)

− 0.7425 . . .

The MML estimate is p′ = (s + 1
2 )/(N + 1) .

If some prior information about p is known, it may be possible to represent
it within the form of the conjugate prior for the Binomial distribution, namely
the Beta density

h(p) = (1/B(α, β))pα−1(1 − p)β−1 (α, β > 0)

where B(α, β) is the Beta function

B(α, β) =
Γ (α) Γ (β)

Γ (α + β)
=

(α − 1)! (β − 1)!

(α + β − 1)!

This form is mathematically convenient, and with suitable choice of α and β
can express a wide range of prior expectations about p. For instance, (α =
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1, β = 1) gives a uniform prior density in (0, 1), (α = 10, β = 20) expresses
a strong expectation that p will be about 1/3, (α = 1

2 , β = 1
2 ) expresses an

expectation that p is more likely to have an extreme value close to 0 or 1
than to be close to 1/2, and so on.

With a B(α, β) prior,

I1(x) = L − log h(p) +
1

2
log F (p) +

1

2
(1 + log κ1)

= −s log p − (N − s) log(1 − p) − (α − 1) log p

− (β − 1) log(1 − p) + log B(α, β) +
1

2
log

(

N

p(1 − p)

)

+
1

2
(1 + log κ1)

= −(s + α − 1

2
) log p − (N − s + β − 1

2
) log p + C

where the constant C is independent of p:

C = log B(α, β) − 0.7425 . . .

The MML estimate is then

p′ =
s + α − 1

2

N + α + β − 1

5.4.1 The Multinomial Distribution

These results generalize directly to a Multinomial distribution with M pos-
sible outcomes for each of N trials. If sm is the number of outcomes of type
m, and pm is the unknown probability of outcome m,

L = −
M
∑

m=1

sm log pm − log

(

N

s1, s2, . . . , sM

)

F (p1, p2, . . . , pM ) =
NM−1

∏

m pm

p′
m = (sm + (1/2))/(N + M/2) for a uniform prior

For the conjugate prior (a generalized Beta function)

h(p1, p2, . . . , pM ) =
Γ (A)

∏

m Γ (αm)

∏

m

pαm−1
m (αm > 0 for all m)

where A =
∑

m αm. Then the MML estimates are

p′
m =

sm + αm − 1
2

N + A − M/2
(all m)
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5.4.2 Irregularities in the Binomial and Multinomial Distributions

The Binomial and Multinomial distributions illustrate that the two forms
for the Fisher Information, one based on the expected second derivative of
L, the other on the expected squared first derivative, can differ if regularity
conditions are not met. In the binomial case, for p = 1, the expected and
indeed only possible success count is s = N . Then both actually and in
expectation

[

d2L

dp2

]

p=1

= N ;

(

[

dL

dp

]

p=1

)2

= N2

Neither of these expressions equals the limit of the normal expression F (p) =
N/(p(1 − p)) as p → 1, which is infinite. The discrepancies occur because at
p = 1 (and at p = 0) the regularity required for E d/dp (− log f(s|p)) = 0 is
violated.

The sample-based approximation Fe(p, s) for s successes in N trials

Fe(p, s) = s(1/p2) + (N − s)(1/(1 − p)2) = s/p2 + (N − s)/(1 − p)2

becomes equal to N when p = 1 and, necessarily, s = N .
This breakdown of regularity at the extremes of the possible range of a

parameter causes no problems for SMML. In the binomial and multinomial
cases, no real problem arises for MML either, as the MML estimates of the
outcome probabilities avoid the extreme values of 0 and 1 with well-behaved
priors. However, in the multinomial case, especially for large M with some
small sm counts, numerical calculations have shown that the “standard” ex-
planation length formula

I1(x) ≈ log

∏

m Γ (αm)

Γ (A)
−
∑

m

(sm +αm − 1

2
) log p′

m +
1

2
(M −1)(1+ log(Nκk))

tends to under-estimate the message length. It is safer, while accepting the
MML probability estimates, to calculate the explanation length from the
length of the optimal non-explanation code, as in Section 5.2.13:

I1(x) ≈ I0(x) +
1

2
log(Dπ) − 0.4

≈ log
Γ (N + A)

Γ (A)
+
∑

m

log
Γ (αm)

Γ (sm + αm)

+
1

2
log((M − 1)π) − 0.4

The form for I0(x) comes from the length of a message which encodes the
result of the nth outcome with a probability distribution over the M possible
values given by

pnm =
snm + αm

n − 1 + A
where snm is the number of results of type m in the first n − 1 outcomes.
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5.5 Limitations

The MML approach can be used only for model classes where the Fisher
Information exists for all θ ∈ Θ. Thus, it cannot be used for the estimation
of distributions like the Uniform, where the log likelihood is a discontinuous
function of the parameters. (Actually, although the quadratic expansion of
the log likelihood cannot be used for Uniform distributions, the other MML
simplification of equating the coding probability of an estimate to the to-
tal prior probability in some “coding region” of parameter space, will work
and leads to sensible message lengths and estimates.) Further, the coding
efficiency of explanations using MML estimates depends on a fairly close cor-
respondence between the actual and expected second differentials of the log
likelihood. For small samples, or model classes with extreme mathematical
properties, the correspondence may be poor. The MML approach relies on
the expected second differentials to determine an appropriate spacing of esti-
mates in Θ∗, i.e., to determine the precision with which estimates should be
asserted. We saw in Section 5.2.14 that the latitude in choosing the estimate
spacing or precision is quite broad: a factor of two change makes little dif-
ference to the lengths of explanations. However, in extreme cases, the MML
spacing function w(θ) derived from the expected differentials could lead to a
seriously sub-optimal estimate precision and perhaps to a poor estimate.

The MML approach as developed here assumes that the prior density h(θ)
and the optimum estimate spacing function w(θ) vary negligibly over a region
of Θ of size w(θ). In problems where either function is rapidly varying, the
MML approximation to the message length may be poor, and the MML esti-
mate biased and/or inefficient. For instance, in the examples of Section 3.3.3
on the estimation of the mean of a Normal with Normal prior, we saw that if
the prior is strongly peaked, the optimum SMML estimate spacings increase
somewhat for estimates far from the peak of the prior. This phenomenon is
not captured by the MML approximation, which gives an estimate spacing
function independent of the behaviour of the prior. At least for the Normal
distribution, the practical consequences of this defect of MML seem to be
small: the estimates remain sensible and the coding efficiency good despite
the sub-optimal estimate spacing function.

Finally, the MML approximation assumes the log likelihood to have
quadratic behaviour in the model parameters. While approximately quadratic
behaviour will be found in most model classes, it must be realized that the
MML approximation assumes that the quadratic behaviour obtains over the
whole of a region of size w(θ). That is, we have assumed quadratic behaviour
over a scale comparable to the spacing between the estimates in an SMML
code. This spacing is relatively large, and is not small compared with the ex-
pected width of the likelihood function peak. Third and higher order terms
in the log likelihood expansion about its peak may become significant at this
scale, in which case the MML approximation may need revision. However, the
quadratic approximation used above, and leading us to choose the estimate
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which maximizes h(θ′)f(x|θ′)/
√

F (θ′), is adequate for a number of common
model classes.

5.6 The Normal Distribution

The data are a set of N independent values drawn from a Normal density of
unknown mean µ and unknown Standard Deviation σ. Let the data be

x = (y1, y2, . . . , yN )

f(x|µ, σ) =
∏

n

δ√
2πσ

exp

(

−
∑

n

(yn − µ)2/2σ2

)

where we have assumed each datum y to have been measured to precision
±δ/2, and δ ≪ σ. Define

L = − log f(x|µ, σ)

= (N/2) log(2π) + N log σ − N log δ +
∑

n

(yn − µ)2/(2σ2)

∂L

∂µ
= −

∑

n

(yn − µ)/σ2

∂2L

∂µ2
= N/σ2

∂L

∂σ
= N/σ − (1/σ3)

∑

n

(yn − µ)2

∂2L

∂σ2
= −N/σ2 + (3/σ4)

∑

n

(yn − µ)2

∂2L

∂µ∂σ
= (1/σ2)

∑

n

(yn − µ)

For the Normal distribution, E(yn − µ) = 0 and E(yn − µ)2 = σ2 Hence,

E
∂2L

∂σ2
= −N/σ2 + (3/σ4)Nσ2 = 2N/σ2

E
∂2L

∂µ∂σ
= 0

F(µ, σ) =

(

N/σ2 0
0 2N/σ2

)

Hence, Fisher F (µ, σ) = 2N2/σ4.
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The MML estimates µ′, σ′ are found by minimizing

I1(x) = L − log h(µ, σ) +
1

2
log F (µ, σ) + (1 + log κ2)

from formula I1B

= (N/2) log(2π) −N log δ +N log σ +
∑

n

(yn − µ)2/(2σ2) +

1

2
log(2N2/σ4) − log h(µ, σ) + 1 + log κ2

The prior h(µ, σ) should be chosen to express any prior expectations aris-
ing from the particular estimation problem. Where there is little prior knowl-
edge, it is common to assume that µ and σ have independent priors, that µ
has a Uniform prior density (i.e., there is no preference for any particular
location for the distribution) and that logσ has a Uniform density (i.e., there
is no preference for any particular scale.) A uniform density of log σ implies
a density of σ proportional to 1/σ. These Uniform densities for log σ and µ
are improper, i.e., cannot be normalized, unless some limits are set on the
possible values of µ and log σ. Usually, the context of the problem will allow
at least rough limits to be set. For instance, if the data values {yn} are mea-
sured to precision δ, i.e., with a rounding-off error ±δ/2, we cannot expect
to find σ less than δ.

We will assume the above “colourless” priors for µ and log σ, and suppose
that prior knowledge limits µ to some range of size Rµ, and log σ to some
range of size Rσ. Then

h(µ, σ) =

(

1

Rµ

)(

1

σRσ

)

for µ, σ in range.

Then, writing v2 for
∑

n(yn − µ)2

I1(x) = N log σ + v2/2σ2 − 2 log σ + log σ + C

= (N − 1) log σ + v2/2σ2 + C

where the constant

C = (N/2) log(2π) − N log δ +
1

2
log 2 + log N + log(RµRσ) + 1 + log κ2

does not depend on µ or σ.
Choosing µ′, σ′ to minimize I1 gives

µ′ = (1/N)
∑

n

yn = ȳ; σ′ =
√

v2/(N − 1)

These are the conventional “unbiased” estimates. (Note that σ′ differs from
the Maximum Likelihood estimate

√

v2/N , which tends on average to un-
derestimate σ slightly.)
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With these estimates, the message length becomes

I1(x) =
1

2
(N − 1) log

v2

N − 1
+

N − 1

2
+ (N/2) log(2π/δ2)

+
1

2
log(2N2) + log(RµRσ) + 1 + log κ2

5.6.1 Extension to the Neyman-Scott Problem

The MML analysis of the Normal distribution extends simply to the Neyman-
Scott problem of Section 4.2 [13].

Recall that in this problem, the data comprises N instances each of J data
values {xn,j : j = 1, . . . , J} where all values in instance n (n = 1, . . . , N) are
selected from a Normal density of mean µn and Standard Deviation σ. The
N means {µn} and the single S.D. σ are unknown. We assume each mean
independently to have a prior density uniform over some large range, and σ
to have a prior density proportional to 1/σ in some large range. All (N + 1)
parameters are to be estimated. The sufficient statistics are

mn = (1/J)
∑

j

xn,j (n = 1, . . . , N)

s = (1/(NJ))
∑

n

∑

j

(xn,j − mn)2

It easily shown that the Fisher Information is

F (σ, µ1, . . . , µN ) = (2NJ/σ2)
∏

n

(J/σ2) = 2NJN+1 /σ2(N+1)

and hence that the MML estimate is

µ′
n = mn (n = 1, . . . , N); σ′ =

√

Js/(J − 1)

This is the same, consistent, estimate as was found by the Dowe estimator
in Section 4.3, in contrast to the inconsistent Maximum Likelihood estimate
σML =

√
s.

The consistency of the MML estimator is a consequence of the use of the
correct “spacing function” in encoding the explanation. The observed value
of NJs understates the actual variance of the data around the true instance
means, as it shows only the variance around the instance sample means. The
straightforward Maximum Likelihood estimator, which in effect fits σ̂2 to
the observed variance, therefore underestimates σ2. However, in the MML
explanation message, each estimated instance mean is asserted to a limited
precision, so the asserted estimates do not exactly equal the instance sample
means {mn}. The MML estimate of σ2 in effect fits (σ′)2 to the variance of
the data around these asserted means. The difference between the asserted
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means and instance sample means increases this variance, so that on average,
for any instance,

∑

j

(xn,k − asserted mean)2 ≈ Jσ2,

versus
∑

j

(xn,k − mn)2 ≈ (J − 1)σ2

The “rounding off” of the asserted means has the effect, on average, of restor-
ing the variance “lost” when the true means µn are replaced by the sample
means mn.

5.7 Negative Binomial Distribution

This distribution arises when a series of success or fail trials is continued until
a pre-determined number of successes is achieved. The trials are assumed
to be independent with unknown success probability p. Thus, the data are
just as for the Binomial distribution of Section 5.4, but now the number
of successes s is fixed in advance and assumed known to the receiver. The
number of trials N is not, being determined by the outcomes of the trials. The
likelihood function is exactly the same as in Section 5.4, giving the negative
log likelihood

L = −s log p − (N − s) log(1 − p)

∂2L

∂p2
=

s

p2
+

N − s

(1 − p)2

For given s and p, E(N) = s/p, so

F (p) =
s

p2
+

(s/p) − s

(1 − p)2
=

s

p2(1 − p)

rather than N/(p(1−p)) as in the binomial problem. With a Beta (α, β) prior
on p

I1(x) = L − log h(p) +
1

2
log F (p) +

1

2
(1 + log κ1)

= −(s + α − 1) log p − (N − s + β − 1) log(1 − p)

+ log B(α, β) +
1

2
log

(

s

p2(1 − p)

)

+
1

2
(1 + log κ1)

The MML estimate p′
N of p found by minimizing I1 is slightly larger than

the estimate p′
B for the binomial model with the same N, s and prior:

p′
N =

s + α

N + α + β − 1/2
versus p′

B =
s + α − 1/2

N + α + β − 1
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5.8 The Likelihood Principle

The “likelihood principle” has been advocated by several researchers. In
essence, it states that all information in some data x relevant to a parameter
θ is captured by the likelihood function f(x|θ). A corollary is that our con-
clusions about θ should depend only on the data x which occurred, and not
on data which did not occur. Suppose two experiments or observations are
conducted under different protocols, so that the set X1 of data which could
possibly have been observed in the first experiment is different from the set
X2 which could have been observed in the second experiment, but that the
two sets are not disjoint. Now suppose that both experiments are conducted,
and in fact yield the same data x ∈ (X1 ∩ X2). Then the likelihood principle
implies that the inferences about θ drawn from the two experiments should
be the same: they both gave the same data, and it is irrelevant that the sets
of data which did not occur in the experiments are different.

The MML estimators for the Binomial and Negative Binomial problems
show that the MML method violates the likelihood principle. Suppose that
the experiments were both series of success-failure trials, the first series being
continued until 100 trials had been completed, and the second series being
continued until 4 successes had been recorded. The first experiment has a
binomial form, the second a negative binomial form. Assume a flat (α =
β = 1) prior on the unknown success probability p in both experiments. The
possible results for the first experiment are {N = 100, 0 ≤ s ≤ 100} and for
the second, {N ≥ 4, s = 4}. If both experiments happened to yield the one
result possible under both, viz., (N = 100, s = 4), the MML estimates would
be

p′
B =

4 + 1
2

100 + 1
= 0.04454; p′

N =
4 + 1

100 + 3
2

= 0.04926

These differ, violating the Likelihood principle. The violation is difficult to
avoid, given the “message” framework on which MML is based. The receiver
of an explanation message is assumed to have prior knowledge of the set X
of possible data, and the message is coded on that assumption. It is clear in
the SMML construction, and implicit in MML, that the optimum explanation
code requires that one assertion or estimate value serve for a range of distinct
but similar possible data values. Hence, it seems inevitable that the assertion
used to explain the given data will depend to some extent on what distinct
but similar data might have occurred but did not.

The violation shown in the Binomial vs. Negative Binomial contrast is
innocent enough — a misdemeanour rather than a crime. Whatever the values
of s > 0 and N , the difference between the two MML estimates of p is of
order 1/N , and so is much less than the expected estimation error (coding
region size) which in both cases is expected to be of order ±

√

s(N − s)/N3.
The Binomial and Negative Binomial expressions for the Fisher Informa-

tion
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FB(p) =
N

p(1 − p)
=

Np

p2(1 − p)
, FN (p) =

s

p2(1 − p)

have the same value when s = Np, which relation is expected to hold ap-
proximately for the true value of p, and also for any reasonable estimate of
p based on observed s and N . As it is only in the Fisher Informations that
the MML treatment of the two problems differ, both lead to almost equal
explanation lengths for the same s, N and prior. It is possible that the small
differences which do exist between the two MML estimates and between the
two explanation lengths would disappear were the MML approximation im-
proved to take proper account of the variation of F (p) with p within a coding
region.



6. MML Details in Some Interesting Cases

This chapter develops in more detail some of the techniques for calculating
explanation lengths for common components of models. The additional de-
tail is mostly concerned with minor amendments to the “standard” MML
formulae needed to cope with extreme and/or exceptional cases, and to en-
sure reasonable numerical accuracy in less extreme cases. The amendments
do not represent any departure from the MML principle of finding the model
or hypothesis which leads to the shortest two-part “explanation” message
encoding the data. Rather, they are attempts to improve on the Formula I1B
used to approximate the explanation length in problems where the rather
heroic assumptions of Formula I1B are significantly violated.

Section 6.8 of the chapter, dealing with mixture models, is of more general
interest than its title might suggest. It introduces a coding technique useful
in many model classes in which there are numerous “nuisance” parameters,
and a way of addressing the assertion of discrete parameters to the “limited
precision” often required for the optimal coding of assertions. The technique
will be used in later chapters describing some fairly complicated applications
of MML.

6.1 Geometric Constants

The multi-parameter version of Formula I1B leads to an approximate expres-
sion for explanation length derived in Section 5.2.5 as

I1(x) = − log h(θ′) +
1

2
log |F(θ′)| − log f(x|θ′) + (D/2) log κD + D/2

where D is the number of free parameters of the model. Table 6.1 shows for
small D the D-dependent constant part of this expression, written as cD. The
constant depends on the lattice constant κD. As except for very small D, the
optimum quantizing lattice in D dimensions is unknown, the value for the
best known lattice has been taken from Conway and Sloane [11]. The value
for the constant using a random lattice is also given as zD, based on Zador’s
bound (Section 3.3.4). The table also shows the approximation

aD = −1

2
D log(2π) +

1

2
log(Dπ) − γ ≈ cD
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This approximation is good enough for most purposes, as its errors of order
0.3 nit are small compared with uncertainties in the coding of prior informa-
tion and (often) the dubious validity of the probability model f(x|θ).
Later, we use the constants in expressions for I1(x) like

I1(x) = − log h(θ′) +
1

2
log |F(θ′)| − log f(x|θ′) + cD

Table 6.1. Constant terms in explanation length vs. number of parameters

D cD zD aD

1 -0.742 0.153 -0.847
2 -1.523 -0.838 -1.419
3 -2.316 -1.734 -2.135
4 -3.138 -2.610 -2.910
5 -3.955 -3.483 -3.718
6 -4.801 -4.357 -4.545
7 -5.655 -5.233 -5.387
8 -6.542 -6.112 -6.239

12 -9.947 -9.649 -9.712
16 -13.471 -13.214 -13.244
24 -20.659 -20.398 -20.393

6.2 Conjugate Priors for the Normal Distribution

For N independent values x = (x1, . . . , xn, . . . , xN ) all measured to precision
±δ/2, unknown mean µ, Standard Deviation σ:

f(x|µ, σ) =

(

δ√
2πσ

)N N
∏

n=1

e−(xn−µ)2/2σ2

L = − log f(x|µ, σ)

= (N/2) log(2π) + N log δ − N log σ +
1

2σ2

∑

n

(xn − µ)2

Fisher Information = F (µ, σ) = 2N2/σ4

For h(µ, σ) = hµ(µ)hσ(σ), where

hµ(µ) = 1/Rµ (µ uniform in some range Rµ),

hσ(σ) = 1/(Rlσ) (log σ uniform in some range Rl):

I1(x) = log(RµRl) − N log δ + (N/2) log(2π) +
1

2
log 2 + log N

+(N − 1) log σ′ +
1

2

∑

n

(xn − µ′)2/(σ′)2 − 1

2
log(2π) − γ
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where µ′ = (1/N)
∑

n xn; σ′2 = 1/(N − 1)
∑

n(xn − µ′)2

Simplifying:

I1(x) = log(RµRl) − N log δ +
1

2
(N − 1) log(2π) +

1

2
log 2

+ log N + (N − 1) log σ′ +
1

2
(N − 1) − γ

It is sometimes more convenient to describe a Normal model using the
“concentration” parameter λ = σ−2 in place of σ:

N(xn|µ, λ−1) =

√

λ

2π
e− 1

2
λ(xn−µ)2

The “uninformative” prior for σ used above over a restricted range Rl of
log σ implies an uninformative prior for λ

hλ(λ) = −hσ(σ)
dσ

dλ
with σ = λ− 1

2

= −
(

1

Rlσ

)(

−1

2
λ−3/2

)

=
1

2Rlλ

or in the unrestricted improper form, simply 1/λ.
Using (µ, λ) as parameters, the Fisher Information is

F (µ, λ) = N2/(2λ)

Then

hµλ(µ, λ)
√

F (µ, λ)
=

(1/Rµ)(1/(2Rlλ))
√

N2/(2λ)

=
σ

RµRl

√
2N2

=
hµ,σ(µ, σ)
√

F (µ, σ)

so we obtain exactly the same value for I1(x) and the same MML estimates
as above. This is of course just an illustration for the Normal distribution of
the general invariance of the MML formulae.

The priors so far assumed for µ and σ (or λ) are the conventional unin-
formative priors with ranges restricted to allow normalization. If significant
prior information is available beyond a simple range restriction, it may be
possible to represent it adequately by a prior of invariant conjugate form
(Section 1.15.2). This is most conveniently done using (µ, λ) parameters. An
invariant conjugate prior is constructed as the posterior density which re-
sults from an initial uninformative prior (here h0(µ, λ) = 1/λ) followed by
“observation” of some real or imagined prior data. This prior data may be
represented by its sufficient statistics. Suppose the prior data consists of two
independent samples. For the first sample, (y1, y2, . . . , ym) of size m, only the
sample variance v about its mean is recorded:
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v =

m
∑

i=1

(yi − ȳ)2 with ȳ =
1

m

m
∑

i=1

yi

For the second sample, (z1, z2, . . . , zm1
) of size m1, only the sample mean µ0

is recorded:

µ0 =
1

m1

m1
∑

i=1

zi

Then, using the uninformative initial priors, the revised prior given this prior
data is

h(µ, λ|m, v, m1, µ0) = C h0(µ, λ) Pr(v, µ0|µ, λ)

= C h0(µ, λ) Pr(v|µ, λ) Pr(µ0|µ, λ)

= C h0(µ, λ) Pr(v|λ) Pr(µ0|µ, λ)

where C is a normalization constant, since the two samples are independent
and since v is sufficient for λ.

The density of the “sample mean” µ0 is just the Normal density

N(µ0|µ, (m1λ)−1) =
1√
2π

√

m1λ exp

(

−1

2
m1λ(µ0 − µ)2

)

The “sample variance” v has the distribution

χ2(v|m − 1, λ−1) =
λ(m−1)/2v(m−3)/2e− 1

2
vλ

2(m−1)/2Γ (m−1
2 )

where by χ2(x|d, s) we mean the probability density of x when x/s has a
Chi-Squared distribution with d degrees of freedom.

After normalization the prior becomes

h(µ, λ) =

(

1

λ

)

[
√

m1λ

2π
e− 1

2
m1λ(µ0−µ)2

][

v(m−1)/2λ(m−1)/2e− 1

2
λv

2(m−1)/2Γ (m−1
2 )

]

This prior is proper provided m1 > 0, m > 1. It may be written as

h(µ, λ) = N(µ|µ0, (m1λ)−1)χ2(λ|m − 1, v−1)

The prior data µ0 and v contribute terms to the length of assertion
(− log Pr(v, µ0|µ, λ)), which depends on the parameters (µ, λ) in just the same
way as does the length of the second part of the explanation (− log Pr(x|µ, λ)).
Thus, as described in Section 5.2.10, the “Fisher Information” can be calcu-
lated to include the contribution of these terms to the effects of rounding-off
the MML estimates to finite precision. For real data sample x of size N as
before, the effect is that N is replaced in the expression for F (µ, λ) by “effec-
tive sample sizes” which include the prior data. For µ, the effective sample
size is N + m1 and for λ it is N + m, giving
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F (µ, λ) = ((N + m1)λ)

(

N + m

2λ2

)

= (N + m1)(N + m)/(2λ)

The MML estimates become

µ′ =
m1µ0 +

∑N
n=1 xn

N + m1

1/λ′ = (σ′)2 =
m1(µ0 − µ′)2 + v +

∑

n(xn − µ′)2

N + m − 1

I1(x) = log Γ ((m − 1)/2) +
1

2
[(N + 1) log(2π) + (m − 2) log 2]

+
1

2
log((N + m1)(N + m)/λ) − N log δ

+
1

2
[(N + m − 1)(1 − log λ′) − (m − 1) log v] + c2

The invariant conjugate prior defined by (m1, µ0, m, v) allows considerable
freedom in shaping the prior to accord with actual prior beliefs. µ0 can be
chosen to show the mean location thought most likely a priori, and v to
show what scale of data spread is expected a priori. Note that as v is defined
as the total variance of a “prior data sample” about its mean, v should be
set to about (m − 1) times the expected scale of σ2. The value of m > 1
shows the strength of prior belief in this expected scale, with small m giving
a broad prior distribution for λ, and large m a prior tightly concentrated
near the anticipated 1/σ2. Unfortunately, the joint conjugate prior causes
the spread of the prior for µ about µ0 to depend on the estimated value of
λ. The width of the spread is about 1/

√
m1λ. It is thus difficult to choose

the prior to reflect a belief that, even though the data may well prove to be
tightly concentrated, the mean may be far from µ0. The best that can be
done is to choose a small value for m1, perhaps less than one. Alternatively,
one may abandon the conjugate prior for µ in favour of one more accurately
modelling prior belief, e.g., a Normal form with fixed Standard Deviation or
a Uniform density over some finite range.

6.2.1 Conjugate Priors for the Multivariate Normal Distribution

This distribution is a direct extension of the Normal distribution to vector
data. The data x comprises N independent K-vectors all measured to within
K-volume δ.

x = {y1, y2, . . . , yn, . . . , yN}
where each y-value is a K-vector. Then

f(x|µ, λ) =

(

δ

√

|λ|
(2π)K

)N

exp

(

−1

2

∑

n

(yn − µ)T λ(yn − µ)

)
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where µ is the mean K-vector and λ is a symmetric positive-definite K × K
concentration parameter, the inverse of the population covariance matrix,
and |λ| is the determinant of λ.

The quadratic form
∑N

n=1(yn − µ)T λ(yn − µ) may be rewritten as

Tr(λS) + N(ȳ − µ)T λ(ȳ − µ)

where
ȳ = (1/N)

∑

n

yn and S =
∑

n

(yn − ȳ)(yn − ȳ)T

S is the covariance matrix of the sample about its mean. Tr(M) means

the trace of matrix M , i.e., the sum of its diagonal elements
∑K

k=1 Mkk, so

Tr(λS) =
∑K

i=1

∑K
j=1 λijSij

L = −N log δ +
1

2
NK log(2π) − 1

2
N log |λ| +

1

2

∑

n

(yn − µ)T λ(yn − µ)

Using the K components of µ and the K(K + 1)/2 distinct elements of λ
as parameters, the Fisher Information is

F (µ, λ) = F (µ)F (λ) =
[

NK |λ|
]

[

NK(K+1)/2

2K |λ|K
]

=
NKNK(K+1)/2

2K |λ|K

With the same parameters, the uninformative prior for µ is Uniform, and the
uninformative prior for λ is 1/|λ|. Both could be normalized by some range
restriction, but for λ it is not intuitively clear what this range might be set.

Following the development for the univariate Normal, an invariant conju-
gate prior can be formed by imagining prior data comprising m data vectors
having total sample covariance V about their mean, and m1 data vectors
with mean µ0. The resulting conjugate prior h(µ, λ|m, V, m1, µ0)

h0(µ, λ) Pr(V |λ) Pr(µ0|µ, λ)

h0(µ, λ) = 1/|λ|
Pr(µ0|µ, λ) = N(µ0|µ, (m1λ)−1)

Pr(V |λ) = WK(V |m − 1, λ−1)

where WK(V |d, A) is the Wishart distribution, which gives the joint density
of the K(K+1)/2 distinct elements of the sample covariance V of a sample of
d K-vectors drawn from a multivariate Normal density with mean zero and
covariance matrix A. WK() is the K-variate generalization of the Chi-Squared
distribution.
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WK(V |m − 1, λ−1)

=
π−K(K−1)/42−K(m−1)/2

∏K
k=1 Γ ( 1

2 (m − k))
|V |(m−K−2)/2|λ|(m−1)/2e− 1

2
Tr(λV )

This distribution is only proper if m > K.
After normalization:

h(µ, λ) = N(µ|µ0, (m1λ)−1) WK(λ|(m + K − 2), V −1)

=

(
√

m1|λ|
(2π)K

e−m1(µ−µ0)
T λ(µ−µ0)

)

×
(

C|λ|(m−3)/2|V |(m+K−2)/2e− 1

2
Tr(V λ)

)

where

C =
π−K(K−1)/42−K(m+K−2)/2

∏K
k=1 Γ ( 1

2 (m + k − 2))

which is proper if m1 > 0, m > 1.
The interpretation of V as the sample covariance of imagined data is

somewhat metaphorical. Were V indeed the covariance of a sample of size
m about its mean, V would be singular for m < K + 1. None the less, one
may think of V as being a prior guess at what the average covariance of such
samples might be, rather than the covariance of any one set of m imagined
data vectors, and any value of m greater than one maybe used. For instance,
if there is a prior belief that the kth component of y will have a standard
deviation of order ak, but there is no prior reason to expect any particular
correlations among the components of y, one might choose V to be the matrix

vkk = ma2
k : k = 1, . . . , K; vjk = 0 : j �= k,

with m > 1 reflecting the strength of the prior beliefs about standard devia-
tions. See also the remarks in Section 6.2 concerning the prior density of the
mean and its dependence on the estimate of λ.

As for the univariate Normal, the prior data “sample sizes” m1 and m may
be included in the calculation of the Fisher Information, giving the revised
expression

F (µ, λ) =
(N + m1)

K(N + m)K(K+1)/2

2K |λ|K

The MML estimates are

µ′ =
m1µ0 +

∑

n yn

N + m1

(λ′)−1 =
m1(µ0 − µ′)(µ0 − µ′)T + V +

∑

n(yn − µ′)(yn − µ′)T

N + m + K − 2
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I1(x) =

K
∑

k=1

log Γ (
1

2
(m + k − 2))

+
1

2
[K(N + 1) log(2π)

+ log((N + m1)
K(N + m)K(KH)/2/m1)

]

+
1

4
K(K − 1) log π − N log δ

+
1

2
[K(m + K − 3) log 2 − (m + K − 2) log |V |]

+
1

2
(N + m + K − 2)(1 − log |λ′|) + cD

where D is the number of scalar parameters, K(K + 3)/2.

6.3 Normal Distribution with Perturbed Data

It is sometimes known that the sample data values

x = (y1, . . . , yn, . . . , yN )

are individually subject to random measurement errors of known expected
magnitude. Suppose it is known that the measured value yn is subject to a
Normally distributed error with zero mean and variance εn. Then the model
distribution for yn is the convolution of the unknown population distribution
Normal(µ, σ2) and the error distribution Normal(0, εn).

f(x|µ, σ) =
δ√
2π

∏

n

(

1

sn
e−(yn−µ)2/(2s2

n)

)

where s2
n = σ2 + εn

L =
N

2
log 2π − N log δ +

1

2

∑

n

log(σ2 + εn) +
1

2

∑

n

(yn − µ)2

σ2 + εn

Define wn = σ2/s2
n = σ2/(σ2 + εn). Then

∂

∂µ
L =

1

σ2

∑

n

wn(yn − µ)

∂

∂σ
L =

1

σ

∑

n

wn − 1

σ3

∑

n

w2
n(yn − µ)2

Hence, the Maximum Likelihood estimates of µ, σ are
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µ̂ML =
∑

n

wnyn/
∑

n

wn; σ̂2
ML =

∑

n

w2
n(yn − µ̂)2/

∑

n

wn

These equations are implicit, as wn depends on σ̂ML. In effect, the ob-
served deviation (xn−µ̂) is given a “weight” wn: observations whose expected
errors are large compared to σ̂ contribute little to the estimates, but obser-
vations with small expected errors are given nearly full weight.

After some algebra, the Fisher Information is

F (µ, σ) =
2

σ4

(

∑

n

wn

)(

∑

n

w2
n

)

Explicit expressions for the MML estimates are not available. From

I1(x) = − log h(µ′, σ′) +
1

2
log F (µ′, σ′) + L − 1

2
log(2π) − c2,

∂

∂µ′ I1(x) = − ∂

∂µ′ log h(µ′, σ′) +
∂

∂µ′ L

∂

∂σ′ I1(x) = − ∂

∂σ′ log h(µ′, σ′) +
∂

∂σ′ L

+
1

σ′

(

1 −
∑

n w2
n

∑

n w3
n

− 2

∑

n w3
n

∑

n w2
n

)

As for the Maximum Likelihood estimates, these equations may be solved
numerically, e.g., by making some first guess at µ′, σ′ found by assuming
all wn = 1, followed by functional iteration. The numerical solution must be
constrained by the condition σ′ > 0, in case the observed variance in the data
is less than would be expected from the perturbations {εn} alone.

6.4 Normal Distribution with Coarse Data

The Normal distribution and others are sometimes used to model data which
has been recorded without error, but only to coarse precision (large δ), e.g.,
the ages of persons stated in whole years. Here, we treat only the Normal,
but the treatment can be adapted to other forms. In an MML model, it is
possible that a component of the model is the distribution of such values over
a subset of the sample, the subset itself being a feature of the model to be
discovered from the data. In such a case it is quite possible for the Normal
distribution to be applied to a group of coarse values which comprise only a
few distinct values, or may even be all the same. Then the Standard Deviation
of the model distribution can be not much greater than the precision δ, and
the usual Normal approximation

Pr(xn|µ, σ) =
δ√
2πσ

exp(−(xn − µ)2/(2σ2))
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is poor, and can lead to “probabilities” greater than one. A correct analysis
would use

Pr(xn|µ, σ) =
1√
2πσ

∫ xn+δ/2

xn−δ/2

exp(−(xn − µ)2/(2σ2)) dx

Unfortunately, use of this exact expression leads to computational dif-
ficulties and is best avoided unless great accuracy is required. A simpler
approximation which has been used successfully is to inflate the variance of
data about the mean by the variance expected to result from the rounding-off
of the true value being measured and/or recorded to the recorded value as
it appears in the given data. In effect, we argue that, were the true value
available, it would be found typically to differ from the mean by rather more
than does the recorded value. The additional variance, assuming unbiased
rounding-off, is (1/12)δ2

n, where we index the data roundoff quantum δ to
indicate that different x-values in the given data may have been recorded to
different precisions.

The approximated probability for datum xn recorded to precision ±δ/2
is

Pr(xn|µ, σ) =
δn√
2πσ

exp(−[(xn − µ)2 + δ2
n/12] / (2σ2))

The maximum value of this expression occurs when xn = µ and σ2 = δ2
n/12

and equals

δn
√

2π/12 δn

exp(−1

2
) =

√

12

2πe
= 0.8382 . . .

No excessive probability can occur, and for data where δn ≪ σ, little error
is introduced. It may be argued that if δn ≫ σ, this formula will give a low
probability to xn even if xn = µ, but in such a case one could reasonably
doubt whether the true quantity recorded as xn was indeed close to µ.

6.5 von Mises-Fisher Distribution

The d-dimensional von Mises-Fisher distribution describes a distribution of
directions in a d-dimensional space. The data are a set of N directions (unit
d-vectors represented in some way) and the parameters are a mean direction
µ (a unit d-vector) and a concentration parameter ρ. The model density of a
datum direction w is

f(w|µ, ρ) = (1/C(ρ)) exp(ρw · µ)

For zero ρ, the density is uniform over the d-sphere, and for large ρ the
vector (w − µ) has approximately a (d − 1)-dimensional Gaussian density
N(0, Id−1/ρ) where Id−1 is the identity matrix. For a data set {wn : n =
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1, . . . , N}, the sum R =

N
∑

n=1

wn is a minimal sufficient statistic. Here we con-

sider the two- and three-dimensional cases.

6.5.1 Circular von Mises-Fisher distribution

For this distribution, the data is a set of N angles in the plane, which we
take to be measured in radians, so

x = (w1, w2, . . . , wn, . . . , wN )

where each w-value is an angle in [0, 2π). All w angles are assumed identi-
cally and independently distributed. The model distribution is an analogue
of the one-dimensional Normal distribution, having a location parameter µ
and a concentration parameter ρ. Note that 1/ρ does not behave as a scale
parameter.

f(x|µ, ρ) =
∏

n

g(wn|µ, ρ) =
∏

n

(1/C(ρ)) eρ cos(wn−µ)

where the normalization constant

C(ρ) =

∫ 2π

0

exp(ρ cos(θ) dθ

is 2π times a modified Bessel function.
It is convenient to define yn = cos wn; zn = sin wn. Then a minimal

sufficient statistic is the two-element vector

RC = (Y, Z) = (
∑

n

yn,
∑

n

zn) in Cartesian coordinates

RP = (|R|, m) = (
√

(Y 2 + Z2), tan−1(Z/Y ))

in Polar coordinates

Define

A(ρ) = (d/dρ) log C(ρ) = E(cos(w − µ)); A′(ρ) = (d/dρ)A(ρ)

Then

L = N log C(ρ) − ρ
∑

n

(yn cos µ + zn sin µ)

= N log C(ρ) − ρ(Y cos µ + Z sin µ)

= N log C(ρ) − ρ|R| cos(m − µ)

FP (µ, ρ) = ρN2 A A′ in Polar coordinates

FC((ρ cos µ), (ρ sin µ)) = (1/ρ)N2 A A′ in Cartesian coordinates
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The Maximum Likelihood estimate for µ is µ̂ML = m. The estimate for
ρ satisfies

A(ρ̂ML) = |R|/N
ρ̂ML tends to overestimate the concentration unless N is large. At the ex-
treme, when N = 2 and the two data values are sampled from the Uniform
distribution over [0, 2π), corresponding to ρ = 0, Dowe [53] has shown that
E(ρ̂ML) is infinite.

A better, Marginal Maximum Likelihood, estimate of the concentration
is described by Schou [39]. It equates the observed length of the vector R to
the length expected given ρ̂Schou and satisfies

ρSchou = 0 (R2 < N)

RA(RρSchou) = NA(ρSchou) (R2 > N)

The Schou estimate of ρ is zero unless |R| is greater than the value to be
expected for a Uniform angular distribution, i.e., one with no concentration.

When, as in MML, a Bayesian approach is taken, an “uninformative”
prior for µ is the Uniform density 1/2π. No truly uninformative prior for
ρ seems possible. Since, for large ρ, the distribution becomes similar to a
Normal distribution, a prior in ρ which behaves as 1/ρ for ρ ≫ 1 may be
attractive, but is of course improper. Tests comparing the performance of
ML, Schou and MML estimators have been conducted using for MML the
priors

h2(ρ) =
2

π(1 + ρ2)
and h3(ρ) =

ρ

(1 + ρ2)3/2

In Cartesian parameter coordinates (ρ cos µ, ρ sin µ), the former has a pole
at the origin, but the latter is smooth, and is perhaps to be preferred if the
data concentration is expected to arise from some physical influence in the
plane such as a magnetic field.

The tests, reported in [53], show the MML estimators to give more accu-
rate results than the ML and Schou estimators as measured by mean absolute
error, mean squared error, and mean Kullback-Leibler distance.

6.5.2 Spherical von Mises-Fisher Distribution

Similar results have been found for the three-dimensional distribution [12].
Using a prior density which is Uniform in µ over the surface of the 3-sphere
and varies with ρ as

hρ(ρ) =
4ρ2

π(1 + ρ2)2

analogous to the h3(ρ) used in the circular case, it is found that

h(µ, ρ)/
√

F = ρ/(π2(1 + ρ2)2A(ρ)
√

N3A′(ρ))
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where, as before, F is the Fisher determinant and

A(ρ) = (d/dρ) log C(ρ) = E(w.µ); A′(ρ) = (d/dρ)A(ρ)

Minimization of the message length leads to the obvious estimate µ̂ = R/|R|
and an estimate for ρ more accurate and less biased than both the Maximum
Likelihood and Marginal Maximum Likelihood estimates, especially for small
N .

6.6 Poisson Distribution

The data consists of an event count n giving the number of occurrences of a
random event within a known interval t. The probability model is

Pr(n) = f(n|r, t) = e−rt(rt)n/n!

where the unknown rate parameter r is to be estimated. An MML analysis
has been given in [54].

L = − log f(n|r, t) = rt − n log(rt) + log(n!)

dL

dr
= t − n

r
;

d2L

dr2
=

n

r2

But E(n) = rt so

F (r) = E
d2L

dr2
= t/r

By way of example, assume a prior density h(r) = (1/α) exp(−r/α) where
α is the mean rate expected a priori. This is a conjugate prior obtained from
the uninformative prior h0(r) ≈ 1/r and assuming “prior data” consisting of
the observation of one event in an internal 1/α. Then

I1(n) = − log h(r′) +
1

2
log F (r′) + L + c1

= log α + r′/α +
1

2
log(t/r′) + r′t − n log(r′t) + log(n!) + c1

= log α + (t + 1/α)r′ − (n +
1

2
) log r′ − (n − 1

2
) log t

+ log(n!) + c1

This is minimized by the MML estimate

r′ = (n +
1

2
)/(t + 1/α) giving a message length

I1(n) = (n +
1

2
)(1 − log(r′t)) + log(αt) + log(n!) + c1
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These results are invalid if the mean expected count a priori, αt, is
less than one. In that case, r′ is small, and the MML precision quantum
δ(r′) = 1/

√

F (r′)/12 =
√

12r′/t may be large compared with α, leading to a
“prior estimate probability” h(r′)δ(r′) greater than one. The problem is best
addressed as described in Section 5.2.10. The Fisher Information is modified
to include the observation of the “prior data” of one count in an interval 1/α,
giving

F (r) = (t + 1/α)/r

This amendment does not alter the MML estimate r′ = (n+ 1
2 )/(t+1/α),

but the value of I1(n) becomes, after substituting the MML estimate r′ and
simplifying

I1(n) = (n + 1) log(αt + 1) − n log(αt) + log(n!) −

(n +
1

2
) log(n +

1

2
) + (n +

1

2
) + c1

The optimum non-explanation length I0(n) is found by integrating the
posterior density to be

I0(n) = (n + 1) log(αt + 1) − n log(αt)

The difference I1(n) − I0(n) is independent of α and t, and is now positive
for all n, increasing from 0.104 at n = 0 to 0.173 at n = 10, and approaches
a limit of 0.1765 as n→∞. This limit is 1

2 log (πe/6), as expected for any
sufficiently regular single-parameter model (Section 5.2.4).

If convenient, I1(n) may be approximated by the simpler expression
I0(n) + 0.176 with maximum error less than 0.07 nit.

6.7 Linear Regression and Function Approximation

Here, the model concerns how a random variable depends on one or more
given variables. We first consider linear dependence among real variables.

6.7.1 Linear Regression

The data comprises N independent cases. For each case n (n = 1, . . . , N),
the data consists of given values of K variables ynk (k = 1, . . . , K) and the
observed value xn of a random variable. The probability model is

xn ∼ N(µn, σ2) where µn = a0 +

K
∑

k=1

akynk

The parameters (ak : k = 0, . . . , K) and σ are unknown.
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Without loss of generality, we may insert a dummy variable (k = 0) with
dummy values yn0 = 1 for all cases, and assume the given data to have been
standardized so that

N
∑

n=1

ynk = 0,

N
∑

n=1

y2
nk = N (k = 1, . . . , K)

so any constant term in the expression for µn is represented by the co-efficient
a0 of the dummy constant “variable” y.0.

Define a as the (K + 1)-vector (a0, . . . , ak, . . . , aK). A simple conjugate
prior for the parameters is

h(σ, a) = 1/(Rσ)

K
∏

k=0

Norm(0, σ2/m)

That is, we assume a locally uninformative prior for σ, and that each co-
efficient ak has independently a Normal prior with mean zero and variance
σ2/m. Assuming this prior, and treating the y variables as given background
information,

− log [f(x|a, σ) h(a|σ)]

= (N/2) log(2π) + N log σ +
1

2

∑

n

(xn −
K
∑

k=0

akynk)2/σ2

+
1

2
(K + 1) log(2πσ2/m) +

1

2

K
∑

k=0

ma2
k/σ2

It can be seen that the conjugate prior has the same effect as extending
the N data cases by a further K cases of “prior” data, where in the kth case,
xk = 0, ykl = 0 (l �= k) and ykk =

√
m. As in Section 6.2 we will treat the

prior data on the same footing as the real data, and so write

L = − log(f(x|a, σ)h(a|σ))

Define Y as the N ×(K+1) matrix with elements (ynk : n = 1, . . . , N, k =
0, . . . , K) , x as the N -vector (xn; n = 1, . . . , N) and Z as the symmetric
(K + 1) × (K + 1) matrix

Z = YT Y + mIK+1

Then

L = (M/2) log(2π) + M log σ − K + 1

2
log m +

1

2σ2

[

(x − Ya)2 + ma2
]

where M = N + K + 1.
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The Fisher Information for parameters (σ, a) is

F (σ, a) =

(

2M

σ2

)( |Z|
σ2(K+1)

)

L is minimized with respect to a by the MML estimate

a′ = Z−1YT x

giving the residual variance

vr = ((x − Ya′)2 + m(a′)2) = x2 − xT Ya′

The MML estimate of σ is

(σ′)2 =
vr

N

I1(x) = (M/2) log(2π) + N log σ̂ − 1

2
(K + 1) log m + log R

+
1

2
log(2M |Z|) + N/2 + cK+2

Other priors may be more appropriate in some situations, but unless con-
jugate will usually require an iterative solution to obtain the MML estimates.
With the above prior, a large value of m expresses an expectation that lit-
tle of the variation in x depends on the y variables, a small value expects
accurate prediction to be possible. A neutral value might be m = 1.

The above estimates differ little from Maximum Likelihood estimates for
N ≫ K. However, the MML analysis offers a sound method for determining
which of the K available given variables should be included in the predictor
function µ =

∑

k akyk: that selection of given variables giving the shortest
explanation of x, i.e., the smallest I1(x), should be preferred.

A recent application of this MML method to the prediction of tropical
cyclone intensity change in the Atlantic basin [38] found a regression which
predicted rather better than models then in use. Thirty-six seasonal, envi-
ronmental and meteorological variables, together with all their products and
squares, were considered for inclusion in the model. A set of first- and second-
order regressors was selected on the basis of message length using data from
4347 cyclone observations. The message length for each model considered was
increased by the length of a segment nominating the variables used, leading
to a model with K = 27.

6.7.2 Function Approximation

Here the data comprise N observed values (x1, x2, . . . , xN ) of a real variable
x which varies in some unknown way with an independent real variable t.
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The data values are observed values of x corresponding respectively to the
independent variable values (t1, t2, . . . , tN ) That is, xn = x(tn). It is possible
that the observed value xn is the result of its dependence on tn, plus some
“noise” or “error” εn, where it is assumed that εn ∼ N(0, σ2) independently
for all n, with σ unknown.

Given a set of basis functions gk(t)(k = 1, 2, . . .), it is desired to infer a
function

zK(t) =

K
∑

k=1

akgk(t)

which well approximates x(t). The set of basis functions is ordered in some
order of increasing complication, e.g., if the set is a set of polynomials in t, the
set would be in order of increasing degree. The inference requires the maxi-
mum order of basis function K, the coefficient vector a = (a1, . . . , ak, . . . , aK)
and the “noise level” σ to be estimated.

The mathematics of the message length and MML estimation are iden-
tical to the regression problem in Section 6.7.1 with the values of the basis
functions replacing the “given variables” of that section: ynk = gk(tn). How-
ever, in this case the basis functions have no status as real variables, and
may without changing the situation be replaced by any other set of basis
functions spanning the same space of functions. It appears sensible to choose
the basis functions to be an orthonormal set if this is possible. For instance,
suppose the range of t were t0 < t < t0 +1, and the chosen basis function set
were polynomials ordered by degree. If the set were chosen in the naive way
g1(t) = 1, g2(t) = t, . . . ,gk(t) = tk−1 etc. the coefficients {ak} required to get
a good fit to data values (xn; n = 1, . . . , N) would depend on the origin of
measurement of t, i.e., on t0, although (usually) the numeric value of t0 has
no significance in the problem. Thus, a “neutral” prior for a would have to be
constructed to depend on t0 (in a fairly complicated way) if it were intended
that the prior probability distribution over model functions be independent
of t0. Choosing the basis set to be orthonormal over the given values of t
removes dependence on t0 and makes it easier to apply prior beliefs to the
choice of the prior h(a). Whether the set should be chosen to be orthonormal
over the discrete set of given t-values, i.e.,

N
∑

n=1

gk(tn)gl(tn) = δkl (the Kronecker delta)

or over a continuous range embracing the given values, i.e.,

∫ tb

ta

gk(t)gl(t)dt = δkl

might depend on whether the given t-values were a distinguished, irreplace-
able set (e.g., the times of successive peaks of the business cycle) or merely
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a set or randomly or evenly spaced values which happened to be yielded by
the experimental or observational protocol.

Assuming gk() to be an orthonormal set, the prior for fixed K used in
Section 6.7.1 might be acceptable,

h(σ, a) = (1/Rσ)

K
∏

k=1

Norm(ak|0, σ2/m) (m > 0)

The complete prior requires a prior distribution over the order of model, K,
and would, lacking relevant prior knowledge, be perhaps chosen as a geometric
distribution hK(K) = 2−K or a Uniform distribution over the integers up to
some Kmax < N . In the latter case, the MML inference is the model of order
K giving the shortest explanation length I1(x) as calculated in Section 6.7.1;
in the former case the preferred model would be the MML model minimizing
I1(x) + K log 2.

Recent work [48, 16] compared various criteria for selecting the order of an
approximating polynomial zK(t) given a sample of size N of (tn, x(tn)) pairs
(n = 1, . . . , N) with the {tn} randomly and uniformly selected in (0,1) and
x(tn) generated as s(tn) + εn, where s() is a known “target” function and
εn ∼ N(0, v). Various target functions (none simple polynomials), sample
sizes and “signal to noise ratios” AV (s2(t))/v (0 < t < 1) were tried. The
success of an order-selection method for given s(), N and v was assessed by
the mean squared error

∫ 1

0

(s(t) − zK(t))2 dt

In these experiments, the coefficient vector a for each order K was cho-
sen as the Maximum Likelihood estimate, i.e., the estimate minimizing
∑

n(xn − z(tn))2. The authors concluded that, of the criteria tried, the best
in almost all circumstances was one based on the theory of V-C dimension
[47].

We replicated their experiments comparing their V-C method (known as
Structural Risk Minimization) against MML using the prior described above
with m = 1, and a uniform prior on K. The results showed a clear advan-
tage overall for MML. The only kind of target function for which MML was
(slightly) inferior to the SRM method was functions which deviated slightly
from a low-order polynomial, e.g., s(t) = t + 0.1 sin2(2πt), with high sig-
nal/noise ratio. Such a function is strongly at odds with the assumed prior,
which implies an expectation that each basis function will contribute about
as much to the total variation of x as will the “unexplained” variation σ2.
In retrospect, prior experience of function approximation suggests that the
smoothest (low k) basis functions will usually dominate, and that therefore
a prior on ak like N(0, σ2/K) might be a better uninformed choice. Other
experiments reported by Baxter and Dowe[3] also support the superiority of
the MML method.
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The function-approximation problem is one where a probabilistic inter-
pretation of the inferred model is not necessarily justified. In some contexts,
the x(tn) values might not be subject to any significant noise or measure-
ment error, and might justly be believed to be deterministic functions of t.
The normal Bayesian or non-Bayesian approaches to the problem then have
some difficulty in justifying their overtly probabilistic treatment of the model

xn = zK(tn) + εn; εn ∼ N(0, σ2)

The MML approach however can appeal to the Algorithmic Complexity (AC)
basis for explanation lengths, rather than a probabilistic basis. In the AC
context, the residuals εn (n = 1, . . . , N) need not be considered to be ran-
dom quantities in the probabilistic sense of “random”. Rather, they are a
sequence of values admitting no briefer coding by use of assertions within the
space spanned by the basis functions, and hence are “random” in the AC, or
Chaitin-Kolmogorov sense.

Historical note. The earliest application of MML to function approx-
imation, and one of its earliest applications to any problem, was part of a
study by Patrick [29] of the shapes of the megalithic stone circles of Ireland.
Here, the model used for the locations (xn, yn) of the stones in a distorted
circle centred at (xC , yC) was (in polar coordinates)

rn = r0 +

K
∑

k=2

ak sin(2πk(θn + φ)) + εn

with (xn, yn) = (xC + rn cos θn , yC + rn sin θn) and εn ∼ N(0, σ2) The
order-1 term in the Fourier series is suppressed by choice of (xC , yC). The
study showed convincing evidence of two preferred shapes: a simple circle
and a symmetric “flattened circle” similar to one previously postulated by
Thom [44, 45, 46]. However, more elaborate families of shapes advanced by
Thom appeared to have no explanatory power.

6.8 Mixture Models

The data comprises a sample of N independent cases or things drawn from
some population. For each thing, a vector of variable values is observed. The
variables observed are the same for all cases. Hence, the data can be regarded
as the ordered set of vectors x = (y1, y2, . . . , yn, . . . , yN ).

The model of the population is that it is the union of, or a mixture of,
K different subpopulations. Each subpopulation is modeled by a probability
distribution

f(y|θk) (k = 1, . . . , K)

where θk is a (possibly vector) parameter, and by a relative abundance or
proportion
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ak (k = 1, . . . , K)
∑

k

ak = 1

All probability distributions are of the same, known, form but different sub-
populations, or “classes”, have different parameter values and proportions.

The class from which each thing in the sample was drawn is unknown.
Hence, the model probability for a data vector yn is

Pr(yn) =

K
∑

k=1

akf(yn|θk) = Pn say

If K, the number of classes, is known, the above probability model is just a
rather complicated probability distribution with known functional form and
parameter vector θ = (ak, θk) (k = 1, . . . , K) and in principle any general
estimation method, e.g., MML or ML, can be applied to the estimation of θ.
However, the complex form of the model creates considerable mathematical
difficulties. Further, in practical applications of mixture models, there is usu-
ally as much interest in inferring the class kn (n = 1, . . . , N) to which each
thing belongs as in the parameters of each class. The class labels {kn} do not
appear in the above model, and hence are not inferred in the estimation of
its parameters. However, before proceeding to describe the MML estimation
of both class parameters and class labels, it will be useful to review the stan-
dard ML (maximum likelihood) approach to the estimation of θ, known as
the Expectation Maximization (EM) algorithm.

6.8.1 ML Mixture Estimation: The EM Algorithm

In this approach, the vector k = (kn; n = 1, . . . , N) of class labels is regarded
as conceptually part of the data, which happens not to have been observed.
That is, it is treated as “missing data”. Were the class labels known, the
probability model for the “full” data (kn, yn) for thing n could be written as

Pr(kn, yn) = Pr(kn|θ) Pr(yn|kn, θ)

= akn
f(yn|θkn

) = pnkn
say

and the log-likelihood of θ on the full data could be written as

FLL =
∑

k

mk log ak +
∑

k

∑

{n:kn=k}
log f(yn|θk)

where mk is the number of things belonging to class k, and the log-likelihood
of θk, the parameter of class k, is a function of only the data of things be-
longing to that class. But of course, the class labels are unknown.

By summing over all classes,

Pn =

K
∑

kn=1

Pr(kn, yn) =

K
∑

k=1

akf(yn|θk) =

K
∑

k=1

pnk say
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as before. Using Bayes’ theorem,

rk(yn) = Pr(kn = k|yn) = akf(yn|θk)/

K
∑

l=1

alf(yn|θl) = pnk/Pn

where rk(yn) = rkn is the probability that thing n belongs to class k, given
its data yn. The rationale of the EM algorithm is to form the expected log-
likelihood of θ on the full data, the expectation being taken over the joint
distribution of the “missing data” k, i.e., over the independent distributions
{rkn : k = 1, . . . , K} for each thing n.

E(FLL) =
∑

k

(Emk) log ak +
∑

k

∑

n

rkn log f(yn|θk)

where Emk =
∑

n rkn.
It is easily shown that maximization of E(FLL) with respect to {(ak, θk) :

k = 1, . . . , K}, with rkn as defined above, results in maximization of LL, the
likelihood of θ given the “incomplete” data (yn : n = 1, . . . , N).

LL =
∑

n

log(
∑

k

akf(yn|θk))

∂

∂θk
LL =

∑

n

[

∂
∂θk

f(yn|θk)
∑

l alf(xn|θl)

]

=
∑

n

[

(

akf(yn|θk)
∑

l alf(xn|θl)

) ∂
∂θk

f(yn|θk)

akf(yn|θk)

]

=
∑

n

[

rkn
∂

∂θk
log(akf(yn|θk))

]

=
∂

∂θk
E(FLL)

Similarly,
∂

∂ak
LL =

∂

∂ak
E(FLL)

Maximization of E(LL) is achieved in a 2-phase iteration by the EM

algorithm as follows. Given some initial estimates (âk, θ̂):

Phase 1: For each thing n, compute âkf(yn|θ̂k) for all classes, and hence rkn

for all classes. Then accumulate statistics sk appropriate for the estima-
tion of θk, letting the data yn contribute to the statistics sk with weight
rkn.

Phase 2: For each class re-estimate âk as
∑

n rkn/N , and re-estimate θ̂k

from statistics sk treated as being accumulated from a sample of size
âkN .
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Phases 1 and 2 are then repeated until convergence of the estimates.
Convergence is guaranteed in the sense that each iteration is guaranteed not
to decrease E(FLL), but the global maximum is not necessarily found.

The EM algorithm, in the form described, is simply a computational al-
gorithm for maximising the likelihood of θ given the observed data. Although
the conventional description of the algorithm, which was followed above, con-
ceives of the class labels k as “missing data”, this concept is not essential to
the derivation of the algorithm, which was in fact in use long before the “EM”
name became common.

If we regard our probability models as models of the given data, rather
than as models of some hypothetical population from which the data is a
sample, then it seems equally valid to regard the vector of class labels as a
vector of parameters of the model, rather than as “missing data”. We will
pursue this view in the next section.

However we regard the class labels, the conventional ML approach to a
mixture problem does not estimate them, whether ML is implemented using
the EM algorithm or by other means.

There is a further problem with ML estimation of mixture models: the
global maximum of the likelihood is usually achieved by an undesirable model.
The problem may be illustrated by a simple mixture of two univariate Normal
distributions modeling a univariate sample x = (x1, x2, . . . , xn, . . . , xN ). The
probability model is

Pr(xn) =
[

aN(xn|µ1, σ
2
1) + (1 − a)N(xn|µ2, σ

2
2)
]

ε

where the five parameters a, µ1, σ1, µ2, σ2 are all unknown, and ε is the pre-
cision of measurement of the data values, assumed constant for all n. If ε is
small, the highest likelihood is achieved by a model with â = 1/N , µ̂1 = xm,
σ̂1 ≈ ε, for some m. This is a model in which one class contains the single
datum xm, and the other class contains the rest of the sample. The proba-
bility Pr(xm|â, µ̂1, σ̂1) is about 1/N , and the probabilities for all other data
are of order ε/σ̂2. The total log likelihood is thus about

LL1 ≈ (N − 1) log(ε/σ̂2) + log N

If the data were in fact drawn from a population with, say, a = 1
2 , µ1 =

1, µ2 = −1, σ1 = σ2 = 1 , we would have σ̂2 ≈
√

2. The log likelihood of
the true parameter values would be of order LL ≈ N log(ε/1) + N log 1

2 for
ε ≪ 1/N , LL1 > LL , so the incorrect model has the higher likelihood. (The
more correct treatment of finite-precision data as in Section 6.4 makes no
essential difference to this result.)

In practice, the EM algorithm will not often converge to such an undesir-
able solution, and in any case, several runs of the EM algorithm from different
initial guesstimates are often needed to find the best desirable model. It is
however obvious that genuine Maximum Likelihood estimation is not a sat-
isfactory solution for mixture models.
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ML also gives no clear method for estimating the number of classes when
K is unknown. The likelihood of a model increases monotonically with K.

6.8.2 A Message Format for Mixtures

We consider an explanation message format in which the assertion has the
following form. (We omit circumflexes for estimates.)

(a) The number of classes K, if this is unknown.
The prior assumed has little effect, and can be taken as, for instance,
2−K .

(b) The relative proportions {ak : k = 1, . . . , K}. These are encoded as for
the probabilities of a Multinomial distribution (Section 6.3).

(c) For each class k, the distribution parameter estimate θk.
(d) For each thing n, the class kn to which it is assigned.

The obvious format for the detail, encoding the data assuming the model
to be correct, is the concatenation of N substrings, each encoding the data for
one thing. The substring encoding yn uses a code based on the distribution
f(y|θkn

), and hence has length − log f(yn|θkn
).

If the second part of the explanation is encoded in this obvious way, the
explanation length is not properly minimized, and the parameter estimates
{θk} will not in general converge to the true values as N → ∞. The problem
arises in the estimation and coding of the class label parameters {kn : n =
1, . . . , N}. Clearly, the explanation length using this format is minimized
when kn is chosen to maximize pnkn

(in the notation of Section 6.8.1). That
is, thing n is assigned to that class most likely to contain such a thing: kn is
“estimated” by Maximum Likelihood.

pnkn
= Maxk (pnk)

The length of coding for thing n is − log(Maxk (pnk)). However, again using
the notation of Section 6.8.1, the probability that a randomly chosen thing
would have data yn is

Pn =
∑

k

pnk

suggesting that an efficient coding should be able to encode thing n with a
length of about

− log(
∑

k

pnk) ≤ − log(Maxk(pnk))

and hence suggesting that the obvious coding is inefficient.
Further, using the obvious coding, the estimates of âk, θk affect only the

coding of those things assigned to class k, and so these estimates will depend
on the data of only those things. It is easy to show that the resulting estimates
are inconsistent.
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Suppose the data are univariate and drawn from a mixture in equal pro-
portions of two Normal distributions N(−a, 1) and N(a, 1). Consider the
MML estimation of the 2-class model

Pr(xn) =
1

2
{N(xn|µ1, σ

2
1) + N(xn|µ2, σ

2
2)}

where we assume equal proportions a priori. For a sufficiently large sample
size N , we expect from symmetry to obtain estimates such that

µ̂1 ≈ −µ̂2, σ̂1 ≈ σ̂2, kn = 1 if xn < 0; kn = 2 if xn > 0

Since µ̂1 and σ̂1 affect only the coding of things assigned to class 1, i.e., with
xn < 0, we further expect

µ̂1 ≈
(

∑

n:xn<0

xn

)

/(N/2)

The sum in this expression is not over the true members of class 1. Some
members, with xn > 0 , are omitted, and a roughly equal number of members
of class 2, having xn < 0 , have been included. The effect of this substitution
is to decrease the sum so µ̂1 is less than the true class-1 mean (−a). The
magnitude of this error depends on a but not on N , so the estimates σ̂1, σ̂2

are also inconsistent, being too small. Table 6.2 shows the expected estimates
µ̂2, σ̂1 = σ̂2 as functions of a. The table also shows the difference in message

Table 6.2. Estimates of 2-component Normal Mixture using MML with “obvious”
coding.

a µ̂2 σ̂ C2 − C1

0.001 0.798 0.603 0.187
1 1.167 0.799 0.123
2 2.017 0.965 -0.147
3 3.001 0.998 -0.460

length per thing between the 2-class model (C2) and a one-class model (C1)
encoding the whole sample as if drawn from N(0, a2 + 1). Not only are the
two-class estimates seriously in error for a < 2, but it appears that MML
would favour a one-class model for small a. For a very large sample, the
two-class model is not preferred unless a > 1.52, although the population
distribution becomes bimodal for a > 1.

We now show that the coding of the detail can be improved over the
“obvious” coding used above, and that the improvement both shortens the
explanation length and yields consistent estimates.
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6.8.3 A Coding Trick

The difficulties with the obvious format arise because the explanation asserts
the estimated class k̂n of each thing as an unqualified, precise value. It is a
cardinal principle of MML explanation coding that no assertion should be
stated more precisely than is warranted by the data, but in the “obvious”
coding, the class label k̂n is asserted as if known exactly even if thing n
could well belong to any of several classes. We should instead seek a message
format which in some sense allows the discrete parameter estimates {k̂n : n =
1, . . . , N} to be coded to limited “precision”, although it is not immediately
clear what an “imprecise” value for a discrete parameter might be.

An MML explanation always begins with the assertion of some single
model of the data, which is then used to provide a coding scheme for the
detail. In this case, the assertion of a single model requires specification of
all the parameters {(an, θn) : k = 1, . . . , K} and {kn : n = 1, . . . , N} so we
do not intend to change the format for the assertion in Section 6.8.2, and
retain all its parts (a) to (d) as before. The difference in format will lie in the
coding of the detail. However, we will also reconsider how best to estimate
the class label of each thing. As in Section 6.8.1, define for some thing

pnk = akf(yn|θk); Pn =

K
∑

k=1

pnk; rnk = pnk/Pn

If all but one of {rnk : k = 1, . . . , K} are close to zero, with, say, rnl close

to one, then thing n clearly belongs to class l, and we may set k̂n = l as in
the “obvious” code thereby coding yn with a total message length − log pnk̂n

.
However, suppose that the two highest-posterior class probabilities for thing
n, say rni and rnj , are within a factor of two, i.e., that | log rni−log rnj |< log 2.
This implies | log pni − log pnj | < log 2, so whether we choose to assign the
thing to class i or class j makes at most one bit difference to the message
length. Whenever this condition obtains, let us make the choice in such a
way as to convey some useful information. Specifically, whenever n < N and
| log(rni/rnj)| < log 2, we choose k̂n = i if the detail binary code string for

thing (n + 1) begins with a binary digit “0”, and k̂n = j if the string begins
with “1”.

Now consider the decoding of an explanation using this convention. By
the time the receiver comes to the detail string encoding yn, the estimates
k̂n, âk̂n

and θ̂k̂n
have already been decoded from the assertion part of the

explanation. Thus, the receiver has all the information needed to deduce
the code used for yn, i.e., the Huffman or similar code for the distribution
f(y|θ̂k̂n

) and can proceed to decode yn. But the receiver also at this stage

knows âk, θ̂k for all K classes, and hence can compute pnk = âkf(yn|θ̂k) for
all classes, and thence rnk for all k. The receiver can thus observe that the
two largest values rni, rnj differ by less than a factor of two. Knowing the
coding convention described above (as the receiver is assumed to know all
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conventions used in coding an explanation) the receiver can deduce that k̂n

will have been asserted to be i or j according to the first binary digit of the
detail for yn+1. Since k̂n has been given in the assertion, the receiver thus
learns the first binary digit of the detail for the next thing. Hence, this digit
need not be included in the explanation.

In crude terms, if setting k̂n to be i or j makes less than one bit of
difference to the coding of yn, we make the choice to encode the first digit of
the detail coding of yn+1. Adopting this convention costs at worst one binary
digit in coding yn, but always saves one binary digit in coding yn+1. It is
therefore more efficient on average than the obvious coding scheme.

Note that to use this coding trick, the construction of the detail describing
the things must commence with the description of the last thing, since its
first digit may affect how we describe the second-last thing, and so on.

The above device may be generalized. Suppose that in some explanation
(not necessarily a classification) there is some segment of data, not the last
to be included in the detail, which could be encoded in several different ways
within the code optimal for the “theory” stated in the assertion. Let the
lengths of the several possible code segments be l(1), l(2), . . ., etc. In the
present case, the data segment is the data yn of a thing, and the possible
codings are those obtained by assigning it to the several classes. The code
lengths are the set {l(k) = − log pnk : k = 1, . . . , K}.

The pnk values may be identified with the probabilities of getting the data
by each of several mutually exclusive routes all consistent with the “theory”.
In the present case, they are the probabilities of there being such a thing in
each of the classes.

As before, define

Pn =
∑

k

pnk; rnk = pnk/Pn

To choose the encoding for the data segment, first construct according to some
standard algorithm a Huffman code optimised for the discrete probability
distribution {rnk : k = 1, . . . , K}. Note that this distribution is the Bayes
posterior distribution over the mutually exclusive routes, given the theory and
the data segment. From the standard theory of optimum codes, the length
m(k) of the code word in this Huffman code for route (i.e., class) k will be

m(k) = − log rnk,

the code will have the prefix property, and every sufficiently long binary
string will have some unique word of the code as prefix. Now examine the
binary string encoding the remainder of the data, i.e., the data following
the segment being considered. This string must begin with some word of the
above Huffman code, say, the word for route j. Then encode the data segment
using route j, hence using a code segment of length l(j). In the mixture case, j

is the estimated class k̂n. By an obvious extension of the argument presented
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for the crude trick, the first m(j) bits of the binary string for the remainder
of the data need not be included in the explanation, as they may be recovered
by a receiver after decoding the present data segment.

Consider the net length of the string used to encode the data segment,
that is the length of string used minus the length which need not be included
for the remaining data. The net length is

l(j) − m(j) = − log pnj + log rnj

= − log(pnj/rnj)

= − log Pn

= − log(
∑

k

pnk)

Merely choosing the shortest of the possible encodings for the data segment
would give a length of

− log

(

max
k

(pnk)

)

The coding device therefore has little effect when one possible coding is much
shorter (more probable a posteriori) than the rest, but can shorten the ex-
planation by as much as log (number of possibilities) if they are all equally
long.

When used in the construction of a classification explanation, this coding
device has the following effects:

(a) Each thing but the last can be encoded more briefly. The saving is sub-
stantial only when the thing could well be a member of more than one
class. Since the number of things is not expected to be small, we hence-
forth ignore the fact that the saving is not available for the last thing.

(b) Although the form of the explanation states a class for each thing and
encodes it as a member of that class, the net length of the description
is the same as would be achieved by a (much more complex) code which
made no assignment of things to classes, but instead was optimised for
the sum of the density distributions of the classes.

(c) Since the binary string forming the “remainder of the data” has no logical
relationship to the thing being encoded, and since any string resulting
from the use of an optimised binary code has the statistical properties of
a string produced by a random process, this device effectively makes a
pseudo-random choice of class assignment. The probability that the thing
will be assigned to a particular class is given by the {rnk : k = 1, . . . , K}
distribution, i.e., the posterior distribution for that thing over the classes.

(d) The estimation of the distribution parameters ak, θk of a class becomes
consistent.

(e) Given sufficient data, two classes with different distributions will be dis-
tinguished by minimisation of the information measure, no matter how
much they overlap. Of course, the less the difference in the classes, the
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larger is the sample size (number of things) needed to reveal the differ-
ence, and the existence of two classes rather than one.

(f) In attempting to find a good model by MML we need not actually con-
struct an optimally coded message in full detail. Rather, we need only
consider the length such a message would have if constructed. Where the
length of an actual message might depend on essentially trivial details of
the coding process (e.g., the exact value to which an estimated parameter
value might be rounded in stating it to optimum precision) we calculate
an expected message length by averaging over all essentially equivalent
encodings. Hence, rather than actually assigning each thing to a single
class by constructing a Huffman code and “decoding” some bits of the
next thing’s description, we treat each thing as being partially assigned
to all the classes. Notionally, a fraction rnk of the thing is assigned to
class k, and its attribute values contribute with weight rnk to the esti-
mates of the distribution parameters of class k. The net message length
required for the description of the thing is computed directly from the
sum of the distribution densities of the classes in accordance with the
above formula (− log Pn). Note that the term − log Pn includes the cost

− log âk̂n
of stating the estimated class k̂n.

The upshot of using this improved format is that MML estimation of the
mixture model becomes rather similar to the EM process of Section 6.8.1.
The major term in the explanation length is

−
∑

n

log Pn = −
∑

n

log(
∑

k

âkf(yn|θ̂k)),

exactly the negative log-likelihood of the “incomplete” data model. However,
the MML method differs from EM in that

(a) In principle, it estimates the class labels kn.
(b) The full message length to be minimized includes the assertion of the

estimated class parameters âk, θ̂k : k = 1, . . . , K, whose coding depends
on the Fisher Information and some prior density. The class parameter
estimates are therefore MML rather than ML estimates.

(c) MML allows the number of classes K to be estimated. It is just that
number which leads to the shortest explanation.

(d) Improper solutions do not occur. The explanation length is not in general
minimized by models which assign a single thing to some class.

6.8.4 Imprecise Assertion of Discrete Parameters

The mixture model problem introduced the need to devise a coding scheme
which in a sense allowed the “imprecise” estimation of discrete parameters
(the class labels kn). Without the ability for imprecise specification, an incon-
sistency appears in estimating the number of classes and their parameters.
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The situation is parallel to that in the Neyman-Scott problem (Section 5.6.1).
There, the data comprised N small samples from N different Normal popula-
tions, all with the same unknown S.D. σ but with different unknown means.
Maximum Likelihood estimation, which is equivalent to exact specification
of all estimates, leads to over-precise estimation of the N unknown means
(“nuisance parameters”) and inconsistent estimation of σ. MML, by opti-
mally choosing the precision of the estimates for the nuisance parameters,
gives consistent estimation of σ. Similarly, in the mixture problem, the class
labels are “nuisance parameters”, and precise (e.g., ML) estimation of them
causes inconsistency. “Imprecise” estimation restores consistency, just as in
the Neyman-Scott case.

These and other examples suggest that Maximum Likelihood is prone to
inconsistency whenever an attempt is made to estimate nuisance parameters
whose number increases with sample size. Consistency can be restored to
ML by marginalizing-out the nuisance parameters (as in Neyman-Scott) or
by integrating or summing over their values (as in Expectation Maximiza-
tion.) but at the cost of failing to estimate these parameters. MML, on the
other hand, remains consistent while estimating all parameters, provided the
explanation length is truly minimized.

The coding device described in Section 6.8.3 which has the effect of im-
precise estimation of the discrete class labels shows interesting similarities to
the behaviour of SMML codes for real parameters. As shown in Section 3.3.4,
for models with regular log-likelihood functions, estimation to optimal pre-
cision of a set of D real parameters involves use of an “optimal quantizing
lattice” in D dimensions. This has the consequence that the estimate for one
parameter becomes dependent on data which is irrelevant to that parameter.
For large D, the effect is that the SMML estimate of the parameter behaves
as a pseudo-random selection from the posterior density of that parameter.
The pseudo-randomness is introduced from the values of data not related to
the parameter. A further consequence is that the length I1(x) of the SMML
explanation of data x is little more than the length I0(x) of the optimum
non-explanatory message, although the latter contains no estimates. The dif-
ference I1(x) − I0(x) grows only as the logarithm of the number of estimates
asserted. Very similar behaviour is shown by the estimates resulting from the
coding scheme of Section 6.8.3. Again, the estimate k̂n of the class of thing
n is pseudo-randomly selected from the posterior distribution over classes
{rnk : k = 1, . . . , N}, and the pseudo-randomness is introduced from irrel-
evant other data (yn+1). Also, the length of the MML explanation which
estimates the class labels is little more than that of a message which does
not. In the mixture model, the additional length is difficult to compute. It
arises in part from the fact that the Huffman code constructed over the pos-
terior distribution {rnk : k = 1, . . . , K} will have inefficiencies arising from
the integer constraint on code word lengths. These may be reduced by ap-
plying the coding trick to groups of things rather than single things, thus
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using a code over the joint posterior distribution of several class labels (see
Section 2.1.6). However, the trick cannot reduce the length required to code
the last thing in the sample, and grouping may prevent compaction of the
last several things. We conjecture that in the mixture case, the effective in-
crease in explanation length needed to include estimates of the N class labels
is not more than 1

2 log N , and less if the class distributions do not overlap
much. In a later chapter, we generalize the coding trick of Section 6.8.3 to real
parameters, and show that the “pseudo-random” behaviour, and logarithmic
I1 − I0 increase, still obtains for real parameters.

6.8.5 The Code Length of Imprecise Discrete Estimates

For a single real-valued parameter θ, prior density h(θ), data x and probabil-
ity model f(x|θ), we have shown in Section 5.1 that the expected explanation
length using the MML estimate θ′ is

− log

(

h(θ′)
√

F (θ′)/12

)

−
(

log f(x|θ′) − 1

2

)

+ Geometric constants

where the first term represents the code length of the asserted estimate and
the second term the expected length of the detail encoding x. The second term
includes the expected increase due to the rounding-off of θ′ to the imprecise
value θ̂ actually stated in the assertion. We now derive a discrete-parameter
analogue of the first term, i.e., an expression representing the code length
required to encode a discrete parameter to “limited precision”. The derivation
is based on the example of a class label parameter kn in the mixture problem,
and we use the notation of Section 6.8.3.

The total code length needed to “explain” the data yn of thing n has been
shown to be

− log Pn = − log

(

K
∑

k=1

âkf(yn|θ̂k)

)

For brevity, write f(yn|θ̂k) as fnk. This total length will be decomposed as
the sum of the length An needed to encode an “imprecise” estimate of kn,
and the expected length of the detail used to encode yn given the estimated
class label.

− log Pn = An + E (detail length)

Now, the code construction of Section 6.8.3 leads to a detail where, with
probability rnk = âkfnk/Pn, yn is encoded as a member of class k, using a
detail length − log fnk. Hence,

E(detail length) = −
∑

k

rnk log fnk

An = − log Pn +
∑

k

rnk log fnk
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But fnk = rnkPn/âk. Hence,

An = − log Pn +
∑

k

rnk log(rnkPn/âk)

= − log Pn +
∑

k

rnk log Pn +
∑

k

rnk log(rnk/âk)

=
∑

k

rnk log(rnk/âk)

Now, in estimating the class label kn of a thing, the distribution {âk : k =
1, . . . , K} plays the role of the prior probability distribution of kn, since
it has been asserted to be the distribution of class proportions, and hence
the probability distribution of the class of a randomly chosen thing. The
distribution {rnk : k = 1, . . . , K} is the posterior probability distribution of
kn, given the data yn. Hence, An, the length needed to encode the “imprecise”
estimate of kn, is just the Kullback-Leibler (KL) distance of the prior from
the posterior.

This form for An may appear to be quite different from the form

B = − log

(

h(θ′)
√

F (θ′)/12

)

given above for the length of the encoding of a real-valued parameter. How-
ever, there is a close analogy. The form B was derived in Section 5.1 by sup-
posing that the “statistician’s” MML estimate θ′ was passed to a “coder”,
who then chose the nearest value θ̂ from a discrete set Θ∗ of allowed es-
timates, and used θ̂ in coding the data x. The “allowed values” in Θ∗ were
chosen by the coder, but in the neighbourhood of θ, were spaced apart by the
amount w(θ), where w(θ) was a “spacing function” specified by the statisti-
cian. Since the statistician was assumed to have no knowledge of the allowed
values apart from the spacing w(θ), the statistician estimated the explana-

tion length resulting from her choice of θ′ on the basis that the estimate θ̂
actually asserted could lie anywhere in the range θ′ ± w(θ′)/2, and should
be treated as randomly and uniformly distributed in this range. (The un-
known detailed decisions of the coder form the source of “randomness”.)

Further, since each θ̂ would be used for an interval of width w(θ̂) in the

range of θ′, the coding probability of θ̂ is set at h(θ̂)w(θ̂), approximately the
total prior probability within this interval, and giving an assertion length
− log(h(θ̂)w(θ̂)). The statistician, being ignorant of θ̂, is forced to approx-
imate this by − log(h(θ′)w(θ′)). Further argument then leads to the choice
w(θ) = 1/

√

F (θ)/12 .
But we may regard this derivation in another light. As far as the statis-

tician is concerned, the asserted estimate θ̂ is randomly distributed with a
Uniform density
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r(θ̂) =
1

w(θ′)
(|θ̂ − θ′| < w(θ′)/2) or 0 otherwise

Since θ′ (and in less regular cases the width w) are obtained as functions

of the data x, the distribution r(θ̂) depends on x, and should be written as

r(θ̂|x).

Further, the KL distance of h(θ) from r(θ̂|x) is (writing w for w(θ′))

∫ θ′+w/2

θ′−w/2

r(θ|x) log
r(θ|x)

h(θ)
dθ =

∫ θ′+w/2

θ′−w/2

1

w
log

1

wh(θ)
dθ

which, if h(θ) is slowly varying as assumed in the MML derivation, is approx-
imately

∫ θ′+w/2

θ′−w/2

1

w
log

1

wh(θ′)
dθ = − log(w(θ′)h(θ′))

With the optimum MML choice

w(θ′) = 1/
√

F (θ′)/12

this gives exactly the form B, i.e., the usual MML expression for the length of
a single-parameter assertion. Hence, we see that B can be written as the KL
distance of the prior h(θ) from the density r(θ̂|x), in close analogy to the form

An for a discrete parameter. Of course, the density r(θ̂|x) is not the posterior
density Pr(θ|x), but it is as good an approximation to it as can reasonably
be expected of a Uniform density. It is centred on a good guess (the MML
estimate θ′) and has the same variance as the posterior for probability models
having approximately quadratic log-likelihoods about θ′. For multi-parameter
problems, it was shown in Section 3.3.4 that the distribution of the asserted
estimate of one parameter becomes increasingly close to its posterior as the
number of parameters increases.

We conclude that for both real and discrete parameters, the code length
required to assert an estimate to optimal precision is close to the Kullback-
Leibler distance of its prior from its posterior. This conclusion must be quali-
fied for discrete parameters, as it obtains only when many discrete parameters
are estimated simultaneously. For a single real parameter, its MML estimate
θ′ (together with w(θ′)) at least roughly characterizes its posterior, but for
a single discrete parameter no such single estimate can serve to capture any
more of the posterior than its mode.

In problems with a small number of discrete parameters, all of interest,
it does not seem possible to do better than to choose those estimates which
minimize the length of an explanation asserting the estimates precisely.

6.8.6 A Surrogate Class Label “Estimate”

Returning to the mixture problem, where there are many “nuisance” class
label parameters {kn}, consider the univariate two-class model with density
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(1 − a)f(x|θ0) + af(x|θ1)

We have seen that, for datum xn, MML will make a pseudo-random assign-
ment of the datum to either class 0 or class 1, with Pr(k̂n = 1) being some
probability rn. In some sense, rn can be regarded as an imprecise specifica-
tion of the estimate k̂n, and hence as a sort of surrogate MML estimate r′

n

which then gets “rounded” by the “coder” to either 0 or 1.
We have argued above that the message length required to encode k̂n

imprecisely, given the prior parameter a, is the KL distance

An = rn log
rn

a
+ (1 − r) log

1 − rn

1 − a

For datum xn, dropping the suffix n and writing f0 for f(xn|θ0) and f1

for f(xn|θ1), the expected message length required to encode xn given this

random choice of k̂n is

−r log f1 − (1 − r) log f0

The total length needed both to specify k̂n imprecisely, and then to encode
xn using the “rounded” class label, is thus (in expectation)

l(x) = r log
r

a
+ (1 − r) log

1 − r

1 − a
− r log f1 − (1 − r) log f0

= r log r + (1 − r) log(1 − r) − r log(af1)

− (1 − r) log((1 − a)f0)

Regarding r as a “parameter” which may be chosen freely, differentiation
gives

d

dr
l(x) = log r − log(1 − r) − log(af1) + log((1 − a)f0)

Equating to zero gives the “MML estimate” r′ where

log
r′

1 − r′ = log
af1

(1 − a)f0

r′ =
af1

af1 + (1 − a)f0

which is just the value obtained earlier in discussion of the compact explana-
tion format (Section 6.8.3). Thus, whether we regard the values of r as being
dictated by use of a coding trick, or as a “parameter” which may be chosen
freely, the conclusion is the same: MML chooses to assign datum xn to class
1 with pseudo-random probability equal to the posterior probability that xn

is indeed drawn from class 1. The result is easily generalized to more than
two classes.
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6.8.7 The Fisher Information for Mixtures

Calculation of the Fisher Information for a mixture model can become quite
difficult. Consider the K-class model distribution (or density) for a variable
x given by

Pr(x) =

K
∑

k=1

akf(x|θk)

where we have omitted the class labels from the model. If x is a vector of M
dimensions, the parameter θk will often have M or more component scalar
parameters, so there are typically of order KM parameters in the model. In
some applications of mixture modelling we have seen, M ≈ 100 and K ≈ 10,
giving well over 1000 parameters. The full Fisher matrix of expected sec-
ond differentials of the log-likelihood can have around half a million or more
distinct elements, few being zero. The cross-differential between some com-
ponent of θk and some component of θl (l �= k) will typically be non-zero if
there is any region of x-space for which f(x|θk)f(x|θl) > 0, i.e., if there is
any overlap in the two class distributions. Fortunately, in most practical ap-
plications of mixture models with high-dimensional data, the different classes
are not expected to overlap closely, so the cross-differentials between param-
eters of different classes are expected to be small and may even be entirely
neglected. If two classes in the model have closely overlapping distributions,
a better explanation of the data may well be obtained by combining them
into a single class, or by modifying the assumed form of the class distribution
function f(x|θ).

The effect of non-zero cross derivatives between parameters of two dif-
ferent classes is to reduce the Fisher Information below the value obtaining
if these derivatives were neglected. Similarly, overlap between classes causes
non-zero cross derivatives to appear between the “proportion” parameters
{ak} and the distribution parameters {θk} which again act to reduce the
Fisher Information. In the extreme of exact overlap, i.e., if for two classes
k and l, θk = θl, then the data cannot provide information about their in-
dividual proportions ak and al, but only about the sum (ak + al), and the
Fisher Information becomes zero. Note that in such a case, the “standard”
approximation for the length of the assertion,

− log
h(parameters)√

Fisher Information
+ constant

breaks down, and some amended expression such as suggested in Section 5.2.9
should be used in preference.

As the algebraic difficulties in obtaining the expected second differentials
are formidable, the use of the empirical approximation (Section 5.3) based
on the sample data is recommended.

So far, this section has omitted mention of the class label parameters
{kn : n = 1, . . . , N}. That is, we have tacitly followed the EM approach
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(Section 6.8.1) in treating the class labels as “missing data” rather than as
parameters of the model, and have discussed the Fisher Information based on
a marginal log-likelihood from which the class labels have been eliminated by
summing over their possible values. That is, we have considered an “unclas-
sified” model. However, we consider the class labels to be true parameters of
the mixture model, and in Section 6.8.2 et seq. have developed an explanation
format allowing estimates of these parameters to be asserted. We now revise
our consideration of the Fisher Information to reflect the inclusion of these
parameters, giving a “classified” model.

6.8.8 The Fisher Information with Class Labels

In Section 6.8.3, we show that the combined code lengths needed to assert
a class label estimate k̂n and then to encode the datum yn according to
the estimated distribution of class k̂n can be reduced by a coding trick to
an effective value of − log

∑K
k=1 âkf(yn|θ̂k̂n

). Hence, the length needed to
name the class labels and encode the data for all N data in the sample
is numerically equal to the negative log-likelihood, or detail length, of an
unclassified model in which the class labels do not appear (apart from a
small term probably about half the log of the sample size). It might therefore
be concluded that there is no essential difference between the two models, and
the Fisher Information relevant to the assertion of the estimates {(ak, θk) :
k = 1, . . . , K} in an unclassified model would apply equally to the classified
model of Section 6.8.2. However, this is not the case.

At first sight, treating the {kn} class labels as parameters would appear
to make the already difficult calculation of F totally hopeless, by adding a
further N to the dimension of the Fisher matrix. Indeed, a wholly satisfactory
analysis remains to be done, but the following outline is suggestive.

The Fisher Information is used in MML as an indication of how sensitive
the detail length is expected to be to the effects of “rounding-off” parameter
estimates to values useable in the assertion. We will regard the MML “esti-
mate” of a class label k̂n in the two-class mixture of Section 6.8.6 as being
represented by the surrogate value r′

n of Section 6.8.6, which gives the prob-

ability that k̂n will be pseudo-randomly rounded to class 1 rather than class
0. The detail length expected after “round-off” of r′

n values to k̂n estimates
either 0 or 1 is

L = −
N
∑

n=1

(r′
n log f(xn|θ̂1) + (1 − r′

n) log f(xn|θ̂0))

First, note that the mixture proportion parameter a does not appear in this
expression. It now has the role of a hyper-parameter in the prior for class
labels rather than as a direct parameter of the data model. Second, note that
the second derivative of L with respect to θ1 is given by
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∂2L

∂θ2
1

= −
∑

n

r′ ∂2

∂θ2
1

log f(xn|θ1)

Substituting the MML estimate

r′
n =

af1(xn|θ1)

af1(xn|θ1) + (1 − a)f(xn|θ0)

the expectation is easily shown to be

E
∂2L

∂θ2
1

= −aN

∫

f(x|θ1)
∂2

∂θ2
1

log f(x|θ1) dx

which is just the ordinary expression for the Fisher Information for parameter

θ1 and a sample size of aN . Similarly, E
∂2L

∂θ2
0

is the ordinary Fisher Informa-

tion for θ0 and a sample size of (1 − a)N . Also,
∂2L

∂θ1∂θ0
= 0. The effect of

introducing the class-label parameters is to decouple the parameters of the
two classes so cross-derivatives do not appear, and the diagonal Fisher matrix
elements for θ0 and θ1 assume the simple forms which they would have were
the class labels known.

This line of analysis may be continued to show that the optimum pre-
cision for the assertion of the proportion parameter a is also unaffected by
interaction with other parameters.

There is a much more direct, and to my mind more persuasive, demon-
stration that the Fisher for a classified model with class labels is simply the
product of the Fisher Informations of the class proportion parameters and of
the class distribution parameters {θk} considered separately. It follows from
remembering that what we are really about is calculating the length of an
efficient explanation of the data. Recall the explanation format for a classified
model as described in Section 6.8.2.

– It begins by asserting the number of classes K (if this is not known a

priori).
– Next comes the assertion of the class proportions {ak}. The receiver, on

reading this, has no reason to expect these proportions to be other than the
K state probabilities of an unknown Multinomial distribution, so encoding
them as such is efficient.

– Next come the class labels of the N things, {kn}. The receiver at this
stage knows only the probabilities of each label, i.e., the proportions in
each class, and so must expect the sequence of N labels to behave as a
sequence of random draws from a K-state Multinomial distribution with
probabilities as asserted. So again a simple sequence of coded labels, label
k being coded with length (− log ak), is efficient.

– Having received the class labels, the receiver now knows exactly which (and
how many) things in the sample are asserted to belong to each class. He
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knows that the members of class 1 will be encoded using a code efficient
for the distribution f(y|θ̂1), and he knows how many members there are.
He also knows that the distribution parameters for other classes will have
no bearing on the detail code used for members of class 1. So there is
no question as to how precisely θ̂1 should be asserted: the precision is
that dictated by the Fisher Information for the distribution f(y|θ̂1) with
sample size equal to the number of members of class 1. The same is true
for all classes: there is no interaction between the parameters of different
classes. It follows that the assertion can continue by asserting θ̂k for each
class in turn with no inefficiency, using for each class a Fisher Information
depending only on that class.

– In effect, once the assertion of the class labels {kn} has been decoded by
the receiver, the descriptions of the class distributions become logically
independent of one another.

– The coding of the details for the N things are not mutually independent,
since the receiver, using the data yn decoded for thing n, uses the coding
trick to recover some bits of the string encoding yn+1 which have been
omitted from the detail.

We conclude that the message-length effects of overlapping class distri-
butions are completely absorbed by the “coding trick” used to economize
the detail part of the explanation, and have no effect on the length of the
assertions of the class parameters.

6.8.9 Summary of the Classified Model

To summarize and generalize this approach to the classified mixture model
with MML parameter estimates {ak, θk : k = 1, . . . , K}, {kn : n = 1, . . . , N}:

(a) The detail length is

L = −
N
∑

n=1

K
∑

k=1

rkn log f(yn|θk)

where

rkn =
akf(yn|θk)

∑K
l=1 alf(yn|θl)

(b) Class label estimate kn is chosen pseudo-randomly from the distribution

Pr(kn = l) = rln

(c) The assertion length for kn, after allowing for the coding efficiency intro-
duced in Section 6.8.3, is

An =
∑

k

rkn log
rkn

ak



294 6. MML Details in Some Interesting Cases

(d) Datum yn contributes with weight rkn to the statistics Sk used to esti-
mate θk.

(e) θk should be chosen as the MML estimate of θk for the distribution f(.|θk)
based on statistics Sk, “sample size” Nk =

∑

n rkn, and some assumed
prior h(θk). (We do not mean to imply that the priors for the parameters
of the K components are necessarily independent, although this might
commonly be the case.)

(f) The assertion length for θk may be calculated as

Aθk
=

− log h(θ′
k)

√

Fk(θk)
+ constant

i.e., under the same conditions as for (e). That is, Fk(θk) is the determi-
nant of expected second differentials

−Nk

∫

f(y|θk)

(

∂2

∂θ2
k

log f(y|θk)

)

dy

(g) The class proportions (assuming a uniform prior) are estimated as

ak =
Nk + 1

2

N + K/2

(h) The assertion length Aa for the class proportions is the usual form for a
Multinomial distribution with sample size N , data {Nk : k = 1, . . . , K}

(i) If K is unknown, the assertion length for K is based on its assumed prior.
For instance, if h(K) = 2−K , Ak = K log 2.

(j) The total message length is

I1 = Ak + Aa +

K
∑

k=1

Aθk
+

N
∑

n=1

An + L + cD +
1

2
log N − log K!

where the constant cD is the constant from Section 6.1 for D real param-
eters; D = K − 1+K × (Dimension of θk); the term 1

2 log N is explained
in Section 6.8.4; and the − log K! term arises because the numbering of
the classes is arbitrary.

(k) If K is unknown, choose K to minimize I1.
(l) In computing I1, use may be made of the identity

(

N
∑

n=1

An

)

+ L =

N
∑

n=1

(An −
K
∑

k=1

rkn log f(yn|θk))

= −
N
∑

n=1

log

K
∑

k=1

akf(yn|θk)
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6.8.10 Classified vs. Unclassified Models

Despite the logic of the preceding sections, the reader might well be skeptical
of the results. Whether the class labels are treated as missing data (the
unclassified model) or as parameters (the classified model with class labels
asserted for the things) seems to have a more dramatic effect on the Fisher
Information, and hence on estimates, than would be anticipated from the
close correspondence between the main parts of the message length in the
two cases. Some numerical experiments have been conducted to discover how
different the two models turn out in practice. In one set of experiments, values
were sampled from the univariate density

aN(x| −c, 1) + (1 − a)N(x|c, 1)

with various sample sizes, proportions (a) and mean separation (2c). The
data were then analysed to estimate the parameters, with a, the two means
µ1 and µ2, and the standard derivations σ1, σ2 all being treated as unknown.
For each data set, an “unclassified” model was fitted by numerical mini-
mization of the message length, with the Fisher matrix approximated by the
empirical form of Section 5.3.4. A classified model was also fitted as sum-
marized in Section 6.8.9, using an obvious variant of the EM algorithm. The
same priors were assumed in both models, namely, that the means have in-
dependent Uniform priors in some range of size 4R, the standard deviations
have independent Uniform priors in the range (0, 2R), and the proportion
parameter a has a Uniform prior in (0, 1). The range scale R was set equal
to the Standard Deviation of the true population distribution. Of course this
is an unknown as far as the estimation problem is concerned, but we sought
to mimic a situation in which prior information imposed fairly strong limits
on the credible ranges of the means and Standard Deviations relative to the
overall variability of the data.

We also fitted a “one class” model to the data set, viz., a Normal distribu-
tion of unknown mean and SD, and calculated its message length. The mean
and SD were assumed to have the same priors as assured for the means and
SDs of the two-class components. The reason for choosing fairly tight prior
ranges for these was to ensure that two-class models would not be unduly
prejudiced by a prior expectation that, if two classes existed, they would be
very distinct (|µ1 − µ2| ≫ σ1, σ2).

The results showed, as expected, that the explanation length of the clas-
sified 2-class model always exceeded that of the unclassified model. However,
the difference was usually quite small, less than 2 nits, and the parameter esti-
mates also insignificantly different. The unclassified model tended to estimate
a slightly smaller separation between the means and slightly greater standard
deviations. Again, this is to be expected because the Fisher Information of
an unclassified model decreases as the two components become more similar,
whereas that of a classified model does not. The only circumstances when the
message lengths and estimates for the two models diverged significantly was
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when the one-class explanation length was the shortest. Whenever the ex-
planation lengths showed a clear preference for the unclassified 2-class model
over the one-class model, say, 3 nits or more corresponding roughly to a 5%
“significance level”, the classified model gave essentially identical results.

The close agreement between classified and unclassified approaches when-
ever the data justified a 2-class model was found whether the two component
classes were distinguished by different means and/or by different standard
deviations. Table 6.3 shows a few example results for a = 0.5, σ1 = σ2 = 1.0,
µ1 = −c, µ2 = c and sample size 100.

Table 6.3. Two-class classified and unclassified mixture models

True Unclassified Classified One-Class
2c µ̂2 − µ̂1 I1 µ̂2 − µ̂1 I1 I1

2.2 0.01 194.8 2.51 199.0 192.4
2.6 2.70 207.3 2.81 210.0 204.3
2.8 2.66 206.1 2.96 208.4 207.2
3.0 2.88 203.6 2.94 205.8 204.3
3.2 3.07 206.1 3.12 207.7 208.0
3.6 3.89 224.2 3.92 225.5 228.3
4.0 3.92 215.6 3.95 215.8 226.9

With the exception of the one case (2c = 3.0) right on the borderline
of significance, both classified and unclassified methods agree on where one
or two classes are to be preferred. The only great difference in parameter
estimates was in the case 2c = 2.2, where the unclassified model collapsed
the two classes together to give effectively only one class. In this case, neither
two-class model was competitive with a one-class model.

Other experiments with other class distribution functions and more classes
also lead to the conclusion that, in a mixture model with an unknown number
of classes, it makes no practical difference whether a classified or unclassified
MML model is used. As the classified model is far easier to solve, gives class
labels, and is arguably sounder, it is the better choice.

There remains the possibility that for some data, either the number of
classes K is known certainly a priori, or the probability model has no con-
cept of a mixture of classes behind it, but just happens to have the form of
the sum of a known number of parameterized density functions. In the first
case, the divergence of the classified and unclassified models when classes
overlap greatly is not “censored” by the alternative of a simpler model with
fewer classes, and so may be of some concern. However, even if K is known
certainly, it is reasonable still to entertain models with fewer than K classes
and to prefer one of these if it gives a shorter explanation. The simpler model
can be viewed, not as a hypothesis that only K −1 classes exist, but rather as
expressing the conclusion that two or more of the K classes are indistinguish-
able given the volume and nature of the data. To use an invidious example, it
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is beyond much doubt that humans come in two classes which are easily dis-
tinguished, male and female. But it would be a rash statistician who insisted
on fitting a two-class model to the examination results of a mixed-gender
group of students where the data did not identify the sex of each student.

In the second case, where the conceptual probability model is not a mix-
ture, use of a classified model is inadmissible, and the full computational
complexity of the unclassified MML model must be faced. The decrease in
the Fisher Information as the components become more similar causes the
MML parameter estimates to tend towards similarity, or even to converge as
shown in the 2C = 2.2 example in Table 6.3. This is not a “bias” or defect in
the estimator: it simply reflects the fact that there are many formally distinct
models with similar component parameters which cannot be expected to be
distinguished by the data. If the prior gives about equal prior probability
to all of these, the total prior attaching to an MML estimate with strongly
overlapping components is much higher than that attaching to weakly over-
lapping models, and MML is indeed estimating the model of highest posterior
given the data.

It may well be that in such cases where the population model is not a
conceptual mixture of distinct classes, prior information will suggest a prior
density on the component parameters {θk : k = 1, . . . , K} which becomes
very low if the parameters are closely similar, rather than the independent
priors assuming in the above experiments. The tendency of the MML esti-
mates to converge may then be weakened.

6.9 A “Latent Factor” Model

This section discusses a “factor analysis” model of a multivariate real-valued
distribution. Like the Mixture problem, it illustrates the graceful MML han-
dling of nuisance parameters, and also uses a modification to the Fisher ma-
trix to resolve an indeterminism in the parameterization of the model.

The data are N independent observations from a K-dimensional distri-
bution

x = {xn : n = 1, . . . , N}; xn = (xnk : k = 1, . . . , K)

The assumed model is

xnk = µk + vnak + σkrnk

where the variates {rnk : k = 1, . . . , K, n = 1, . . . , N} are all i.i.d. variates
from N(0, 1). In concept, each of the K variables measured is regarded as
having a value for the Nth case determined by a mean, a dependence on an
unobserved variable v having a value vn for the case, and a specific variability
with variance σ2

k. Hence, the model models a multivariate Normal density
with a special covariance structure.
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We wish to estimate the unknown parameters {vn : n = 1, . . . , N} (the
“factor scores”), {µk : k = 1, . . . , K} (the means), {σ2

k : k = 1, . . . , K} (the
specific variances), and {ak : k = 1, . . . , K} (the “factor loads”). Define for
all n, k

wnk = xnk − µk

ynk = wnk/σk, y
n

= (ynk : k = 1, . . . , K)

bk = ak/σk, b = (bk : k = 1, . . . , K)

b2 = b2 =
∑

k

b2
k, v2 = v2 =

∑

n

v2
n

Y =
∑

n

y
n
yT

n

It is clear that the model as shown is indeterminate. The parameters b, v
enter the distribution model only via their Cartesian product, so the data
can give no information as to their absolute sizes b2 and v2. It is conventional
to assume that the factor scores {vn} are of order one in magnitude. We
assume a prior on the scores such that each score is independently drawn
from the Normal density N(0, 1). For b we assume all directions in K-space
to be equally likely, and a prior density in K-space proportional to

(1 + b2)−(K+1)/2

This prior on b is proper and expresses an expectation that in each dimension,
ak will be of the same order as σk but could be considerably larger. The
prior on the mean vector µ is assumed Uniform over some finite region large
compared with a.

The negative log-likelihood is

L =
1

2
KN log(2π) + N

∑

k

log σk +
1

2

∑

n

∑

k

(xnk − µk − vnak)2/σ2
k

If the Fisher matrix is evaluated in the usual way, its determinant is zero,
because the log-likelihood is unchanged by the simultaneous substitution a →
αa, v → (1/α)v for any α. We resolve the singularity by noting that while the
data provide only K values relevant to the estimation of each factor score vn,
the score is subject to a fairly tight N(0, 1) prior. Following the Section 5.2.10
on curved priors, we add the second differential of − log h(vn) (namely one) to
the second differential of L with respect to vn in the Fisher matrix. We could
similarly take account of the curvature of the prior h(b), but as in the usual
factor problem K ≪ N and the curvature is small, it makes little difference
and is omitted.

With this modification, the Fisher Information is found as

F (µ, σ, a, v) = (2N)K(Nv2 − S2)K(1 + b2)N−2 /
∏

k

σ6
k
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where S =
∑

n vn. The explanation length is then

I1 = (N − 1)
∑

k

log σk

+
1

2

[

K log(Nv2 − S2) + (N + K − 1) log(1 + b2)
]

+
1

2

[

v2 +
∑

n

∑

k

(xnk − µk − vnak)2/σ2
k

]

+ constant terms

Minimization of I1 leads to the implicit equations for the parameters shown
in Table 6.4 in the column headed MML. Note that all parameter symbols
here stand for the estimates of these parameters. The table also gives cor-
responding equations for Maximum Likelihood (ML) and for a marginalized
Maximum Likelihood model in which the nuisance vector score parameters
are eliminated by integration over their N(0, 1) priors and hence not esti-
mated (ML*).

Table 6.4. Defining equations for the Factor Model

Parameter MML ML ML*

vn (1 − 1/N )y · b/C2 y · b/C2 not estimated

S 0 0 not calculated

µ
∑

xn/N
∑

xn/N
∑

xn/N

b
1 − K/((N − 1)b2)

(N − 1)(1 + b2)
Y · b 1

Nb2
Y · b 1

N (1 + b2)
Y · b

σ2

k

∑

n
w2

nk

(N − 1)(1 + b2)

∑

n
w2

nk

N (1 + b2)

∑

n
w2

nk

N (1 + b2)

The form of the equation for b in all three estimators shows that it is an
eigenvector (actually the one with the largest eigenvalue C2) of the sigma-
scaled covariance matrix Y/N . The defining equations for the estimates can
be readily solved by an iterative scheme.

The ML solution is unsatisfactory. The maximum likelihood is usually
reached when a is parallel to some data axis and the corresponding σk ap-
proaches zero. It is thus inconsistent.

The ML* estimator is that usually described as the “Maximum Likeli-
hood” estimator in the literature and derives from the work of Joreskog [21].
While consistent, it is badly biased for small factors, tending to overestimate



300 6. MML Details in Some Interesting Cases

b2, underestimate the specific variances {σ2
k}, and to bias the direction of b

towards a data axis. When tested on artificial data drawn from a population
with no factor, it tended to give an estimated b2 of order 1 with b nearly
parallel to an axis. It does not directly give any estimate of the factor scores.
Mardia et al. [27] suggest the estimator vn = yn · b/(1 + b2), but this does
not maximize the likelihood for given ML estimates of the other parameters.

The MML estimator gave more satisfactory results, showing no sign of
bias. On artificial data with a known factor, the estimation errors of MML
were consistently smaller than those of ML*, as measured by (â−a)2, (v̂−v)2,
or by the estimation of the specific variances. The MML defining equations
do not have a solution unless the correlation matrix of the data shows a
dominant eigenvalue greater than would be expected in a sample from an
uncorrelated (zero-factor) population. A fuller derivation and test results are
given in [56].

6.9.1 Multiple Latent Factors

The MML latent factor model has been extended to the discovery and esti-
mation of multiple latent factors. The general framework, data, prior assump-
tions and notation follows the single-factor case, but for a J-factor model, we
now assume that there are J true latent factors whose “load” vectors, when
scaled by the specific variances of the observed variables, have, independently,
Uniform priors over their directions, and, also independently, identical length
priors similar to that assumed for the single load vector b in the single-factor
model. We also assume that the factor scores associated with the different
factors have uncorrelated unit Normal priors.

However, with the obvious data distribution model

xnk = µk +

J
∑

j=1

(vjnajk) + σkrnk

= µk + σk(
∑

j

(vjntjk) + rnk)

where j = 1, . . . , J indexes the J true scaled factors

{tj = (tjk : k = 1, . . . , K) : j = 1, . . . , J}

the data covariance matrix is a sufficient statistic, and we cannot hope to
distinguish among the infinitely many sets of J true factor load vectors which
would give rise to the same population covariance. This indeterminacy is
additional to the indeterminacy between the lengths of the load and score
vectors. It can be resolved by accepting that the true latent load vectors
cannot be estimated, and instead estimating a set of J load vectors

{bj = (bjk : k = 1, . . . , K) : j = 1, . . . , J}
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which are constrained to be mutually orthogonal. Similarly, one accepts that
the J factor score vectors {vj} be estimated as mutually orthogonal. It then
follows from the prior independence assumed for the true latent vectors that
the orthogonal latent vectors {bj} do not have independent priors. Their
directions (subject to orthogonality) remain Uniformly distributed, but the
joint prior density of the lengths of the orthogonal bj and vj vectors now
contains a factor

∏

j

∏

i<j

|v2
j b2

j − v2
i b2

i |

showing that, with independent priors on the true factors, it is most unlikely
that any two orthogonal factors will have similar “strengths” as measured
by their load-score products v2

j b2
j . The full form for the joint prior density of

load and score vector lengths is (writing bj for |bj | etc):

h({bj , vj all j})

= GNKJ

J
∏

j=1

⎛

⎝TK(bj)HN (vj)
∏

i<j

|v2
j b2

j − v2
i b2

i |
vjbjvibi

√

(1 + b2
j )(1 + b2

i )

⎞

⎠ 2J j!

where

TK(b) =
2Γ (

1

2
(K + 1))

√
πΓ (

1

2
K)

bK−1

(1 + b2)(K+1)/2

HN (v) =
N

2N/2Γ (1 + N/2)
vN−1ev2/2

the 2J factor occurs because the sign of load vectors is immaterial, the J !
factor occurs because the ordering of the factors is arbitrary, and GNKJ is a
normalization constant.

When the Fisher Information is calculated for the orthogonal-factor pa-
rameterization (adding as in the single-factor case the log-prior curvature 1
to the second derivatives with respect to scores), it is found to contain the
factor

∏

j

∏

i<j

(v2
j b2

j − v2
i b2

i )
2

because if any two orthogonal factors have almost equal load-score products,
the log-likelihood is almost unaltered by a rotation of the pair in the plane
containing them. Hence, when the prior and Fisher are combined in the MML
explanation length term

− log

(

prior√
Fisher

)

the interaction terms disappear, and the resulting defining equations for the
J-factor model are little more complex than for the single-factor model.
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Introducing variables Rj ; Qj for each factor, the MML estimates satisfy

µk = (1/N)
∑

n

xnk

wnk = xnk − µk

ynk = wnk/σk

Y =
∑

n

y
n
yT

n

σk =

∑

n w2
nk

N − 1 +
∑

j Rjb2
jk

Qj = 1 + b2
j + (K − J + 1) / v2

j

v2
j = bT

j Ybj / Q2
j

Rj = v2
j +

N + K − 1

1 + b2
j

or N + J − 2

bj = Ybj / (QjRj)

The J factor load vectors are multiples of the J eigenvectors of Y/N with
the largest eigenvalues. As in the single-factor case, a solution with J latent
factors will exist only if all these J eigenvalues are larger than would be
expected to arise with a smaller number of latent factors.

The message length, which is required to compare models with different
numbers of latent factors, is given by

I1(x) = (K/2 − 2J) log 2 + K log N +
1

2
JN log(2π) − log(J !)

− J log SN +

J−1
∑

i=0

log(SN−iSK−i − J log(SK/SK+1

+
1

2
(K − J + 1)

∑

j

log v2
j +

1
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where D = 2K + J(N + K − J + 1) is the number of parameters, and

Sm =
mπm/2

Γ (m/2 + 1)
(The surface of a unit m-sphere)
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The finite ranges of the Uniform prior densities on µk and log σk have been
omitted from the message length, as they affect all models equally.

The constant GNKJ is the normalization constant for the prior density
of the orthogonal factor load and factor score vectors {bj vj : j = 1, . . . , J}
derived from the independent prior densities assumed for the true factor load
and score vectors. An exact closed-form expression for GNKJ is not known,
but for N > 40, log GNKJ depends little on N and is well approximated by

− log GNKJ = AJ +
1

2
J(J − 1) log(K − BJ)

where the constants AJ , BJ are shown below for J ≤ 6.

J : 1 2 3 4 5 6
AJ : 0 0.24 1.35 3.68 7.45 12.64
BJ : − 0.58 0.64 0.73 0.86 1.21

Tests on artificial data sets having up to five latent factors have shown the
MML estimator to be less biased and more accurate than the Maximum
Likelihood (ML*) estimator. The latter does not directly choose the number
of factors, so in the testing it was given the benefit of being given J .

When J is unknown, it may be estimated using the ML* estimator by
comparing the log-likelihoods of models with different numbers of factors,
and choosing the model with the highest “penalized” log-likelihood. Two well-
known “penalty” functions were tried, Akaike Information Criterion (AIC)
and the so-called Bayes Information Criterion (BIC). These penalties, which
depend on the number of free parameters in each model, are subtracted from
the log-likelihoods of the models to gibe the penalized log-likelihoods. For a
model with D parameters fitted to a data sample of size N , they are

AIC penalty = D; BIC penalty =
1

2
D log N

Using the MML estimator, there are two ways in which J may be estimated.
One may try models with various assumed J and choose the one of shortest
explanation length, or one may choose the model with the largest assumed
J for which an MML solution exists.

When AIC and BIC using ML* models were compared with MML esti-
mates of J , it was found that AIC was much inferior to BIC, and generally
MML was superior to both. For some tests with weak factors, BIC appeared
to find the true J more frequently than MML, which did not find the weakest
factor. However, when the true-J ML* model selected by BIC was inspected
in these cases, its estimate of the weakest factor was found to have no clear
relation to the true weakest factor, and the Kullback-Leibler distance of the
ML* model from the true population was greater than that of the MML
model even though the latter omitted the weakest factor. The two MML
methods for choosing J generally agreed, but there was some indication that
choosing the highest possible J permitting an MML solution was slightly the
more reliable of the two.



7. Structural Models

In this chapter we describe some applications of MML to the inference of
some simple discrete structures. Some use is made of the expressions devel-
oped in Chapter 6 for the message lengths for statistical distribution models,
which appear as components in the inferred structural model, but the main
emphasis is on the additional assertion components needed to describe the
discrete structure.

7.1 Inference of a Regular Grammar

Here, the data comprises a sequence of strings, or “sentences”, in a finite
alphabet of K + 1 symbols. The hypothesis to be inferred from the strings is
a regular grammar defining a language to which all the strings belong. We
will use Roman letters (a, b, c, etc.) as the symbols of the alphabet, save for
a distinguished symbol (“#”) which is a punctuation mark occurring at the
end of each sentence, and only there. The number K of ordinary symbols is
known.

There are many formalisms in which a regular grammar may be speci-
fied, and an efficient assertion code could be defined for each of them. All
are equivalent in the sense that any regular grammar may be described in
any formalism, but the prior (or coding) probability implied for a particular
grammar may vary considerably between one formalism and another. In this
example we have chosen a formalism based on finite-state machines as it is
relatively easy to work with, but we do not argue that it provides universally
the most appropriate assertion code in all situations where a regular grammar
might be inferred.

7.1.1 A Mealey Machine Representation

A regular grammar on a K-symbol alphabet may be represented by an ab-
stract finite-state machine (FSM). An FSM has a set of S “states” numbered
1, 2, 3, . . . , S and indexed by s. Each state may have from one to (K + 1)
“transition arcs” (or more simply, “arcs”) which are directed arcs leaving
the state and going to some state. Each arc is labelled by a symbol of the
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alphabet. No two arcs from the one state have the same label symbol. The
destinations of arcs labelled with ordinary symbols are unrestricted: an arc
may go to the state it leaves, and two or more arcs from one state may lead
to the same state.

State 1 is distinguished, and called the “start state”. Any arc labelled
with # must go to state 1.

An FSM generates a sentence from the grammar it represents as follows.
The machine starts in state 1. It then moves to some state by following one
of the arcs leaving state 1. In so doing, it generates as the first symbol of
the sentence the symbol labelling that arc. Having reached the destination
state of the arc, the machine then follows some arc leaving that state, and in
doing so generated the next symbol of the sentence. This process of moving
from state to state by following arcs, and generating a symbol on each move,
continues until an arc labelled # is followed. This arc necessarily generates
the # symbol terminating the sentence, and leads to state 1, leaving the
machine ready to start another sentence. Two simple examples of FSMs on
the binary alphabet a, b are shown in Tables 7.1 and 7.2. In these figures, a
next-state entry “−” for some symbol means the symbol cannot be produced
from the current state.

Table 7.1. FSM M1, grammar S ::= b | aS

Current State Next State for Symbol
a b #

1 1 2 −
2 − − 1

Table 7.2. FSM M2, grammar S ::= aFb; F ::= Λ | abF

Current State Next State for Symbol
a b #

1 2 − −
2 4 3 −
3 − − 1
4 − 5 −
5 6 3 −
6 − 5 −

The first machine defines the grammar whose sentences begin with any
number of “a”s and end with b (or b# if you prefer). In Bakus-Naur Form
(BNF):

S ::= b | aS
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The second machine generates sentences which are either ab# or aab
followed by any number of ab pairs followed by b#. In BNF:

S ::= aFb
F ::= Λ | abF

Note that the grammar generated by the second machine is also generated
by the simpler machine M3 shown in Table 7.3. However, as we now describe,
we will not necessarily regard M2 and M3, nor their grammars, as equivalent.

Table 7.3. FSM M3, grammar S ::= aFb; F ::= Λ | abF

Current State Next State for Symbol
a b #

1 2 − −
2 4 3 −
3 − − 1
4 − 2 −

7.1.2 Probabilistic FSMs

In most contexts where a collection of symbol strings (sentences) in a finite
alphabet might be “explained” by a hypothetical grammar, the collection will
contain regularities not fully captured by a formal grammar. In particular, we
usually find regularities expressible in terms of the frequency or probability
of occurrence of certain structures. For example, the formal grammar for
the “C” computer language places no restriction on the length (in symbols)
of a mathematical expression, yet as the language is used in practice, most
expressions contain less than 20 symbols, and expressions containing more
than 1000 symbols are very rare. Similarly, most attempts to formalize a
grammar for the English language admit sentences like:

“The man died.”
“The man the dog bit died.”
“The man the dog the boy kicked bit died.”
“The man the dog the boy the teacher hit kicked bit died.”
etc.

All but the first two constructions are in fact uncommon, and the fourth is
arguably no longer English as she is spoke.

The formalism discussed here extends the simple FSM model to allow for
inclusion of some probabilistic structure in the grammar. The extended model
is called a probabilistic finite-state machine (PFSM). In a PFSM, each arc is
labelled with a “transition probability” as well as a symbol. The probabilities
on the arcs leaving a single state sum to one. The probability on an arc from
state s1 to state s2 shows the probability that, if the machine is in state s1,
it will follow the arc to state s2.
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The grammar represented by a PFSM is called a probabilistic regular
grammar. It defines not just a set of possible sentences but also a probability
distribution on that set. That is, it defines a population of sentences.

When machines M2 and M3 above are given transition probabilities, they
can no longer be regarded as equivalent. For instance, M2 can represent
a grammar such that 70% of all generated sentences are “ab”, 20% of all
sentences are “aabb” but sentences beginning “aaba. . . ” have an average
length of 100 symbols. The simpler machine M3 cannot represent such a
population of sentences.

7.1.3 An Assertion Code for PFSMs

We will first consider a code for the discrete structure of the FSM, and defer
consideration of the assertion of transition probabilities.

(a) The code starts with the number of states S, using some sensible prior.
This part of the assertion is short, and its length would usually have little
effect on the comparison of two competing hypothesized FSMs. We will
ignore its length.

(b) For each state, the code describes the arcs leaving the state as follows.
First, the number of arcs leaving the state, say, as for state s, must be
between 1 and (K + 1), so can be coded in log(K + 1) nits.

(c) Following as, the code specifies the symbols labelling the arcs. This set
of symbols is some selection of as symbols from the alphabet of (K + 1)

symbols and can be coded with log

(

K + 1

as

)

nits.

(d) For each of the as exiting arcs, in lexographic order, the code names
the destination state. If none of the arcs is labelled with #, this takes
(as log S) nits. If some exit arc is labelled #, the cost is ((as − 1) log S),
since an arc labelled # necessarily leads to state 1.

The above code can describe any FSM, but contains some inefficiencies.
First, the numbering of all states other than state 1 is arbitrary, so the code
permits (S − 1)! different, equal-length descriptions of the same FSM. This
inefficiency is easily allowed for by subtracting log(S − 1)! from the calcu-
lated assertion length, or, equivalently, determining some convention for a
canonical numbering of the states. Second, the code permits the description
of FSMs some of whose states cannot be reached from the start state. No
such FSM could sensibly be asserted in an explanation, so the code is some-
what redundant. In practice, we have found the redundancy of this code to
be small, and minimal-length explanations using it are not seriously affected.
Finally, there is a small inefficiency arising from the fact that at least one arc
must be labelled #, but this condition is not enforced by the code.

There is an important and essentially arbitrary choice in this coding
scheme. Although the number of arcs leaving a state can have any value
between 1 and (K+1), it is not obvious that all these values are equally likely
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a priori. Hence, although the number of exit arcs can be coded in log(K +1)
nits, such a coding may not be optimal given prior domain knowledge. For
instance, in computer languages the number of symbols which may follow a
given string is usually quite restricted, so we might expect the average num-
ber of exit arcs from a state to be significantly less than (K + 1)/2. We will
assume henceforth all exit arc numbers to be equally likely, but this is just
for purposes of illustration.

Using this coding scheme, the length of the description of machine M2 is
as shown in Table 7.4 (remembering K = 2).

To the total cost of (12 log 3 + 7 log 6) shown in Table 7.4, we must add
the cost of specifying the number of states (6) according to whatever prior
has been assumed, e.g., add (log∗ 6), and subtract an allowance for arbitrary
state numbering (log(5!)).

Table 7.4. Length of the description of machine M2.

State as Cost Label(s) Cost Destn(s) Cost
1 1 log 3 (a) log 3 (2) log 6
2 2 log 3 (a,b) log 3 (4,3) 2 log 6
3 1 log 3 (#) log 3 (1) 0
4 1 log 3 (b) log 3 (5) log 6
5 2 log 3 (a,b) log 3 (6,3) 2 log 6
6 1 log 3 (b) log 3 (5) log 6

7.1.4 A Less Redundant FSM Code

A more complex coding scheme can remove most of the inefficiencies of the
simple code. One possibility is the following coding scheme.

The transition table row for a state in a table such as 7.2 can be repre-
sented by an ordered list of (K+1) state numbers. We first agree on a lexical
ordering of the alphabet symbols, e.g., {a,b,#} and will present the transi-
tion table row entries for a state in this order. Next, we augment the possible
state numbers which may appear in such a row by the integer “0’. Here, “0”
in the entry for some state and alphabet symbol will mean that emission of
the symbol from this state is impossible, as was shown by a “−” entry in
Table 7.2. Note that the entry for the symbol “#” can only be 0 or 1.

The coding process will use an “open list” of state numbers and a “highest
state number” variable H. Initially, the open list contains the single number
“1” and H = 1. Also, no state is assigned a state number except the start
state, which is assigned the number “1”. The code construction consists of
repeated execution of the following step:

– If the open list is empty, exit.
– Remove the first state number from the open list. Let this be C.
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– For each of the K alphabet symbols in lexical order, if the destination state
of state C has not been assigned a number, add 1 to H, assign it the number
H and place H on the end of the open list. In any case, output a code string
for the destination state number, using a code length of log(H + 1) since
the number must be in the range {0 . . . H}.

– For the symbol #, output a code for 0 if state C cannot emit “#”, or 1 if
it can (code length one bit).

The number of states is not explicitly encoded. It is determined by the
emptying of the open list, whose operation is easily recovered by the re-
ceiver. This code improves on the original in two ways. First, it avoids the
redundancy arising from the arbitrary numbering of states by imposing a
“canonical” numbering scheme. Second, it cannot encode a machine con-
taining states inaccessible from the start state. Certain other redundancies
remain. It permits the coding of machines which never emit “#”, or which
can become trapped in a cycle of states. To illustrate the code, the code
produced for machine M2 of Table 7.2 is, in numeric form with punctuation
added for legibility:

2,0,0; 3,4 0; 0,5,0; 0,0,1; 6,4,0; 0,5,0

The complications of a non-redundant code are illustrated here to show that
devising a truly non-redundant code for discrete structures can be difficult,
and the implications of the code for the implied prior can be quite obscure.
For instance, the less-redundant code for FSMs outlined here implies some
joint prior over the numbers of states and arcs, but this prior is not obvious
from the structure of the code, and may be quite unreasonable (e.g., the
expected number of states may be infinite).

7.1.5 Transparency and Redundancy

At least in the case of FMSs, an attempt to devise a code scheme less re-
dundant than the simple code of Section 7.1.3 has led to a scheme in which
the implied prior is not obvious, and depends in obscure ways on the num-
ber of alphabet symbols and the topography of the transition table. There
is in our view a strong case for tolerating some degree of redundancy in the
code schemes adopted for discrete structures if the redundancy allows a sim-
ple interpretation of the details of the scheme in terms of prior probability.
The use of a hypothesis assertion code which is redundant in the sense of
allowing the assertion of nonsense hypotheses and/or allowing more than one
coding of the same hypothesis will have the effect of inflating the length of
the assertion. If the amount of inflation is bounded by a constant factor in-
dependent of the hypothesis, the amount of data (in this case the number
of sentences) required for MML to discover a complex hypothesis will be in-
creased by about this factor. Thus, a small percentage increase in assertion
length arising from redundant coding simply reduces slightly the efficiency of
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the MML estimation, but is not expected to have more serious effects. Serious
distortion of the estimates will occur only if the inflation factor of assertion
lengths increases with the complexity of the assertion. It has been shown [2]
that MML inference remains consistent provided the inflation factor is less
than two.

In Bayesian terms, replacing the “correct” prior distribution h(θ) by a
sub-normalized approximation k(θ) will not result in inconsistency provided
h(θ) ≥ k(θ) > h(θ)2 for all θ.

In the present case, the simple code of Section 7.1.3 is not very redundant.
The lengths it gives for the assertion of a FSM are less than 50% longer than
a bound on the minimal lengths calculated by enumerating all acceptable
FSMs of a given number of states, at least for up to 6 states. The inflation
ratio appears to decrease with the size of the alphabet. The advantages of
using the simple code are considerable, in that variants of it allow prior beliefs
about the number of states and the average number of transition arcs per
state to be incorporated in the coding in an obvious way. We have used the
simple code in all experiments on the inference of regular grammars.

In the Algorithmic Complexity approach to induction, where the asserted
hypothesis may be any computable function and is represented by a pro-
gram for a Universal Turing Machine, redundancy of the assertion code is
ineluctable. As there is no general method for deciding whether a program
halts, there is no general method for identifying nonsense assertions. Simi-
larly, there is no general method for determining whether two programs, and
the hypotheses they assert, are equivalent. Although most applications of
MML will deal with less general hypothesis spaces where questions of non-
sense and equivalence are in principle decidable, the decision processes may
often be so computationally difficult that the practical situation resembles
that of Algorithmic Complexity: strictly non-redundant assertion codes may
not be reasonably achievable.

This position may be philosophically objectionable, but it does not un-
dermine the MML approach, nor is it in conflict with observation of the
progress of scientific theory. If redundancy exists in our assertions even in an
in-principle decidable domain, it simply means that our understanding of the
domain does not, as yet, allow us to express that understanding as a properly
normalized prior probability distribution. If we attempt a nonsense assertion,
we can confidently expect the data to reveal our folly, since the assertion will
not explain the data. If we fail to recognise the equivalence of two distinct
assertions, we may require more data to reach confidence in the assertion we
make, but should eventually realize the equivalence empirically because the
data never seems to distinguish between the assertions.

Even when we are aware of the redundancy of our assertion language,
there may be good reason to tolerate it. An explanation of the operation of
a synchrotron may well use assertions framed partly in classical terms (when
describing the generation of the accelerating and beam-focussing fields), rel-



312 7. Structural Models

ativistic terms (when describing the relationship of field strength to particle
speed), and quantum-mechanical (in describing the formation of antiparti-
cles). These assertions are partly redundant, in that the quantum electrody-
namics of the particles implies their response to applied fields, and partly
nonsense, in that the classically framed assertions rely on classical theory
strictly incompatible with relativity. Yet we understand, accept and use such
explanations routinely.

7.1.6 Coding Transitions

Having described the discrete structure of a hypothesized PFSM, the as-
sertion should next encode the transition probability distribution over the
transition arcs leaving each state. For each state, this distribution is a Multi-
nomial distribution, and it seems natural to assume a uniform prior over all
possible sets of probabilities. Thus, the analysis of Section 5.4.1 is applicable.
However, there is a technical problem. In that section it is assumed that the
sample size is known a priori, and the code used for asserting a probability
distribution depends on the sample size. The relevant sample size for the cod-
ing of the transition probabilities out of some state of a FSM is the number
of times the state is visited by the available data sentences. However, this
number is not known a priori, and cannot be known to the receiver of an
explanation until the detail encoding the sentences is decoded.

One possible way round this problem is to base the coding of the transition
probabilities for a state on the expected number of visits to the state. This
expected number is a function of the structure of the PFSM (already asserted)
and the transition probability distributions of all of its states. In principle, one
could devise a code encoding all the transition distributions simultaneously,
with coding precisions based on the transition distributions themselves. In
effect, the set of asserted distributions could be treated as being a single
vector parameter of the model PFSM, and the Fisher Information expressed
in terms of this vector. Unfortunately, the expected frequencies of visiting the
various states, and hence the Fisher Information, are complex functions of
the transition probabilities, making this approach computationally difficult.

A much simpler approach is to use an incremental code for the transitions
out of each state (Section 2.1.10). In this approach, the assertion asserts only
the discrete structure of the PFSM, and not the transition probabilities. In
the detail, the code fragment encoding the next transition to be made in

generating the data sentence is encoded with a coding probability nsk + 1
vs + as

where s is the current state, as is the number of arcs leaving it, vs is the
number of times the state has already been left (including transitions directly
to itself), k is the symbol labelling the arc to be followed, and nsk is the
number of times this arc has already been followed. The length of the code
fragment encoding the next transition (and hence the next symbol) is of
course the negative log of this coding probability. Use of this incremental
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code means that the total detail length needed to encode all transitions out

of some state s is log (Ns+as)!
∑

k
(Nsk!)

, where Ns is the total number of transitions

out of state s, and Nsk is the number of transitions generating symbol k.
Use of an incremental coding of transitions in the detail means that no

estimates are actually asserted about the transition probabilities. This is
probably not a matter of concern, as interest is usually focussed on the dis-
crete structure. If it is desired to treat the probabilities as an essential feature
of the inferred model, a small correction (from Section 5.2.13) can be added

to the above expression, given by
1

2
log(π(as − 1)) − 0.4 for each state.

Note that for any state having only one exit arc (as = 1), there is no mes-
sage length required to encode the transition probability or the transitions.

7.1.7 An Example

Some of the earliest work on the inference of regular grammars was by
Gaines [17], from whom the PFSA representation used here is adopted. He
considered this set of sentences in the alphabet {a, b, c, #}:

c a a a b #
b b a a b #
c a a b #
b b a b #
c a b #
b b b#
c b #

He then found PFSA structures of one to six states, choosing for each number
of states the PFSA with the highest likelihood (essentially the shortest detail
length as given by an incremental code). The likelihood of course increased
monotonically with increasing number of states, but after an informal consid-
eration of the amount of increase given by each additional state, he suggested
the best choice to be the 4-state machine in Table 7.5.

Table 7.5. 4-state machine.

Current State Next State for Symbol
a b c #

1 − 2 3 −
2 − 3 − −
3 3 4 − −
4 − − − 1

Using the assertion code of Section 7.1.3 and the incremental detail code,
the MML process found just this machine, with an explanation length of 37.5
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nits. The nearest competitor was the 3-state machine in Table 7.6 giving 39.8
nits. This machine combines states 2 and 4 of the best machine.

Table 7.6. 3-state machine.

Current State Next State for Symbol
a b c #

1 − 2 3 −
2 − 3 − 1
3 3 2 − −

Numerous experiments with artificial data sets generated by PFSMs with
up to 9 states have shown that the MML criterion reliably identifies the
source grammar, given sufficient data. To avoid confusion between the merits
of the MML criterion and the effects of the search method used to find the
PFSM giving the shortest explanation, a search algorithm was used which
was guaranteed to find the global minimum. It was therefore very slow and
impractical for learning grammars of any complexity. The most complex data
used in these experiments was a set of 42 sentences in the binary alphabet
{0, 1, #}. Writing each sentence as

x0y0z0x1y1z1 . . . xnynzn#

the grammar can be described by the rules:

(a) All sentences have lengths which are a multiples of 3.
(b) If the symbols xnxn−1 · · ·x2x1x0 are regarded as the digits of a binary

integer X, and similarly yn · · · y0 and zn · · · z0 , then in each sentence,
Z = X + Y if overflow is neglected.

On this data set, the search algorithm found a 9-state machine which im-
plements serial binary addition in the triplet representation defined by the
grammar.

Much faster heuristic search algorithms to perform MML inference of
regular grammars have been devised by Raman and Patrick [33] and used in
several applications, e.g., learning the “rules” of historic phonetic changes in
Chinese, and the temporal patterns of events in the play of Australian Rules
Football.

7.2 Classification Trees and Nets

Consider data comprising N independent cases, where each case is character-
ized by values of K attributes, and by a classification into one of C classes.
A Classification or Decision function is a function of the K attribute values
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which more or less accurately predicts the class to which a case belongs. If
the attribute values of case n(1 ≤ n ≤ N) are regarded as a vector

vn = (vn1, vn2, . . . , vnk, . . . , vnK)

then the function is a function of vn with range the integers {1. . .C}.
Many forms of classification function have been studied. A Classification

Tree is a classification function representable as a finite singly rooted tree.
Each non-leaf node of the tree represents a test of one of the K attributes, and
the branches from the node represent possible results of the test. Typically,
a test of a discrete attribute having m possible values is represented by m
distinct branches from the node, each corresponding to one possible value. A
test of a real-valued attribute is typically represented by a binary branching,
one branch for values vnk ≥ t and the other for values vnk < t, where t is
some threshold value which may vary from node to node.

The leaves (leaf nodes) of the tree are called “categories”. Each case can
be assigned to a category by starting at the root node, applying the test
defined for that node, and following the branch corresponding to the result
of the test. If this branch leads to another non-leaf node, the test at that node
is applied and another branch followed, and so on until a leaf or “category”
is reached. In traditional decision trees, each category is labelled with a class,
which is the class predicted for those cases assigned to the category.

Given N “training” cases for which the true class is known, the inference
of a decision tree consists of constructing a tree which correctly predicts the
class of many training cases, while not producing an over-elaborate tree. The
inferred tree may then be used to predict the classes of new cases where the
true class is unknown.

There is an extensive literature on decision trees. The most widely known
and used algorithms are probably those developed by Quinlan [32]. Quinlan
and Rivest [31] introduced an MML approach to learning decision trees. Their
coding techniques had some technical deficiencies, and the treatment here
follows the amendments suggested by Wallace and Patrick [58].

7.2.1 A Decision Tree Explanation

Following Quinlan and Rivest, the attribute values of the training cases are
not regarded as subject to explanation. That is, the inferred hypothesis makes
no assertion about why or how the training cases come to have their observed
attribute values. Since this part of the data is not to be explained, it may
be assumed to be transmitted to the receiver in any convenient code, or
alternatively assumed to be already known to the receiver. Either way, the
length of the representation of the training data attribute values will not
enter into the explanation length. These assumptions are analogous to those
made in regression problems (Section 6.7.1) which may also be regarded as
requiring the construction of predictor functions.
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The data to be encoded in the explanation are the true classes of the
training cases, and the explanation is intended to be decodable by a receiver
who already knows or has received full information about the number and
nature of the attributes, the attribute values of all training cases, and the
number of possible classes. The assertion part of the explanation describes a
decision tree, but departs from traditional practice in that each leaf of the
tree, rather than being labeled with the most probable class of cases assigned
to the leaf, specifies a Multinomial probability distribution over classes. The
detail part of the explanation encodes the actual class of each case in the
training sample using a code based on the distribution found in the leaf to
which the case is assigned.

On receipt of the assertion, a receiver can construct the decision tree.
He can then decode the detail, as for each case, he can assign the case to a
leaf using his knowledge of the cases’ attributes. Then, knowing the asserted
distribution for that leaf, he can decode the detail for that case to recover its
class.

7.2.2 Coding the Tree Structure

A reasonably efficient way of encoding the tree structure will now be de-
scribed. The assertion coding of the Multinomial class distributions for each
leaf is deferred for the moment.

The tree structure proceeds node by node, beginning with the leaf node.
The code string for a node can take one of two forms.

– If the node is a leaf, the code string is just a code for “leaf”. This could be
followed by a string specifying the leaf’s class distribution, but this part
will be left till after the structure is asserted.

– If the node is a non-leaf, the code string begins with a code for “non-leaf”.
Being a non-leaf, the node will represent a split of the cases reaching the
node into two or more subsets, each of which will be directed along a dif-
ferent branch from the node to a different further node. The code string
for the current node therefore continues with a specification of which at-
tribute determines the split, and if the attribute is real-valued, the thresh-
old t against which the attribute value is tested. Finally, the code string
concludes with the code strings for each of these different “child” nodes.
The order in which the children are listed follows an agreed ordering of the
possible values of discrete attributes and of the two possible results of the
threshold test of a real-valued attribute. These orderings are assumed to
be known to the receiver.

The code for the structure of a tree is just the code string for its root node.
It will be seen that the form of the code resembles the binary “tree code”
of Section 2.1.14 with a modification to allow for multi-way branching when
a discrete attribute with more than two possible values is tested, and the
addition of the specification of which attribute to test at non-leaf nodes.
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In the binary tree code, the leaf/non-leaf specification for a node was a
single bit, implying a prior probability of one half for a split. This prior had
the effect that the expected size of the tree was infinite, but the probability
assigned to the set of all infinite trees was zero. To achieve the same effect in
trees with different numbers of branches at different nodes (different “arity”)
we chose to code the “non-leaf” specification with a prior probability of one
over the arity of the node’s parent, e.g., Pr(non-leaf) = 1/3 if the node is the
child of a three-way split.

The code to specify the tested attribute at the root node (if it is not a leaf)
must choose among all K attributes, giving a code length of log K. However,
at a lower non-leaf node, all discrete attributes which have been tested in the
path from the root to this node will have the same, known, value in all cases
reaching the node, and are therefore not candidates for testing at this node.
The number of candidate attributes is thus less than K and a shorter code
is needed to specify the one to test.

7.2.3 Coding the Class Distributions at the Leaves

As was the case for the inference of PFSMs (Section 7.1.6), it is awkward
to encode the class distribution probabilities in the leaves as part of the
assertion, as the receiver, before decoding the data, cannot know how many
cases reach each leaf category and hence how precisely the class probabilities
will be stated. Instead, we use an incremental code for stating the detail for
each case, i.e., its class. The effect is that the explanation message does not
explicitly assert the leaf class distribution probabilities, and the total detail
length for the cases assigned to a category becomes the I0 (non-explanatory)
message length for the category’s Multinomial distribution (Section 2.1.10).
The total message length of the explanation may be corrected to reflect the I1

message lengths for the category distributions and the details of their cases,

the correction being, for each leaf, about
1

2
log(π(C − 1)) − 0.4 where C is

the number of classes.
The length of the incremental detail coding of the classes of the cases

reaching a leaf depends on the prior probability distribution assumed for the
class probabilities. Because the decision tree is designed to have leaf categories
highly informative about the class of cases assigned to the category, we do
not a priori expect the class probabilities in a category to be similar, but
hope and expect one class to be dominant. A Uniform prior on the class
probabilities is not appropriate, and we assume a conjugate multi-state Beta
prior over the class probabilities {pc : c = 1, . . . , C} of the form (Section 5.4.1)

Pr({pc : c = 1, . . . , C}) =
Γ (Cα)

Γ (α)C

(

C
∏

c=1

pc

)α−1
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where 0 < α < 1. The lower the value of α, the more the prior expects the
probabilities to be extreme. A value of 0.5 seems to give generally adequate
results.

7.2.4 Decision Graphs and Other Elaborations

The performance of decision trees based on the MML criterion appears to
be competitive with those using other methods, but strict comparison is
difficult because the search space is so large that exhaustive search for a
global minimum of the explanation length is infeasible. The same problem
affects other principles for constructing decision trees, so a comparison is
clouded by the unknown efficiency of the search heuristics employed.

An elaboration of the basic tree model does offer a demonstrable improve-
ment with many classification problems. Instead of a simple tree of branching
attribute tests, the model space is enriched by allowing branches to join. That
is, a leaf or split node may receive cases from more than one branch. The
classification function is therefore represented by a single-rooted acyclic di-
rected graph, and cases may reach a leaf node or category by more than one
route. A tree is still a possible model, as it is just a graph which happens to
have no joining branches.

Apart from (perhaps) having joining branches, a Decision Graph is oth-
erwise identical to a Decision Tree. At each non-leaf (“split”) node, one at-
tribute is tested and cases directed along one of several arcs or branches
leaving the node according to the result of the test. Each leaf node (“cate-
gory”) is described by a Multinomial class probability distribution. The only
difference is that in a graph, two or more branches, from the same or different
split nodes, may have the same destination node. A quite minor change to
the assertion part of the explanation allows acyclic graphs to be encoded, and
no change need be made to the detail part which encodes the classes of cases
using a separate incremental code for each category. A possible assertion code
for the structure of a decision graph is described below.

The assertion of the structure of a decision graph commences with the de-
scription of a decision tree structure essentially as described in Section 7.2.2.
However, the resulting “leaf” nodes are not yet determined to be categories.
This assertion code lists the split and leaf nodes of the tree structure in a
depth-first order, and implicitly allows the nodes to be numbered in the order
in which they appear in the coded structure. The ordering is such that the
descendants of a node appear after the node, i.e., if we consider the arcs to
be directed from a split node to its children, all arcs go from lower-numbered
to higher-numbered nodes.

The assertion of a graph structure is completed by a further code string
for each leaf of the tree, listed on descending node number order. The string
for a leaf labels it as either a category (i.e., a terminal node of the graph) or a
dummy. If it is a dummy, the string continues with the node number of some
non-dummy (split or category) node with a higher node number, and the
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string is interpreted as meaning that the single branch reaching the dummy
node should in fact lead to the named non-dummy. Note that the descending
order in which these strings are listed means that the receiver, on receiving a
“dummy” label code, already knows which of the higher-numbered nodes are
dummies. Note also that the redirection of the branch leading to a dummy
towards a higher-numbered non-dummy cannot create a cycle in the graph,
since all ancestors of the dummy have lower node numbers than the dummy.

In the structure code for a simple tree, the assertion of the attribute to
test at a split node could usually be shortened to less than log K because
discrete attributes tested en route to the split node would not be candidates
for testing. In the graph structure, during the assertion of the initial tree,
this economy is not available, since the possibility of redirection of additional
branches to the split node, which are not known to the receiver at the time he
must decode the identity of the test attribute, means that the receiver cannot
assume that all cases reaching the node will have the attribute values implied
by the single route to the node which is apparent in the tree structure. All K
attributes must be considered possible candidates for testing, so the assertion
of the one to test will have a length of − log K.

In coding the category/dummy labels, an incremental code for these labels
can be used, based on a Uniform prior probability distribution. However, a
simple incremental coding is unlikely to be ideal, since low-numbered leaves
would seem a priori to be more likely to be dummies than high-numbered
leaves, having more possible redirection destinations.

The above code for the assertion of a graph structure is fairly efficient,
but is awkward to employ during the search for a good graph, which usually
proceeds by incremental elaboration of the graph by splitting and joining. The
effects of an incremental change to the graph on the form and length of its
structure assertion are not simple, so recalculation of the explanation length
following a change is a little slow. More convenient but more complicated
codes have been described by Oliver [28] and Lee [24].

The Advantages of a Graph over a Tree. A decision graph can give a
shorter explanation message than a decision tree whenever the tree structure
required to represent the classification function contains identical subtrees.
This situation may arise just at the category nodes: the tree for a two-class
classification function commonly has several category nodes in which the first
class is dominant and several in which the second is dominant. If the class
probability distributions in two or more categories with the same dominant
class are similar, a graph structure allows them to be replaced by a single
category, saving the cost of asserting some class probability distributions.
(This saving appears in the detail of the explanation if incremental codes are
used for the classes of cases in each category.)

A more substantial improvement is possible when a Boolean expression
for probable membership of a class is most briefly expressed as a disjunction
of two or more conjunctions involving different attributes. The well-known
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artificial data set “XD6” has two classes and ten binary attributes labelled
“a” to “j”. A case probably belongs to class 1 if its attributes satisfy

a.b.c + d.e.f + g.h.i = 1 where + means OR

A tree for this classification function needs 49 split nodes and 40 categories.
A graph needs only 9 split nodes and two categories. While this is an extreme
case, it is not uncommon for disjunction to appear in the best “rule” for a
class in real data sets.

A graph model does not extend the set of possible classification functions
beyond what is possible with tree models. However, when the best expla-
nation of the data within this set involves disjunction, the graph algorithm
will need less data to find the best function, and becomes only slightly less
effective than a tree algorithm in finding the best function when the best
function is efficiently represented by a tree.

Regression in Categories. The set of possible classification functions may
be extended by allowing a regression model to be asserted for each category.
It is possible that some class-relevant information remains in the attribute
values of the cases assigned to a category, but this information cannot be
readily represented by further splitting of the category. For example, it could
be that for some category in a two-class tree or graph model, the sum of three
real-valued attributes has predictive value. A subtree refining the category
would at least have to have three test nodes, one per attribute, and could
only give a rough approximation to a test of their sum. The assertion code
for tree or graph models could easily be modified to provide the option, at
each category, of asserting a regression predictor function using (C −1) linear
functions of some selection of attributes to define a probability distribution
over the classes of the form

Pr(c) =
exp (fc(x))

C
∑

j=1

exp (fj(x))

(c = 1, . . . , C)

where f1(x) = 1 and for c > 1, fc(x) is a linear function of the vector x of
selected attributes.

Given sufficient data, regression predictors of this form might well be
able to give shorter detail lengths for the classes of cases in the category,
sufficiently shorter to outweigh the additional assertion cost of specifying the
attribute selection and linear function coefficients.

Of course, the search for the shortest explanation of a data string would
become much slower, but it would then be possible for the search to dis-
cover, for some data strings, that a single regression predictor gave a better
explanation than any tree or graph.
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7.3 A Binary Sequence Segmentation Problem

The inference problem addressed in this section is wholly artificial, and un-
likely to be encountered in real life, at least in the form considered here. It is
included because it introduces in a conceptually simple form a class of mod-
els of real importance, and also because it illustrates how a naive attempt to
apply MML principles can give poor results.

The problem was introduced in a paper by Kearns et al. [22] which at-
tempted to compare the performance of three model selection criteria on a
problem which was not trivial but which permitted exact optimization of each
criterion. This was a worthwhile enterprise, since many model selection prob-
lems present such mathematical difficulty that comparison of different model
selection criteria is clouded by doubt whether each criterion had actually been
optimized by whatever search or optimization method is employed. The three
criteria compared were Cross-Validation (CV), Structural Risk Minimization
(SRM) and Minimum Description Length (MDL). Of these, MDL is, for the
problem considered, essentially identical to MML.

The problem as stated supposes the data to be a set of N pairs {xn, yn :
n = 1, . . . , N} where xn is a real value in (0 . . . 1) and yn is binary, either
0 or 1. Let the pairs be indexed in order of increasing x-value. The y-values
then form a binary sequence. The model for the data is that the interval [0, 1]
is divided into K + 1 sub-intervals by K “cut points” {ck : k = 1, . . . , K}
indexed in order of increasing value, so that the kth subinterval ends at
ck and the (K + 1)th subinterval ends at 1, and that if xn lies in the kth
subinterval, Pr(yn = 1) = p if k is odd, but (1−p) if k is even. The inference
problem addressed in [22] is, given the data, but no knowledge of p of K,
to estimate the number of cuts K, and incidentally, the cut points {ck} and
the probability p. The results presented concerned the success of the three
criteria in estimating K, and their success in estimating the cut points and
probability was not explicitly reported.

Their experiments were all based on applying the criteria to artificial data
sets all generated from basically the same “true” model, which had K = 99,
generating 100 subintervals, and evenly spaced cut points {ck = k/100 : k =
1, . . . , 99}. Each experiment used 100 data sets randomly generated with a
specified sample size N and probability p. For each of several values of p, a
series of experiments were done with N increasing from low values to a few
thousand. The chosen values of p were all less than 0.5, so that y values were
likely to be zero in odd subintervals and one in even subintervals. As the
problem posed is essentially unchanged if the “true” p is replaced by (1 − p),
this restriction does not affect the validity of the experiments. The average
estimated K was found for each experiment using each criterion. For each
data set in an experiment, a dynamic-programming algorithm was used to
find, for every assumed K, the cut-point set which minimized the number of
“errors” in the y values, where an “error” is a zero in an even subinterval
or a one in an odd subinterval. This choice of cut points for a given K is
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a maximum-likelihood estimate of the cut points. For the cross-validation
criterion, a randomly chosen 10% of the N data were withheld for validation
use, and the maximum-likelihood cut points chosen using the remaining 90%.

For each data set, the maximum-likelihood models with differing numbers
of cuts were compared according to each criterion. For the CV criterion, the
number of cuts giving the fewest errors in the validation data was chosen.
(Since the dynamic programming algorithm can localize a cut only to within
the interval between two data points, the mid-point of this interval is taken
as the cut point.) For the SRM criterion, the number of cuts giving the
lowest probabilistic bound on the generalization error was chosen. For the
MDL criterion, the number of cuts giving the shortest message encoding the
data was chosen, where the message length computation method is described
below.

7.3.1 The Kearns et al. “MDL” Criterion

The form for the message length used in [22] is:

KMDL = −N [RK log RK + (1 − RK) log(1 − RK)]

−N [RE log RE + (1 − RE) log(1 − RE)]

where E is the number of “errors” in the maximum-likelihood model with K
cuts, RK = K/N and RE = E/N . It is intended as an approximation to

log

(

N

K

)

+ log

(

N

E

)

which would give the length of a message specifying the location of the cut
points (to within adjacent data points) and which y-values are “in error”.
The form adopted neglects the need to specify K and E to the receiver, and
the “entropy” approximation to the combinatorial form is in error by the
order of log N .

The experimental results reported showed reasonable behaviour and per-
formance using either the CV or SRM criteria. For instance, for p = 0.1, as
the sample size N was increased starting from 100, the average estimate of
K gradually rose to about 100 at N = 500, remained a little above 100 until
N = 1500, then stabilized at 99 ± 1. However the “MDL” criterion choosing
K to minimize KMDL showed rather bizarre behaviour. For sample sizes up
to about 1200, it usually chose a model with sufficient cuts to reduce the
“error” count to zero, with the average estimated K rising to almost 300 at
N = 1200. As N was increased further, the estimate dropped sharply, but
did not stabilize at 99 ± 1 until N = 1600.

Similar behaviours were found with the higher error probability p = 0.2,
but of course at larger sample sizes. The CV criterion gave estimates in
the range 100 to about 130 for 500 < N < 2300, stabilizing at about 100
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for N > 2400, but the KMDL criterion gave estimates rising to about 670 at
N = 2000 and did not stabilize near the true value until N > 2600. With still
higher “noise” (p = 0.3), CV’s estimate hovered above 100 until N > 2800,
but KMDL’s was about 1300 and still rising at N = 2900!.

The reader of this paper might well conclude that MDL (or MML) was
a quite poor method of selecting among competing models, but in fact its
purported implementation of MDL is no such thing.

7.3.2 Correcting the Message Length

Viswanathan et al. [49] have presented an analysis of the flaws in the “MDL”
criterion used in the above work, and comparative tests of it and a more
correct MML criterion. This section is adapted from their work.

Correcting the obvious flaws in KMDL to include the message length costs
of stating the number of cuts K and the number of errors E, and to use the
exact combinatorial forms for the cost of locating the cuts and errors, resulted
in a slight improvement in behaviour, but the corrected criterion still tended
strongly to choose “models” with many cuts and no errors up to quite large
sample sizes, especially with high “noise” levels.

The crucial flaw in the KMDL criterion is that it uses a method of encod-
ing the data which simply does not minimize the message length. It is not
an MDL or MML criterion. The flaw is that it assumes the message encodes
the locations of the cut points to within the interval between adjacent data
points. The reader by now should be aware that minimizing the length of an
“explanation” encoding of data requires that the parameters of the asserted
model be stated to an optimally chosen precision. In the present problem, it
is easily seen that the optimum precision for stating the position of cuts is
not necessarily to within adjacent data points. Except in data generated with
very low noise (p close to zero or one) a lower precision will give a shorter
message.

For example, suppose we choose to allow the asserted model to have cut
points only preceding odd-numbered data points. Then there are only N/2
rather than N possible cut points, and we save roughly K bits in asserting
a model with K cuts. Of course, restricting possible cut points may increase
the number of “errors”. For each cut, with probability 1/2 it will be in its
maximum-likelihood position, resulting in no additional error, and with prob-
ability 1/2 it will be displaced by one data point, so the number of errors will
increase by one. Hence, (assuming p < 0.5) the detail part of the message,
which locates the errors, will be on average longer by (K/2) log2((1 − p)/p)
bits. Overall, the total message length is expected to change by about

(K/2) log2((1 − p)/p) − 1 bits

which is negative for p > 0.2. With a noise level above p = 0.2, the lower
precision of cut-point location makes the message shorter.
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To extend this argument, we suppose the cut points to be specified, not
by which data point it precedes, but by its position in the real interval [0, 1]
in which the x-values of the data set lie, and that the position of each cut is
specified to a precision ±(δ/2). So constraining the positions at which cuts
may be asserted means that the asserted position of a cut may differ from
its ideal position by up to δ/2. The expected number of data points lying
between the ideal and asserted position is Nδ/4. The expected increase in
detail length, per cut, is this expected number of data points times the ex-
pected increase per point due to encoding it with the “incorrect” probability.
This gives (for p < 0.5)

E(increase in detail) = (KNδ/4) [(1 − p)ε − pε]

= (KNδ/4)(1 − 2p)ε

where ε = log((1 − p)/p) = log(1/p − 1) assuming p < 0.5. The cost of
specifying the positions of K cut points to precision δ is K log(1/δ)− log(K!)
since the order in which they are stated is immaterial.

Differentiating the sum of the excess detail cost and the cut-point speci-
fication cost shows the optimum δ to be

δ =
4

N(1 − 2p) log(1/p − 1)

With this choice of δ the expected increase in detail length is just one nit per
cut.

The effective precision of 1/N used in KMDL is justified only for very low
noise rates with p < 0.02.

The MML estimate of p must now be based on the expected total num-
ber of errors, which exceeds the error count E of the maximum-likelihood
model found by dynamic programming by the extra “errors” arising from
the imprecise cut-point locations. Since this expected number depends on
δ, which depends on the estimated p, a few iterations of the equations are
needed for convergence. The resulting estimate of the error rate p exceeds
the maximum-likelihood estimate (E/N), and roughly corrects for the over-
fitting of the maximum-likelihood model, which led the KMDL criterion to
underestimate the number of errors.

This derivation of an MML criterion is still imperfect, as it assumes that
the number of data points within ±(δ/2) of an ideal cut position is Nδ. This
is the average value which might be expected by a receiver who is ignorant
of the data x-values, but these are in fact known to the receiver, so the
precision for a cut-point location should take into account the actual data
point locations in the neighbourhood of the ideal cut position.

7.3.3 Results Using the MML Criterion

When the Kearns et al. experiments were replicated using the MML criterion,
it showed no bizarre behaviour and a performance comparable to CV’s. At
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high noise (p = 0.3) it required a rather larger sample size to reach an estimate
of K around 90, but whereas CV’s estimate rose to about 150 and did not
return to near 99 until N ≈ 3000, the MML estimate rose smoothly to near
99 by N = 2500 and then stayed there. At lower noise rates of 0.1 and 0.2,
there was little to choose between the criteria.

These replicated experiments used the single true model of 99 equally
spaced cut points used by Kearns et al. This model is highly atypical of the
model class proposed by them, and assumed in all criteria, in which the true
cut points are supposedly randomly distributed in [0, 1]. One consequence is
that in their experiments, and in the replicated trial of MML, the numbers
of data points in each subinterval were far nearer equality than would be
expected in typical models of the proposed class. The later work [49] also
conducted experiments in which the data were generated using a different
set of randomly chosen cut points in each replication. The results showed
MML to be generally superior to CV at all noise levels, being perhaps a little
conservative in estimating K, but giving models which diverged less than
CV’s from the true pattern of Pr(yn = 1 | xn).

7.3.4 An SMML Approximation to the Sequence Problem

Section 4.10.2 introduced an approximation to the SMML explanation length
for some data x, which finds a region in hypothesis space such that the log-
likelihood of all models in the region is not less than the prior-weighted
average in the region. The assertion length is taken as the negative log of
the total prior probability in the region, and the detail length as the prior-
weighted average negative log-likelihood.

Following the work of [22] and [49], I decided to apply this approximation
to the binary sequence problem. As the presented problem was primarily
concerned with estimating the cut number K, the model region was required
to contain only models of a specified K, with the models in the region having
all the same prior probability

Prior(K) = (1/N)
1
(

N
K

)

but different cut positions. The dynamic programming algorithm was modi-
fied to yield, for each K, not only the minimum number of “errors” E, but
also the number of different K-cut models giving exactly (E + m) errors for
m = 0, 1, . . .. The “detail” length of a model with (E + m) errors was taken
as the “I0” form, which does not actually involve an assertion of the error
probability p, and is hence smaller than the correct “I1” form by a small
constant about 0.17 nit.

Detail = log(N) + log

(

N

E + m

)



326 7. Structural Models

Given this information for any K, it is easy to construct the collection of
K-cut models required by the SMML approximation. The message length for
an SMML K-cut model is then given by an assertion length the negative log
of the total prior probability of the collection, plus a detail length equal to
the average detail length in the collection. The value of K minimizing the
total length was then chosen.

The results obtained were similar to those given by the MML approx-
imation in [49], but were somewhat more accurate, suggesting that the
explanation-length approximation of Section 4.10.2 is fairly good. Although
testing was not as extensive, a couple of points which the previous work had
not made clear emerged.

– With a sample size barely large enough to reveal the data subintervals for a
given noise rate, there can be a wide range of K estimates all giving expla-
nation lengths within a few nits of the minimum. That is, the estimation
of K is quite difficult.

– The number of different K-cut models in the collection can be very large.
– The occasional data set generated with evenly spaced cuts yielded a model

with many cuts and zero errors, but when this occurred, the explanation
length found with this model was almost always longer than N bits. As
we consider an “explanation” acceptable only if it is shorter than the orig-
inal data string, these cases represented a failure to find any acceptable
explanation with a precisely asserted number of cuts.

7.4 Learning Causal Nets

A “Causal Net” is a representation of known or inferred causal relations
among a number of variables. It is conventionally represented in part by a
directed acyclic graph (DAG) in which each variable is shown as a node, and
an arc from one node (the parent) to another (the child) implies that the
parent variable has a direct causal effect on the value of the child. A node
may have several parents, all of which affect its value, and a node may have
many children, all of which are affected by it. Since the graph is acyclic, no
variable can have a direct or indirect effect on itself. The acyclic condition
further implies that some variables have no parents. They are “autonomous”.
Similarly, some nodes have no children.

The graph only partially represents the known or inferred network of
causal effects. Each node is annotated with a function whose arguments are
the values of its parents and whose value is a probability distribution over
the possible values of the node variable. That is, the annotation for a variable
V is a conditional probability distribution for V , conditioned by the parents
of V (if any).

Different flavours of causal net can be defined, depending on the nature of
the variables concerned (e.g., real or discrete) and the form or forms assumed
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for the conditional probability distributions. For instance, if all variables are
real-valued, the causal net model may assume linear influences of parents
on children and Gaussian unexplained variation. If we have a set of K real
variables, and N independent instances of data values for the set, i.e., if we
have data {xnk : n = 1, . . . , N, k = 1, . . . , K}, such a causal model of the
data source specifies, for each variable vk, a possibly empty “parent set” Dk

of variables and a conditional probability distribution

xnk =
∑

vj∈Dk

akjxnj + rnk

where the coefficients {akj , vj ∈ Dk} give the linear effects of the parents on
vk, and the residual rnk is assumed to be a random variate from the Gaus-
sian density N(0, σ2

k). (For simplicity, we assume that the data values have
been standardized to zero mean.) Given K, N and the data values {xnk},
we address the problem of inferring a causal model of the above form. This
requires inference of the structure of the DAG, the parameters of each prob-
ability distribution, and possibly a choice of the form of each distribution.

Causal Nets have been widely used for prediction and diagnosis, and are
common components of Expert Systems. In early applications, the structure
of the Causal Net model was usually elicited from human domain experts.
The coefficients of the causal relations could be also elicited, or could be
estimated from known data sets. However, the difficulty of eliciting consistent
and reliable models from “experts”, and the desire to apply causal modelling
in domains where there is no acknowledged expertise, has led to interest in
the automatic inference of causal nets from data. For the simple linear case
described above, the most widely known work is due to Spirtes, Glymour
and their collaborators, and has led to a commercially available program
TETRAD II, which served as a benchmark for the MML method described
here.

7.4.1 The Model Space

The model used to explain the data is intended to be a representation of
the real-world situation giving rise to the data, insofar as that situation can
be discovered from the data and prior knowledge. In the real world, the
situation of a set of variables which may be causally related is characterized
by (at least):

– A temporal order among the variables. The implication of this order is that
early variables may affect later ones, but not vice versa.

– The existence, mathematical form and strengths of the direct effects of one
variable on another. The mathematical form may be fixed a priori or be
assumed to be one of a usually very limited set of forms.

– The magnitude of endogenous or inexplicable variation of each variable.
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The full situation may involve effects due to variables outside the set of
variables observed, whose values and (perhaps) existence are unknown. We
will ignore the possible existence of such hidden variables, while admitting
that a more complete treatment should include them.

Any prior knowledge which is available may constrain the model. We may
have partial or probabilistic knowledge of the temporal order, the existence
or impossibility of direct effects between certain pairs of variables, etc., and
our method allows the use of some of these forms of prior knowledge. In
the absence of useful prior knowledge, we will assume all temporal orders to
be equally likely a priori, and assume that the existence of a direct effect
between any pair of variables has a fixed prior probability Pa independent of
the identity and temporal rank of the variables. Of course, if the effect exists,
its direction is dictated by the temporal order. We may also assume priors
over the choice of form of probability distribution (if there is a choice) and
for the parameters of these distributions.

To summarize, a hypothesized real-world situation among the K variables
is specified by an ordering of the K variables (prior probability 1/K!), a
set of direct effect arcs (prior probability PNa

a (1 − Pa)Ma−Na where Na is
the number of effect arcs asserted to exist, and Ma = K(K − 1)/2 is the
maximum possible number of arcs), and a set of K conditional probability
distributions, each giving the distribution of one variable conditioned on its
parents.

7.4.2 The Message Format

A naive format for the explanation message first describes what we shall call
a “Totally ordered model” or TOM. It begins by specifying an ordering of the
variables, and then which of the Ma possible arcs are present. The direction
of each effect is implied by the order. Rather than specifying next all the
conditional probability distribution forms and parameters, it then deals with
each variable in turn in the stated order, with a section of code for each
variable. Let j index the variables in the chosen order, so v1 is autonomous.

The message section Sj for variable vj comprises two parts, in effect a
mini-explanation of the data values {vnj : n = 1, . . . , N}. The first part states
the form of the conditional distribution for vj (if there is a choice), and then
the parameters of the distribution. The second part encodes all N values
of vj according to the asserted distribution. At the point where Sj is to be
decoded, the receiver will already know the identity and values of the parents
of vj , and so can properly compute the conditional probability distribution
for each value of vj . Message section Sj has exactly the form and structure
of a simple regression model explanation message asserting the regression of
vj on its parents, such as described in Section 6.7.1 for linear regression, and
encoding the values of vj according to this model. For a reason to be shown
later, the parameters of the regression model are estimates by the Maximum
Likelihood rather than by minimizing the total message length of Sj , but
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for the simple regression models used, the difference is insignificant. Both
the total length Ik of Sj and the maximized likelihood Lk of the asserted
regression model are computed.

The re-arrangement of the TOM explanation to intersperse assertions
and details does not violate MML principles, and has the useful effect of
making the precision of parameter estimation depend on the actual, rather
than expected, distributions of parent values. The explanation length thus
follows the more accurate Formula I1A of Section 5.1 rather than Formula
I1B.

7.4.3 Equivalence Sets

MML considers as “equivalent” models which cannot be expected to be dis-
tinguished on the basis of the available data, the code it in concept uses to
assert a model allows for the assertion only of members of a subset Θ∗ of
models chosen so that no two members are equivalent in this sense. The cod-
ing probability of an assertable model is taken as the sum of the prior (or
coding) probabilities of all those models equivalent to it. Part of the aggrega-
tion of equivalent models has already been incorporated in the calculation of
the length of a TOM model, in that the parameters of the regression models
are specified only to a precision based on the relevant Fisher Information.

Other equivalences among causal net models also exist and lead to further
aggregation of the naive TOM models into equivalence sets each represented
by a single assertable model. The joint probability of a TOM and the data is
given by

− log Pr(TOM,Data)

= log(K!) − Na log Pa − (Ma − Na) log(1−Pa) +
∑

k

Lk

= − log(K!) − Ma log(1 − Pa) +
∑

k

Ck = IT

where Ck = Lk − dk log(Pa/(1 − Pa)) and dk is the number of parents of vk.
The latter form is convenient for rapidly computing the change in IT conse-
quent on the addition or removal of an arc. When two or more TOMs are
aggregated into a single model, not necessarily a TOM, their single replace-
ment acquires the sum of their joint probabilities with the data. The various
forms of aggregation performed are now described.

7.4.4 Insignificant Effects

Suppose two TOMs A and B differ only in that B contains an effect arc not
present in A. If the strength of this effect is sufficiently small, the explanation
length may be reduced by grouping A and B together, and using A as the
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representative model. This shortens the assertion, because the prior proba-
bility of the aggregate is the sum of the priors of A and B. The data may
have a shorter detail length if encoded using model B rather than model A,
but if the extra effect is small, the increase in detail length resulting from
using model A instead of B may well be less than the reduction in asser-
tion length, resulting in a reduction in Ck for the affected variable if B is
deleted from Θ∗. We therefore consider any TOM with such a weak effect
to be grouped with the representative TOM obtained by deleting the small
effect arc. A TOM without weak effects will be called “clean”. The details
of the test to discover “weak” effects depends on the form of the regression
model. For linear regression a satisfactory test requires only a comparison of
the effect coefficient and the “unexplained” variance.

It may be thought that this is an unimportant refinement of the MML
process. TOM B must have an assertion length exceeding that of A by an
amount of order 1

2 log N , because B’s assertion is lengthened by the inclusion
of an estimate for the coefficient of the “weak” effect. Hence, the coding prob-
ability of B will be less than that of A by a factor of order 1/

√
N . However,

for any A there will typically be about K2/4 other TOMs differing from A
only by the addition of an insignificant effect. The total coding probability
(and hence posterior probability) of all such TOMs may therefore be about
(K2/(4

√
N) times that of A. Unless N is greater than K4 there may be more

coding probability on these TOMs than on A itself, so inclusion of them in
the set represented by A adds significantly to the posterior probability of the
aggregate.

7.4.5 Partial Order Equivalence

A set of TOMs which differ only in the order of the variables, and have
the same direction for all arcs, are clearly indistinguishable given the data,
and so will be grouped. All TOMs in the group are linear extensions of the
DAG representing the directed effect arcs. All will have the same regression
parameter estimates. Their aggregate is the DAG model.

7.4.6 Structural Equivalence

Two DAGs with the same skeleton, i.e., with the same effect arcs but some
differences in arc directions and coefficients, can still imply exactly the same
probability distribution over the set of possible data values. The strongest
form of such equivalence is sometimes called “structural equivalence”. If the
two DAGs are structurally equivalent, then whatever regression coefficients
are specified in the first DAG, there is a set of coefficients for the second
DAG which will produce the same data distribution. The conditions on the
DAGs required for structural equivalence have been described by Chickering
[10]. In particular, if two DAGs are structurally equivalent, their maximum
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likelihoods on any data set will be equal. Hence, the data cannot distinguish
between them, and MML will group the DAGs together. A rigorous test
for structural equivalence between two DAGs can be done in polynomial
time but is not quick. We adopt the heuristic of grouping together DAGs
which have the same skeleton and the same maximum likelihood on the given
data. This test will certainly aggregate all structurally equivalent DAGs, but
may (rarely) include in the set a DAG which is not structurally equivalent
to the other members of the set. Two DAGs with the same skeleton may
have identical maximum likelihoods on the given data even if they are not
structurally equivalent, but such coincidences require special and unlikely
relations among the data, and the possibility may be ignored. The necessary
relations have probability measure zero under our assumed priors.

7.4.7 Explanation Length

MML groups together “equivalent” TOMs, representing each group by a rep-
resentative DAG with prior probability equal to the sum of the priors of all
TOMs in the group. The assertion of the inferred representative is therefore
coded with an assertion length of minus the log of this total prior probability.
The detail length is the detail length given by the representative DAG. The
MML process ensures that the detail lengths for all TOMs in the aggregate
are approximately equal, so the choice of representative is not crucial. Hence,
we may take the total explanation length of a causal net explanation assert-
ing a DAG R which is the aggregate of all TOMs T in a set TR as given
by

I1 = − log

[

∑

T∈TR

Pr(T, Data)

]

= − log

[

∑

T∈TR

exp(−IT )

]

The exact form of the code used to assert a hypothesized representative
TOM would presumably be quite complex, since the length of the code for
the TOM must depend not just on the topology and parameters of the TOM,
but also on those of all TOMs which it represents. Fortunately, the precise
nature of this code need not concern us, since we need to know only the
length of the assertion, not its actual binary digits.

7.4.8 Finding Good Models

Given a data set, we would ideally like to find the DAG giving the shortest
explanation. Even for modest K, the number of possible TOMs (or more
correctly, representative TOMs in the MML code scheme) is so large that
exhaustive search is infeasible. Further, computing the explanation length
for some DAG is not simple. The detail length is easy to compute, but to
compute the prior would require that every TOM structurally equivalent to
the given DAG be enumerated, and that every TOM derivable from these
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by addition of “weak” arcs be enumerated and its prior computed. Even for
K = 10, the number of TOMs to be enumerated in order to determine the
MML equivalence set of the given DAG could run into hundreds. Instead, we
have developed an algorithm based on a Monte Carlo sampling from the Bayes
posterior distribution over ungrouped, individual TOMs. To be precise, the
grouping over similar regression parameters is done, so the joint probability
of a TOM T and data is as given by IT as defined in Section 7.4.3, but no
grouping according to order, structural, or insignificant-effect equivalence is
done.

To perform the sampling, we use a version of the Metropolis algorithm for
sampling from a discrete distribution. The current TOM is represented by
a vector V = (vj : j = 1, . . . , K) holding the variable indices in the current
total order, together with a K × K incidence matrix of bits showing which
effect arcs are present in the model. The ordering of V is such that each arc
goes from a variable earlier in V to a variable later in V . In addition, the
program maintains a K-vector of the current Ck values of the variables, a
step count and the current value of I1. After initializing these structures to
some initial TOM, the algorithm enters a sampling phase.

Sampling from the posterior over TOMs is done by a process which steps
from TOM to TOM in such a way that the number of visits to a TOM is
proportional to its posterior probability. Three types of step are used:

– S1: (Temporal order change) Pick an integer j uniformly in (2 . . . K). Ex-
amine the variables vj and vj−1. If there is no arc between them, swap the
two vertices in V . This swap merely moves to an order-equivalent TOM
and does not change I1. If an arc exists (necessarily from vj−1 to vj , at-
tempt to swap the vertices and reverse the arc. To make the attempt, the
C values of both variables must be recomputed, since one will lose a parent
and the other gain one. The new value of I1 can then be computed from
the new and old C values.

– S2: (Skeletal change) Pick two distinct integers j and k uniformly in
(1 . . . K). Suppose j < k. If an arc exists from vj to vk, attempt to re-
move it. Otherwise, attempt to add such an arc. In either case, the value
of Ck must be recomputed, and the resulting change in I1 found from the
new and old values.

– S3: (Double skeletal change) Pick three distinct integers i, j, and k uni-
formly in (1 . . . K). Suppose i < k, j < k. If vi has an arc to vk, attempt
to remove it, and if it does not, attempt to add such an arc. Similarly, and
simultaneously, attempt to remove or add an arc from vj to vk. To calcu-
late the change in log joint probability I1, only Ck need be recomputed.
Type S3 steps are strictly speaking unnecessary, since the full set of TOMs
can be explored using only types S1 and S2. However, it is included in the
hope of accelerating transitions between TOMs which differ in one parent
of some variable, where the two alternative parents are correlated. It is
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also possible that adding two parents to a variable reduces its Ck, whereas
adding either alone does not.

When a step is attempted, it is accepted if the change in I1 is negative, or if

exp(I1(old) − I1(new)) > U

where U is a pseudo-random value drawn uniformly from the range (0, 1). If
the step is accepted, the changed TOM becomes current, and I1, C, V , and
the incidence matrix are updated. After any step, accepted or rejected, the
step count is incremented.

This Monte Carlo process meets sufficient conditions for the Metropolis
algorithm to apply, viz., the number of possible transitions from each TOM
is constant, and every transition is reversible. The process will therefore visit
every TOM with a frequency proportional to its joint probability with the
data, and hence proportional to its posterior.

We are of course not directly interested in the posterior probabilities of
individual TOMs, but rather in the posterior probabilities of sets of TOMs
which will be aggregated together and represented by a single DAG in an
MML explanation code. The total posterior given by MML to the represen-
tative of such a set is the sum of the posteriors of the member TOMs. We
therefore do not count visits to TOMs, but visits to MML models. To enable
visits to be counted in this way without explicit enumeration of all members
of a set, we characterize a set of TOMs, i.e., an MML model, by the skeleton
and likelihood of one of its clean members.

Whenever the current TOM is changed by a step, a “clean” version of the
TOM is constructed by deleting all insignificant effect arcs, and the skeleton
and maximized likelihood of the clean TOM found. Recall that all structurally
equivalent TOMs share these properties. We then attempt to count visits to
(skeleton-likelihood) pairs. In a problem with many variables, far too many
such pairs may be visited to make exact visit counting easy. Instead, we form
a hash of the skeleton and the log likelihood and use it to index a 65,536-
entry vector of visit counts. The program uses a K × K symmetric matrix of
32-bit constant integers initialized with pseudo-random values, one for each
undirected pair of variables. (The diagonal entries are unused.) A “skeleton
signature” is formed for the current TOM as the sum modulo 232 of the
entries corresponding to the arcs of the TOM, and a hash index formed as
the sum modulo 216 of the upper and lower halves of the skeleton signature
and an integer representing 100 times the current log likelihood. Thus, cleaned
TOMs with different skeletons or different maximized likelihoods are unlikely
to yield the same hash indices. The visit count indexed by the current hash
index is incremented after each sampling step. The “cleaned” TOM is used
only to generate the hash code and does not replace the current TOM from
which it is derived. The latter remains the current TOM for the Monte Carlo
process.
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At the end of the sampling phase (which currently makes 200K3 steps)
the final visit count in a cell of the hash vector, divided by the number of
steps, estimates the total posterior probability of all MML models hashing to
that cell. If posterior probability is concentrated in a few “good” MML mod-
els, the highest cell count will give an over-estimate of the posterior of the
“best” model, as it may also contain some counts from visits to other models.
To minimize the chance of serious over-estimation, we actually maintain two
different signatures and use them to increment two different visit count vec-
tors. The posterior probability of a model is then estimated by the smaller
of the two final visit counts to which it hashes.

During sampling, the program accumulates a list of up to 50 MML models,
being the ones of highest estimated posterior. No model with a posterior less
than 1/200 of the highest posterior is retained. Each retained MML model is
represented by its highest-posterior DAG. The DAG posterior is estimated us-
ing a further two visit count vectors for which the hash indices are calculated
from “DAG signatures”. These signatures are formed like the set signatures,
but using a different K ×K matrix of pseudo-random constants. This matrix
is not symmetrical, so the DAG signature captures effect directions as well as
the skeleton. The DAG hash indices do not involve the likelihood. The DAG
visit count vectors are updated after each sampling step.

The retained models are further cleaned using a more accurate form of
the test for “weak” effects. Models which become the same after cleaning are
merged. Finally, a very general test for MML equivalence is applied. If two
models A and B have prior probabilities PA and PB , and the Kullback-Leibler
distance of B from A is D, then the expected change in message length if A
is merged with B is

PAND + PA log PA + PB log PB − (PA + PB) log(PA + PB)

PA + PB

If this expression is negative, model A is merged with model B. To apply the
test, unnormalized model prior probabilities are estimated from

PA =
Posterior(A|Data)

Pr(Data|A)
Pr(Data)

The unknown value Pr(Data) cancels out in the test expression. The selected
models are then displayed.

The program described above gives rather more useful information about
possible models of the data than does a simple greedy search. It gives sev-
eral (up to 50) distinct models, and estimates of their posterior probabilities.
These should help judgements of the confidence to be placed in the hypoth-
esized models. During the sampling phase, the program notes and records
the DAG of highest posterior, which may be helpful if no MML model was
found with a convincingly high posterior. This model can also be displayed.
Also during the sampling phase, the program accumulates the frequency with
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which each possible directed arc appears in the current (unsimplified) TOM.
These frequencies provide estimates of the marginal posterior probabilities
of each arc, and so can be used for judgement of the plausibility (given the
data) of a postulated causal relation between a pair of variables, without a
commitment to any particular model for the entire net.

7.4.9 Prior Constraints

Knowledge of the data domain may imply prior constraints on the hypothe-
sized temporal order of some variables. For instance, weight-at-birth cannot
be later in the model’s partial order than income-in-present-job for the same
person. Such a constraint can be incorporated in the sampling by forbidding
any step which would place the former variable after the latter in the total
order. The program allows any self-consistent set of such constraints to be
imposed. It also allows the inclusion of specific arcs to be forbidden or re-
quired. Softer prior knowledge, in the form of different prior probabilities for
the presence of each possible directed arc, could also be incorporated without
much trouble.

7.4.10 Test Results

Three major versions of this MML algorithm for learning causal nets have
been implemented. The first deals with real-valued variables and uses a simple
linear regression model for the dependence of a variable on its parents. The
second deals with discrete variables and models the dependence of a variable
by a set of Multinomial probability distributions, one for each combination
of parent values which occurs in the data. The third extends the second
by allowing both the unrestricted dependence model of the second version
and a “logit” dependence model, which has fewer parameters when there
are many possible combinations of parent values. The “logit” model in effect
assumes that the parent variables do not interact in their effects on the child.
This version chooses either the unrestricted or the logit model for each non-
autonomous variable independently, on the basis of which form gives the
shorter message length.

Various tests of the first version are reported in [57] and compared with
results obtained by TETRAD II. In general, the MML method was the more
accurate in recovering the DAG structures from which the artificial data were
generated, making fewer errors about the presence and directions of arcs. The
tests involved data with up to 30 variables.

An interesting test case is an artificial data set with 27 variables. A causal
net model was constructed where the variables may be thought of as indexed
by a triple (i, j, k), with each of i, j, k taking values 0, 1, or 2. The net con-
tained all possible arcs of the forms (i, j, k) → (i+1, j, k), (i, j, k) → (i, j+1, k)
and (i, j, k) → (i, j, k+1), giving 54 direct effect arcs in all. Most effects were
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given coefficients of 0.4, but 11 had −0.5. A random sample of 1000 cases
was generated. No prior precedence information was used. TETRAD II was
unable to find any causal link in this data using default run settings. Perhaps
the fact that it relies on finding significant patterns in very high-order par-
tial correlations is the culprit, as orders of over 20 would be involved in this
problem, making accurate estimation difficult.

According to the MML algorithm with Pa automatically estimated, the
best model was the true model. The posterior of this model was estimated to
be 97%. No other model was retained. The data was re-run with a crippled
version of the MML algorithm, which followed exactly the same Monte Carlo
steps, but did not account for “small effect” equivalence. The best model it
found had an estimated posterior of only 0.1% and 27 false arcs. This result
shows that almost all of the posterior of the best MML model was contributed
by “unclean” equivalents. In fact all the estimated 97% came from unclean
equivalents: it was found that the Monte Carlo process had never visited the
best model.



8. The Feathers on the Arrow of Time

The fundamental laws of Physics appear to be essentially time reversible
at the microscopic level: anything that can happen can equally well happen
backwards. The “laws” applying at the everyday macroscopic level seem quite
different, describing irreversible changes inevitably leading to a decrease in
order. In particular, the Second Law of Thermodynamics says that the “en-
tropy” of a closed system (a measure of its disorder) never decreases, and
(almost) all changes to the macroscopic state of the system with the pas-
sage of time lead to an increase of entropy. Thus, the macroscopic laws define
the so-called “Thermodynamic Arrow of Time”, which points unambiguously
from a more ordered past to a less ordered future. The emergence of this di-
rected Arrow at the macro level from fundamental micro laws which are
symmetric with respect to time has been well discussed. It has been shown
to follow naturally from the micro laws and the way “order” is defined in our
descriptions of the world we see. It is not the paradox which it first appears.
I will briefly rehearse these arguments, but add little to them: they are no
longer matters of controversy. However, there remains an aspect of the Arrow
which does not appear to have been much discussed, and which seems worth
some exploration.

If we observe a closed system at present, and find it to be partially ordered,
there are indeed excellent reasons to suppose that some little time in the
future it will be less ordered than at present. It has also been well noted that
these same reasons would also lead us to suppose that, at some little time in
the past, it was also less ordered than at present. That is, the standard (and
valid) arguments showing that entropy, or disorder, of the closed system will
almost certainly increase in the future also show that its entropy will almost
certainly increase as we peer further into its past. Thus, while our arguments
yield us the point of the Arrow pointing to a less ordered future, they also
imply a point at the other end of the Arrow pointing to a less ordered past.
However, as a matter of common sense, if we see a closed system to be
partially ordered at present, we will usually infer that it was more ordered in
the past, consistently with the Second Law of Thermodynamics which tells
us that the system’s orderliness should have decreased from the past time to
the present.
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For instance, if at present we open a well insulated box and find within
it a metal bar, one end of which is hotter than the other, we feel entitled to
predict that if we quickly shut the box, in ten minutes’ time the two ends will
be closer in temperature (a less ordered state) than they are now. But we
also feel entitled to infer that ten minutes ago, the hot end was even hotter,
and the cold end colder, than we now observe. This latter, commonsense,
inference of a more ordered past is the kind we invariably make in discussing
the physical history of closed systems. We assume that the Arrow does not
have a point at both ends, but rather has a point at the Future end and
feathers at the Past end. The point points to higher entropy in the future,
the feathers trail from lower entropy in the past.

The substantive question I wish to address is why the Arrow has feath-
ers at its rear rather than another point? In other words, why do we accept
the arguments that entropy will increase in the future, but reject their equal
implication that entropy decreased in the past? Why do we use and accept
a certain, valid, logical apparatus in reasoning about the future destiny of a
system, yet reject it in favour of something else in reasoning about the past
history of the same system? And if we do use some other reasoning appa-
ratus for the past, what is it and what validity does it have? I will attempt
to show that we do indeed reason about future and past in different ways.
In essence, I will conclude that our reasoning about the future, when ratio-
nal, is a deductive process using the standard logic of statistics, but that
our reasoning about the past is usually an inductive process not deducible
from the standard logic of statistics. Note that I am not criticising this induc-
tive process, nor the “commonsense” equivalent we informally and habitually
employ. Rather, I will attempt to show that inductive reasoning about the
past is well motivated, and, given certain assumptions about the real world,
emerges from Minimum Message Length principles.

Most previous discussion of the asymmetry of the Arrow have treated the
problem in different terms. Here, I draw heavily on a recent work by Huw
Price [30].

Stefan Boltzmann “proved” that in an ideal gas, whatever its current dis-
tribution of particle velocities, a collision between particles would be expected
to change the velocity distribution towards one of higher entropy. He noted
that the proof did not rely on the direction of time, and hence that an entropy
increase is to be expected when going from the time after the collision back
to the time before it, just as much as in going from before the collision to
after it. There is a technically valid objection to this argument. Boltzmann
assumed that the velocities of his colliding particles were uncorrelated be-
fore the collision. But after the collision, they will inevitably be correlated.
When retracing the history back in time, the final velocities become (when
negated) the “initial” velocities of the reversed collision, and since they are
correlated, Boltzmann’s assumption is violated, and we cannot conclude from
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his “proof” that as the history is retraced into the past, entropy will increase
into the past.

Actually, the objection to Boltzmann’s proof applies in both directions.
If a body of gas has a past, there will have been ample opportunity for its
molecules to interact, both directly and via chains of collisions, so if two
molecules collide at the present instant, even if they have never met before,
their initial velocities cannot validly be assumed to be uncorrelated (or more
precisely, statistically independent). Thus, the “proof” fails to prove rigor-
ously that entropy will probably increase into the future. But in fact the
conclusions of Boltzmann’s argument can be shown to hold by more robust
arguments, which again imply probable entropy increase into both the future
and the past.

Price goes on to say that, even if Boltzmann’s statistical argument is
correct, it is overridden by the fact that we know the past to have been
more ordered, and this acts as a “boundary condition” enforcing an unbroken
entropy increase from past to present and beyond. For Price, therefore, the
only question is why the past was so ordered. But (as Boltzmann already
knew) we cannot rely on any memory or record of the past, of the body of
gas or anything else, to deduce the probability, let alone certainty, of a low
entropy past. Only after we have established some reason to accept a low
entropy past can we consider a low entropy past as a boundary condition on
system behaviour, or more weakly, a prior on the past favouring low entropy.

So, rather than accepting a more ordered past as a given, I have attempted
to start from what I must take as given, namely my present senses and mental
state, and try to elucidate why Price, I, and most others conclude that the
past was more ordered than now.

8.1 Closed Systems and Their States

To simplify discussion, the question of what we can deduce about the future
and past of some part of the world will start with the treatment of “closed
systems”. By a closed system I mean a physical, real world collection of mat-
ter and energy which is totally isolated from any outside influence. No matter
or energy may escape from the system, nor may any new matter or energy
enter it. While no known totally isolated system exists (except maybe the
Universe), the concept of a closed system is a standard tool of Physics, as for
practical purposes many real systems of interest are sufficiently isolated to be
treated as being closed. For this discussion, I make the simplifying assump-
tions that the closed system is of fixed, finite spatial extent. In effect, our
closed systems will be some matter and energy confined within a fixed, im-
penetrable box. The amounts of matter and energy are assumed to be known.
(In one example, energy will be allowed to enter or leave the system, but dis-
cussion of this is deferred till that example. Until then, assume the energy of
the system cannot change.) The “state” of a system at some instant, e.g., the
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present, is a collection of numbers which together completely specify all of
the information about the system which is relevant to its future behaviour.
For instance, in the case of a closed system comprising a box containing some
inert gas, the present state would comprise specification of the position and
velocity of every atom of the gas. As time goes by, the state of the system
will change, the changes being governed by some “laws of physics”.

A “view” of a system at some instant is a usually incomplete and/or
imprecise specification of its state at that instant. For our box of gas, a
view might specify every atom’s velocity exactly, but its position only with
an accuracy of one millimetre. A view could be much broader: it might only
specify the temperature of the gas, and the observation that the gas appeared
to be in equilibrium.

The “state space” of the system is the set of all states which can be
specified, subject to the given confinement and the amounts of matter and
energy. For simplicity, I will assume that these givens, or invariants, are
known exactly (and of course do not change).

The “possible states” of a system is the set of all those states into which
any present state consistent with the invariants and the present view could
evolve at any time in the future, or could have obtained at any time in the
past. Clearly, given a present view of the system, any state rationally asserted
to have obtained in the past, or to obtain in the future, must lie in the set of
possible states.

I make the further simplifying assumption that the state space of the sys-
tem is discrete. That is, no numbers with infinitely many decimal places are
needed for an exact specification of a state. This assumption has some justi-
fication in quantum mechanics, where the state space of a confined system is
indeed a discrete set.

Finally, I assume that time changes in discrete, equal steps. Thus, the
history of the system during some period is fully specified by the sequence
of states it reaches at the discrete instants within the period. The discrete
instants are indexed with the integers, and unless otherwise noted, the present
instant is t = 0. This discretization of time is of course unrealistic, but I hope
its assumption is not critical to the argument. With these assumptions, the
“Laws of Physics” obeyed by the system are described by a mapping of the
state space into itself.

8.2 Reversible Laws

I assume the Laws of Physics to obey the conservation of energy, momen-
tum and angular momentum and, like the real Laws as we know them, to
be essentially reversible. Let s(t) denote the state of the system at time t. If
the system is deterministic, the Laws form a one-to-one mapping M() where
s(t + 1) = M(s). Time reversibility requires that if q and r are states, and
r = M(q), then q′ = M(r′) where s′ signifies a state identical to s, save that
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all velocities (and any other state variables which are odd derivatives with re-
spect to time) are negated. Then the laws of physics appear exactly the same
whether going forwards or backwards in time. I assume time reversibility.

If the system is non-deterministic, the mapping is a probabilistic mapping
described by the function M(r|q) where r and q are states and M(r|q) is the
probability that s(t + 1) = r, given that s(t) = q. In this case, we require
for reversibility of the laws that M(r|q) = M(q′|r′). Here and elsewhere, all
probabilities and conditional probabilities are implicitly further conditioned
on the known invariants of the system, that is, those properties of the system
which are known and constant, e.g., the amount and type of matter, the
spatial confinement and the total energy.

8.3 Entropy as a Measure of Disorder

In general, the calculation of the entropy of a closed system given its invari-
ants and some view of its macroscopic situation can be complicated. In the
special case, typified by a confined ideal gas, of a system of N identical tiny
particles the state of each being fully determined by just a position and a ve-
locity, a simple expression applies. Let z denote a (discrete) position-velocity
pair which a particle may have, and Z the set of all possible such particle
states. I use z to emphasize that a particle state is not to be confused with a
system state. In this simple case, the system state s of the gas is the N -tuple
of the particle states of all its N particles.

The known invariants and view may suffice to allow us to estimate the
fraction of particles in each particle state z, or equivalently, the probability
Pr(z) that a certain arbitrarily chosen particle has particle-state z. Then the
entropy, here denoted by the symbol H, is classically defined by the equation

H = −
∑

z∈Z

[Pr(z) log Pr(z)]

The probability distribution Pr(z) is conditioned only on the known invari-
ants and view. H measures the expected amount of information needed fully
to specify the instantaneous state of every particle, and hence the system
state, given only the invariants and whatever information is contained in the
view. (Note that the particle-state distribution is constrained by the require-
ment that the sum of the particle energies equal the known invariant total
system energy.)

Informally, a system is regarded as being in equilibrium if its present view
is expected to persist forever with no significant change (assuming no exter-
nal intervention). More formally, the system is in equilibrium if its entropy,
as calculated from the present view, is close to the maximum value it could
obtain if constrained only by the invariants. That is, the information in the
present view does not imply an entropy lower than the maximum possible. As



342 8. The Feathers on the Arrow of Time

the probability distribution Pr(z) which maximizes H subject to the invari-
ants is unique, the system appears to be in equilibrium if the present view is
consistent with the maximum entropy particle-state probability distribution.

If the present view implies that Pr(z) differs from the maximum entropy
distribution, the system is not in equilibrium, and its entropy is less than
the maximum. Since the entropy is a measure of the amount of informa-
tion needed fully to specify the system state given the present view, a non-
equilibrium view conveys some information about the present state, and the
system may be said to be partially ordered. The nature of its order is de-
scribed by the non-equilibrium features of the present view.

Strictly speaking, for a partially ordered system, the above expression for
its entropy should have an additional term, showing the amount of infor-
mation needed to describe the view features which condition the probability
distribution Pr(z). However, this term is negligible compared with the main
term except for very small systems and those views including highly detailed
features, and is usually ignored.

The classical definition of entropy defines the entropy of a view, i.e., a
collection of macroscopically similar states. Since it shows the amount of in-
formation needed to specify the exact system state given the view, and there
is no information available about the state save what is contained in the view
and invariants, the entropy of a view is essentially the log of the number
of system states consistent with the view. It is the amount of information
needed to specify one of this number. If instead of a view we consider a state,
no further information is needed to define it: the “collection” has only one
member. Hence, the definition is not directly applicable to a single state.
However, the definition can be extended to apply to a state if we allow the
particle-state probability distribution Pr(z) to be re-interpreted, in the case
of a single system state, as the frequency distribution of particle states in
the system state. Then a “high entropy” state is one in which the particle-
state distribution approximates the particle-state probability distribution of
an “equilibrium” or non-informative view. Some low entropy states would
present a low entropy macroscopic view to an observer whose measurements
revealed the state’s departures from the equilibrium particle-state distribu-
tion, but for some low entropy states, the departures might be too subtle
to show up in macroscopic view having a realistic level of detail. For exam-
ple, a state in which only every second possible particle-state was occupied
(according to some arbitrary enumeration of particle states) would have low
entropy according to this definition, but would probably show no macroscopic
evidence of order. This difficulty in the definition of the entropy of a state
fortunately is of no consequence to our arguments, as almost certainly partial
order visible only at a microscopic level would be destroyed in a very short
time.

It follows from this definition of the entropy of a state that the number of
states with entropy H increases exponentially with H. The great majority of
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states in the state space have entropies close to the maximum possible value.
If the system is in equilibrium (no partial order and no informative current
macroscopic view) we may expect that as time goes by the state entropy will
jitter around just a little below its maximum value.

8.4 Why Entropy Will Increase

If we are presented with a closed system which appears to be in equilibrium,
there is nothing which can be usefully predicted of its future, save that it will
probably remain in equilibrium. We can hope to make interesting predictions
about the future of a closed system only if it is now partially ordered, i.e.,
has entropy significantly below the maximum. I will now argue that we may
confidently predict that its entropy will increase. Several cases will be treated.

(a) Deterministic Laws, Exact View.
Assume the Laws of Physics are deterministic, and that we have exact
knowledge of the present state s(0) at time t = 0. Suppose s(0) is a state
of low entropy H0. The deterministic laws allow us to deduce the state
s(f) at some future time f > 0. The repeated application of the time-step
mapping s(t+1) = M(s(t)) will no doubt have changed the state and its
entropy. Since the mapping is based on the microscopic laws, which make
no reference to entropy and are reversible, there is nothing inherent in
the mapping which can lead us to expect that the entropy of a state will
be related in any obvious way to the entropy of its successor, although,
since a single time step will usually produce only a small change in the
macroscopic view of the system, we may expect the resulting change in
entropy to be small. After the f steps leading to time f , therefore, we can
expect the initial entropy to have changed by some amount, but otherwise
to be almost a random selection from the set of possible entropy values.
Recall that in a closed system, the number of states of entropy H is of
order exp(H). There are therefore far more high entropy states than low
entropy ones, so the chances are that s(f) will very probably have an
entropy greater than the initial state s(0).
In a deterministic closed system of constant energy, the sequence of states
from t = 0 into the future is a well-defined trajectory through the state
space. The trajectory may eventually visit all states in the space, or only
some subset. Given that the state space is discrete, it can only contain a
finite, albeit huge, number of states. The trajectory from state s(0) thus
must eventually return to state s(0), and since the mapping is one-to-
one, must form a simple cycle in which no state is visited more than once
before the return to s(0). Since it is cyclic and produced by time reversible
laws, the trajectory must show just as many steps which decrease entropy
as increase it. However, because the trajectory can be expected to visit
far more high entropy states than low entropy ones, if we start from some
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low entropy state and advance for some arbitrary number of steps, we
must expect to arrive at a state of higher entropy. If this argument is
accepted, the Second Law will in general apply even given deterministic,
time reversible laws. No paradox is involved.

(b) Deterministic Laws, Inexact View.
If, rather than knowing the precise initial partially ordered state s(0),
we have only an imprecise view of the initial state, the argument for
expecting entropy to increase can only be strengthened. We may well
feel more justified in regarding the entropy at future time f as being in
some sense a random selection from a range of values, since we no longer
have any certainty about the future state s(f). Given this uncertainty, the
larger number of high entropy than low entropy states becomes perhaps
a sounder basis for expecting Hf > H0.
Because each time step has but a small effect on the macroscopic view,
we also expect the macroscopic behaviour of the system to be insensi-
tive to the fine detail of the initial state, and to be well predicted by a
macroscopic, or at least inexact, initial view.

(c) Nondeterministic Laws
If we suppose the fundamental microscopic laws to be nondeterministic
(but still reversible) the state-to-state mapping M() is replaced by a
probabilistic law

Pr [s(t + 1) = r] = M(r|s(t))
Given s(0), we can at best compute a probability distribution over the
possible states at time f > t, and are the more justified in expecting s(f)
to have higher entropy than s(0).

8.5 A Paradox?

The preceding arguments, backed up by the results from simulations of a
small but, I hope, plausible thermodynamic closed system described in a
later section, show that macroscopically irreversible behaviour not only can,
but must be expected to, emerge from the operation of time reversible micro-
scopic laws on an initially partially ordered system, especially but not only if
these laws are non-deterministic. In particular, we can confidently expect the
entropy of the system to increase. The arrow of time unambiguously points
to a future less ordered than the present.

But a paradox of sorts remains. Re-reading the arguments of cases (a),
(b) and (c), it can be seen that, although it was assumed that the predicted
situation occurs at a time f in the future (f > 0), this assumption actually
played no part in the argument. If f is replaced by a time b in the past
(b < 0), all that was argued to the effect that Hf > H0 becomes an equally
valid argument that Hb > H0. Thus, I conclude that while simple statistical
deductions show that entropy will very probably increase in future, these
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same deductions show that entropy very probably decreased from the past.
The entropy shown by the present state or view of the system is therefore
almost certainly close to the lowest it will ever have, or ever did have, at least
for times not hugely remote from the present. This is precisely the conclusion
reached by Boltzmann. However, it is not what we would normally conclude
about the past of a presently partially ordered closed system, and many would
like to avoid it.

8.6 Deducing the Past

Before dismissing this deduction of past disorder as nonsense, let us con-
sider what means might be used in the real world to deduce something about
the past state T (for “Then”) from exact or partial knowledge of the sys-
tem’s present state N (for “Now”). As before, I assume the microscopic laws
(whether deterministic or probabilistic), the exact system energy, other in-
variants, and the state space all to be fully known. I will consider three cases:
non-deterministic laws given an inexact view NV of N ; deterministic laws
given full knowledge of N ; and deterministic laws given an inexact view NV .
There are several approaches which might be taken to the deductive task.

8.6.1 Macroscopic Deduction

The most direct approach would be to assume the universal validity of the
macroscopic laws of motion, Thermodynamics, Chemistry, etc., and attempt
to use them to deduce the past state from the present state. While sometimes
successful, this approach has severe limitations, as will appear.

These macro laws appear, as normally presented, to be deterministic: they
are expressed in equations with no random terms. Some of them, e.g., the
second law of Thermodynamics and the laws of viscous flow and diffusion,
are not time symmetric, and describe “dissipative” behaviour which reduces
order and increases entropy as time advances. Today, the dissipative “laws”
are not seen as fundamental, but rather as emerging from the large-sample
statistics of reversible micro processes. However, they have been well tested
and found to be excellent models and predictors of macroscopic behaviour,
so it is not unreasonable to assume that they held in the past period from
state T to state N . The empirical evidence supporting them is so strong that
we may be prepared to treat these laws as fundamental, and to ignore the
argument that the large-sample statistics of reversible micro processes do
not support them except for the prediction of future behaviour. If so, we may
proceed to set up the differential equations embodying these laws, set N (or
some macroscopic view NV of the present) as boundary conditions at t = 0,
and integrate the equations back to t = −k.

This approach may work adequately for small k, i.e., for the recovery of
the very recent past, but in general is likely to fail. For instance, let our
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system be a long thin pipe closed at both ends and filled with water, with
the present view showing some dye colouration in a short stretch of the pipe.
If there is no bulk motion of the water and no significant temperature or
gravity gradient, one of the applicable macro equations will be the equation
for one-dimension diffusion of the dye concentration v(x, t):

∂v

∂t
= K

∂2v

(∂x)2

Taking the present-view dye distribution v(x, 0) as boundary condition, this
differential equation can be integrated to negative times. Unfortunately, if the
integration is carried too far back, it is very likely to yield negative values of
dye concentration at some points of the pipe, which are of course impossible.
For any negative time t, the function v(x, 0) is the convolution of v(x, t) with
a Gaussian function of x, so recovering v(x, t) from v(x, 0) is a deconvolution
calculation which is very ill-conditioned and may have no positive solution.

Another sort of possible failure arises from the fact that a purely deductive
process based on backward integration of the macro laws has no room for
our background knowledge. For example, suppose our system is contained
in a strong, insulated box, and our present view shows the box to contain
a hot mixture of nitrogen, various gaseous oxides, some sooty deposits of
carbon and potassium compounds on the walls of the box, a small wooden
stick charred at one end, and some fragments of discoloured paper. I cannot
believe that integration of the macro laws could lead us to a past state where
the box contained a firecracker and a lighted match.

More generally, if in the original state T some part of the system was
in a low entropy metastable state, and the actions of some other part of
the system triggered the collapse of the metastability, it is hard to see how
deduction from the present N using the macro laws can lead to a recovery of
the metastable state. In summary, the use of macro laws to deduce the past
seems to have limited utility, and be unlikely to reach many “commonsense”
inferences that we make about the past, except in cases such as the motions
of the major bodies in the solar system, where dissipative processes and hence
entropy increases are very small.

8.6.2 Deduction with Deterministic Laws, Exact View

If the laws are deterministic and we have exact knowledge of the state N ,
there is no problem. We simply trace back the history leading to N by using
the inverse of the one-to-one mapping of states M(). Of course, we recover T
without error. I will term this backwards tracing “devolution”, and say that
N devolves to T .

The case is wholly unrealistic. In the real world, we never have exact
knowledge of the present state of a closed system.
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8.6.3 Deduction with Deterministic Laws, Inexact View

Assuming our knowledge of the present state N is an inexact view NV , we
can at best enumerate the collection of states compatible with NV and trace
each back to its only possible ancestor at the “Then” time. This will give us a
set TP of possible ancestors exactly as numerous as the collection of possible
present states, and one of this set must be the true ancestor T . Deduction
can at best lead to a probability distribution over the members of TP . If all
“Then” states were considered equally likely a priori, the distribution over
TP will be uniform, since each state in TP has the same probability (one) of
evolving into a “Now” state in NV . We consider a non-uniform prior over
“Then” states in the next section, but find the idea unsound.

We are left with the problem of deducing some conclusion about T know-
ing only that it is some member of TP . One possible approach is to form a
view of the past by averaging over the members of TP . This seems not to be
very helpful. The true “Now” state N devolves to the true “Then” state T ,
which may well have lower entropy than N . However, the precise configura-
tion of N which implies its ancestor has lower entropy is extremely fragile. A
state N∗ differing only microscopically from N will very probably devolve to
an ancestor of higher entropy. If we imagine the state space to be arranged so
that states which are microscopically similar are close together, we find that
in general, two trajectories which pass through neighbouring states in state
space will diverge rapidly (whether traced forwards or backwards). While
the (past) trajectory through N may pass through a lower entropy T , it is
probable that (past) trajectories through close neighbours of N will diverge
to higher entropy “Then” states.

Simulation experiments support this assertion. If a simulation is run from
a low entropy state T , it will almost always reach a higher entropy state N
which, providing the elapsed time is not too great, will still be partially or-
dered. In many hundreds of trials, it was found that if N was then perturbed
by the smallest possible displacement of just one of the typically 105 particles
involved, or by the reversal of a single particle velocity component, the result-
ing perturbed state devolved to a “Then” state with higher entropy than N
and of course T . Further, the “Then” state reached presented a macroscopic
view very different from T . It appears that for any realistic view NV of the
present state, the vast majority of states in TP differ greatly from T , and in
particular have entropies greater than N , not less.

It follows that trying to deduce the nature of T by averaging over TP will
lead to the conclusion that the past was less ordered than the present, and
very different from what common sense would suggest. Simply averaging TP to
estimate some property of the past state corresponds to the (well justified)
Bayesian “minimum loss” process if the “loss function” assumed is the square
of the difference between the true and estimated value. One might consider
whether some other loss function might yield estimates more in line with
commonsense inferences about the past.
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The only candidate loss function I have thought of which might work to
discriminate among the members of TP is a function which shows how much
the evolution of some member of TP to a member of NV does violence to the
usual (but not fundamental) irreversible physical laws such as the laws of
diffusion, viscosity, friction, and in particular the Second Law. It is highly
likely that the true evolution of T to N has pretty much conformed to these
laws, but the evolution of a high entropy past state to some state in NV will be
in criminal violation. There are, unfortunately, two flaws in this suggestion.
First, we are likely to infer a past state of lower entropy than T , showing fine-
scale macroscopic structure which dutifully is attenuated in strict accordance
to the irreversible laws until it matches the faint irregularities visible in the
present view which common sense would consider the result of statistical
fluctuations such as thermal noise, Brownian motion, etc., and in no way
informative of the past. Second, and more importantly, we have no warrant
for assuming such a loss function. We have as yet found no deduction proving
that these “laws” held sway in the past, and hence no reason to suppose that
their past violation is in any way a “loss”.

8.6.4 Deduction with Non-deterministic Laws

I will assume an inexact view NV of the present state N. Since the laws are
non-deterministic, every state in NV may have several possible immediate
ancestors at time t = −1, and each of these several possible ancestors at
t = −2, and so on. In general, we expect the set TP of possible ancestral
states at t = −k to have cardinality much greater than NV , and in some
cases TP may include the entire state space. Clearly, any deduction must deal
with the inherent uncertainty of the past by using the logic of probability. The
reversibility of the microscopic laws is easily shown to lead to the following
equality, where r is a state occurring at some time t1 and s is a state occurring
at some later time t1 + k.

The evolution probability Pe(s|r, k) that state s will occur at time t1 + k,
given that state r occurred at time t1, equals the probability Pe(r

′|s′, k) that
state r′ will occur at time t2 + k, given that state s′ occurred at some time
t2.

(Recall that s′ is a state identical to s save that all velocities and other odd
derivatives with respect to time are negated.) In what follows, r and s will
always refer to states separated by k time steps. We can therefore abbreviate
the equality to the symbolic form:

THE RETRACE EQUALITY: Pe(s|r) = Pe(r
′|s′)

The probability that r evolves into s after k time steps along some particular
trajectory from r to s is the product of the probabilities of all the random
choices made along the trajectory. For every such trajectory from r to s there
exists a trajectory from s′ to r′ along which exactly the same random choices
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are made, in reverse order. Thus, s′ has just the same probability of evolving
into r′ along this trajectory as r has of evolving into s along its trajectory.
Summing probabilities over all trajectories from r to s to get Pe(s|r), and
over all trajectories from s′ to r′ to get Pe(r

′|s′) yields the retrace equality.
The retrace equality gives us a simple way to investigate the Bayesian

posterior probability distribution over TP given a present view NV . Let s be
some state in NV . The posterior distribution over states in TP given present
state s is given by Bayes’ theorem as:

Pf (r|s) = Pe(s|r)Pp(r)/Pm(s)

where r is a state in TP at time −k, and Pp(r) is the “prior” probability
that the system would be in state r at time −k. The prior probability is
the probability we would ascribe to r given only knowledge of the system
invariants, i.e., before seeing the present view.

Pm(s) is the implied marginal distribution over present states given by:

Pm(s) =
∑

r

[Pp(r)Pe(s|r)]

Let us assume that Pp(r) is the same for all states in the state space. This
is a reasonable assumption given that in a closed system, all states in the
space have equal probability unless some non-equilibrium feature of the state
is known, which is of course not the case before we have observed the present
view. If Pp(r) is uniform over the state space, so is the marginal distribution
Pm(s). In fact, for every state in the state space, its marginal probability at
time t = 0 equals its prior probability at time t = −k, and Pe(s|r) = Pf (r|s).

Given this uniform prior, a Monte Carlo approximation to the posterior
could be obtained by repeatedly selecting a state s in NV at random and
using the retrace equality to trace a possible trajectory backwards from that
state to time −k. The tracing backwards is performed by first replacing s by
s′, then letting s′ evolve for k steps according to the microscopic laws, and
finally replacing the resulting state r′ by the time reversed state r = (r′)′.
The retrace equality guarantees that the probability that a state r at time
−k would evolve to a state s at time zero equals the probability that tracing
backwards from s will give r at t = −k. I will say that s devolves to r.

More generally, we may say that a state r at an early time evolves to a
probability distribution over states at some later time, and that a state s at
the later time devolves to a probability distribution over states at the earlier
time. The collection of states found by the repeated devolution of states ran-
domly selected from NV is an unbiased sample from the posterior over TP .
States in TP in general will not have equal likelihoods of evolving into states
in NV . Hence, assuming equal prior probabilities for all states at t = −k, the
posterior probabilities given NV of states in TP will be unequal. The devolu-
tion of s in NV to r in TP is equivalent to the evolution of s′ for k time steps
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into r′. As argued, and as confirmed by simulation, any evolution of a par-
tially ordered state is expected with very high probability to conform to the
normal macroscopic laws of thermodynamics, and in particular, to result in
a state of higher entropy than the original. Almost certainly, H(r′) > H(s′).
Since time reversal does not alter the entropy of a state, almost certainly,
H(r) > H(s). That is, almost all states in TP will have higher entropy than
those in NV , and the Monte Carlo sampling of states from the posterior
probability distribution over TP will contain a great majority of states with
higher entropy than N .

Both evolution and devolution of a partially ordered state yield states of
higher entropy with probability close to one. The Bayesian expectation is that
the ancestor at t = −k of N had more entropy than N , and this expectation
is as well-founded as the expectation that N will evolve to a state of higher
entropy at t = +k.

Moreover, the great majority of possible ancestor states, possessing col-
lectively the bulk of the posterior probability in TP , have little chance of
evolving into states in NV , being of higher entropy than N . Evolution of
a high entropy state in TP into a lower entropy state in NV is possible but
very improbable, as it implies an evolution running counter to the normal
thermodynamic laws.

The posterior distribution over TP summarizes all we can deduce about T
from the present view NV . Further deduction can only tell us things implicit
in this distribution. As in the previous Section 8.6.3, with a uniform prior
over TP , Bayesian minimum loss deduction with a quadratic loss function is
equivalent to posterior weighted averaging over TP , which could be done by
Monte Carlo sampling. As just shown, this will give the minimum loss value
for the past state entropy as greater than the present entropy. The argument
of Section 8.6.3 against the validity of more biased loss functions still applies.

As the minimum-quadratic-loss estimate of the entropy of T is so poor,
we must doubt the quality of similar estimates of other properties of T (a
doubt confirmed by many simulation results: see Figure 8.1 and Figure 8.2).

8.6.5 Alternative Priors

The counter-intuitive behaviour of Bayesian deduction noted above was ob-
tained assuming a uniform prior Pp(r) over the past states. Although there
are arguments for the uniform prior, it is worth asking if a different prior
could produce Bayesian posteriors more in accord with commonsense infer-
ences of the past. For instance, one could consider a prior which placed more
weight on past states of low entropy, in order to make the mean posterior
entropy lower than in the observed present.

A sufficiently strong prior preference for low entropy past states might
indeed bring the Bayesian deductions about T into line with common sense.
However, it seems hard to provide a rational basis for such a “prior”. For
Bayes’ theorem to be validly applied, it must be the case that the prior
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(a) (b)

(c) (d)

Fig. 8.1. (a) “Then” state of “Disc Collision” model; two-thirds scale;
31,623 atoms. (b) “Now” state of “Disc Collision” model; 35 time steps after
“Then”. (c) Reconstruction of Disc Collision “Then” from “Now” with one atom
perturbed; deterministic devolution. (d) Reconstruction of Disc Collision “Then”
from exact “Now” state; non-deterministic devolution.

probability distribution reflects the probabilities which might rationally be
assessed on the basis of knowledge held before the present view is observed.
In our case, this knowledge comprises only the microscopic laws of Physics,
the system invariants, and the belief that the system has been isolated since
before the time t = −k. That is, the prior knowledge is only what we have
before we open the box to take the present view. There seems nothing in
this knowledge to suggest we should believe that, had we opened the box
at t = −k, the chances of our finding the system in some particular state q

would depend on the entropy (or any other property) of q.
Further, adoption of a non-uniform prior Pp(r) at time −k leads to a non-

uniform marginal distribution Pm(s) for the present state, but Pm(·) is closer
to uniformity than Pp(·), being smeared out by the variance of the evolution
distribution Pe(·|·). Thus, we would be supposing that the probability of
finding the system in some particular state q depended on when we looked.
Since we have no knowledge of when the system became isolated, or what its
state was at that time, this supposition can have no basis.
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(a) (b)

Fig. 8.2. (a) “Then” state of “Stick Collision” model; two-thirds scale. (b) “Now”
state of “Stick Collision” model; 190 time steps later than “Then”. (c) Reconstruc-
tion of “Then” state of “Stick” model from “Now” state with 100 atoms perturbed;
deterministic laws. (d) Reconstruction of “Then” state of “Stick” model from exact
“Now” state; non-deterministic laws.

The only prior which seems a defensible representation of our ignorance of
T before observing the system is a prior which does not change with time. The
uniform prior uniquely has this property. Price suggests that since we know

the past to be more ordered, we can use this “fact” to modify the deduction
of the past somehow to recover a lower entropy state from a present state. He
does not say how, and in any case, we have so far seen no reason to accept
his “fact”.

Finally, it is not clear that a Bayesian prior is even applicable to the
deduction of a probability distribution over possible “Then” states. We are
happy to base predictions of future states on our knowledge (be it partial
or exact) of the current state N , without reference to any “prior” beliefs
about the future. The present state, by definition of a state, embodies all
information relevant to the future behaviour of the system, so our calculations
of the probabilities of possible future states need refer only to N , or our view
N

V of N , unclouded by any distraction. Why should we lose our confidence
in the sufficiency of the N state when computing the probabilities of possible
past states? I see no compelling reason. If the sufficiency of N is accepted,

(c) (d)
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we can make no better estimate of the probability of a possible past state T ,
given N , than that given by the Retrace Equality, and conclude

Pr(T |N) = Pe(T
′|N ′)

The result is of course equivalent to the assumption of a uniform Bayesian
prior over past states.

8.6.6 A Tale of Two Clocks

A simple example will illustrate just how bizarre the results of attempting to
deduce the past from the micro laws can be.

Suppose the closed system is an insulated box containing an ordinary me-
chanical clock with a mainspring coupled via gearing to the hands of the clock
and to a conventional escapement governed by a balance wheel oscillating in
resonance with a hairspring. Now suppose that at time “present” we inspect
the clock and find that its mainspring is about half run down, and that the
hands show 7 o’clock. We want to infer the state of the clock exactly one
hour ago.

In such a clock, the movement is stationary most of the time, except
for the balance wheel which oscillates, releasing the movement to advance
by one tooth of the escapement wheel on each oscillation. For simplicity,
assume that the present view is obtained at a time when the balance wheel is
momentarily stationary at one extreme of its oscillation, and that the rest of
the movement is also still. (This assumption is not crucial to the argument.)
Now let us attempt to deduce its past state by applying our knowledge of the
micro laws to backtracking from the present state. We can follow the process
described in the previous sections.

First, choose randomly some state s consistent with the present viewNV ,
then time reverse it, giving s′. What will s′ look like? Since there was no
macroscopic movement taking place in s, there will be none in s′. Thermal
noise vibrations on the micro-scale will be reversed in direction, but these
have no significant macro effects. In fact, s′ is consistent with NV . So s′

looks just like a clock with half-wound mainspring, balance wheel about to
start a swing, and hands showing 7 o’clock. Now we let this state evolve for an
hour in conformance with the micro laws. If s′ looks like the state of a clock, it
will evolve like a state of a clock. After an hour’s evolution, corresponding to
an hour’s devolution of s, state s′ will have done what a clock’s gotta do, and
will have changed to a state r′ showing exactly 8 o’clock with a mainspring
rather more than half run down. Finally, we time reverse r′ to obtain the
deduced past state r. As before, time reversal does nothing significant to the
state except perhaps altering the phase of the balance-wheel oscillation by
up to half a cycle, a jump of no more than half a second.

Our deduction, supported with extremely high probability by the funda-
mental laws of Physics, is that the clock, which now says 7.00, an hour ago
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said 8.00 and was more run down than it is now! (A grandfather clock would
give similar results, but would need a bigger box.)

Since this clock seems as queer as a two-bob watch, we discard it and build
our own. We build a disc free to turn on a vertical shaft. The disc carries
two radial tracks on which two masses can slide freely from near the centre
of the disc to its rim. Springs running from fixed points on the disc to the
masses pull the masses towards the centre with a force exactly proportional
to the distance of the mass from the centre. If the disc rotates with a certain
speed, the inwards forces of the springs on the masses will exactly equal the
outwards centrifugal force on them, no matter what the radial positions of
the masses. To “wind” the clock, we spin the disc until it reaches this speed
with the masses nearly at the rim, then let it spin by itself. It will continue
to spin at the critical speed for a long time without slowing down, the masses
gradually moving inward as kinetic and spring energy is released to overcome
friction. Low-friction gearing couples the disc to the hands of our clock.

Now suppose our new clock becomes the closed system under study. Let
our “present” view NV be that we find the hands showing 7 o’clock as before
and the masses are half way between centre and rim. Again, we attempt to
deduce the state of the clock an hour ago by backtracking some state s in NV .
The time reversed state s′ now has the disc spinning with the critical speed,
but backwards, and otherwise looking just like s. To devolve the system by
one hour, we deduce the state r′ reached by evolving s′ for an hour. If the
friction is low enough, r′ will still show the disc spinning with the constant
critical speed, but the masses will have crept inwards. An hour’s backward
spin will have left the hands showing 6.00. Time reversing r′ to get the inferred
past state r, we find that an hour ago our new clock showed 6.00, not 8.00,
but was less “wound-up” than at present. Great news! We now have a clock
which not only keeps proper time when no-one is looking, but also winds
itself!

If both clocks are put in the box and both now show 7.00, we have shown
by impeccable reasoning that almost certainly, an hour ago one clock showed
6.00 and the other 8.00. The nature of the different behaviours of the clocks
is related to the following observations.

– Clock 1 cannot be made to run backwards. Clock 2 can: one just “winds
it up” by spinning the rotor in reverse until it reaches critical speed with
the weights far out.

– Clock 1 (or any clock using an escapement) will not work properly without
some slight friction and/or inelasticity in the escapement. It needs dissipa-
tive phenomena. Clock 2 does not: the less friction the better.

– Clock 1, once fully wound, will run for a time independent of the amount
of dissipation in its works (within limits). Clock 2, once fully “wound”, will
run for a time inversely proportional to the amount of dissipation.

An hourglass, or a digital watch, will resemble clock 1. A sundial resembles
clock 2. I hope this tale is sufficient to show that attempting to recover the
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past state of a closed system by statistical deduction based on the fundamen-
tal microscopic laws of Physics is both unusual and unwise.

8.7 Records and Memories

It may seem that by concentrating entirely on what can be deduced about the
past from a single, instantaneous, present view, I am setting up a straw man.
Even for some isolated closed system, we often have memories or records of
the past which are informative of the system’s past, and if we include these
in our deductions, we should usually be able to deduce a lower entropy past
state for the system. However, this argument fails because the system we
think we are studying is then not really isolated. It must have interacted
with the record-making machine or person which now holds the record or
memory. By bringing a record of the system’s past into the deduction, what
we are really doing is enlarging our present view to include, not just the
state of the nominal system but also the present state of pieces of paper
and/or nerve cells. If these are included in the present view, our deductions
of the past should be based on deductions of the past of the extended system
which includes the recording apparatus. Suppose that we know nothing of
the closed system save its energy, and that it is a box undisturbed for several
hours. We open the box and find that it contains some physical system S and,
separated by an insulating partition, a self-developing camera connected to
a timer, whose clock now says 6.00, and which was clearly set to trigger the
camera at 5.00. A picture has emerged from the camera showing the system
S in a lower entropy state than it now has. Can we now deduce from this
present view of S and picture that S really was in a low entropy state an hour
ago? I agree with Boltzmann that we cannot.

As with any isolated system governed by reversible non-deterministic laws,
devolution of the present state is far more likely to result in a past state of
higher entropy than the present. The tale of two clocks suggests that devo-
lution of the present view is likely to show the clock running backwards, and
lead to a view at 4.59 in which the clock shows 7.01, the picture was already
in its developed state (which has higher entropy than the metastable state of
undeveloped film), and S was in a higher entropy state than now. During the
period 4.59 to the present (6.00) the clock never reached an indicated time
of 5.00, and the camera was not triggered. Despite its ridiculous nature, this
“view” of 4.59 (or 5.00) has far more posterior probability given the present
view than has the commonsense conclusion.

Human memory is of course a more flexible recorder than a camera, but
I see no reason why it too should not fall victim to an argument similar to
the above. In a deductive reconstruction of the past system state using a
memory of the past, we must also reconstruct the past state of the observer.
Very probably, the reconstruction will follow one of the individually wildly
unlikely but collectively hugely numerous paths to a past along which the
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Fig. 8.3. Two-chamber + Pipe model; original “Then” state; pipe flow left to right.

system-observer interaction now recollected never took place, or if it did,
happened differently from what is remembered.

I am not arguing here for a rejection of the commonsense conclusion in
favour of the high-posterior view, merely arguing that deduction, even using
what appear to be records showing a past state in accord with common sense,
does not lead to the commonsense conclusion.

8.8 Induction of the Past (A la recherche du temps

perdu)

We are forced to the conclusion that the kind of deductive reasoning we habit-
ually and successfully use in predicting the future of a system is inappropriate
for inferring its past. I will argue that, whereas our predictions of the future
are based on deduction from the present view to the possible and probable
future states, our reasoning about the past is usually inductive. The term is
used in its limited sense of reasoning from the particular to the general, or
at least reasoning from a data statement to a statement more general and
stronger than the data statement.

If we think about the kinds of conclusions we make about the past, these
do not seem to have the form of “posterior distributions” or means thereof.
Rather, we will often conclude by presenting a view T

P of a past situation, in
the sense used here of an incomplete and imprecise specification of a state,
often with an appended account of how that state might have evolved into
the present state or view on which we base our conclusion. In other words,
we tend to conclude with a view of the past which satisfactorily explains the
present.

To return to a simple example, if at time zero we observe a gas in a box
with two chambers connected by a narrow channel, and find in the present
view that the left chamber has higher pressure than the right, and that the
net flow of gas in the channel is from left to right, what might a reasonable
person conclude? (Figure 8.3.) Given an assurance that the box was well
insulated and that there had been no external interference in the last five
seconds, the reasonable conclusion which most would vote for is that five
seconds ago, the pressure in the left chamber was even higher than it now is,
the pressure in the right chamber was less, there was then more gas in the
left and less in the right than is now the case, and that gas has been flowing
from left to right from then till now.
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Why does this conclusion seem reasonable? The past view postulated is
not extraordinary, if true it would lead with good probability to the present
view, and the postulated process leading from the past view to the present
is in accord with our knowledge and experience of macroscopic behaviour. In
particular, the asserted past view has lower entropy than the present one in
accordance with our knowledge of thermodynamics.

This last point is common to most of our conclusions about the past
of well-isolated systems: we postulate a past view or state of lower entropy
than the present. Since in a closed system there are far fewer low entropy
states than higher entropy ones, the assertion of a low entropy past state is a
stronger statement than can be deduced from the present view. In common
with all non-empty inductive conclusions, it is a more general and stronger
statement than the data statement on which it is based. To be an admissible
hypothesis, it must not imply anything contrary to the present view. That
is, the asserted past state or view must give high probability to the present
view. It must have high likelihood. However, being a stronger statement than
the present view, it will in general imply more about the present state N
than can be deduced from the present view NV . If these implications about
the present state can be checked by more detailed observation of the present,
they may be found to be false. Thus, an inductive conclusion about T is
always in principle falsifiable by additional data about N (which may include
observations at times later than zero.)

A principled inductive conclusion about T from the data NV will be based
on the likelihoods of possible past states, i.e., the probabilities these states
have of evolving into NV . Under reversible, non-deterministic micro laws, the
evolution of any state will, with very high probability, conform to the normal
macroscopic and thermodynamic laws (the “macro laws”), and in particular
will not result in a decrease in entropy. Thus, the only states in TP with
a high likelihood given NV are those states which can evolve into NV in a
manner consistent with the macro laws. Denote the set of such states as C
(for “core”). Although C accounts for only a tiny fraction of the posterior
probability distributed over TP , it is among the states of C that we expect to
find our inductive conclusion. It remains to consider what kind of inductive
principle will best perform the task

8.8.1 Induction of the Past by Maximum Likelihood

A simple and well-known inductive principle is the “Maximum Likelihood”
(ML) principle. It suggests the selection of that hypothesis which has the
greatest likelihood of yielding the observed data. In our context, Maximum
Likelihood suggests that we infer the state at t = −k to be that state in
TP with the greatest probability of evolving into NV . The ML inference Tml

will of course be some member of C. Unfortunately, Tml will often be a poor
choice, not conforming well with a “commonsense” inference.
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Given a choice among a family of hypotheses of different complexity, ML
notoriously is inclined to “overfit” the data. That is, ML will usually choose
a rather complex hypothesis even when the complex details of the hypothesis
are not justified by the data. In our problem, while we expect a partially
ordered state to evolve most probably in accordance with the macro laws, we
also expect its evolution to show minor deviations from these laws. As was
found in Section 8.6.3 when considering loss functions favouring adherence to
the macro laws, the likelihood of a past state is also highest when its evolution
into some state in NV closely follows the macro laws. Hence, the maximum-
likelihood choice will in be expected to show in exaggerated form fine-scale
macro structure in NV which in fact arose from statistical fluctuations in the
evolution from the true past state. Given a fairly precise view NV , it is likely
that the ML inference Tml will show an exaggerated feature not present in T ,
and arising from some feature of NV which arose through thermal noise since
the time of T . Even if the system has been in equilibrium since before the
time of T , a sufficiently detailed present view will show some deviations from
the maximum entropy view, and Tml will try to explain these as the vestiges
of past order. That is, the ML inference will overfit the data by striving to
fit noise in the data which is not really informative about T .

This defect of Maximum Likelihood inference is well known, and vari-
ous techniques have been developed to overcome it. A useful but rather ad

hoc technique is to apply standard tests of statistical “significance” to the
various features asserted by the ML conclusion, and to delete from the ML
inference those features found to be insignificantly supported by the data.
This approach requires the essentially arbitrary specification of a “signifi-
cance level”, and has severe technical difficulties in determining appropriate
significance tests to apply during the sequential deletion of several features. A
more principled approach may be based on “penalizing” the likelihoods of the
competing hypotheses by a penalty which reflects in some way their various
complexities. A well-founded way of combining the likelihood of a hypothe-
sis with a measure of its complexity is provided by the Minimum Message
Length (MML) principle and similar methods such as Minimum Description
Length (MDL) and Bayes Information Criterion (BIC).

8.8.2 Induction of the Past by MML

I do not here mean to argue the special merits of MML as an inductive
principle, but merely choose it as an example to show that there is at least one
respectable inductive principle which can be expected to lead to inferences
about the past which are close to our commonsense conclusions. I have chosen
MML because long work with and on the principle has given me some claim
to a fair understanding of how it would perform in this context, but I expect
any other effective inductive principle, such as a significance tested ML or
Bayesian approach, would give similar results.
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Given some data and a family of possible models for or hypotheses about
the source of the data, MML considers the construction of a message which
encodes the data in (say) the binary alphabet. The message must be intelli-
gible to a receiver who knows the observational protocol used to collect the
data, the family of possible hypotheses, the system invariants such as total
energy, and some (not necessarily informative) prior probability distribution
over hypotheses.

The message is required to have a particular form. It must begin with a
first part which specifies a single hypothesis. This is followed by a second part
which encodes the data using a code such as a Huffman or Arithmetic code
which would be efficient were the stated hypothesis true. Such a message is
called an explanation of the data.

Standard coding theory shows that the length of the second part is given
by the negative log of the probability of the data given the hypothesis. That is,
the length of the second part is the negative log likelihood of the hypothesis.
The length of the first part, which states a hypothesis, is also supposed to
use an efficient coding scheme. The optimal scheme will depend in part on
the prior probability distribution (MML is inherently Bayesian), but in any
reasonable scheme the amount of information (and hence message length)
needed to specify a complex hypothesis will be greater than for a simpler
hypothesis. Further, the more precisely any free parameters of the hypothesis
are specified, the longer the statement becomes.

The MML principle asserts that the best inductive hypothesis is that
which minimizes the total length (first and second parts) of the message en-
coding the data. Thus, there is a built-in compromise between the complexity
of the hypothesis and its likelihood given the data. A complex hypothesis re-
quires a long first part to specify it, but may give a high likelihood and hence a
short second part. A simple hypothesis with severely rounded-off parameters
can be stated in a short first part, but may have a lower likelihood requiring
a long second part. The best compromise (shortest message) is found to be
reached when the hypothesis has just the complexity and precision justified
by the data.

In a context such as the recovery of the past, where the conceptually pos-
sible set of hypotheses is fixed and discrete (here, the set of states in the state
space), the notion of precision of the inferred hypothesis needs some clarifi-
cation. The two-part explanation will begin by asserting a single, precisely
defined hypothesis (i.e., past state) and the second part will encode the data
(NV ) using a code expected to be efficient were the assertion true. How then
can we think of the assertion as being of limited precision? The answer is
that the expected explanation length is minimized if the code used for nom-
inating the hypothesis (which must be determined before the data is known)
can only nominate one of a subset of the conceptually possible hypotheses.
The smaller this subset, the shorter the first part becomes, but, when the
data arrives, the sender must choose one of this subset as his inference. If
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the subset is too sparse, no member of the subset may have a high likelihood
given the data, and so the second part will be long. The optimum choice of
subset balances these conflicting effects.

The MML principle is supported by several theoretical arguments. For
our purposes, the most relevant is that it can be shown that in the shortest
message, the statement of the hypothesis contains almost all the information
in the data which is relevant to the choice of hypothesis, and almost no
irrelevant information. In the present context, an MML hypothesis about T
will contain almost all the information in NV which is about T , and almost
none of the information in NV which derives from thermal noise processes
occurring in the period since T . The magnitude of the “almost” qualification
is small. Although no exact general bounds are known, it appears to be less
than the log of the number of free parameters whose values are stated in the
hypothesis.

The exact construction of a code for hypotheses which will minimize the
expected length of the two-part message is computationally infeasible except
in the simplest problems, but good approximations exist for the message
length which allow MML inference to be applied in problems of considerable
complexity.

In the present problem of making an inductive inference about the past
state T , an approximate treatment of MML described in Section 4.10 leads
to the following construction, assuming all past states are equally likely a

priori.
Given the present view NV , construct a set Q of past states which mini-

mizes the approximate message length

LQ = − log(|Q|/V ) − (1/|Q|)
∑

r∈Q

log(Pr(NV |r))

where |Q| is the number of states in Q, V is the number of states in the state
space, and Pr(NV |r) is the probability that past state r will evolve into a
state in NV .

The first term in LQ is the negative log of the total prior probability of
states in Q, and gives the length of the first part of the message. The second
term is the expected length of the second part if a randomly chosen member
of Q is asserted as T . It is easy to show that for the optimum choice of Q,
the smallest log-likelihood given NV of any state in Q is only one less than
the average log-likelihood.

In words, MML inference finds a “view“ Q of the past which maximizes
the prior probability of the view times the geometric mean of the likelihoods
of the states in the view.

Were the arithmetic average used instead, the quantity maximized would
be the total Bayesian posterior probability of all states in Q, which would
increase monotonically with the size of Q and be maximized only when |Q| ≥
|TP |, the set of all possible ancestors of NV . By contrast, Q as defined can
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contain no state with very low likelihood. Q will basically comprise the “core”
set C of ancestral states with a good likelihood of evolving into NV . However,
its total posterior probability may be quite small.

Another way of regarding an MML hypothesis is that, of all hypotheses
with a good likelihood, it has the largest “margin for error”. That is, it rep-
resents a large group of similar hypotheses all of which have good likelihood,
so it need not be specified very precisely. This property is shared by the
true, lower entropy “Then” state which led to the present view. Simulations
show that when a low entropy T evolves to a higher entropy partially ordered
NV , the evolution and the final view is insensitive to substantial changes in
the microscopic detail of T , and to the detailed random events occurring in
non-deterministic evolution.

In the real world, an explanation of a present view conforming to MML
ideas would not normally assert a specific past state T . Rather, we would
assert a view of the past roughly equivalent to the set Q, that is, a view as-
serting just enough detail about the past to ensure that any state compatible
with that view would have a high likelihood of evolving into the present view.
In general, we might also have to include in our explanation of the present
some account of incidents occurring during the evolution whose occurrence
was not implicit in the asserted past view. These additional details would
form the second part of the explanation, and while not implied by the past
view, should have reasonable probability given the past view.

8.8.3 The Uses of Deduction

I am not asserting that deduction of the past from a view of the present
has no role. In some situations, our view of the present is essentially exact,
the relevant physical laws are well-known, and no appeal need be made to
statistical thermodynamic reasoning. The classical example is the deduction
of past positions of major solar system bodies such as the planets, their
moons, and the major asteroids. Their “laws of motion” are well-known, the
bodies are so large that indeterminacy is irrelevant, and present observations
of their positions and velocities are very accurate. There are no “dissipative”
effects of much consequence. Hence, we can make reliable deductions of their
past behaviour some thousands of years into the past.

In some situations where dissipation is not negligible, bulk motions ap-
parent in the present view may still provide a basis for deducing at least
some properties of the past. For instance, if the present view shows a spheri-
cal shock wave in the atmosphere, even a deterministic back-tracking of some
state conforming to the present view will fairly well retrace the recent history
of the wave, showing it to have been expanding from its centre with about
the correct speed (although it will probably suggest that the intensity of the
wave was less in the past than at present, see Figure 8.2).

If we are prepared to accept the well-founded inductive inference from
many data sources that the Second Law and its irreversible fellows held in
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the past, we may accept them as premises in making deductions about the
past. The instabilities which can arise in using these “laws” backwards are not
necessarily fatal over short periods. If we accept our inductive inference that
the memories and records which are part of our present view of the world give
fairly reliable information about the past, deduction from this information
may reliably imply other details of the past. However it still seems to be the
case that deductive reasoning without reliance on inductive inferences about
the past has at best a very limited scope.

Finally, deduction plays a vital role in supporting any inductively pro-
duced assertion about the past. We should accept the assertion only if we
can deduce from it that the present view is significantly more probable than
were the assertion not to hold.

8.8.4 The Inexplicable

An MML “explanation” message is considered acceptable only if it is shorter
than the raw statement of the data. An explanation of a present view is
acceptable only if it is more concise than the description of the present view.
If no such explanation can be found, the MML principle suggests that the data
is simply random with respect to the kinds of hypothesis we can assert about
T , and no such hypothesis is supported by the data. Presented with such
a present view, MML will offer no explanation, leaving only the conclusion
that the present state is random with respect to the state at time −k. That
is, we must conclude that NV no longer contains any information about T .

Inexplicable present views are not ruled out by the fundamental laws of
Physics. A simple inexplicable view of a box containing an ideal gas which
has been undisturbed for an hour would be a view which showed a strong
standing wave with a natural period of, say, ten milliseconds. There is no
conceivable state an hour ago which could be expected to evolve into this
view with reasonable probability, although of course there is a multitude of
past states which could possibly do so.

The “inexplicable” is not confined to the virtually impossible. In fact,
most of our day-to-day views of the world are inexplicable in this technical
sense. When we see an oddly shaped cumulus, or the disposition of the stars
in the night sky, or a collection of people in a shopping mall, we can usually
offer no explanation of the view which does not require a set of assumptions
as great as or greater than the features which they “explain”. These everyday
views are not views of a complete closed system, and we accept that what we
see is largely the result of “novelty” entering our view from a wider sphere
beyond the current reach of our senses. Even when we inspect an effectively
isolated system, say, a rock in a glass box, we do not expect to be able to
explain the fine detail of what we see, and just accept that each particular
fleck of quartz is where it is for reasons which are beyond rational discussion.

Even if we find in a closed system some mild but significant departure from
equilibrium, say, a small temperature gradient along a metal bar, the inference
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that the system had a greater disequilibrium in the near past, whilst perhaps
the best possible guess and perhaps even true, is not really an “acceptable
explanation” of the present. It requires us to assume a proposition at least
as lengthy as the one it is trying to explain, and leaves us no wiser as to why

the gradient is present.
We may at times be forced to make inferences about the past which are

not acceptable explanations of the present, but only the best explanations
which can be found. In such cases, it seems plausible to argue that we should
still follow the inductive principles which would have led us to an accept-
able explanation were one possible. Acceptable explanations are most likely
to be found when the present view comprises a number of features which
are logically independent of one another (i.e., each could reasonably exist in
the absence of the others). Then an inferred past describable by fewer fea-
tures which implies a high probability of the co-occurrence of the observed
features will almost certainly be acceptable. Each observed feature acts as
corroborative evidence of the inference.

8.8.5 Induction of the Past with Deterministic Laws

A case has been made that inductive reasoning from present data using MML
or some similar inductive principle can be expected to reach inferences about
the past agreeing with the inferences we normally accept, whereas deductive
reasoning, including probabilistic deduction, will not. The argument has so
far assumed non-deterministic fundamental laws. In this section, I consider
whether MML induction will behave similarly if the fundamental laws are
known and deterministic. I assume some inexact partially ordered view NV of
the present, and suppose it to have evolved after k time steps from some
unknown state T which common sense suggests will have lower entropy and
greater order than the present.

Given an inexact view NV of the present state, we can in principle proceed
to enumerate the ancestors at t = −k of all the states in NV , e.g., by back-
tracking, and thus arrive at a set TP of the possible states at time −k. We
then know that the true state T is some member of TP , but not which one.
Since the laws are deterministic and reversible, the cardinalities of TP and
NV are equal. This is an essentially deductive mode of reasoning, applying
to the past the kind of reasoning used to predict the future. In the task now
considered, it seems, while perfectly valid, to be of little help.

The vast majority of states in TP bear little resemblance to T . In par-
ticular, the vast majority will, according to our argument and simulation
results, have entropies greater than the entropy of the present state N , which
itself has entropy greater than T . Standard statistical reasoning also does not
advance us. All states in TP have the same likelihood (namely one) of yield-
ing the observed “data” NV , so the maximum likelihood principle will not
help us find in TP any clue about T . A Bayesian approach (taking all states
in the state space to have the same prior probability before the “data” are
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considered) leads to a uniform distribution of posterior probability over the
members of TP , since all have the same likelihood. Thus, no state in TP can
be preferred on the basis of posterior probability, and the mean entropy over
the posterior distribution is a terrible estimate of the entropy of T .

MML also does not seem to work in this case. Since all states in TP have
the same likelihood, choosing Q to minimize LQ will result in Q = TP (see
Section 8.8.2), and a random selection of a past state from Q would almost
certainly select a state of higher entropy than N .

An alternative approach trying to avoid the equality of likelihoods would
be to aim to infer a past view rather than a past state. If a past view V is
asserted, one could identify its prior probability with the total prior proba-
bility of past states compatible with it, which is proportional to the number
of states in the view, and identify its likelihood with the fraction of states in
the view which would evolve into a state in NV . This does not work either, as
maximization of the posterior probability of V would lead to a view including
all of TP .

There is one inductive scheme which would probably yield a “common-
sense” inference. Let the state space be divided into “cells” each containing
a large number of states, such that all states in the one cell differ only mi-
croscopically and would present virtually identical macroscopic views. Then
we could apply MML or some similar inductive principle to the inference
of a past cell, in effect replacing the set of states by the set of cells as the
conceptual hypothesis space. The prior of each cell would be proportional to
the number of states it contained (which might be equal for all cells), and
its likelihood given NV would be the fraction of its states which will evolve
into a state in NV , i.e., the fraction of its states which are in TP . The ap-
proximate MML approach used above for non-deterministic laws would then
be expected, given NV , to generate a set Q of cells all having a high likeli-
hood and all containing states of lower entropy than N . In effect, the “cell”
scheme replaces states with zero or one likelihood by cells with a full range
of likelihoods, and introduces a form of indeterminacy by the back door. The
problem with this idea is that the results would depend somewhat on the
choice of cell size and, more importantly, on the criteria of similarity used
in determining which states can be put in the same cell. These criteria will
depend on the nature of the observations and measurements used in defining
a “view”. There will be states which are indistinguishable by some measure-
ments but revealed as different by others. Given the subtlety and precision
of the measurements afforded by modern Science, it is hard to be confident
that any similarity criteria could be defined which could not be violated by
some form of view-forming measurement. This problem makes me unwilling
to accept the scheme as general and well-founded.

I have been unable to think of any general, principled method of induction
which can be expected to make a “commonsense” conclusion in the presence
of deterministic fundamental laws. While my failure is no proof that no such
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method exists, I am at present inclined to think that principled inductive
inference of the past will yield commonly accepted results if the fundamental
laws are reversible, but only if they are also non-deterministic.

One could argue that in practice, the evolution of partially ordered states
under deterministic laws seems, in simulations, to be virtually indistinguish-
able at macroscopic scales from evolution under non-deterministic laws.
Hence, we might as a pragmatic concession pretend that we do not know
the deterministic laws, and make the kind of inference, MML or whatever,
which would be justified by non-determinism. While this might usually work,
it scarcely seems principled.

8.9 Causal and Teleological Explanations

The nouns “cause” and “effect” presumably enter our language because they
are useful in some areas of communication. They are human constructs which
like “mass”, “electron” and “energy”, do not refer to things directly accessible
to our senses, but which, if hypothesized to apply to certain phenomena, allow
what we can observe of these phenomena to be encoded concisely and used in
forming coherent mental models of phenomena having some predictive power.
As with these other terms, their meaning is ultimately defined in the sets of
sentences in which they appear and which can be “decoded” by others to
convey valid accounts of observations or verifiable assertions about future
observations. Their use is, of course, not limited to just these sentences, but
it is these which finally must be appealed to if one wishes to claim some use
of the terms to be incorrect or meaningless.

Some such terms, like “mass” and “electron”, have proved to be enor-
mously useful in sentences with a mathematical form. By establishing just
which mathematical sentences do decode to match observations, it has been
possible to define a “calculus” for their meaningful use, i.e., to frame well-
defined rules governing which uses are “correct”. This does not imply that
their meanings are immutable or even uniformly understood by all those who
use them. Our current uses of the term “mass” might surprise Newton, while
embracing all the uses he might have made. Further, some terms, such as
“attraction” (as in gravity or electrostatics) are now considered to lack an
exact calculus, action at a distance having been divorced from our canon
of natural law, but remain useful in slightly less formal discourse which is
content to approximate reality.

In my opinion, “cause” and “effect” may suffer the same demotion as
“attraction”, and we may have little better hope of defining an exact calculus
for their use than we have of defining calculi for “sin” or “beauty”. That said,
I will try to add my tuppenceworth.

In an account of system histories in which dissipation plays no significant
role, there seems little need to invoke notions of cause and effect. The entire
history is summarized by a sufficiently detailed description of its state at any
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chosen time in the history, and the earlier and later states are implicit in this
description. Given the positions and velocities of the planets yesterday, asking
for the cause of their positions today is a question which, no matter how
answered, leaves us no wiser. This applies even if there is some indeterminism
in the system.

Since a reductionist history of a system to the most fundamental level
relies only on the reversible fundamental laws, dissipation is not a necessary
part of the history. The elastic collision of a pair of atoms is not a dissipative
event, although its outcome may be uncertain, and the result of a multitude
of such events may be described as dissipative at the macro level. So, at the
fundamental level, there is little role for cause-effect language. In fact, notions
of cause and effect simply do not appear in the expression of fundamental
physical laws (and very rarely even in macroscopic laws).

I am led to think that these notions have their use in discourse concerning
the macroscopic behaviour of dissipative systems, and are most likely to be
invoked when we have only a partial understanding of the processes involved.
Consider an acceptable explanation of the current situation which hypothe-
sizes a past situation and encodes the present in terms of its probability of
evolving from the past. The system of interest need not be closed: part of the
encoded evolution path may further hypothesize some external intervention.
For the explanation to be acceptable, i.e., shorter than a plain statement of
the present facts, the evolution from past to present must be highly proba-
ble, and hence, if dissipative, must follow macro thermodynamics. This fact
allows the encoded history of the asserted evolution to be encoded using the
macro laws to define the trajectory probabilities from state to state, and
allows the evolving states to be described in purely macroscopic terms. We
need not even know the underlying fundamental micro laws, since the macro
behaviour depends little on the micro details. I will call such an acceptable
explanation a Causal explanation, and suggest that any proposition asserted
in the explanation may be regarded as a cause of the present situation.

If the explanation explains the extinction of the dinosaurs, the postulated
past climate and modes of life of the dinosaurs are “causes” (of why dinosaurs
but not crocodilians copped it), the arrival of a comet or asteroid is a cause,
the resulting global winter was a cause, the postulated presence of sulphate
rocks under the impact was a cause (of global acid rain) and so on.

Even if the explanation is a generalized explanation which asserts a new
“law”, that law may have the status of a cause. When a postulated universal
gravitational attraction was first used to explain planetary motions, it would
have been natural to think of the gravitational pull of the Sun as causing
the planets to accelerate towards the Sun. If such a postulated law becomes
generally believed, it perhaps can no longer be regarded as a cause: it is
simply a statement of the way things are and always will be.

Returning to the main theme, it is not logically impossible for the present
state of a closed system to admit an acceptable (i.e., short) explanation in
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terms, not of evolution from some more-ordered past state, but of devolution
from some more-ordered future state. Such an explanation, which I will call
Teleological, asserts that some state F (or view FV ) will hold at some time
t = f in the future, and then shows that with high probability, all trajectories
leading to F will show at the present time states much like the present view
NV .

An acceptable Teleological explanation of the present has the same log-
ical structure as an acceptable Causal explanation, and receives as much
support from theories of inference such as MML as does a Causal explana-
tion. However, few Teleological explanations of (parts of) the present seem
to be adopted. It may be that the present state of the Universe is such that,
while many of its parts admit of acceptable Causal explanations, few if any
admit of acceptable Teleological ones. If this conjecture is true, it describes
an empirical property of the present: an inherent asymmetry which we might
call a “causal arrow of time”.

There is a more direct reason to expect Teleological explanations to
be shunned. Recall that, in an acceptable Causal explanation, the asserted
“Then” state or view has a high probability of evolving to a state in the
present view NV , but, as we have seen, states in NV have very low probability
of devolving into T . This fact, while perhaps surprising, is not embarrassing.
The present does not devolve, so we cannot observe the divergence of the de-
volving trajectory away from the trajectory leading to T , and so cannot use
this divergence to disprove the asserted “Then”. The corresponding position
in an acceptable Teleological explanation is that the asserted future state F
has a high probability of devolving into NV , but states in NV have very little
probability of evolving into F . Thus, we need only watch N evolve for a little
while to observe (with very high probability) that the evolution of N has
diverged from the path to F . In other words, a Teleological explanation of
the present, even if acceptable, must be expected to suffer empirical disproof.

8.10 Reasons for Asymmetry

My main case is that we use deduction to reason about the future, but usually
use induction to reason about the past. If it is accepted, it poses the question
of why we use different reasoning for past and future. A crude answer might
be that we then avoid ever having to reason deductively in the backwards
time direction, thereby never exposing our reasoning to Boltzmann’s theorem.
About the future, we deduce forwards in time from the present. About the
past, we postulate a past by whatever means, then check the postulate by
again deducing forwards in time from past to present to see if the postulated
past implies something close to the present. Similarly, we avoid Teleological
induction of the future because we would have to check the postulated future
by deducing backwards in time from the postulated future to see if it accounts
for the present.
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More seriously, I suggest we reason differently in the two time directions
because we have different interests in the past and future.

Our interest in the future lies in the possibility of adapting our behaviour
to benefit from or at least cope with the future. If we can guess what is likely
to occur, we can perhaps do something about it. If we have no possibility
of effective action, we might as well be fatalistic about the future: whatever
will be, will be, so why bother to guess? If indeed our interest in prediction
comes from our possibility of choice of action, the deductive modes, and in
particular probabilistic deduction, are appropriate. They lead to at least a
rough probability distribution over future states, conditional on our chosen
acts. If we can evaluate the possible future states on our own scale of values,
we can choose the acts giving the greatest expected benefit.

Our interest in the past is quite different. The past is gone: there is nothing
we can do to alter it and whether the possible past states were good or bad
on our scale of values, the good or bad has been done. There is no immediate
value in knowing the past as far as choosing our future acts is concerned.
Rather, our interest in the past is in helping us to understand the present.

An inductive inference about the past must, when deductively evolved
to the present time, show a view in good accord with the view we actually
have of the present. If we find an acceptable explanation, we have not only
made a good guess about the past but now have a more concise account of
the present. But it can do more. It may imply details of the present state
which we did not notice in our observations. Thus, induction of the past may
improve our view of the present. Of course, since no inductive conclusion
is certain, we would be well advised to check these implications by more
observation of the present before accepting them, but at least the induction
has suggested what to look for. If we find the implications to be verified, we
gain confidence in the inductive conclusion; if we do not, we have a refined
present view to use as data for a better inference of the past.

Our understanding of the present may be improved more radically. If we
consider an inference of the past chosen because it gives a short MML-style
explanation of the present, there is nothing to prevent our hypothesis (in
MML the first part of the explanation) from asserting a hitherto unknown
natural law, the assumption of which, together with a hypothesized past
state, provides a shorter explanation of the present than can be found using
previously known laws. For instance, in our ideal gas examples, we might
assert a new, more detailed form of the non-deterministic reversible collision
laws which imply some subtle change in evolution probabilities giving a more
probable evolution to the present. This may be the route by which most
scientific advances are made.

As to why we should want to understand the present, the motives are
presumably based on the possibility of choosing future actions. The better
we understand the present (and the laws governing the processes by which
the present state was reached) the better we are able to predict the future.
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In summary, our deductions discover the direction of the point of the
arrow of time, and validly imply a high probability of increasing entropy
in the future. Similar deductions would imply with equal validity a high
probability that entropy was higher in the past: a second point at the other
end of the arrow. But we have no real interest in deducing the past: this can
tell us nothing more than is implied in the present. Instead, we seek in the
past an explanation of the present, and must resort to induction to do so.
The feathers on the arrow of time are our inductive inferences, unprovable
but falsifiable.

Deductive and inductive inferences about the past state of a closed system
can be very different. When they differ, which should we believe? I suppose
my answer must be that it does not matter what we believe, since the past
is truly lost, and all we can ever know of the past of a closed system is
what we know of its present. It is what we believe about the present which
matters. This is not to say that inductions based on the present view of a
closed system are pointless. They may lead to the elucidation of features
of the present otherwise unnoticed or unexplained, an understanding of the
present as a partially coherent pattern rather than a collection of undigested
data, and in some cases to the discovery of general laws. These benefits do
not seem to arise from deductions about the past state.

Despite this, if presented somehow with a situation where I were required
to estimate the entropy of a past state, and would suffer a loss quadratic in
the error of my estimate, I am not sure I would reject the deduction based
estimate that the entropy was higher than it is now. Note, however, that
such a situation cannot arise if the system was genuinely isolated during the
relevant time. For me to suffer a loss because of error, the actual past value
must still be exerting an influence over future events otherwise than through
the present state of the system. That is, the system cannot have been totally
isolated, and its past state has interacted with my environment.

8.11 Summary: The Past Regained?

A case has been made for a distinction in the modes of reasoning normally
employed regarding the past and future of closed systems. We use deductive
modes for predicting the future, but seem to switch to inductive reasoning
to reach conclusions about the past. Deductive reasoning may be employed
in forming a view of the past, but I believe it is fair to say that this is
usually done only in situations where dissipation is insignificant, or when the
deduction uses as premises the assumption of irreversible laws whose validity
in the past can only be supported by inductive reasoning.

If the fundamental laws are assumed to be reversible and non-deterministic,
no loophole is evident in Boltzmann’s theorem that both the past and the
future of a partially ordered state are probably less ordered than its present.
However, with just the same assumptions, a well-founded induction of the
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past is likely to conform with our commonsense expectation that the past
was more ordered. Further, if a past-based explanation of the present is al-
lowed to assert not only a view of the past but also a new or refined “law”,
inductive explanations may involve and justify the induction of new natural
(or social, biological, economic, etc.) laws.

Under the same assumptions, Teleological explanations of the present,
based on the induction of a future state, while logically possible, will almost
certainly be disproved.

I have not been able to show that these conclusions follow if the funda-
mental laws are deterministic. On the other hand, I have not shown that the
conclusions are incompatible with reversible deterministic laws.

Our different interests in past and future, based on the possibility of our
effective action, are sufficient to motivate the switch of reasoning mode, and
hence a subjective asymmetry in the Arrow of Time: deductive point at one
end, inductive feathers at the other. Objective evidence may be found in an
objective asymmetry in the present, if we find (as I believe to be the case)
that the present admits acceptable explanations based on the inference of
past states more often than it admits acceptable explanations based on the
inference of the future.

8.12 Gas Simulations

Readers who are happy to accept the proposition that partially ordered states
are most probably preceded and followed by less ordered states need pay little
attention to the simulations, since they serve essentially only to establish the
proposition in a very limited context.

The system imitates a two-dimensional ideal gas confined in an immovable
rectangular box. In some experiments, internal divisions divide the box into
two or more connected chambers. In order to implement exactly reversible
“laws”, all arithmetic in the simulation is done with integers. Floating-point
arithmetic is in general irreversible because of rounding-off errors. Thus, the
atoms of the gas have X and Y positions which are integers, so the space
within the box is a rectangular grid of points. Similarly, atom velocity com-
ponents U (in the X direction) and V (in the Y direction) are restricted to
integer values. As assumed throughout, time is represented by an integer t.

In the simulation of a time step from t to (t + 1), a two-phase process
is used. First, at each point of space occupied by two or more atoms, colli-
sions are simulated using a Collision Table which defines the collision physics
and which is set up at the beginning of the simulation program. The sev-
eral atoms at a point are collided in pairs, in order of their identifying in-
dices. The first and second atoms collide, then the second and third, then
the third and fourth, and so on. The collision between two atoms effects a
rotation of their relative velocity vector, their centre-of-mass motion being
unchanged. If (u1, v1) is the initial relative-velocity vector, the new vector
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(u2, v2) is determined from the collision table. The collision table ensures that
(u2

1 + v2
1) = (u2

2 + v2
2) to conserve energy. The integer-velocity-component re-

striction also requires the collision table to preserve the parity (oddness or
evenness) of u and v, which ensures that the atom velocity components re-
main integers. The table is also set up so that

if (u1, v1) → (u2, v2) then (−u2,−v2) → (−u1, −v1)

For convenience, the table also obeys the further condition

if (u1, v1) → (u2, v2) then (u2, v2) → (u1, v1)

Note that these conditions on atom collisions do not imply that if for some
states r and q, r = M(q) then q = M(r). To limit the size of the collision
table, a collision which would result in one of the atoms having an absolute
velocity component exceeding a fixed limit is not permitted. The limit is high
enough that it is rarely reached.

The second phase of the time step moves the atoms according to their
velocities. In general, the (x, y) coordinates of an atom are replaced by ((x+
u), (y + v)), except that if the new position would lie outside the box, one or
more elastic collisions with the walls are simulated to bring the new position
within bounds.

To simulate internal compartments or other fixed features within the box,
it is possible to place “obstacles” at grid points within the box. Collisions
among atoms moved to an obstacle point are inhibited. Instead, during the
collision phase, atoms at an obstacle have their velocities altered in a way
depending on the type of obstacle. The most useful obstacle simply reverses
the velocity of any atom landing on it, so the next move phase will return
the atom whence it came. An internal wall within the box can be constructed
with a thick slab of such obstacles. The slab acts as a “soft” wall: an atom
with a velocity component perpendicular to the slab of, say, u, may penetrate
into the slab by up to a distance (u − 1), since in move phases, atoms move
from place to place without regard to intervening points (except for the box
walls). Thus, a soft wall of thickness W may be passed through by an atom
of velocity component perpendicular to the wall exceeding W . In most uses,
the slab is made thick enough to reflect virtually all atoms. Soft walls are
“rough”: they reverse both velocity components of impinging atoms.

“Hard” walls like the bounding walls of the box have been simulated in
one set of experiments to set up two rectangular chambers connected by a
long, thin pipe. Hard walls are “smooth”: collision with a hard wall does not
affect an atom’s velocity component parallel to the wall.

Given the above description, it is clear that the simulated gas is governed
by deterministic, reversible laws. Both forward and reverse state sequences
through time can be followed. The only difference between a forward time
step and a backward step is that in the latter, the move phase is done before
the collide phase, and subtracts velocities from positions. The asymmetry
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between the “collide-move” forward step and the “move-collide” backward
step does not represent a time asymmetry in the gas “physics”. It arises
from the arbitrary decision to define the integer “time instants” as occurring
just before, rather than just after, a collision phase. The physical progression
simulated is

Earlier ..... C M C M C M C M C M ..... Later

Defined times ... T---T---T---T---T---T

It would of course have been possible, and exactly equivalent, to step back in
time by reversing all velocities, proceeding as for stepping forwards, and fi-
nally re-reversing velocities. The introduction of non-determinism is described
later.

8.12.1 Realism of the Simulation

Many tests have been done to see if this simple simulation resembles a ther-
modynamic system. The tests typically began with the gas in a partially
ordered state with individual atom positions and velocities chosen pseudo-
randomly in accordance with a specified macro view. The evolution of the
system was then followed for some hundreds or thousands of time steps while
tracking a physical quantity of interest.

In some experiments, the total gas energy was allowed to change by in-
troducing a “heater” obstacle which in a collision phase, adds +1 to the V
component of any atom at the heater’s position if the time is even, or −1
if the time is odd. This action is deterministic and exactly retraceable. The
effect of a heater is weakly to couple the gas to a heat source of infinite tem-
perature, since the only velocity component distribution unchanged by the
heater is the Uniform distribution.

Pressure was measured by accumulating the momentum transfer between
one wall of the box and the atoms bouncing off it. A useful property of a gas
state is its velocity component distribution. This was formed in a histogram,
adding both U and V components to the same histogram since (at least near
equilibrium) the two distributions should be similar and nearly independent.
A “state entropy” was calculated from this distribution, which ignores the
entropy of the spatial distribution of atoms (which, near equilibrium, is ex-
pected to be uniform) but serves as an indicator of the true entropy.

A visual picture showing the positions of all the atoms could be displayed
at chosen intervals, and plot files written giving the history of chosen macro
quantities such as entropy, temperature, etc.

Experiments showed the following properties of the gas:

– Near equilibrium (i.e., after sufficient time steps to erase any initial or-
der), the velocity component distribution matched the expected (discrete)
Maxwell-Boltzmann distribution, and the state entropy approached its
maximum possible value.
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– When the collision laws were modified to allow collisions only when ex-
actly two atoms occupied the same position, the effect is to make the
laws independent of the identities of atoms, and to prevent any two atoms
ever having the same position-velocity state at the same time. The atoms
should then behave as fermions rather than classical particles. When this
was done, the velocity distribution matched the Fermi-Dirac distribution.
As the difference is only apparent at very low temperatures, and the modi-
fied simulation was slower to approach equilibrium, all further experiments
used the Maxwell-Boltzmann form.

– Temperature was measured by a maximum-likelihood fit to the velocity
distribution. This measurement is meaningful only near equilibrium.

– The gas obeyed the classical gas law

Pressure proportional to Density × Temperature

– The Specific Heat at Constant Volume had the expected value.
– The speed of sound, as measured by oscillations in a pipe, had the expected

value

Speed =

√

γ × Pressure

Density

where γ, the ratio of specific heat at constant pressure to specific heat at
constant volume, has the value 2 for an ideal 2-dimensional gas.

– In an experiment where the gas is slowly heated by an obstacle at infinite
temperature, the increase in entropy followed the classical law

∆Entropy = ∆Heat/Temperature

– When the box was divided in two by a soft wall of thickness W and the
initial state had all the gas on the left side of the wall with a mean speed
much less than W , “hot” atoms slowly diffused to the right side, with a
consequent initial cooling of the remaining gas on the left, but eventually
the densities and temperatures of the gas on both sides became equal,
with a temperature equal to the initial temperature. No quantitative anal-
ysis of the expected ideal gas diffusion behaviour has been done, but the
simulation was at least qualitatively as expected.
Similar qualitative realism was found when the box was divided into two
chambers connected by a thin pipe, all with hard walls.

– Whatever the nature of the confinement or initial order, every simulation
showed eventual convergence to an equilibrium view.

8.12.2 Backtracking to the Past

Whatever the details of the simulated situation, running for a long time
showed convergence towards equilibrium. When the simulation was then re-
versed, the final state always returned exactly to the initial state, showing



374 8. The Feathers on the Arrow of Time

that the simulation indeed followed reversible deterministic laws. Further, if
several runs were made with different initial states randomly chosen in accor-
dance with the same initial macro view, the final states reached showed no
significant macro differences. That is, the evolution of the macro properties
of the gas is insensitive to initial differences on a micro scale.

If, however, the final state was perturbed by moving the position of a
single randomly chosen atom by a single grid point, the reversed simulation
invariably returned to an initial state with less order than the final state.
In some experiments, the macro history running backwards would follow the
true history fairly closely for 50 or so time steps before diverging towards a
less ordered past, but divergence always occurred.

A simulation was done with a 10,000 atom system in a 200-by-50 box,
where the initial “Then” state was in equilibrium with entropy close to the
maximum possible, a uniform random distribution of atom positions, and a
well-defined temperature of 2.0 (taking Boltzmann’s constant as one.) Two
“heater” obstacles were placed in the box, weakly coupling the gas to a
high temperature. The simulation was run forward for 1000 steps to yield
the “Now” state. As expected, the gas slowly heated up. At all times the
gas had a well-defined temperature, which gradually increased from 2.0 in
“Then” to 2.113 in “Now”. Reverse simulation was then done from “Now”
back to “Then”. Starting with the exact “Now” state, deterministic devo-
lution exactly recovered the “Then” state. Starting with the “Now” state
with one atom shifted by one grid point, deterministic devolution followed
the true temperature trajectory for about 50 steps, but thereafter showed an
increase in temperature into the past, reaching 2.216 at the “Then” time.
Non-deterministic devolution diverged from the true path almost immedi-
ately, reaching 2.229 at “Then”. In both the latter cases, the backtracked
“Then” had higher entropy than “Now”, and of course higher than the true
“Then”.

8.12.3 Diatomic Molecules

An elaboration of the simulation imitates a gas such as hydrogen, in which
pairs of atoms may combine with the release of energy to form diatomic
molecules. In the simulation, the collision table has special entries which
allow a pair of free atoms colliding with certain relative velocities to join,
forming a molecule. The molecule then moves as a point unit according to
the mean velocity of the atoms, and occupying a single grid position. The
atoms retain individual velocities, their relative velocity cycling through a
cycle of values under the control of another table, simulating a high-frequency
internal vibration of the molecule involving a continual exchange between the
kinetic energy of the atoms’ relative motion and the potential energy of their
bond. The total energy of a newly formed molecule exceeds the original total
energy of the free atoms by a fixed “binding” energy. If nothing intervenes,
the molecule will split into free atoms when its vibrational cycle returns to
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the state at which the molecule formed. However, collisions of its atoms with
other free or bound atoms may alter its vibrational state, with the gain or
loss of vibrational energy. If the molecule’s vibrational energy falls below the
binding energy, it cannot split.

A cool gas of free atoms may exist for a long time in a metastable state,
since few of its collisions may reach the lowest relative velocity needed for
combination. This threshold energy and the binding energy can be specified
independently. If a small body of fast atoms enters the gas, triggering com-
binations, the local temperature may rise triggering more, and a simulated
fire front or, in some cases, detonation shock wave appears.

The inclusion of this elementary “chemistry” into the simulated gas made
no difference to the kinds of behaviour on which this study of the inference of
the past are based. When the simulated laws are deterministic, the simulation
remains exactly reversible, and a past state can be recovered exactly from
an exactly known present state. Almost all partly ordered states evolve and
devolve to less ordered states. When the present partly ordered state has
evolved from a more ordered past state, exact retracing recovers the more
ordered past state, but if retracing is attempted from an inexact view of the
present, differing from the true present state only by a tiny perturbation,
retracing almost always yields a past view less ordered than the present.
With non-deterministic laws, virtually all attempts to recover the past state
yield a less ordered view than the present.

8.12.4 The Past of a Computer Process

The reader may be forgiven for doubting the realism, and hence the relevance,
of these simulation studies. A two-dimensional ideal gas in a quantized New-
tonian space-time is a poor substitute for a real closed system. However, the
simulation is itself a real system with real conservation laws and real state

transitions even if it is only a pattern of data digits in a computer. It should
be a very simple sort of system to reason about, since its state at any time
step is very well defined and easily examined, its laws of behaviour are exactly
known if one likes to inspect the program, and it is completely isolated.

The skeptical reader might ponder the following problem: given knowledge
of the state of this real system after some thousand time steps, and given that
the present state of the data arrays shows some order, what can he or she
deduce about their state 500 steps ago? Given exact knowledge of the present
data, there is no problem if the computer is not using an inaccessible random
number source to simulate indeterminacy, but if it is, or if there are one or two
tiny errors in the report of the present data, the results discussed here show
that deduced past states (or probability distributions over past states) will
almost certainly be misleading at least as to the degree of order in the past.
If this real, but very simple, isolated and fully understood system presents
deduction of the past with real trouble, can we expect to do better in the
larger world?
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8.13 Addendum: Why Entropy Will Increase

(Additional Simulation Details)
1

If we are presented with a closed system which appears to be in equilibrium,
there is nothing which can be usefully predicted of its future, save that it will
probably remain in equilibrium. We can hope to make interesting predictions
about the future of a closed system only if it is now partially ordered, i.e.,
has entropy significantly below the maximum. I will now argue that we may
confidently predict that its entropy will increase. Several cases will be treated.

(a) Deterministic Laws, Exact View.
Assume the Laws of Physics are deterministic, and that we have exact
knowledge of the present state s(0) at time t = 0. Suppose s(0) is a
state of low entropy H0. The deterministic laws allow us to deduce the
state s(f) at some future time f > 0. The repeated application of the
time-step mapping s(t + 1) = M(s(t)) will no doubt have changed the
state and its entropy. Since the mapping is based on the microscopic
laws, which make no reference to entropy and are reversible, there is
nothing inherent in the mapping which can lead us to expect that the
entropy of a state will be related in any obvious way to the entropy of
its successor, although, since a single time step will usually produce only
a small change in the macroscopic view of the system, we may expect
the resulting change in entropy to be small. After the f steps leading
to time f , therefore, we can expect the initial entropy to have changed
by some amount, but otherwise to be almost a random selection from
the set of possible entropy values. Recall that in a closed system, the
number of states of entropy H is of order exp(H). There are therefore
far more high entropy states than low entropy ones, so the chances are
that s(f) will very probably have an entropy greater than the initial state
s(0). In a deterministic closed system of constant energy, the sequence
of states from t = 0 into the future is a well-defined trajectory through
the adiabatic state space at that energy. The trajectory may eventually
visit all states in the adiabatic space, or only some subset. Given that
the state space is discrete, an adiabatic space can only contain a finite,
albeit huge, number of states. The trajectory from state s(0) thus must
eventually return to state s(0), and since the mapping is one-to-one, must
form a simple cycle in which no state is visited more than once before
the return to s(0). Since it is cyclic and produced by time reversible laws,
the trajectory must show just as many steps which decrease entropy as
increase it. However, because the trajectory can be expected to visit far

1 The editors included this section for completeness. It contains material from
Section 8.4 together with material on simulations which appeared in previous
versions of the chapter. Chris Wallace removed these details to avoid distract-
ing readers from the main argument. However, the editors felt that his careful
simulations were interesting in their own right.
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more high entropy states than low entropy ones, if we start from some
low entropy state and advance for some arbitrary number of steps, we
must expect to arrive at a state of higher entropy. If this argument is
accepted, the Second Law will in general apply even given deterministic,
time reversible laws. No paradox is involved.

(b) Simulation of Deterministic Laws, Exact View.
The two-dimensional gas simulation has been used as a model system to
check the above argument. Although it simulates a very simple system,
and has no provision for important real-world processes such as gravity,
chemical bonding, electromagnetic interactions, etc., it is not obvious that
the argument is sensitive to such phenomena, so the simulation should
give some useful indication of the validity of the argument.
Some hundreds of experiments have been conducted in which a partially
ordered (sometimes very highly ordered) state was set up in the gas and
allowed to evolve. As it is infeasible directly to compute the state entropy
as defined above, the simulator computes a simple but useful surrogate.
For each state entered, a histogram of atom velocity components is col-
lected. For each atom, both the U and V velocity components are entered
in the histogram, as these are expected to be statistically independent
degrees of freedom.
The entropy of the velocity component distribution is then computed as

Hv =
∑

v

−n[v] log(n[v]/N)

where n[v] is the histogram count for component velocity v and N is the
total of all counts, which is of course twice the number of atoms.
Hv is a measure of one component of the state entropy, but does not
include any spatial-distribution entropy. However, it suffices as a measure
of disorder in the velocity distribution of the state. Note that the number
of states having a particular value of Hv is approximately proportional
to exp(Hv).
At each time step, the simulator records on a file the time t and the
per-freedom entropy Gv(t) = Hv/N . This allows the Gv history to be
displayed as a plot versus time. Note that Gv may display distinct oscil-
lations as time goes by, superimposed on a general increase, as Gv shows
only one component of the system entropy, and in some situations, e.g.,
an initial standing wave in the gas, there is a periodic exchange of en-
tropy between velocity and spatial components. Such oscillations tend to
decrease as the system approaches equilibrium.
Further, the simulator can display a picture of the spatial positions of the
atoms at chosen times, allowing a qualitative assessment of the behaviour.
Other properties of the gas can also be recorded, such as the gas pressure,
total momentum, and an estimate of temperature. The temperature T
is determined by choosing the value which gives the best fit between the
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observed velocity component histogram and the equilibrium Maxwell-
Boltzmann distribution Pr(v), which is proportional to exp(−v2/(2T ))
(our “atoms” have mass 1).
Many forms of partial order have been simulated, some in boxes con-
taining barriers. Situations simulated include the passage of gas through
a channel from a chamber of high initial pressure to one of low initial
pressure, the oscillation of a standing sound wave, the impact of a ball
of cold, dense gas on a body of cold, low density gas, the diffusion of fast
atoms over an “energy barrier”, the exposure of the gas to an external
“hot spot”, and many others. To summarize the results, in every case
the entropy of the system increased, finally (perhaps after some tens of
thousands of time steps) becoming close to the equilibrium value, but
fluctuating slightly from step to step. Qualitatively, the pictures of the
gas showed the gradual decay of the initially visible order.
Quantitative results were also encouraging. The final states showed veloc-
ity distributions conforming to Maxwell-Boltzmann statistics. The vari-
ation of pressure with density and mean atomic energy was as expected.
In the sound wave simulation, the measurement of the standing wave
frequency yielded an estimate of sound velocity. This allowed estimation
of “gamma”, the ratio of specific heat at constant pressure to the specific
heat at constant volume.2 The estimated value was 2.02, compared with
the theoretical value of 2 for a two-dimensional ideal gas.
In one batch of experiments, the collision law was altered to forbid col-
lisions at a point unless exactly two atoms occupied it. This restriction
removes the effect of atom indices from the collision phase, with the re-
sult that the atoms are no longer identifiable, and makes it impossible
for two atoms to have the same position and velocity. Thus, the atoms
become fermions rather than classical. The equilibrium velocity distri-
bution was then found to conform to Fermi-Dirac statistics rather than
Maxwell-Boltzmann.
Overall, no simulation of the future of a partially ordered initial state
showed any macroscopic behaviour at variance with thermodynamic pre-
dictions. In particular, the invariable increase in state entropy confirmed
that the Second Law could apply to a deterministic system governed
by time reversible laws. Turning to Boltzmann’s theorem that velocity
distributions tend towards high entropy, note that his assumption of no
correlation between the initial velocities of colliding particles seems not
to be essential. In many of the simulations, it can be shown that most
of the collisions occur between atoms which have collided before. If col-
lisions produce correlations in the resulting atom velocities, these corre-
lations must certainly have been present. However, the simulations agree
with the conclusions of the theorem: the velocity distributions did tend
towards higher entropy, and did approach the Maxwell-Boltzmann equi-

2 See Section 8.12.1.
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librium distribution despite whatever correlations in atom velocities may
have been induced in earlier collisions. (It is perhaps worth noting that,
in a collision between two atoms whose initial velocities have been inde-
pendently sampled from the Maxwell-Boltzmann distribution, the final
velocities are not statistically correlated.)

(c) Deterministic Laws, Inexact View.
If, rather than knowing the precise initial partially ordered state s(0),
we have only an imprecise view of the initial state, the argument for
expecting entropy to increase can only be strengthened. We may well
feel more justified in regarding the entropy at future time f as being in
some sense a random selection from a range of values, since we no longer
have any certainty about the future state s(f). Given this uncertainty, the
larger number of high entropy than low entropy states becomes perhaps
a sounder basis for expecting Hf > H0. Because each time step has but
a small effect on the macroscopic view, we also expect the macroscopic
behaviour of the system to be insensitive to the fine detail of the initial
state, and to be well predicted by a macroscopic, or at least inexact,
initial view.

(d) Simulation of Deterministic Laws, Inexact View.
The above expectations were tested by simulations of two sorts. In the
first sort, a “true” partially ordered initial state s(0) was defined and
its evolution followed to a future time f . Then several inexact copies of
s(0) were made, each resulting from a change of plus or minus one in a
randomly chosen position coordinate of a randomly chosen subset of the
atoms, the fraction of perturbed atoms being specified. The evolution of
each copy was then followed to time f and compared with the results from
the “true” s(0). The copies showed macroscopic behaviour and entropy
histories very close to those of the true state, but microscopic comparison
of the final states showed great differences in the positions and velocities
of the atoms.
In the second sort, the system was set up to have two chambers linked by
a narrow channel. The initial view specified only the densities and mean
atom energies in the two chambers. Several initial states were constructed
consistent with this view, with the atoms in each chamber having ran-
dom, high entropy spatial and velocity distributions meeting the different
specifications of the two chambers (see Figure 8.3). The evolutions of the
several initial states were then compared, and again showed no significant
differences at the macroscopic level.
In these two-chamber simulations, the state entropy was calculated by
forming separate velocity-component histograms for the two chambers
and adding the entropies calculated from each histogram. This approach
takes into account the partial order which is shown by different densities
and/or temperatures in the two chambers, and gives a lower value than
given by the overall velocity distribution if such partial order exists.
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2.8

3.2

Fig. 8.4. Two-chamber + pipe model (from Figure 8.3); velocity entropy increase
for 10,000 time steps from original “Then” state; non-deterministic laws.

(e) Nondeterministic Laws.
If we suppose the fundamental microscopic laws to be nondeterministic
(but still reversible) the state-to-state mapping M() is replaced by a
probabilistic law

Pr(s(t + 1) = r) = M(r|s(t))
Given s(0), we can at best compute a probability distribution over the
possible states at time f > t, and are the more justified in expecting s(f)
to have higher entropy than s(0).

(f) Simulation of Nondeterministic Laws.
The simulation was modified to construct two different collision tables
for effecting collisions. Both observed the constraints of time reversal, rel-
ative velocity component parity conservation, energy conservation, etc.,
described above. In collision phases, each pair-wise collision is effected by
one or other table. The choice is determined by a conventional pseudo-
random number generator of cycle length 232, and chooses each table
with equal probability. The generator is a mixed congruential generator
of 32-bit integers:

r[n + 1] = ((69069 ∗ r[n]) + 31415927) Modulo 232

The inverse relation is

r[n] = (−1511872763 ∗ r[n + 1] + 670402221) Modulo 232

which allows the simulation to be run backwards by retracing the se-
quence of choices. This scheme introduces uncertainty into the laws. Most
collisions can have two equiprobable results. As expected, all simulations
of the evolution of partially ordered states continued to show increas-
ing entropy and macroscopic behaviour conforming to thermodynamic
predictions. Figure 8.4 shows the long term increase in entropy in the
two-chamber model.
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Fig. 8.5. Two-chamber + pipe model (from Figure 8.3). Deterministic laws.
(a) State velocity entropy Gv evolution for + and − 250 time steps from origi-
nal “Then” state; Gv range [2.8, 3.0]. (b) Atom count difference (Right chamber −
Left) for + and − 250 time steps from original “Then” state; 30,000 total atoms.

8.13.1 Simulation of the Past

First, note that the correctness of the simulator has been well checked. In
at least 100 experiments starting from partially or highly ordered states, the
simulation has been run (usually but not always) until a near-equilibrium
view was reached with a near-maximum Gv. The simulation has then been
put into reverse and run backwards to time zero. In every case, the initial
condition was exactly restored. In many cases, the simulation was then driven
further back in time, to equally remote negative times in the past, then for-
wards again to time zero. Again, the initial state was always exactly restored.
(When running backwards with nondeterministic laws, the pseudo-random
number generator was run in reverse to reproduce the “random” choices of
collision table at each collision.)

For all the initial states simulated, without exception, running the sim-
ulation backwards to a negative time b resulted in a state s(b) with higher
entropy than the initial state s(0), provided only that b was earlier than about
−10. Most runs began to show an increase in entropy after the first two or
three backward steps from the “present” t = 0. Figures 8.5(a,b) illustrate the
effect in the two-chamber-and-channel model.

To gain more insight into this phenomenon, another series of experiments
was done with a different protocol. First, a partially ordered state was set up,
say, T (for “Then”). This was run forwards in time for long enough to produce
an unmistakable increase in entropy, giving a new state, say, N (for “Now”).
The time was chosen so that N was still clearly ordered, with an entropy well
below the equilibrium maximum Hm, but definitely greater than H(T ). Let
the number of time steps from T to N be k. Then the simulator was reset to
have N as initial state at time t = 0. Of course, running it backwards to time
t = −k recovered T , provided that, when “non-determinism” was enabled,
the pseudo-random generator was put into reverse with an initial seed value
equal to the final value reached in the generation of N from T .
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We now have the situation that the “initial”, t = 0, state of the system
is s(0) = N , and we know its true ancestral state at the “past” time t = −k
to be s(−k) = T .

Consider the task of trying to recover the ancestral state at t = −k given
only knowledge of the “present” state N , the invariants, and the assurance
that the system has not suffered external interference in the period t = −k
to t = 0.

The simulator was used to illustrate the effects of trying to do this by
deducing the past state from the present state and the known microscopic
laws. The simulation was run backwards from the final state N for k steps
and the final state T̂ at time t = −k compared with T . The results can be
briefly summarized. Running with deterministic laws and beginning with the
exact state N , T̂ = T , i.e., the past is exactly recovered. This case exposes
the loophole in Boltzmann’s theorem. If N is the deterministic evolution of a
lower entropy T , of course the collisions which produced the increased entropy
will, when reversed, reduce the entropy of N back to that of T . The collisions
in the evolution of T to N leave the final velocities in N correlated, but the
correlation is not so much between the velocities of the last pairs of atoms to
collide as in the entire pattern of atom positions and velocities.

More realistically, we cannot hope to have exact knowledge of N , so N was
replaced by a state Np obtained from N by randomly perturbing the positions
of some of the atoms by plus or minus one grid point. The population of Np

states so generated can be thought of as a very precise but not quite exact
view Nv of N . Then, running with deterministic laws and beginning with
several perturbed versions of N , T̂ was never equal to T and rarely looked
close. In particular, T̂ always had greater entropy than N , and so of course
greater than T , even when the number of perturbed atoms was very small.
It seems that the loophole in Boltzmann’s theorem is very small, and the
pattern in N required to slip back through the loophole to a lower entropy
past state is very fragile.

Running with non-deterministic laws was done with an unreversed pseudo-
random generator with various choices of seed, since we could have no direct
knowledge of the random events which occurred leading to the present state
N . In these runs, even starting with the exact state N , T was never recov-
ered, and all instances of T̂ had greater entropy than N . The non-determinism
appears to erase any loophole finding correlation. Figures 8.6 and 8.7 show re-
sults on the two-chamber + pipe model. Figures 8.1(a-d) and Figures 8.2(a-d)
show results from two simulations of collisions between two bodies of gas.

8.13.2 A Non-Adiabatic Experiment

All the argument and simulation to this point have assumed adiabatic (con-
stant energy) systems. While this assumption follows from the assumption of
a closed system, many of the conclusions seem to apply to systems which are
subject to some external influences. A simulation was done with a 10,000 atom
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Fig. 8.6. Two-chamber + pipe model (from Figure 8.3). Deterministic laws.
(a) Atom count difference devolved from “NowD” to “Then”; traces show devo-
lutions of “NowD” with 0, 300, 100, 30, 10, 3 and 1 atoms perturbed by one grid
point; only the unperturbed “NowD” devolves to “Then”. (b) State velocity entropy
devolved from “NowD” to “Then”; traces show devolutions of “NowD” with 0, 300,
100, 30, 10, 3 and 1 atoms perturbed by one grid point; only the unperturbed
“NowD” devolves to “Then”.
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Fig. 8.7. Two-chamber + pipe model (from Figure 8.3). Non-deterministic laws.
(a) Atom count difference devolved from “NowU” to “Then”; traces show devo-
lutions of “NowU” with different random generator seeds; only the run with the
seed equalling the final value reached in the evolution of “NowU” devolves to
“Then”. (b) State velocity entropy devolved from “NowU” to “Then”; traces show
devolutions of “NowU” with seven different random generator seeds; only the run
with the seed equalling the final value reached in the evolution of “NowU” devolves
to “Then”.

system in a 200-by-50 box, where the initial “Then” state was in equilibrium,
with entropy close to the maximum possible, a uniform random distribution
of atom positions, and a well-defined temperature of 2.0 (taking Boltzmann’s
constant as one.) Two special “heater” obstacles were placed in the box. In a
collision phase, a “heater” adds +1 to the Y component of any atom at the
heater’s position if the time is even, or adds −1 if the time is odd. This action
is deterministic and exactly retraceable. The effect of a heater is weakly to
couple the gas to a heat source of infinite temperature, since the only velocity
component distribution unchanged by the heater is the Uniform distribution.
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Fig. 8.8. Heater experiment temperatures; deterministic, perturbed deterministic
and non-deterministic retraces; temperature range [2.0, 2.25].

The simulation was run forward for 1000 steps to yield the “Now” state.
As expected, the gas slowly heated up, so slowly that at all times the velocity
distribution remained close to the equilibrium Maxwell-Boltzmann distribu-
tion, and Gv close to the maximum possible at the current total energy. Thus,
at all times the gas had a well-defined temperature, which gradually increased
from 2.0 in “Then” to 2.113 in “Now”.

Reverse simulation was then done from “Now” back to “Then”. Starting
with the exact “Now” state, deterministic devolution exactly recovered the
“Then” state. Starting with the “Now” state with one atom shifted by one
grid point, deterministic devolution followed the true temperature trajectory
for about 50 steps, but then showed an increase in temperature into the past,
reaching 2.216 at the “Then” time. Non-deterministic devolution diverged
from the true path almost immediately, reaching a temperature of 2.229 at
“Then” (Figure 8.8). In both the latter cases, the entropy at “Then” was
higher than at “Now”, and of course higher than the true “Then” value. Al-
though not shown in Figure 8.8, deterministic devolution of the true “Then”
state to times earlier than “Then” also showed an increase in temperature
into the past.

Clearly, this non-adiabatic situation presents the same problems for the
deduction of past states as has been found in adiabatic systems, although
now the increase in entropy occurring in forward evolution and backward
devolution arises from an input of energy rather than the dissipation of order.



9. MML as a Descriptive Theory

Thus far, Minimum Message Length has been mainly presented as a norma-
tive principle for how statistical and inductive inferences should be assessed,
with excursions into methods which, in limited contexts, can lead to infer-
ences assessed as good according to this normative principle. If the normative
principle is sound, one would hope to find that the history of scientific enquiry
showed that inferences which MML assesses as good have been generally ac-
cepted, and conversely, that theories generally accepted in the light of the
then-available evidence are not assessed as unacceptable (Section 1.5.2) by
MML.

It would be unreasonable to demand of a descriptive hypothesis based on
MML that it assert an exact correspondence at all times between generally
accepted theories and theories which minimized the explanation length of the
available evidence. First, a good theory can take many years to reach general
acceptance simply because of the rather conservative nature of institutional-
ized Science. As Kuhn observed, sometimes it has to wait for all the old guard
to die. Second, in most fields we cannot tell what theory exactly minimizes
the explanation length of a body of data, because there is no algorithm for
finding it if the set of possible theories is the set of computable functions.
Third, for most past times, it would be hard to determine just what the rel-
evant “body of available evidence” was. An MML descriptive theory must
make a weaker assertion than that scientific enquiry has always adhered to
the MML normative principle.

Instead, I propose the descriptive theory that scientific enquiry has shown
a tendency for the generally accepted body of theory to evolve towards the-
ories which provide concise explanations of widely known data, preferring
those which give the most concise explanations, and rarely preserving theo-
ries which are unacceptable by MML assessment, i.e., which fail to provide
explanations more concise than the raw statement of the data. Further, the
descriptive theory asserts that the language of Science has shown a tendency
to evolve in a way permitting the more concise statement of the theories to be
widely accepted. Further still, it asserts that these tendencies have not been
restricted to what would today be called Science, but predate it by centuries
and have existed at least since the origins of human speech.
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How should this theory be assessed? Since a case for MML as a normative
principle for the assessment of theories has been the main focus of this work,
the descriptive theory will be assessed to see if it is acceptable by MML’s
criterion. That is, does the descriptive theory provide a concise explanation
for the historic data it professes to cover? (MML as a theory about the
value of theories can encompass its own assessment without circularity. It is
entirely possible that the descriptive theory about the history of accepted
inferences might fail the normative criterion for acceptance.) In this chapter
there will not be space for a comprehensive “explanation” of the history of
scientific theory acceptance, nor have I the knowledge to frame one. At most,
the chapter offers a faint outline which may allow the reader to assess the
descriptive theory in the light of the reader’s own knowledge of the history.
In following this outline of an “explanation”, remember that the normative
principle does not require of an acceptable theory that it be universal, “true”
in any absolute sense, exact or free from failure in specific cases. It certainly
does not require that the theory give the best possible (shortest) explanation
of the data, only that it give an explanation more concise than the bare facts.
Of course, if the theory turns out to explain only some limited field of data,
its assessment suffers because either the assertion must state the limitation or
each case in the “detail” must carry a flag to indicate that it is an exception
and is encoded in its raw-data form. Either way, the “explanation” message
length is increased.

The “descriptive MML” theory of theory acceptance is obviously not the
best possible theory about the development of Science. It has nothing to say
about the social, economic, technological and personal factors which clearly
have imposed their own patterns on this development. But in this omission it
is no worse than Newton’s theories about the orbital motions of the planets
and moons, which say nothing about why the planets have the masses, orbital
diameters and eccentricities and attendant moons which in fact they have. As
a theory about the structure of the Solar system, it is limited to explaining
just a few aspects of the data. Similarly, the descriptive theory proposed here
is limited to just one aspect of history: which theories get accepted (and
perhaps, which theories even get proposed). How, when and why theories are
invented are outside its scope.

9.1 The Grand Theories

There are many examples of scientific theories which indubitably have great
explanatory power and handsomely meet the MML criterion for acceptance.
The theory of the roughly spherical shape of the Earth and its approximate
size, the heliocentric theory, Newton’s laws of motion and gravity, the element
theory of chemistry, the periodic table and the atomic theory of the elements,
the nucleus plus electron orbits theory of atomic structure, the wave theory
of light, etc., all have quite concise assertions and enable the concise encoding
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of vast bodies of observations. Their cases are today so strong they seem to
need no argument. It is less clear that they met the MML criterion when
first proposed, and in some cases general acceptance was withheld long after
the MML criterion was met. For instance, one reads that Columbus intended
to sail to the East Indies, although knowledge of the size of the world which
had been available for centuries showed the distance to be beyond the capac-
ity and provisioning of his ships. Similarly Galileo and Wegener found little
acceptance for their theories despite their immediate explanatory power.

In more recent times, acceptance has come more rapidly. Quantum me-
chanics and the Special Theory of Relativity gained general acceptance (at
least among those sufficiently interested to consider the matter) within a few
years rather than scores. It might even be said that acceptance of the present
(2004) “Standard Model” of fundamental particles was granted before its
explanatory power was really established. But there are notable exceptions.
Darwin’s theory of evolution is still rejected by many people, not all of them
uninformed, yet no alternative explanation of the origin of species has demon-
strated MML acceptability.

In summary, the Grand Theories of Science show plenty of examples meet-
ing the MML criterion and there are few examples of theories which MML
would assess as superior but which remain outside the canon. There do seem
to be a few theories fairly widely accepted for which normative MML support
is questionable. It is not obvious that Freudian psychology or the theory of
free markets are able to offer explanations acceptable in MML terms. Over-
all, the acceptance histories of the Grand Theories lend some support for
the descriptive MML theory, but only in a somewhat weakened form which
allows for a variable and sometimes long period to elapse between the norma-
tive MML assessment and a corresponding general acceptance or rejection. In
support of the descriptive theory, it is worth noting that few of the generally
accepted grand theories would today be regarded as exactly true or complete,
or even fully consistent with one another. This situation is not surprising if
acceptance is based on ability concisely to explain data, but would not be
expected if Science insisted its theories be consistent with every observation.

9.2 Primitive Inductive Inferences

The descriptive MML theory asserts that the history of pre-scientific induc-
tive inferences shows rough compliance with normative MML principles, their
acceptance allowing the concise encoding of observational data. In this con-
text, we take “encoding” to mean both encoding in the neural machinery of
our own minds and encoding in a natural language intelligible to our fellows.

Some inductive inferences we generally accept are so primitive that they
may escape conscious attention. Our senses provide us with very indirect
information about the external world, and to make much sense of them we
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must form and accept many hypotheses about the world which are not log-
ically implied by our sensory input. We accept hypotheses that there are
persistent objects, that some of these move and others do not, that their
locations and movements inhabit a three-dimensional space and that what
we see is to be explained by the rules of projective geometry (which we must
learn), that one direction in the space is distinguished and dangerous, that
some of the moving objects are flexible and autonomous, and some of these
are in many ways like ourself, etc., etc. Each of these hypotheses enables
us to recode our sense data into shorter forms within which many further
patterns may be found leading to further hypotheses such as the existence
of a distinguished other person and her likely responses to our cries, and,
rather later, the useful classifications of other persons by size and sex, and
the correlations between these classes and their behaviour. No doubt many
of these hypotheses are largely wired-in at birth, having been “learnt” by the
evolution of our ancestors, but how hypotheses are formed is not our present
concern. We accept them, they enable shortened explanations of our sense
data, and while ultimately we may form even better explanations, these will
usually act to “explain” the already-compressed “details” resulting from the
primitive explanations rather than directly explaining our raw sense data.

Whether these primitive inductions come close to minimizing the length
of the explanations they provide us is not easily answered. I can only ob-
serve that, at the level at which they operate, I find it hard to postulate an
alternative superior in MML terms.

9.3 The Hypotheses of Natural Languages

The most general variety of MML explanations which has been treated in any
detail are those intended to be decoded by some Universal Turing Machine.
Natural languages such as English and Hindi have at least the expressive
power of the input language accepted by a UTM. Whether they have more has
not been decided. They are at least as powerful because it is possible in such
a language to define the structure and operation of a UTM and hence to give
a verbal simulation of a UTM’s computation. Natural languages also seem to
share with the inputs to UTMs the property that there is no algorithm for
determining in general whether an input (an utterance or writing intended
to be intelligible to its receiver) is meaningful. They also share the property
that they can be used to modify and extend themselves. Just as the input to
a UTM can effectively modify the UTM to behave as a different UTM with
a different input language, so statements in a natural language can be used
to extend the language by defining new words or more radically by defining
sub-languages such as mathematics. Often, the modification is intended to
be temporary, applying only within a finite context, such as my subversion
of the word “explanation” to serve a purpose limited to this work.
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Natural languages differ from UTM languages in that the receiver who is
to decode a natural language statement is not fully known to the transmitter,
so the language must have sufficient redundancy to allow for the uncertain
“priors” of the receiver. This difference also opens the possibility of a form of
communication failure not evident in UTM inputs, namely the possibility of
ambiguity. Not only may a message fail to make sense (which is possible for
a UTM) but in a natural language it may be decodable in two or more ways
with different meanings. These properties make it impossible to argue with
any precision about whether the hypotheses embedded in a natural language
are those which would minimize the expected length of statements in that
language. However, some vague assessments may be possible.

9.3.1 The Efficiencies of Natural Languages

The basic hypotheses of a language are embodied in its words. A common
noun is useful insofar as it names a class of phenomena whose members share
so many features that in many statements it is unnecessary to deal with each
member individually. A common verb is useful insofar as it names a class of
actions whose members similarly share so many features that to announce a
particular act by its class name is to convey all that need be conveyed about
the act. In the statement “Jessie milked a cow”, “Jessie” is a unique label
for a unique object. (Actually, even this proper noun is a label for a class
of phenomena: all those appearances within my senses of patterns which I
“explain” by the inductive inference that there is a persistent object in the
class of persons, and that one feature of these appearances is the common
occurrence of the sound written as Jessie.) The common noun “cow” names a
wider class, but for the purposes of the communication the particular instance
involved is irrelevant, and perhaps unknown. Likewise, the verb “milked”
serves as a sufficient specification of the act performed.

These verbal “hypotheses” may be held to be acceptable in MML terms
just in case they allow a concise formulation of a message which might oth-
erwise have to read even worse than “A visual image somewhat similar to
those frequently accompanying the sound ‘Jessie’ approached another image
which appeared to have four legs, two horns, an underslung bag with four
smaller bags below . . . and after some extreme parts of the first image became
adjacent to the smaller bags a third visual element appeared intermittently
of a generally white colour and unstable shape . . . .” The MML acceptability
will depend on the frequency of the message which these verbal hypotheses
help to encode.

By the kind of assessment outlined above, most of the shorter words of
English can be considered to be good inductive inferences, especially if as-
sessed in the context of the kind of message which might have been most
common some hundreds of years ago. Today, the assessment might be differ-
ent. We might well find that “fraudulent transaction” is a class label more in
need in our newspapers than “milked”. But no matter: the language adjusts
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itself and “scam” is invented. The fairly general agreement among many nat-
ural languages on which things, classes, concepts and acts deserve a word is
some evidence that the different languages have all developed to convey sim-
ilar messages. While this convergence could be explained by other criteria,
brevity of expression is a plausible ingredient, along of course with common
development from a small number of ancestral languages.

The development of specialized sub-languages and jargons for all sorts of
specialized messages seems also driven in part by an aim for brevity. When
a novel hypothesis or concept becomes accepted, a new or purloined word is
usually adopted to name it. The words “mass”, “force” and “energy” were
adopted from common usage to have narrow but immensely useful meanings
in Physics, two of them as names for quantities which were themselves hy-
potheses, being invisible to our senses. “Valence” and “bond” in Chemistry,
“infection” in Medicine, “harmonic” in Music, “interest” in Commerce and so
on, all suggest a language extension serving, if not consciously motivated by,
brevity in stating the kinds of message frequent in the specialized discourse.

9.4 Some Inefficiencies of Natural Languages

Apart from the necessary redundancies of natural languages which cope with
uncertain knowledge of the receiver(s), there seem to be inefficiencies which
defy easy explanation by a descriptive MML theory. For instance, English
in particular has many synonyms which have no distinctions in meaning.
As far as most users of the language are concerned, substituting “large” for
“big” would not alter the meaning of any statement, and many such pairs
exist. There may be subtle differences in usage which might cause a sentence
so substituted to sound a little odd, but this does not prove a difference in
meaning. Do we really need to offer the readers of radio weather reports a
choice among “now”, “currently”, “just now”, “at the moment”, “presently”,
“at present” and “right now” when announcing the temperature? (At this
particular point in time, I cannot recall their ever choosing “now”.)

Natural languages also contain words which do not seem to label any
clear cluster of phenomena. Some, such as “god” and “unicorn”, seem to
correspond to hypotheses about the world which have little or no explanatory
power except when the word is used as a label for the hypothesis itself rather
than the hypothesized cluster.

Finally, natural languages are not used merely to encode real observations.
The human appetites for fiction, myth, exaggeration and humour mean that
a lot of the uses of language have no intended connection to reality. Also,
personal, social and political motives sometimes drive the use of language to
persuade, obfuscate and deceive. MML principles may explain some of the
properties of natural languages, but far from all.
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9.5 Scientific Languages

Scientific discourse uses a natural language with extensions, often but not
always including the sub-language of Mathematics. The extensions used in a
particular discipline do not appear to form self-contained universal languages
in the Turing Machine sense of universality. That is, they do not seem in
themselves to possess the means to talk about themselves, to modify and
extend their own definitions and grammars. We seem rather to fall back on
natural language, with its rich set of tenses, moods, argumentative devices
and self-references, to define and modify these sub-languages and to glue
together statements in the sub-languages.

The sub-languages of Science do appear to conform rather well to norma-
tive MML principles. Special terms used in them are adopted and dropped
as the hypotheses they are used to express are accepted and rejected or
superceded. Phogiston had a run during the popularity of a poor, but not
ridiculous, theory about combustion, but is no longer in use. The concept of
force in Physics was important for the expression of pre-relativistic theories
of dynamics, but now has been relegated to metaphorical status in funda-
mental theory while retaining its importance in terrestrial-scale accounts of
situations too complex for a fundamental treatment. The scientific usage of
spatial and temporal terms has been modified to make them more useful in
discourse accepting the theories of Relativity. The luminiferous aether, intro-
duced as a necessary presumption for the wave theory of light and given a
characterization in Maxwell’s equations, has gone, not because it proved in
conflict with observation but because it proved to be unobservable and so re-
dundant. Special Relativity simplified the story and left it with no lines in the
script. The meanings and grammars now governing the usage of “gene” are
much modified from their originals. In general, it is fair to say that scientific
languages are well adapted to allow the concise expression of explanations
which are based on the currently accepted theories of the discipline. (I would
not assert that this adaption is always apparent in the forms and lengths of
the actual words employed. While Physics has stuck to fairly short words like
“quark”, “field”, “charm”, “charge”, “mass”, etc., despite fiddling with their
meanings, some disciplines, such as Medicine, almost go out of their way to
be polysyllabic.)

9.6 The Practice of MML Induction

The Minimum Message Length principle has been presented as a criterion for
the acceptance, rejection and comparison of hypotheses or estimates based
on bodies of data and prior expectation. It does not directly concern how
“good” hypotheses or estimates might be found. In sufficiently simple cases,
relatively standard optimization algorithms have been demonstrated to find
inferences which at least approximate the ideal minimum message length,
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but these cases are much simpler and circumscribed than the problems which
have led to notable scientific theories. For the general problems of scientific
induction, we have, following Solomonoff, proposed a model in which the
“explanation” of a body of data is framed as an input to a Universal Turing
Machine which causes the UTM to output the original data. In Section 2.3.6
the form of the input was further required to satisfy conditions intended to
ensure that the input begins by asserting a hypothesis. The discussion of
Section 5.1.2 suggests that these conditions, as stated, are overly restrictive
but the intent remains valid, namely to require the input to contain general
assertions then used to compress the encoding of the specific data. The choice
of UTM is supposed to be based on prior expectations. That is, the UTM
(in the language applicable to present computers) is pre-programmed with
routines implementing the kinds of logical and mathematical relations we
expect to find in a good theory for the data domain, routines embodying
previously accepted theory, routines for decoding the efficient representation
of quantities for which we have prior distributions and so on. Ideally, we
should try to choose a UTM which has at its fingertips the same kinds of
knowledge and experience which a competent scientist might bring to the
task. If we accept the thesis that human reasoning does not go beyond the
power of a Universal Turing Machine, we may ask whether a UTM could
in principle be programmed to find good theories within the unrestricted
universe of computable functions.

The in-principle answer is yes, but. Suppose we have a suitably educated
UTM M and a body of data represented by a binary string D. We want M
to find a string I which, if M was presented with I as input, would cause M
to output D. For the present we will ignore the conditions of Sections 2.2.2
and 2.3.6. A first attempt at a program to find I might look like this:

1 Read in D and store it in memory.
2 Initialize a routine E which, whenever called, will return the next binary

string in some enumeration of strings in order of non-decreasing length.
3 Initialize a routine S(J) which is a self-simulation of M . When called

with string parameter J , it returns a string identical to the string which
M would produce given input J .

4 Set X by calling E.
5 Set Y = S(X)
6 If Y does not equal D, go to Step 4.
7 Output X as the required input I.

This program is just an exhaustive search for the shortest I producing D.
It will fail, because inevitably some trial input X will cause the self-simulation
in Step 5 to run forever.

A more feasible program uses a device proposed by Levin [25]. See also [26]
Section 7.5. Instead of running a single self-simulation, this scheme maintains
a pool of partially completed simulated executions, each with its own input
and output strings, and each with a record of how many simulated “clock
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cycles” have been performed and how many binary digits the simulation has
read from its input. For some simulation, let Y be its binary output so far,
L be the number of input digits it has consumed, and T be the number
of simulated clock cycles completed. Define for that simulation the quantity
Q = L + C log(T + 1) where C is some positive constant the same for all
simulations. Also, define the value Z which is the length of some input which
will cause M to produce D by some means, for instance by beginning with a
“copy” program which simply copies the rest of the input to the output.

Initially, the pool will contain a single simulation with empty input and
output strings and Q = L = T = 0. A global “limit” variable V is initialized
to some small value. The various simulations are advanced by M in a series
of rounds. In each round, each simulation in the pool is advanced by a burst
of clock cycles until one of the following happens

– It “outputs” a digit to Y which causes Y not to be a prefix of D, in which
case it is deleted from the pool.

– Its input length L exceeds Z. If so, the simulation is deleted from the pool.
– It attempts to read a new digit from its input. In this case, the simulation

is replaced in the pool by two copies. In one copy the “input” is extended
by a zero, in the other it is extended by a one.

– The simulation’s value of Q reaches the global limit V . In this case, M
records the state of the simulation and moves on to the next simulation in
the pool.

At the end of each round, if no simulation has produced an “output” equal
to D, the limit V is incremented and a new round begun. If some simulation
has given D as output, its “input” is accepted as the desired input I and the
program halts.

Note that no simulation whose output so far agrees with D and whose
input length so far does not exceed Z is ever rejected from the pool. Also,
every possible binary input meeting these conditions will be tried. As there
exists some input of length Z which produces D, the program must eventually
halt.

The input found by this “program” will not in general be the shortest
explanation of the data. Rather, it will be one of the explanations which
minimize the time-penalized quantity Q. The choice of the logarithmic time
penalty imposes a fairly mild bias in favour of explanations which can be
rapidly decoded, and has the useful property that the final result is indepen-
dent of the computational efficiency of M , e.g., of the number of clock cycles
it needs to perform a 20-digit division. The input found may not even be
acceptable. Its length may exceed the length of D. Failure by the program
to find an acceptable explanation does not imply that none exists. It merely
shows that if one does exist, it must need a lot of computation to produce
D. If one exists, its simulation would still be in the pool when the program
halted with an unacceptable result, and a re-start of the program from this
point with a reduced value of C and a suitably adjusted V might find it. Of
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course, it is never possible to know whether an acceptable input is waiting
to be found or whether none exists.

As here presented, the program for M to find an explanation of D would
be intolerably slow. It is almost a blind search. We have suggested that M be
pre-programmed with “prior information” including routines corresponding
to current theories in the data domain. If so, there is some hope that a new
and better theory might be representable by a quite short input string which
had the effect of modifying an existing theory, but as far as I am aware there is
as yet no computer language which can efficiently represent any computable
theory and which has the property that textually minor modifications to a
program generally make minor changes to its behaviour and are unlikely to
render the program meaningless. There has been progress in this direction in
some declarative languages such as spreadsheets and logic programming but
the devices which humans use such as analogy, looking for common formal
structure, etc., are insufficiently understood as yet.

The potential failure arising from the undecidability of the “halting prob-
lem” may not really be a serious problem. Recall that the “assertion” part of
an explanation is not quite a statement of the asserted theory as we might find
it in a textbook. Rather, it is an algorithm for decoding data in a compressed
form where the compression makes use of the theory. The scientific theories
of which I have some knowledge seem to lend themselves to relatively simple
“decode” algorithms which do not involve the kinds of inherently recursive
computations, self-references or infinite regressions which are liable to result
in unprovably unending simulations. Where a physical theory potentially in-
volves an infinite set of interactions apparently leading to a silly result, as in
some quantum accounts of empty space, scientists seem willing, if not happy,
to “renormalize” the theory by discarding the silly bit provided the theory
gives good explanations when not pushed to its limit. In short, the decode
algorithms for current theories seem not to require the full computational
power of a Universal Turing Machine. If so, there may be some hope of re-
stricting the search for good theories to those which have decidable decoders.
However, if the MML principle is close to a criterion for what constitutes a
good scientific induction, good induction is never going to be easy.

The induction “program” has obvious scope for parallel computation.
Rather than expecting the UTM M to do all the work, it could farm out
the simulations in its pool to many similar machines all working at once.
An interesting possibility is that the success of a parallel search for good
explanations might be assisted if the different UTMs communicated their
current best bets to one another. Communication certainly seems to assist
human scientists.

9.6.1 Human Induction

The program M and its execution by a UTM is not claimed to be an accurate
model of how human societies, in particular the scientific culture, actually be-
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have in coming to form and accept theories. However, some features of the
program do seem to have a relation to human induction. In program M , use is
made of the ability of a UTM to simulate the behaviour of Turing Machines,
including itself. Apart from the use of self-simulation in interleaving the ex-
amination of many potential explanations of the data, self-simulation protects
against a fatal danger. Suppose a UTM, having by some search process de-
cided that a certain string should be tried as a potential explanation, then
just started executing that string directly instead of setting up a simulated
execution. This process would suffer from two risks. The first is, of course,
that the string would lead to an unending computation. The second is more
subtle. It is possible that the execution of the string would indeed reproduce
the data and be acceptably short, but leave the UTM in a state which was
equivalent to a non-universal TM. No further exploration of alternative ex-
planations would then be possible. Self-simulation, by which the UTM can
in effect ask itself whether an explanation is good without committing itself
to infinite indecision or irreversible acceptance, avoids these risks.

The human scientist is faced with at least the second risk, coupled with
a more difficult environment. He or she, in assessing a potential explana-
tion, may find it so convincing that he becomes unable ever fairly to assess
a competitor. Further, in assessing an explanation, he must ask himself not
only whether he can decode it to recover the data but also whether others
will be able to do so. To assess an explanation without the risk of commit-
ment, he must be able to “simulate” not only his own response to it but
also to simulate the responses of an audience of peers with a range of prior
background knowledge and expectations. It is therefore not surprising that a
scientist’s first exposition of a new theory for some data can often be longer
than previous explanations of the same data. To accommodate the uncertain
backgrounds of his audience, he must be prepared to spell out his theory in
a redundant form, maybe even several times in different language or mathe-
matical form, and to spell out the theory’s implications about the data step
by step rather than relying on the receiver to do all the deductive work. The
result of this necessary prolixity is that the fundamental brevity of the ex-
planation may be obscured, and become apparent to a receiver only after a
good deal of thought.

The ability to simulate the “decoding” of an explanation by both oneself
and (for a human if not for a UTM) a largely unknown audience appears
an almost essential part of making an inductive inference in a communicable
form. To be fully successful, such simulation may require the computational
power of a Universal Turing Machine or something very like it. One might
speculate that humans have an ability for theory formation far outstripping
other animals because our mental abilities have crossed (or almost crossed)
the threshold of universality. Obviously, the mental ability of a single person
is less than universal: no-one has an infinitely capacious memory and no-one is
immortal. However, like a UTM whose work tape has been truncated, we may
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have an information processing structure which would be universal were it not
for limited time and memory. In any case, our ability to pass on information
to others and from generation to generation affords our community a kind of
universality.

9.6.2 Evolutionary Induction

We have previously suggested that natural selection has led to a kind of
inductive inference by evolving organisms. Strictly speaking, what may have
evolved are not necessarily inherited “theories” about the world. Natural
selection mostly does not seem to favour an understanding of the natural
laws and the organism’s environment. Rather, it favours organisms whose
actions, given the natural laws and their environment, promote the survival
and reproduction of the organism. That is, the information processing ability
which is favoured is one which selects an action as a function of environmental
input. If I denotes the set of possible input histories and A the set of available
actions, what is favoured is a good function g(·) : I → A. Logically, there
is no need for this function to involve explicit use of a “theory” or even of a
predictor function, except in the weak sense that we might see the function
as embodying the theory “the world is such that given x ∈ I, my expected
reproductive success is maximized by action y = g(x)”. However, it is likely
that the cost to the organism of implementing such a function is related
to its complexity, in fact both to its algorithmic or structural complexity
and to its computational complexity — the resources needed to compute
it. Optimization of the function by mutation and selection might well be
expected to behave rather like a Levin search, which similarly optimizes a
mix of algorithmic and resource complexities.

If the world is indeed such that the success of an organism is probabilis-
tically dependent on a computable function f(x), x ∈ I of its environmental
input, the convergence theorems of Solomonoff prediction, MML and Levin
search suggest that, as the resources which the organism commits are raised,
the function will approach one which contains an approximation to g(·), and
that this approximation will involve a computable model of relevant aspects
of the world. If the organism can afford few resources, we would expect the
action function g(·) to resemble more a simple decision tree rather than any-
thing recognizable as a world model.

Since evolutionary induction is directed by reproductive success rather
than by conciseness of explanation, the world model embodied in a well-
resourced action function is not necessarily a good or even an acceptable
explanatory theory for data of no great relevance for the reproductive suc-
cess of the organism. In the minds of many people, an encounter with a snake
triggers a violent aversive response leading to an aggressive or flight action,
whereas a world view encompassing known statistics of threats to life suggests
the snake usually presents no great danger. If we suppose that a human tribe
or other reproductively semi-closed group has an overall reproductive success
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depending in part on cooperative behaviour within the group, an innate re-
spect for authority, evolving from the respect for parental authority valuable
for a species with a long immaturity, may enhance the success of the tribe.
A world model with a dominant god who talks to the elders and punishes
transgressions against their authority will help to direct individuals’ action
functions towards cooperation and promote the continuance of authority to
the elders’ successors. An afterlife theory lends some more weight towards
social conformity by coupling cooperative actions directly to the individuals’
survival and pain-avoidance instincts, and encourages youths to risk their
own lives in battle with other tribes. The failure of the god theory to explain
anything much is of little consequence, as it need not interfere with theories
useful in growing food, hunting, raising children and other practical matters.
A theory with no explanatory power, unacceptable as an inductive inference
from real data, may still emerge by evolutionary induction as a component
of a successful action function.

Evolutionary induction by mutation and selection has some theoretical
advantages over Levin search or human inductive reasoning. Problems of un-
decidability, coding efficiency, uncertain audience, etc., become irrelevant.
However, besides being slow and wasteful, it seems to suffer a serious dis-
advantage. A good but sub-optimal action function may be impossible to
improve incrementally because all better functions lie beyond a lethal moun-
tain range. To get to a better function by small steps may necessarily involve
use, for at least one generation, of intermediate forms which are not conducive
to survival.

9.6.3 Experiment

Inductive inference has so far been discussed in terms of inference from a
defined, finite body of data. As an account of the practice of Science, this
treatment may seem a gross over-simplification. Much progress in Science
has resulted from experiments designed to create situations not occurring
naturally and/or observations concentrated on carefully selected natural phe-
nomena. We need not distinguish between these two practices. Both have the
intent of providing new data which would not be provided by passive, undi-
rected observation. The usual reasons for directed data acquisition are to get
data in situations where current competing theories make different predic-
tions, where current theory makes no prediction, or where the situation is so
simplified that comparison with theory will be facilitated.

It may be thought that in neglecting directed intervention in the collection
of data, we have badly compromised the discussion of induction. On the other
hand, MML is intended as a criterion for assessing and comparing inductions.
At any time when such a judgement is to be made, there will be some finite
body of available relevant data, and it is surely on the basis of this data
that the judgement should be made. The result of an MML comparison of
two theories for the data may be inconclusive if their respective explanations
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have about the same length, in which case further data will be needed and its
acquisition may well be directed to situations likely to resolve the comparison,
but once the new data is found and added to the previous body, is the reason
for its collection relevant to the assessment of theory? The answer is probably
that it is not, but it will depend on exactly what is to be “explained” and on
the causal independence of the old and new data.

Imagine that in a school of 1000 students, a test is given comprising ten
rather difficult yes/no questions. The pupils’ scores range from zero to ten,
and their distribution resembles the distribution expected from a Binomial
distribution with error probability 0.5. Of all students, only Jane Doe scores
ten. This is the “old” body of data. Some new data is sought by asking the
head teacher, who has seen the test results, for his comments. He remarks
that he considered Ms. Doe to be his brightest student. This is the ‘new’
data. In this story, need we consider the history leading to these data in
assessing the hypothesis that Jane is pretty clever? It seems clear that we
should, because it is plausible that the teacher’s opinion was affected by the
test results. There is a possible causal link from the old to the new data. If
the sequence of the data were reversed, with the teacher giving his opinion
before the test, no plausible link from his opinion to the test scores exists,
and the data could safely be treated as independent. There is still a possible
link from the teacher’s opinion to the existence of the “new” data (the test
scores): the test may have been conducted to confirm or refute it. However,
if the inductive inference process is not aiming to explain the history of the
data but simply Jane’s high score, this possible link is not relevant.

Consider a data string which is a historical record of data about the
collisions between an electron and a proton. If an explanation of this data were
sought by a Turing Machine or human with a good knowledge of science up
to, say, 1890, the “scientist” might notice that the collision energies appearing
in the data showed a strong tendency to increase from the earliest records to
the later ones, and spend a good deal of effort devising a hypothesis about
this tendency and its subtle details such as sudden jumps in energy followed
by a stream of records all at about the same energy. A very good scientist
might even arrive at the theory that the collisions have mostly been observed
under artificial conditions, and that the energy increased in jumps as technical
progress made higher energies achievable. This would be a fine inference if
the history of the data collection was something to be explained, but not if
our interest lay in the mechanics of the collisions.

When an MML inference is sought within a limited range of possible
hypotheses, it is usually possible to define the range in such a way that
undesired inferences can be excluded. Sometimes it may be more difficult.
In the “binary addition” example of Section 7.1.7, MML was used to find
a regular grammar for a set of strings each of which showed the argument
and sum digits occurring in serial binary additions. The admittedly slow
inference process used spent much time discovering that the strings all had
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lengths which were multiples of three, because the space of grammars it was
searching had no such prior restriction. When the hypothesis space is very
large, it is probably preferable to regard those parts or aspects of the data
for which no explanation is sought as prior information already known to
the intended receiver of the MML explanation, and so exclude the coding of
this part or aspect from the message. In the ideal case where the receiver is
a UTM, one may imagine the UTM to be provided with an extra read-only
tape containing the “prior” data or a routine for checking for a “prior” data
constraint such as the multiple-of-three condition. The UTM is thus relieved
of the incentive or need to try to find hypotheses about this data or aspect.



10. Related Work

The proposal of an account of inductive inference similar to MML was prob-
ably inevitable given the success of Information Theory, including the theory
and techniques of efficient coding, and the development of Turing’s formal
theory of computation. However, such an account spent a long time in gesta-
tion and then for many years remained almost unrecognised. As far as I know,
the first published account to make a link between the lengths of UTM inputs
and the probabilities of their resulting outputs is the work of Ray Solomonoff
in 1964 [42]. It seems to have prompted the interest of the Russian statistician
Kolmogorov but as a foundation for a definition of randomness rather than
as a means of induction [23]. As it happened, Kolmogorov missed a trivial
but vital point which made his effort lead nowhere. Very soon afterwards,
in 1966, Gregory Chaitin independently proposed a definition of randomness
which avoided the error [8] and later a paper showing a formal connection
between probability and the lengths of UTM inputs [9]. His definition is sim-
ilar in spirit to Solomonoff’s but not identical. Chaitin’s later work yielded
remarkable results on the limits of mathematical reasoning, but he did not
pursue the implications for induction. Again independently, David Boulton
and I developed the MML concept as a way of attacking the problem of in-
trinsic classification, or mixture modeling [52]. This work seems to have been
the first computer program to use the idea to make an induction. Yet again
independently, and at about the same time, Jorma Rissanen developed his
Minimum Description Length (MDL) principle.

This brief chapter will describe Solomonoff’s and Rissanen’s approaches
and try to show why, although both resemble MML, they are aimed at dif-
ferent targets and neither quite does the same job. My descriptions are my
interpretations of their approaches, which may not be quite accurate, and
readers are advised to refer to the original works.

10.1 Solomonoff

Solomonoff’s work is on prediction. Much data of interest comes to us as a
potentially unending series from some real-world source. For some sources,
each item in the series arrives without the need for experiment or any di-
rected observation. An example is the daily rainfall in some city. We first
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consider such a source. We suppose that the data is encoded in a binary
string. Solomonoff addresses the question of how, given the first n digits of
the string, can we best predict future digits.

Before describing his solution, note that the problem addressed is one
of prediction rather than the problem mainly addressed in this book, which
is finding good explanations. The two problems are closely related. If, by
MML or otherwise, one forms a theory about the data source which gives a
good explanation of the data so far, the theory will almost certainly imply a
(usually probabilistic) prediction about future data, and we have reason to
expect the prediction to be quite good. However, since an inductively derived
theory commits to a single theory and discards alternative explanations of
the data, it will not in general give the best possible prediction. In simple
Bayesian terms, if the source of the data is assumed to be described by some
probability model f(x|θ) with unknown parameter θ drawn from a prior h(θ),

an inductive theory θ̂ implies a probability distribution over future data y
given by f(y|θ̂). However, the best predictive distribution for future data y
is that derived from the posterior distribution of θ given the known data x,
namely

Pr(y|x) =

∫

f(y|θ)h(θ)f(x|θ) dθ
∫

h(θ)f(x|θ) dθ

which takes into account all possible sources of the data permitted by the
assumptions.

Solomonoff has generalized this Bayesian predictor by admitting as possi-
ble models all computable probability distributions over finite binary strings
and by taking as the “prior” over these models the distribution defined by
some Universal Turing Machine M with unidirectional binary input and out-
put tapes and a bi-directional work tape. Let x be a finite binary string of
length |x| = n. Let Sx = {tk : k = 1, 2, . . .} be the set of all binary input
strings tk such that when tk is provided as input to M , M will output a string
having x as prefix but will not do so when provided with any proper prefix of
tk. The set Sx is clearly a prefix set. Also, if x and y are two distinct strings
of length n, the intersection of Sx and Sy is empty. Define for the chosen M
and for all strings x of length n the quantity

Pn(x) =
∑

t∈Sx

2−|t|

where |t| is the length of the input t. Pn(x) is just the probability that M will
output a string beginning with x when provided with a completely random
stream of digits as input. Pn(·) is a semi-measure over the set of all binary
strings of length n because many inputs to M will cause the UTM to stop
or compute forever without producing any output as long as n. Hence, in
general

∑

x: |x|=n

Pn(x) < 1
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Solomonoff defines a normalized probability measure P ′
n(·) over finite strings

of length n by the recurrence

P ′
n+1(x0) =

Pn(x0)

Pn(x0) + Pn(x1)

P ′
n+1(x1) =

Pn(x1)

Pn(x0) + Pn(x1)
∀x : |x| = n

with P ′
0(Λ) = 1 for Λ the empty string. Then

∑

x:|x|=n

P ′
n(x) = 1 for all n. In

fact the sum over any complete prefix set of strings is 1. The length subscript
n can be dropped from P ′(·), being implied by the length of its argument.

Solomonoff suggests that predictions of future data be based on the P ′(·)
measure. It predicts that the probability Pr(y|x) that a data string x will be
followed by future data y is

Pr(y|x) = P ′(xy)/P ′(x)

Of course, the halting problem prevents calculation of P ′(x), but it can be
approximated if most of the shortest members of Sx are discovered. If the
data stream is being generated according to a computable probability func-
tion Pr(c = 1 |x) = µ(x), where c is the next digit following the string x, it
has been shown that the µ-expected sum of the squared errors in the true
probabilities of successive digits and those predicted by P ′() is bounded in-
dependently of the length of x. Hence, the squared errors must in the limit
decrease more rapidly than 1/|x|. The value of the bound is approximately
the length of the shortest program for M which can compute the function µ().
This bound depends on the choice of the UTM M , so Solomonoff suggests
that M be chosen to embody all prior information believed relevant to the
prediction problem, in the expectation that the prior knowledge will enable
M to accept a concise specification of µ(). Solomonoff has also extended his
predictor to handle data comprising an unordered collection of facts rather
than a sequential stream [43]. In this form, it then predicts the probability
that a specified potential “fact” is true of the source of the known facts.
The techniques used are a fairly straightforward extension of those used for
the sequential case. The journal in which this article appears, The Computer

Journal 42(4), 1999, contains several articles on theoretical and practical as-
pects of Algorithmic Complexity.

This brief introduction to Solomonoff prediction is based on private com-
munications and a paper by Marcus Hutter [20], which also proves a com-
plementary convergence result for sequential prediction. If one knew the gen-
erating probability function µ(), one could bet on the successive digits of a
data string x = x1, x2, x3, . . ., betting that the next digit xn+1 would be one
if µ(x1, . . . , xn) > 1

2 , and otherwise betting on zero. Hutter has shown that
if the odds offered on each bet (assumed constant) and µ() are such that
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the µ-expected profit after n ≫ 1 bets rises linearly with n, then betting on
xn+1 = 1 if P ′(x1) > P ′(x0) is also a winning strategy with an expected
profit per bet which eventually approaches that using knowledge of µ(). In
summary, these results show that Solomonoff prediction can be very good
provided the UTM M can accept a short specification of the unknown gener-
ator µ(). These results do not explicitly cover situations where the generator
of the data is not computable, but could be expected to apply with some
weakening when µ() can be approximated by a computable function with a
finite number of unknown and uncomputable parameters.

There is an obvious and close relationship between Solomonoff prediction
and MML. The origins of the latter followed the former’s by about four
years, and the connection was not realised for about another five years, but
the central idea in each seems the same. The weight given to some model
of the data source depends not only on the fit of the data to the model but
also on the complexity of the model with respect to prior knowledge, and
the appropriate combination of these factors is found in the length of an
encoding of the data which can be decoded by a receiver having the prior
knowledge but no other knowledge of the model. In Solomonoff prediction, the
receiver is a UTM primed with prior knowledge. In MML, the same receiver is
contemplated, but for simplicity we usually consider a more limited receiver
who can envisage only a limited range of models with the prior knowledge
expressed as a Bayesian prior over this range.

The essential difference between us is in aims. Solomonoff aims to pre-
dict, MML aims to find a model which explains. Solomonoff finds the best
predictions by a weighted average over all models, MML ideally commits pro

tem to the single best model it can find. As models of scientific investigation,
both have a respectable place. Scientific endeavour is certainly driven by a
pragmatic desire to predict and society supports this aim fairly willingly. But
the endeavour is also driven by a desire to understand and this aim is also
supported, although perhaps more grudgingly. MML offers its single model
as a basis for understanding what has been observed, with no real guarantee
of predictive power. Thus, MML attempts to mimic the discovery of natural
laws, whereas Solomonoff wants to predict what will happen next with no
explicit concern for understanding why.

Actually, the difference is less clear-cut. MML inferences, although sin-
gle models, are usually found to be good predictors. On the other hand, the
convergence theorems and error bounds for Solomonoff prediction are based
on the fact that if data is coming from a source well approximated by a
computable function, the contribution to the P ′() measure will come to be
dominated by one data-replicating input string, namely the one which tells
the UTM how to compute this function. In other words, the proofs of the suc-
cess of Solomonoff prediction are based on showing that if a good computable
model of the data exists, MML inductive inference will find it!
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10.1.1 Prediction with Generalized Scoring

Solomonoff has considered the efficacy of prediction as measured both by the
accumulated squares of errors in predicted next-digit probabilities and by
the accumulated number of digits predicted erroneously by higher computed
probability. Vovk and Gammerman [50] have generalized the prediction prob-
lem to develop what they call the Complexity Approximation Principle. They
show that, for several broad classes of loss function defining a loss incurred
when a predicted datum is realized by a new observation, it is possible to
define a “predictive complexity” of a finite data sequence z. This complex-
ity is not computable, but is bounded above by the accumulated loss LS(z)
suffered by some computable prediction strategy S plus a multiple of the al-
gorithmic complexity of the strategy. Hence, they suggest that given z, future
data should be predicted by finding and using a strategy giving the lowest
known value of this bound. (The role of the multiplier applied to the com-
plexity of the strategy is essentially to yield a value commensurate with the
loss function.)

10.1.2 Is Prediction Inductive?

Some writers, including Solomonoff and Hutter, regard probabilistic predic-
tion from known data as a form of induction. In fact, many seem to equate
the terms. For instance, Solomonoff entitles one of his papers “Three Kinds
of Probabilistic Induction”, and Hutter begins the paper cited above with
the assertion: “Induction is the process of predicting the future from the past
or, more precisely, it is the process of finding rules in (past) data and using
these to guess future data”. (I cite these two authors, both very able, sim-
ply because I have their papers in front of me. Many others seem to have a
similar view that induction equals prediction.) Hutter’s assertion makes the
confusion obvious. He starts by equating induction to data-based prediction,
then qualifies this statement to require the prediction to be based on “rules
found” in the data. The qualification suggests he realises that the traditional
meaning of induction is the postulation of a general proposition based on a
collection of specific facts. But having made the qualification, he then dis-
cusses a technique, Solomonoff prediction, which results in no such “rule” or
general proposition. Such “rules” as the technique may find in the data are
never explicitly apparent, and all “rules”, whether or not supported by the
data, are mixed together in forming the predictive distribution.

As mentioned at the beginning of this Section (10.1), Solomonoff predic-
tion is a generalization of conventional Bayesian prediction. Both take some
data, a range of possible generator functions (models) for the data, and some
prior knowledge, and from these deduce a predictive distribution over pos-
sible future data. Both have the property that if the model range includes
the true probabilistic generator of the data, their predictions will converge
on the true probability distribution of future data. Both have the property
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that, given the model range, prior and data, their result (a predictive dis-
tribution) inevitably follows. Solomonoff’s generalization is to expand the
range of possible models to include all computable models, and to embody
prior knowledge in the choice of the UTM, but this does not alter the essen-
tially deductive nature of the process. In making the generalization, he has
to address the undecidability inherent in UTMs, which he partly resolves by
his normalization procedure. (There are other possible normalizations which
could have been used, and to this extent the predictive distribution he gets
is not quite an inevitable consequence of the givens. Solomonoff shows his
choice of normalization leads to the most rapid convergence of the predictive
distribution.)

I intend here no criticism of Solomonoff’s work, which has been and is
of great importance. It is certainly not to be criticised on the grounds that
his ideal predictor can only be approximated because of undecidability. Just
the same is true of MML inference with an unrestricted range of computable
models. My objection is to the use of “induction” to apply to Solomonoff
(or more restricted Bayesian) prediction, which appears to me to be a purely
deductive process. To accept this misusage is to lose a hitherto useful and
important distinction between deductive and inductive reasoning. The former
starts with propositions, at least one being general, and by provably correct
steps derives a more specific conclusion. The latter, for which I hope MML
is a model, starts with specific propositions and arrives at a more general
conclusion which is not a necessary consequence of the givens. Solomonoff
himself, in a paper in 1996 (“Does Algorithmic Probability Solve the Problem
of Induction?”), uses the term ALP (Algorithmic Probability) to refer to
what we have called Solomonoff prediction. In Section 7 of the paper he
writes: “ALP does not explicitly use induction. It goes directly from the
data to the probability distribution for the future”. He then goes on to point
out that although ALP should be superior in practice to predictions based
on “scientific laws”, the latter serve other aims besides prediction. Clearly,
he recognises the distinction between prediction and induction, but seems
content to go along with others’ confounding of the two.

The Cambridge Dictionary of Philosophy defines the narrow meaning of
“induction” in the sense in which I have used the term, namely the infer-
ence of a general proposition from a collection of more specific ones. It also
recognises a broader meaning, namely the inference of any conclusion which
is stronger than any proposition which can be deduced from the premises,
whether or not this conclusion has more generality. The quality common to
both meanings is what the dictionary calls “ampliative”: the conclusion, while
compatible with the premises, cannot be deduced from them. Adopting the
broader sense, it remains true that Solomonoff (or other) prediction which
deduces a probability distribution over future data from defined premises of
known data and prior information is not inductive. The predictive probability
distribution is not ampliative. It is a necessary consequence of the premises,
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and hence no stronger than can be deduced from them. However, as a prac-
tical matter, this non-inductive predictive distribution may well lead to a
genuinely inductive conclusion (in the broader sense) if the analyst, having
derived the distribution, decided to accept pro tem that the most probable
future data will indeed be observed.

A commonplace example may help. A follower of horse races may, using
the results of previous races, breeding records and other information, deduce

that Old Rowley has a probability of 0.02 of winning the Cup. If he then
finds that a bookmaker is offering odds of 100 to 1, he may deduce that
betting on Old Rowley is an action with positive expected return. These
are not ampliative conclusions. They follow strictly from his premises. If he
then concludes that Old Rowley will win the Cup (and maybe bets his house
on it) this goes beyond the implications of his premises, is ampliative, and
hence is an inductive conclusion in the broad sense. Thus, in the broader
sense of induction, Solomonoff prediction per se is not inductive, but may
lead someone to adopt an inductive conclusion.

10.1.3 A Final Quibble

The normalization used to go from the raw string probability P (x) to the
normalized form P ′(x) has the effect of disallowing all UTM input strings
which would cause the UTM to produce only a finite output shorter than the
data string x. This is of course proper when x is just the string of known
data: no input which cannot produce x should contribute to the probability
of x. It is less clearly proper when x is the known data string followed by
a putative future extension whose probability we would like to predict. The
normalization then has the effect of denying any probability to the event that
the known data will not be extended by the real world.

I am not here envisaging trivial events such as the possibility of future
observations being denied by the death of the observer, exhaustion of funding,
etc. Rather, it may be that the real situation admits of only a finite string of
the type of data being studied. Suppose, for instance, that the given data is
a sequential string of records, each record giving a large number of physical,
chemical and spectroscopic properties of a stable element isotope, and that
the data has records for all stable isotopes in order of atomic weight from
hydrogen to, say, silver. If the data has lots of information on each isotope and
the chosen UTM M embodies some good knowledge of quantum mechanics,
one might reasonably hope that the predictive process would predict high
probabilities for future data matching the properties of the elements heavier
than silver. But a really good predictor would flatly refuse to predict any data
beyond a finite number of “future” records, because beyond a certain atomic
number there are no stable isotopes. The shortest UTM input causing output
which matched the records up to silver might have the form of a program
which built models of nuclei with particular numbers of protons and neutrons,
then calculated their binding energies and weeded out the nuclei which could
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decay. Keeping on going past the stable isotopes of silver, it would eventually
reach lead-208 and thereafter loop endlessly, building ever-heavier models
and rejecting them all.

The normalization used by Solomonoff would exclude such an input pro-
gram, and instead insist on giving non-zero probabilities to records for non-
existent or unstable isotopes by using less accurate programs.

This objection is no more than a quibble. The great majority of practical
prediction problems deal with sources of unlimited data. However, it would
be nice if the normalization could, without serious damage, be modified to
permit the prediction: “That’s all, folks!”

10.2 Rissanen, MDL and NML

More or less at the same time as the initial conception of MML, Jorma
Rissanen independently conceived a rather similar idea which has come to
be known as the Minimum Description Length (MDL) principle. A later
development of the idea is called Normalized Maximum Likelihood (NML),
but I will use the term MDL for his general approach and defer use of the
term NML till the description of this version.

Unlike Solomonoff’s work, Rissanen’s is, like MML, concerned with the
induction of a hypothesis about the source of data rather than prediction,
and assumes a conventional framework of statistical models rather than being
based on Universal Turing Machines. To use notation paralleling that used in
describing MML, MDL deals with a set X = {xi : i = 1, . . .} of possible data
sets or vectors and a set Θ of possible probability models. MDL is particularly
concerned with model sets comprising a number of model classes, where each
model class has a number of real-valued parameters, the number usually being
different for each class. It is hence convenient to write Θ = {Θk : k = 1, 2, . . .}
and to write a parameterized probability model in Θk as fk(x | θk) where
fk(·|·) gives the general mathematical form of the models in class k and θk

represents a vector of parameter values defining a specific model in the class.
As in MML, the data set X is strictly speaking always discrete and countable,
but providing the discretization of data values is sufficiently fine, it is possible
and often convenient to treat X as a continuum and a specific data set x as
a vector of real values.

MDL differs from MML in two important respects. First, Rissanen wishes
to avoid use of any “prior information”. His view is very much non-Bayesian.
Second, given data x, MDL aims to infer the model class Θk which best
explains the data, but does not aim to infer the parameter vector θk except
(in some versions) as a step involved in inferring the class. MDL shares with
MML the idea that the best inference from the data is that hypothesis which
enables the data to be encoded most concisely, but in MDL the inferred
hypothesis asserts only a model class and not (as in MML) a single fully
specified model. The kind of message envisaged in MDL as an encoding of
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the data would therefore first assert a model class and then encode the data
using a code which assumes the data comes from some unknown model within
the class. As no informative prior is assumed over the set of classes, the
assertion of a class would have the same length for all classes and so is ignored
in choosing the class to minimize the description length of the data. The
problem faced in MDL is how to compute the length Sk(x) of an encoding
of the data x assuming that it is drawn from some unknown member of a
parameterized family of distributions fk(x|θk). Rissanen terms the quantity
Sk(x) the Stochastic Complexity of data x with respect to the model class
Θk. In discussing how MDL deals with this problem, we can drop the k suffix
since every model class will be treated in the same way.

If a Bayesian prior density h(θ) were given over the unknown parameter
θ of the model class distribution f(x|θ), the complexity of x with respect to
the class could be calculated as

S(x) = − log

∫

h(θ)f(x|θ) dθ = − log r(x)

and would equal what has been termed I0(x) in the discussion of MML. How-
ever, Rissanen seeks to avoid the need of any such prior. In early work, he
proposed to approximate S(x) by the length of a two-part message, the first

part nominating a parameter estimate θ̂ and the second encoding x optimally
for the distribution f(x|θ̂), much as in MML. His problem then became how

best to devise a code for encoding θ̂ in the first part without assuming a prior
density. The method employed chose a discrete set of codeable estimates sim-
ilar to the MML Θ∗ with the density of estimates in Θ being approximately
√

F (θ) where F (θ) is the (expected) Fisher Information determinant. Within
an ignorable constant factor, this density of codeable estimates is very close
to that given by an SMML code or the MML approximations of Chapter 5,
and gives a near-optimal compromise between the cost of coding the estimate
and the mismatch between the estimate and the data. The members of this
Θ∗ are then enumerated in some “natural” order. The first-part code need
then only state the integer index of the chosen estimate θ̂ in this enumera-
tion. If Θ∗ has a finite number M of members, the length of the first part is
just log M , and if it has an infinite number, Rissanen proposed the index be
coded using the universal log* code described in Section 2.1.16. For data x,
the member of Θ∗ of highest likelihood is chosen as θ̂.

In this scheme, the volume of the parameter space Θ included in the
Voronoi region surrounding some codeable estimate θ̂ ∈ Θ∗ is approximately

1/

√

F (θ̂). At least far from the origin of enumeration, the scheme encodes
the estimates with lengths which vary very slowly if at all with the value of
the estimate. Hence, the length of the first part of the message, if interpreted
as the negative log of a discrete “prior probability” associated with θ̂, would
imply a “prior probability density” h(θ) in Θ approximately proportional
to the local density of codeable estimates, i.e., proportional to

√

F (θ). A



410 10. Related Work

“prior density” of this form is known as a “Jeffreys prior” (Section 1.15.3).
Of course, in MDL, no such interpretation as “prior information” is intended.

A further development of this method of computing S(x) was made by
modifying the coding of the second part of the message. Instead of coding x
using the model distribution f(x|θ̂), the model distribution was renormalized
to sum to one over just that subset of data vectors which would result in the
estimate θ̂. This “complete coding” results in a somewhat higher probability,
and hence shorter second part, for every data vector in the subset. It removes
the redundancy in the original scheme which would have permitted a data
vector x to be encoded using any θ ∈ Θ∗ for which f(x|θ) > 0.

At this point of its development, MDL could still have been open to
the charge that, at least when Θ∗ is an infinite set, the calculation of S(x)
depended on the order in which its members were enumerated, and that
one person’s “natural” order might be another’s arbitrary choice. A recent
advance has largely removed this arbitrariness.

10.2.1 Normalized Maximum Likelihood

This discussion is based on a 1999 paper by Rissanen entitled “Hypothesis
Selection and Testing by the MDL Principle” [36], which gives a good presen-
tation of Normalized Maximum Likelihood (NML). Given some data x, the
shortest possible encoding of it using a model of the form f(x|θ) is obtained
by setting θ = θM (x), the maximum likelihood estimate. The length of the
encoded data would then be LM (x) = − log m(x) where m(x) = f(x|θM (x)).
Of course, such an encoding is useless for conveying the data to a receiver who
does not already know θM (x). Instead, one must choose some other coding
scheme. Suppose some non-redundant code is devised which will be intelli-
gible to a receiver who knows only the set X of possible data, the model
class, the range Θ of possible parameter vectors and hence the conditional
probability function f(x|θ). One such code would be the complete-coding
MDL two-part code described above, but let us consider others. (Note that
an SMML or MML code will not do, since these are inherently redundant.)
Let the chosen code be named q, and let it encode x with length Lq(x). It

therefore assigns to x a coding probability q(x) = 2−Lq(x).
If a prior distribution over θ were available, and hence a marginal dis-

tribution over x, one could choose the q to minimize the expected length
ELq(x) and hence the expected excess length E[Lq(x) − LM (x)]. Avoiding
priors, Rissanen chooses q to minimize the worst case excess length, that is
the excess for the worst case data vector in X. Since the excess for data x is

Lq(x) − LM (x) = − log
q(x)

m(x)
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minimizing the largest excess is done by maximizing the smallest ratio
q(x)

m(x)

subject to
∑

X

q(x) = 1, q(x) ≥ 0 for all x.

This is achieved when all ratios are equal, for suppose the contrary. Then
some xl has the minimum ratio R = q(xl)/m(xl), and some other vector xh

has a larger ratio q(xh)/m(xh) = R + ε. Writing q(xl) as ql, etc., consider
the modified code which has

q′
l = ql + ε

mlmh

ml + mh
, q′

h = qh − ε
mlmh

ml + mh

and q′(x) = q(x) for all other x. Then

q′
l

ml
=

q′
h

mh
= R + ε

mh

ml + mh
> R,

∑

X

q′(x) = 1, q′(x) ≥ 0 all x

Thus, the modified code has one fewer members of X with the low ratio R.
Repeating this modification will result in a code with no x having ratio R,
and hence with a higher minimum ratio, leading eventually to a code with
all ratios equal.

The final NML result is a code for data vectors in X with coding proba-
bilities proportional to their maximum likelihoods:

q(x) =
m(x)

∑

y∈X m(y)
=

f(x|θM (x))
∑

y∈X f(y|θM (y))

and code lengths

Lq(x) = − log f(x|θM (x)) + log C where C =
∑

y∈X

m(y)

For any sufficiently regular model class with k free parameters and x an i.i.d.
sample of size n, Rissanen has shown that

Lq(x) = − log f(x|θM (x)) +
k

2
log

n

2π
+ log

∫

Θ

√

F ′(θ) dθ + o(1)

where F ′(θ) is the per-case Fisher Information. Converting to our convention
of writing the Fisher Information for the given sample size as F (θ), we have
F ′(θ) = F (θ) / nk and so

Lq(x) = − log f(x|θM (x)) +
k

2
log

1

2π
+ log

∫

Θ

√

F (θ) dθ + o(1)

Compare this expression with the MML I1B formula of Section 5.2.12

I1(x) ≈ − log
h(θ′)
√

F (θ′)
− log f(x|θ′) − (D/2) log 2π +

1

2
log(πD) − 1
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with the number of scalar parameters D set to k and the prior density h(θ) set
to the Jeffreys prior proportional to the square root of the Fisher Information

(Section 1.15.3) h(θ) =

√

F (θ)
∫

Θ

√

F (φ) dφ
giving

I1(x) ≈ − log

√

F (θ′)
√

F (θ′)
∫

Θ

√

F (φ) dφ
− log f(x|θ′) − k

2
log 2π

+
1

2
log(kπ) − 1

≈ − log f(x|θ′) +
k

2
log

1

2π
+ log

∫

Θ

√

F (φ)dφ

+
1

2
log(kπ) − 1

With the Jeffreys prior, I1(x) is minimized by the Maximum Likelihood esti-
mate θM (x), so the difference between the values of Lq(x) and I1(x) reduces
to

I1(x) − Lq(x) ≈ 1

2
log(kπ) + o(1)

The greater length of I1(x) represents the message length cost of the small
redundancy inherent in MML explanations, because the two-part code em-
ployed does not insist on using the minimizing parameter estimate. However,
except for this small difference, it is clear that the Stochastic Complexity of
the data with respect to the model class is very similar to the MML expla-
nation length assuming the same model class and a Jeffreys prior.

For model classes sufficiently regular for the Lq(x) expression to hold, and
where the Jeffreys prior is a tolerable representation of the state of prior belief
about θ, there will be little difference between MML and NML assessments
of the class as a possible source of the data, and little difference between their
comparison of different model classes in the light of the data.

There is a potential problem with the Jeffreys prior, and more generally
with the normalization of the maximum likelihood. The normalization con-
stant C =

∑

y∈X f(y|θM (y)) diverges for some model classes, and the Jeffreys
prior may not be normalizable either. For such classes, Rissanen suggests that
the class be curtailed by restricting the allowed range of the parameter θ to
a portion Ω of its original range Θ, and further, that for NML the set X of
possible data vectors be restricted to the subset X ′

X ′ = {x : x ∈ X, θM (x) ∈ Ω}

where Ω is chosen to ensure that the maximum likelihood is normalizable over
X ′. It is of course necessary also to ensure that X ′ includes the observed data
vector x. The problem is analogous to that encountered in MML (or Bayesian
analysis generally) when an attempt is made to choose a prior expressing a
lack of any prior knowledge of the parameter. For some types of parameter,
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the preferred “uninformative” prior is improper, so either its range must be
restricted or another prior chosen, either way importing some sort of prior
knowledge. However, in the MML or Bayesian analysis, it is never necessary to
disregard possible data values. The restriction of X ′ to data whose maximum
likelihood estimate lies in Ω may be troublesome in model classes where
the maximum likelihood estimate is strongly biased or inconsistent, as in
the Neyman-Scott problem of Section 4.2. In such cases, the observed data
may have a maximum likelihood estimate outside what would otherwise be
a plausible choice of Ω.

In the cited paper, Rissanen suggests that the model class giving the
lowest Stochastic Complexity or highest normalized maximum likelihood be
selected as the preferred model of the data. This is the essential inductive
step of the MDL/NML approach, suggesting the acceptance pro tem of a
specific model class for the data. Note that no estimate of the parameter(s)
accompanies this selection. The induction does not name a preferred model
within the model class, and although the NML criterion Lq(x) involves use
of the maximum likelihood estimate, this estimate is not endorsed.

In a later section, Rissanen considers the use of NML in a Neyman-Pearson
style of hypothesis test, and there makes his choice of X ′ in order to maximize
the power of the test. This leads in a couple of Normal examples to a very

restricted choice of Ω centred on the observed sample mean and shrinking
with increasing sample size. The approach seems inconsistent with his crite-
rion for model selection. However, my instinct is to regard this inconsistency,
if it indeed exists, as an argument against Neyman-Pearson testing rather
than as a criticism of NML.

10.2.2 Has NML Any Advantage over MML?

MDL and NML are inductive methods for selecting a model class among a
(usually nested) family of classes. Although each model class may have free
parameters, the methods do not inductively choose a specific model within
the selected class, and eschew the use of any prior probability density over
the parameters of a class. MML, however, makes an inductive choice of a fully
specified single model for the data. In its purest SMML form, MML does not
even pay much attention to which class the chosen model belongs to, although
in practical application the MML explanation message would typically begin
by nominating the class before stating the parameter estimates and then the
data.

Perhaps the principal argument for MDL over MML is that it avoids
priors and hence may appeal to a natural desire to be “objective” or at least
more so than Bayesians. Of course, the objectivity has its limits. One must
make a choice on some grounds or other (dare I say) prior experience of the
family of model classes to consider, and at least for some families, must be
prepared for a fairly arbitrary restriction of the set of possible data vectors
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in order to normalize. But given these limits, MDL/NML does require less
non-data input than does MML. However, the price paid is not trivial.

– MDL offers no route to improved estimation of model parameters, leaving
maximum likelihood as the default. MML does give an estimator which in
some cases is less biased than maximum likelihood, and is consistent in
model classes where maximum likelihood is not.

– MDL as presented does not seem to contemplate the conflation of models
in different classes when the data is such as cannot be expected reliably
to distinguish between the models. MML can do so, and for instance, in
the causal net learning of Section 7.4, this ability was shown to have a
significant and beneficial effect on the inferences.

– The rationale presented for NML seems less transparent than that of MML.
NML defines the complexity of a data vector with respect to a model class
as the length of the string encoding the vector in a particular code q. The
code is chosen to minimize the worst-case excess of the code length Lq(x)
over the “ideal length” LM (x) = − log f(x|θM ), the worst case being over
all possible data vectors in X. It is not clear why LM (·) should be chosen
as the gold standard to which q should aspire, since LM (·) is not a code
length in any code usable in the absence of knowledge about the data.
Further, it is not obvious why the construction of q should concentrate on
the worst-case data vector, which may for some model classes be one which
most people would think very unlikely to be observed. By using the worst-
case criterion, NML makes the “complexity” of the observed data depend
on the properties of a data vector which, in general, was not observed and
which, having an extreme property, is atypical of data generated by the
model class.
By contrast, MML designs a code which is optimized in the usual Shan-
non sense for the joint probability distribution of data and model. In this,
MML seems closer to the notion of the Algorithmic Complexity of the
data. Although the usual definitions of Algorithmic Complexity (AC) do
not explicitly involve the joint distribution, almost all the theorems demon-
strating useful properties of AC in fact rely on bounding the AC of the data
from above by a string length which encodes both a generating model and
the data vector, and whose length therefore may be taken as the nega-
tive log of the joint probability of model and data under some universal
distribution. See for instance V’yugin [51].

– NML has normalization difficulties which are reflected in possibly serious
violation of the likelihood principle (Section 5.8). For the binomial prob-
lem where the data is the number of successes s in a fixed number N of
trials, the NML formula gives an acceptable value for the complexity of s.
However, for the Negative Binomial problem where the data is the num-
ber of trials N needed to get a fixed number s of successes (Section 5.7),
the Jeffreys prior diverges and the maximum likelihood of N approaches
a constant for large N , so the maximum likelihood cannot be normalized
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and some arbitrary limit on N must be applied to get a complexity. The
value of this limit will affect the complexity assigned to the observed num-
ber of trials. The different behaviour of NML in the two problems violates
the likelihood principle. As shown in Section 5.8, while MML also techni-
cally violates the likelihood principle in treating these two problems, the
violation is insignificant.

– MDL aims to infer the model class which best models the data out of a
defined family of model classes. While this is a natural and useful aim, it
is not always obvious how a set of possible models should be classified into
classes. The classification of models envisaged in MDL is always such that
all models in a class have the same number and set of free parameters,
but even with this natural restriction much choice remains in classifying
a large set of models. Consider the set of polynomial models which might
be used to model the dependence of one data variable on another. Most
obviously, the polynomials can be classed according to their order, but in
some contexts different classifications may be of interest. If the two vari-
ables are physical quantities with natural origins of measurement, models
with few non-zero coefficients or only coefficients of even or odd order are
scientifically interesting. Of course, an MDL classification could be tailored
to such cases, but it seems simpler to use an MML analysis which, as in
Section 7.4, can be arranged to reject insignificant coefficients where the
data permits.

– With some natural classifications of models, it can occur that the “best”
fully specified model is not in the “best” model class. This situation has
been found in multivariate mixture models for some data sets. If models
are classified according to the number of component simple distributions
in the mixture, for some data one finds that the MDL best class has k
components, and contains several quite distinct but fairly good models,
whereas there exists a single model in the k + 1 class which gives a much
better fit.

This list is of course not impartial, and an advocate of MDL might offer an
equal list of disadvantages in MML. When used intelligently, MDL is capable
of yielding very good inferences from complex data, and several impressive
applications have been published. Of those I have read, it seems that an MML
analysis would have reached very similar inferences.
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