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Abstract—In this paper, some detection-theoretic, estima-
tion-theoretic, and information-theoretic methods are investigated
to analyze the problem of determining resolution limits in imaging
systems. The canonical problem of interest is formulated based on
a model of the blurred image of two closely spaced point sources
of unknown brightness. To quantify a measure of resolution in
statistical terms, the following question is addressed: “What is the
minimum detectable separation between two point sources at a
given signal-to-noise ratio (SNR), and for prespecified probabil-
ities of detection and false alarm ( and )?”. Furthermore,
asymptotic performance analysis for the estimation of the un-
known parameters is carried out using the Cramér–Rao bound.
Although similar approaches to this problem (for one-dimensional
(1-D) and oversampled signals) have been presented in the past,
the analyzes presented in this paper are carried out for the general
two-dimensional (2-D) model and general sampling scheme. In
particular the case of under-Nyquist (aliased) images is studied.
Furthermore, the Kullback–Liebler distance is derived to further
confirm the earlier results and to establish a link between the
detection-theoretic approach and Fisher information. To study
the effects of variation in point spread function (PSF) and model
mismatch, a perturbation analysis of the detection problem is
presented as well.

Index Terms—Aliasing, Cramér–Rao bound, detection, estima-
tion, Fisher information, imaging, information-theoretic imaging,
Kullback–Liebler distance, model mismatch, perturbation anal-
ysis, resolution, variational analysis.

I. INTRODUCTION

T
HE problem of resolution historically has been of signifi-

cant interest in different communities in science and engi-

neering, for example in astronomy, optics, different applications

in physics, array processing and imaging. In this paper, we focus

on the problem of achievable resolution in imaging practice

for the following reasons. First, the problem of resolving point

sources can be considered as a canonical case study to investi-

gate the performance of imaging systems and image restoration

techniques. Second, developing different techniques to resolve

point sources is indeed a concern in real-world application, e.g.,

astronomy. Our approach to this problem in this paper is based
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Fig. 1. Location of point sources.

on statistical detection and estimation theory, since we assume

the measured signal from which the sources are to be resolved,

is noise-corrupted.

To begin, let the original image of interest consist of two im-

pulse functions positioned at points and with

a small distance of apart (Fig. 1).

That is, the signal model is

(1)

We consider the following two-dimensional (2-D) model for the

measured (discrete) signal

(2)

where is the blurring kernel1 (representing the overall

point spread function (PSF) of the imaging system) and

is assumed to be a zero-mean Gaussian white noise2

process with variance .

According to the classical Rayleigh criterion, two point

sources are “barely resolvable” when the central peak of the

pattern generated by one point source falls exactly on the first

zero of the pattern generated by the second one [6]. See Fig. 2

for a depiction. But in fact under certain conditions related to

signal-to-noise ratio (SNR), resolution beyond the Rayleigh

limit is indeed possible. This can be called the “super-resolu-

tion” limit.

The statistical analysis presented in this paper is formulated

based on the ability to distinguish whether the measured image

is generated by one point source or two point sources. Specifi-

cally, for the proposed model the equivalent question is whether

the parameter is equal to zero or not. If , then we only

have one peak and if then there are two well resolved

1For convenience and ease of presentation only, we assume that
the point spread function is a symmetric function throughout, i.e.,
h(x; y) = h(�x; y) = h(x;�y) = h(�x;�y).

2We do not concern ourselves in this paper with the case of photon-limited
systems.
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Fig. 2. Resolvability in the Rayleigh sense.

peaks according to the Rayleigh criterion.3 So the problem of

interest revolves around values of in the range of .

This can be posed as a hypothesis testing problem, i.e.,

One point source

Two point sources
(3)

or equivalently (see (4) at the bottom of the page). The problem

of resolution from the statistical viewpoint has been well studied

in the past [25], [2], [1], [7], [9]. The majority of researchers

have used the Cramér–Rao bound to analyze the problem of

resolution to study the mean-square error of unbiased estimators

for the distance between the sources [8], [9], [1], [21], [22],

[13], [16]. In addition, some papers [8], [2] have considered

a hypothesis testing approach to determine the resolvability of

sources in some limited cases for one-dimensional signals.

As for novel contributions in this paper, we formulate the

problem of interest as a composite hypothesis test and derive an

explicit relationship between the minimum detectable separa-

tion and the required SNR for any sampling strategy including

aliased (sub-Nyquist) images. As a result, a quantitative mea-

sure of resolution is obtained which can be used to understand

the effect of model parameters (e.g., PSF and sampling param-

eters). The following question is addressed: what is the min-

imum separation between two point sources (maximum attain-

able resolution) that is detectable with high probability at a given

SNR. Besides, general analytical results are derived for arbitrary

sampling schemes. Our previous work has been focused on the

case of one-dimensional (1-D) signals and over-Nyquist sam-

pling [14], [20], [19]. In this paper, we present extensions of

these results to 2-D and to the under-sampled (aliased) case (for

a general PSF).

We put forward a solution to (4) for its most general case

where all the parameters involved in the signal model are un-

known to the detector. Furthermore, we consider two cases,

where the value of noise variance is known and where it

is unknown. For both cases we develop corresponding detec-

tion strategies and obtain the explicit relationship between SNR

and the parameters in the model. Also, to further analyze the

problem of resolution. such frameworks will be explained in the

following.

3Throughout this paper, we assume without loss of generality that d = 1

corresponds to the Rayleigh limit.

A significant question which has not been addressed in the

past is to analyze the effect of a known or unknown perturbation

of the PSF on the detection performance. Variation in PSF can be

caused by other blurring elements in the system, for example an

out-of-focus lens or atmospheric or underwater turbulence. We

first address the problem of finding the change in the required

SNR due to a variation of the PSF required for resolvability.

This will help us to analyze sensitivity to model inaccuracies.

In the interest of completeness, we also compute the Fisher

Information matrix (and Cramér–Rao (CR) bound) in closed

form for two different cases. The Cramér-Rao lower bound for-

mulation is used to study the limits to attainable precision of

estimated distances of the two point sources. We carry out this

analysis for the case of under-sampled images and for a general

PSF.

Another appealing and informative analysis is to compute

the symmetric Kullback–Liebler Distance (KLD) or Divergence

[12, p. 26]. KLD is a measure of discriminating power between

two hypotheses, and is directly related to the performance figure

of a related optimal detector. To accurately compute the KLD

for the underlying problem, we make some essential extensions

to the conventional formula of approximating the KLD. We shall

see an interesting and important connection between the KLD

analysis and the detection-theoretic analysis.

As for the application of the presented analysis in this paper,

we shall see that the framework of addressing the fundamental

relationship in resolving point sources (i.e., the tradeoff between

SNR and resolvability) will also suggest a corresponding de-

tector which can be well used in practice. In other words, the

established performance expression is simply the result of ap-

plying the proposed local detector.

The organization of the paper is as follows. In Section II,

we will present and formulate our detection-theoretic approach.

The asymptotic performance of maximum likelihood estimate

of the unknown parameters in terms of the Fisher Information

Matrix will be discussed in Section III. In Section IV, we will

study an information-theoretic criterion for the problem of in-

terest. We will explain our perturbation and variational analysis

for the underlying detection problem and discuss the effect of

model mismatches in Section V. We will also discuss some of

the practical applications and possible extensions of the pro-

posed framework in Section VI. Finally, some comments and

conclusion will be presented in Section VII.

II. DETECTION-THEORETIC APPROACH

In the test (4), when the model parameters are unknown,

the probability density function (pdf) under both hypotheses

is therefore not known exactly, resulting in a composite hy-

pothesis test. It is therefore not possible to form the standard

likelihood ratio test. A common approach in this case is the

generalized likelihood ratio test (GLRT). GLRT first computes

maximum likelihood (ML) estimates of the unknown parame-

ters, and then will use the estimated values to form the standard

Neyman–Pearson (NP) detector. While other useful (Bayesian)

(4)
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methods are also available for such composite problems, our

focus will be on GLRT-type methods because of less restrictive

assumptions and easier computation and implementation; but

most importantly, because locally most powerful (LMP) tests

can be developed for the range of small (below the Rayleigh

limit). Also, as will be shown later, the performance of such a

detector is very close to that of an ideal detector, to which the

values of all the parameters in the model are known. Hence,

the performance of the suggested detector can be reasonably

considered as an approximate performance bound in practice.

Applying the GLRT approach to the problem of interest di-

rectly will produce a highly nonlinear test statistic (see [20]).

However, since the range of interest for the value of is as-

sumed to be small (below the Rayleigh limit ), we can

benefit from approximating the model of the signal for nearby

point sources. The approximate model is obtained by expanding

the signal in a Taylor series about the small parameter values

around . By introducing the partial

derivatives of as

(5)

we write the signal model in the following (lexicographically

scanned) vector form (e.g., )

(6)

where
(7)

(8)

We elect to keep terms up to order of the above Taylor expan-

sion which gives a more accurate representation of the signal

and avoids trivial approximations in cases where the first-order

terms would simply vanish [19]. This approximation leads to

a linear model detection problem and also is equivalent to the

framework of locally most powerful tests [11, p. 218]. We first

consider the case where the noise variance is known to the de-

tector. By substituting the above approximated model into (4),

the hypothesis test can be rewritten as

(9)

where

(10)

The test (9) is a problem of detecting a deterministic signal with

unknown parameters. The GLRT for the approximated model

yields [11, p. 274]:

(11)

where is the (lexicographically scanned) vector form of the

measured signal and

(12)

is the unconstrained maximum likelihood estimate of . For any

given data set , we decide if the statistic exceeds a specified

threshold

(13)

The choice of is motivated by the level of tolerable false alarm

(or false-positive) in a given problem, but is typically kept very

low. It is worth mentioning that since the hypothesis test in (3) is

a one-sided test, the above formulations (the Taylor approxima-

tion and the generalized likelihood ratio setup for the problem

in (9)) can be viewed as a locally most powerful detector [11, p.

218]. From (11), the performance of this detector is character-

ized by

(14)

(15)

(16)

where is the right tail probability for a Central Chi-Squared

pdf with 5 degrees of freedom, and is the right tail

probability for a noncentral Chi-Squared pdf with 5 degrees of

freedom and noncentrality parameter . For a specific desired

and , we can compute the implied value for the noncen-

trality parameter from (14) and (15). We call this value of the

noncentrality parameter . This notation is key in il-

luminating a very useful relationship between the SNR and the

smallest separation which can be detected with high probability,

and low false alarm rate. From (16) we can write

(17)

Also, by defining the SNR as

SNR (18)

and replacing the value of with the right-hand side of (17),

the relation between the parameter set and the required SNR

can be made explicit:4

4To give an insight into the terms in the expression for required SNR, let us
denote

H H =
a b

b C
(19)

where a = h h (20)

b = [h h ;h h ;h h ;h h ;h h ] (21)

C = AH HA : (22)

Then we can show

[A(H H) A ] = C�
1

a
bb : (23)

This form gives a rather better intuition to the established relationship between
the required SNR and the resolvability. For instance it can be readily proved
that the appearance of the subtracted term in the denominator of (24) ( bb )
is due to the energy of point sources (�+�) being unknown to the detector. In
other words, if only the value of �+� is known to the detector, this term would
vanish and the related term in the denominator would be given by ��� A CA���.
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TABLE I

SNR (24)

The above analysis can be well extended to the case where is

unknown a priori. The corresponding hypotheses for this case

are given by

(25)

The GLRT for (25) [11, p. 345] gives the following test statistic:

(26)

where subscript “u” denotes the case of unknown noise variance,

is the identity matrix, and is the same unconstrained max-

imum likelihood estimation of as in (12). For any given data

set , we decide if the statistic exceeds a specified threshold

(27)

From (11), the performance of this detector is characterized by

[11, p. 186]

(28)

(29)

(30)

where is the right tail probability for a Central F dis-

tribution with five numerator degrees of freedom and de-

nominator degrees of freedom; and is the right tail

probability for a noncentral F distribution with five numerator

degrees of freedom and denominator degrees of freedom,

and noncentrality parameter .

In this GLRT context, the following relation between the pa-

rameter set and the required SNR (denoted by a subscript “ ”)

can be obtained

SNR (31)

which mirrors (24), with the only difference in performance

being the change of coefficient from to .

It can be easily verified that for

.

In either case, an important question is to consider how dif-

ferent these obtained performance is from that of the “ideal”
clairvoyant detector, to which all the parameters (i.e., and )

are known. We first note that in this case the hypothesis test in

(9) will be a standard linear Gauss–Gauss detection problem.

Also, we can further simplify the problem by seeing that the

term in the signal model in (6) is a common known

term under both hypotheses and can be removed. As a result,

the following relationship can be obtained for the completely

known case:

SNR (32)

where the subscript “id” denotes the ideal case and is

the required deflection coefficient [11, p. 71] computed as

(33)

where is the inverse of the right-tail probability func-

tion for a standard Gaussian random variable (zero mean and

unit variance). Comparing the expression in (24) to that of (33)

SNR

SNR
(34)

where we note that , provided .

Also, it can be proved that

is a positive definite matrix. As a result, as expected, SNR

SNR SNR , always. However, as we will demonstrate in

one of the following sections, the difference between SNR and

SNR is quite small over most of the parameter range. Also, in

[19] we have shown that in the limiting cases (where intensities

are known and equal), the proposed detector indeed produces

a uniformly optimal test (same as the ideal detector). Further-

more, for the general case as we will show later, the difference

between performances of the proposed detector and ideal de-

tector is very small. Therefore, we argue that the GLRT frame-

work used to suggest a detector can be reasonably accounted to

set a performance limit in practice.

For clarity’s sake, we summarize the dependence of perfor-

mance on and for the three cases discussed above in

Table I.

A. Effects of Sampling Schemes on Performance

The expressions in (24) or (31) are in general applicable to

any sampling schemes including nonuniformly sampled or un-

dersampled (aliased) images. However, since the energy of a

bandlimited signal in the continuous domain is that of its uni-

formly and supercritically discretized version divided by the

sampling rate, the right-hand side of these expressions should

be understood more generally as depending upon the sampling

offsets (phases) of the discrete images. In particular, for under-

sampled images, the energy terms in will vary signifi-

cantly as sampling phase changes. We will study this effect in

Section II-A2.

An interesting related question is how the availability of mul-

tiple observations of the image (i.e., several frames with dif-

ferent sampling phases) affects the performance. Let denote
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Fig. 3. Normalized 1-D cut of the point spread functions used to present the results in this paper.

the th set of acquired samples (i.e., th frame in a video se-

quence) out of a total of frames and let and SNR repre-

sent the corresponding and the required SNR of the th image.

Then, the overall required SNR is given by

SNR (35)

where

(36)

Furthermore, it can be proved that

SNR SNR (37)

with equality sign for the case of oversampled frames. The

reason behind this is that the energy of signal in over-Nyquist

case is a constant value and does not depend on the phase of

sampling. Hence, each (supercritically sampled) frame has the

same effect on the detection performance. In other words, in

this case for .

However in under-Nyquist case, some frames (due to better

placement of samples) provide more information for de-

tectability than others.

In the following pages, we further analyze the performance

results obtained earlier for oversampled images. Next we look

into a case where the underlying image is undersampled to see

the effect of aliasing on the performance. Having earlier derived

the general expression for the performance, to facilitate the pre-

sentation, in what follows, we will often consider a particular

case with the following set of conditions (we may call this the

symmetric case) as follows:

• ;

• ;

• (angular symmetric

kernel).

Some examples of angular symmetric kernels which will be

used later in this paper are “jinc-squared” and Gaussian win-

dows. The former is the PSF resulting from a single

circular aperture and is characterized by

(38)

where is the first order Bessel function of the first kind [6].

The Gaussian kernel, on the other hand, can be considered as a

typical approximation of the overall effect of various elements in

the imaging systems (including aperture, charge-coupled device

(CCD), out of focus lens, atmospheric or underwater turbulence,

etc.); it is given by

(39)

A plot of the above kernels is shown in Fig. 3, where we note the

corresponding Rayleigh spacings for both functions are (this

corresponds to in (39).

1) Over-Nyquist Sampling: In this section, we further sim-

plify the earlier results for the over-Nyquist case. To begin, we

note that the energy terms can be written as

(40)
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Fig. 4. Minimum detectable d as a function of SNR (in dB) (just above the Nyquist rate); Gaussian PSF; (31) and (32).

where

(41)

The zero elements in (40) are due to the orthogonality of some of

the partial derivatives with each other.5 With the above notation,

we will also have

(43)

5For instance

h(x; y)
@h(x; y)

@x
dxdy

=
1

2

�

@h (x; y)

@x
dxdy

=
1

2
h (x; y) dy = 0 (42)

since the PSF has finite energy and lim h(x; y) = 0:

Fig. 5. Sampling phases in x and y directions (� and  ; dots indicate the lo-
cations at which signal is being sampled).

Let us now consider the symmetric case. For the oversampled

case, as , we will have

SNR (44)

where we can show that

(45)

(46)

(47)

as energy terms. See Appendix A for detailed calculation of

these energy terms.6 Fig. 4 shows the minimum detectable

versus SNR for the proposed local detector in (31) and the ideal

6We note that due to the Cauchy–Schwartz inequality E < E E , the
right-hand side of (44) is always positive. Also, as discussed in [20], this term
will vanish if the amplitude of the original scene (� + �) is known to the de-
tector. This is to say

SNR �
�(P ; P )

N

64

d

E

E
: (48)
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Fig. 6. Minimum detectable d as a function of SNR (in dB); best, worst, and average performance over the possible range of sampling phases (one set of uniform
samples 50% below the Nyquist rate); GLRT detector; h(r) = jinc (r); known � ; (24).

Fig. 7. Minimum detectable d as a function of SNR (in dB); best, worst, and average performance over the possible range of sampling phases (one set of uniform
samples 50% below the Nyquist rate); GLRT detector; Gaussian kernel; known � ; (24).

detector for the case of Gaussian PSF (symmetric) and over-

Nyquist sampling. The former detector has been suggested for

the case where all the model parameters including the noise vari-

ance is unknown to the detector. However as can be seen, for any

given , the difference between the required SNR for these de-

tectors is at most 3–4 dB.

Interestingly, the inverse proportionality of the fourth root

of SNR and resolution (separation between point sources) was

been reported earlier by our paper [19] and other researchers in

different frameworks in array processing [21], [22], [13], [16]

and also in optical imaging applications [8], [9], [1], [19] and

references therein.
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Fig. 8. Minimum detectable d as a function of SNR (in dB); average performance over the possible range of sampling phases (one set of uniform samples at
different sampling rates); GLRT detector; jinc-squared kernel; known � ; (24).

Fig. 9. Minimum detectable d as a function of SNR (in dB); worst case performance over the possible range of sampling phases (one set of uniform samples at
different sampling rates); GLRT detector; jinc-squared kernel; known � ; (24).
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2) Under-Nyquist Sampling: Supercritical sampling of a

bandlimited function (e.g., and its derivatives) preserves

its energy by a factor related to the sampling rate, regardless of

sampling offset. However, for the under-Nyquist (aliased) case

every element of will be a function of sampling phases

in and directions (we call these sampling phases and ,

see Fig. 5). This leads to a rather complicated expression for

the required SNR versus . Let us define a number of terms

which will be used to describe the dependence of sampling pa-

rameters on different variables and matrices. Suppose

is band limited to and in the

frequency domain and define and

where denotes the smallest integer greater than or equal

to its argument. To clarify further, let be the product

for the under-Nyquist case. In general, this matrix will

have the following form7:

(49)

where is defined in (40) (for the over-sampled case) and

’s and ’s are the matrices resulting from the aliased

components.

Figs. 6 and 7 show the minimum, maximum and average

values of the required SNR over the possible range of sampling

phases for jinc-squared and Gaussian kernels, respectively.

These curves are generated by using (24), which is the ex-

pression for the required SNR corresponding to the proposed

detector in (26). For a given value of , the required SNR is

computed for the values of and in the range of .

Then the maximum, minimum, and average of these values are

computed.

The curves are shown for the case where only one set of uni-

formly sampled data is available. Nevertheless, it can be proved

that the maximum, minimum, and average values of the resolv-

ability (or required SNR) remain the same for arbitrary number

of frames. This follows by noting that the number of frames

or the sampling rate are embedded inside the “SNR” on the

left-hand side of (24) and (31). For instance, for resolving a par-

ticular separation, doubling the sampling rate does not change

the required SNR, but rather implies that the same detection per-

formance can be achieved with twice the noise variance as com-

pared to the original sampling rate.

It is seen that the required SNR for the case where the PSF

is a Gaussian is on average 3 dB (and 16 dB at “worst case”)

more than for that for the case of simple circular aperture. This

can be explained by noting that the jinc-squared kernel con-

tains more energy in its second derivative. The more energy in

the second partial derivative means bigger difference between

the PDF’s under the two hypotheses and therefore better de-

tectability. Also, we note that the jinc-squared window has a

larger effective bandwidth which lets more high frequency in-

formation through. This phenomenon will also be observed in

the following sections.

Finally, Figs. 8 and 9 show the average and maximum resolv-

ability at different sampling rates below Nyquist. As observed,

7See Appendix B.

change of sampling rate has much less effect on the average

performance (i.e., the required total SNR) compared to that of

the performance at worst case (Fig. 9). These worst cases occur

when at some sampling scenarios (e.g., at 50% Nyquist), the

discrete measured signal includes two strong peaks located far

from each other (or roughly speaking, where the acquired sam-

ples are far from the point sources). This phenomenon clearly

degrades the performance of the detector. On the other hand,

if there exist some samples which are positioned closely to the

point sources, the detector collects more information about the

underlying signal.

III. ESTIMATION-THEORETIC APPROACH, FISHER INFORMATION

To complement the earlier results, in this section, we carry out

the Fisher Information derivations for the general signal model.

Many papers have computed the Cramér–Rao bound to study

the mean-square error of unbiased estimators for the distance

between the point sources [8], [9], [1], [21], [22]. The result of

the CRLB analysis assists us to first confirm the earlier results

obtained by the detection-theoretic approach, to better under-

stand the effect of estimation accuracy on the performance of

the local detector developed in Section II, and finally to derive

the KLD in Section IV, when discussing the information-the-

oretic framework. We present the analysis for the case where

and and when two frames

are measured, with sampling phases of and ,

respectively. As such, the vector of unknown parameters of the

signal model in (2) is

(50)

in which we identify two sets of parameters: parameters of in-

terest and nuisance parameters . We have assumed

and to be known, since the first frame can be considered as

the reference frame.

The CRLB for the separation (i.e., a nonlinear function of

is given by (51)–(52) shown at the bottom of the next page

[10] where is the Fisher information matrix defined by

(53)

where denotes the probability density function of the mea-

sured signal defined by (2). The matrix can be partitioned

with respect to the parameter sets and as

(54)

The derivation of the Fisher information matrix for the general

sampling scheme is presented in Appendix C. For the over-
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Fig. 10. CRLB(d) versus d; Maximum, minimum and average values over the possible range of sampling phases resulted from two sets of uniform samples
50% below the Nyquist rate (Periodically nonuniform sampling); � = � = 1; Gaussian PSF; known � .

Nyquist case, we note that the summations in Fisher informa-

tion matrix can be simply substituted by continuous integra-

tions. Furthermore these integrations can be rather easily com-

puted in the frequency domain for a given point spread function

(see [20] for some examples).

As for the under-Nyquist case, similar to the earlier calcula-

tion of energy terms in Section II, we can see that the Fisher

Information Matrix has the following components

(55)

where is the Fisher information matrix provided there is no

aliasing (i.e., same as what was computed for the over-Nyquist

case) and ’s and ’s are the related matrices due to

aliasing. Similar to Section II, for a given value of , the square

root of the CRLB is computed for the values and in the

range . Then the maximum, minimum and average values

are calculated to be shown in the following figures. For example,

these values are displayed in Fig. 10 for a Gaussian kernel when

. As seen, the estimation task becomes much harder

as decreases.

Figs. 11 and 12 show the average of the square-root of CRLB

versus for two cases, where and where . For the

case where the PSF is jinc-squared, the estimation accuracy is

better, due to the larger energy in the higher order derivatives of

a jinc-squared function. The effect of the difference between in-

tensities on the estimation variance is shown in Figs. 13

and 14. These curves indicate that the estimation task is harder

for the case of unequal intensities, as expected.

So far we have explored some detection-theoretic and esti-

mation-theoretic approaches to the problem of achievable res-

olution. We have investigated the corresponding performance

figures (required SNR for a specific resolvability and the lower

(51)

(52)
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Fig. 11. CRLB(d) versus d; average values over the possible range of sampling phases resulted from two sets of uniform samples 50% below the Nyquist rate
(Periodically nonuniform sampling) for Gaussian and jinc-squared PSFs; � = � = 1; known � .

Fig. 12. CRLB(d) versus d; average values over the possible range of sampling phases resulted from two sets of uniform samples 50% below the Nyquist rate
(Periodically nonuniform sampling) for Gaussian and jinc-squared PSFs; � = 1:5; � = 0:5; known � .

bound on error of estimating the separation). In the following

section we use (and extend) a well-known information-theoretic

measure in distinguishing two hypotheses. This measure nicely

links the asymptotic detection performance to the Fisher infor-

mation derived in this section.

IV. INFORMATION-THEORETIC ANALYSIS,

KULLBACK–LIEBLER DISTANCE

In the interest of completeness and also verifying the earlier

result from yet another perspective, we investigate the problem

of the achievable resolution by an information-theoretic
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Fig. 13. CRLB(d) versus �(= 2� �); average values over the possible range of sampling phases resulted from two sets of uniform samples 50% below the
Nyquist rate (Periodically nonuniform sampling) for Gaussian and jinc-squared PSFs; d = 0:03; known � .

Fig. 14. CRLB(d) versus �(= 2� �); average values over the possible range of sampling phases resulted from two sets of uniform samples 50% below the
Nyquist rate (Periodically nonuniform sampling) for Gaussian and jinc-squared PSFs; d = 0:03; known � .

approach. Namely, we compute the symmetric Kull-

back–Liebler Distance (KLD) or Divergence [12, p.

26] for the underlying hypothesis testing problem. KLD is

a measure of discrimination between two hypotheses, and

can be directly related to the performance of the optimal

detector. However, since KLD analysis does not take the

effect of nuisance parameters8 into account, it will indicate

a somewhat loose bound on the detection performance for

our problem.

Quantitatively, KLD is related to detection performance in the

following way. Asymptotically, as the number of independent

samples grows to infinity [12]

8Parameters which are unknown to the detector but are common under both
hypotheses.
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(56)

To gain better insight, we first carry out an analysis for the

case where the point sources are symmetric (that is to say

and . Having computed this simpler

case, we will extend the result to the general case. To begin,

let and be the PDF’s of the measured signal

under hypotheses and in (4). Then, we will have (see

Appendix D)

(57)

(58)

as , where is the observation (signal) space. We note

that the KLD measure behaves as the minimum detectable

raised to the power of 4 (confirming the power law we have

derived for the inverse of the required SNR in earlier sections.).

Now, let us consider the more general model of unequal and

asymmetric point sources. First, we observe from the above

analysis that for the underlying problem, KLD computation

requires an extension to higher order terms (see Appendix D

again). To this end, we extend the (low order) formula typically

used, as in for example [12, p. 26]

(59)

by a second-order approximation

(60)

where denotes the lexicographical (columnwise) scan-

ning operator. After some algebra (60) will lead to9

(61)

This is again in general applicable to any arbitrary sampling

scenario and point spread function. It is worth mentioning that

the matrix is in fact the Fisher information

for the parameter set in the quadratic approximated model in

9Note the difference between ��� and t which are defined in (8) and (50),
respectively.

(6). Interestingly, the above framework shows that computing

KLD in the context of [12] (that is, an approximation based on

small variations of parameter(s) of interest) is in spirit similar to

computing the original KLD for the approximated model. The

latter approach, of course, does not require any concern about

higher order terms.

For an alias-free signal (61) can be further simplified to (62)

shown at the bottom of the page whereas for the aliased case,

the right-hand side of (61) will depend on the sampling phases.

For undersampled image, similar to earlier analyzes, KLD

varies with sampling phases

(63)

where is the KLD for actual over-sampled image and

’s and ’s are the related terms caused by

aliasing. As sampling rate increases, the terms resulting from

aliasing will vanish and the expression

in (62) is obtained. Fig. 15 shows variation of KLD (63) over

the range of sampling phases for the symmetric case. We have

used the expression in (57) to find the maximum, minimum and

average values of KLD for any given separation below the

Rayleigh limit.

V. VARIATIONS IN POINT-SPREAD FUNCTION

The purpose of this section is to analyze how other parameters

in real-world imaging can affect the achievable resolution. The

analysis here helps us to compute the effect of small unmodeled

variations in PSF or changes of PSF by other blurring functions

(e.g., the effect of lens or charge coupled devices (CCD)). In this

section we are interested in studying three cases. In the first case

we present an analysis for an imaging system in which samples

are acquired through a CCD. We study how the detection perfor-

mance is affected by using such a system as compared to the ide-

alized point sampling. For the second case, we study the effect

of variations in PSF on the resolvability in a general framework.

We assume that the variation in PSF is known to the detector and

we derive the sensitivity of the required SNR versus the small

change in PSF. The third, and perhaps most important case, is

the scenario where the model (PSF) based on which we design

our detector is slightly different from the actual PSF. The result

of these analyzes will (for example) help quantify the impor-

tance of precisely knowing the blurring kernel on the resolving

(62)
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Fig. 15. Maximum, minimum and average values of KLD versus d for the possible range of sampling phases (50% below the Nyquist rate); h(r) = jinc (r);
symmetric case.

power. To gain more intuition, we concentrate on alias-free im-

ages throughout this section.

A. Imaging With Spatial Integration: CCD Sampling

In real-world imaging there are other possible blurring

sources which change the total PSF of the imaging system.

These blurring effects are usually modeled as a space-invariant

functions and can be therefore represented by a linear convolu-

tion with the assumed PSF of theimaging system. For instance,

imaging with a CCD can be properly modeled in such a way.

To see this effect, let us first recall that in uniform standard

(point) sampling scheme, we have

(64)

where is the sampling frequency. On the other hand, using a

CCD in image gathering will result in spatial integration of the

light-field coming from a (continuous) physical scene. As an

example, CCDs with square area which are uniformly sensitive

to light will generate the following discretized output:

(65)

Fig. 16. Simple structure illustrating the spatial integration caused by CCD.

where is the dimension of each CCD cell,10 as depicted in

Fig. 16. By defining

otherwise
(66)

as the blurring kernel of the above CCD, it can be seen that the

expression in (65) directly leads to the following:

(67)

(68)

where is the original scene to be imaged, denotes

the two-dimensional convolution operator and is the

10We ignore the effect of fill factor not being 100%.
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Fig. 17. Relative difference between the required SNR for CCD sampling and that of point sampling.

overall PSF. Now let SNR denote the required SNR for the

image collected by the above CCD sampling scheme. Fig. 17

shows the relative difference between this quantity and the re-

quired SNR for the point sampling as a function of . In this

example we have considered the symmetric and over-Nyquist

case and have presented the results for both jinc-squared and

Gaussian PSFs.

From a system design point of view, since typically a CCD

with larger effective area has better noise characteristics (i.e.,

smaller , one can optimize the size of the CCD by using such

a curve in effecting a trade-off with other parameters (like noise

variance versus sampling rate).

In what follows, we investigate the effect of any (small) vari-

ations in the PSF on the required SNR in a general framework

using perturbation analysis.

B. Variational Derivative Approach

In this section we concentrate on calculating the sensitivity of

the required SNR to (known) variations in PSF. We recall from

Section II that the expression for required SNR is a function of

the PSF and in particular its partial derivatives (up to the second

order). We use well-known techniques in calculus of variations

to compute the overall variation in the required SNR.

To begin, consider the expression for SNR in (24) and sup-

pose that the point spread function is changed by

. By using the concept of variational deriva-

tive [5], [24], [26], we can compute the variation in SNR (de-

noted by due to the variation . Namely

SNR

(69)

(70)

where SNR SNR SNR and and

are perturbations of matrices and defined in (40) and (43).

We have detailed the derivation of and in Appendix E.

Following these derivations, we present the result for the case

where point sources are located symmetrically

, and

(angular symmetric kernel). In this case the required SNR is

given by (44). Then the variation is computed as the equation

shown at the bottom of the page. As a result, the relative change

in SNR is given by11

SNR

SNR
(71)

11See Appendix E for details.

SNR
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Fig. 18. 1-D cut of stretched (� = 0:4) and compressed (� = �0:4) versions of the Gaussian PSF.

where

(72)

Invoking the Cauchy–Schwartz inequality, we have (73) shown

at the bottom of the page which indicates that the relative change

in SNR is bounded by the energy in the variation times a term

related to energies of the PSF and its derivatives. As an ex-

ample, consider the following variation which corresponds to

a “stretching” or “compressing” of the PSF

(74)

where

(75)

(76)

is merely an energy normalization factor.12 A plot of a 1-D cut

of stretched and compressed versions of the Gaussian PSF is

depicted in Fig. 18).

Fig. 19 shows the normalized variation in SNR versus for

the jinc-squared kernel. As expected, with a narrower point

spread function less SNR is required to resolve the point

sources and vice versa. In fact, we can obtain a closed-form

relationship for SNR in this specific case assuming that the

image is sampled supercritically. Let us consider the expression

in (44) which includes the energy of the PSF and its partial

derivatives. Now let denote the energy terms for the new

kernel . It can be shown that

(77)

12The expression in (74) can be approximated by (see the equation at the
bottom of the page.)

SNR

SNR

or

SNR

SNR
(73)

�h(x; y) � � �

2 h(x; y) x + y dxdy

E
h(x; y) + x

@h(x; y)

@x
+ y

@h(x; y)

@y
:
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Fig. 19. Variation in the required SNR versus parameter variation in PSF.

After some algebra we have

SNR

SNR
(78)

which holds true for any . The curve in Fig. 19 simply

shows this relationship.

C. Effects of Model Mismatch on Performance

Another type of analysis is to study the case when the as-

sumed model of the measured signal does not match the true

model. This is an interesting case study which provides answers

to the question of how much performance degrades due to mod-

eling inaccuracies or mismatch.

Let us assume that the actual point spread function is

, whereas the optimal detector is designed

for the point spread function ; so that is the

mismatch (unknown to the detector) between the actual PSF

and the assumed PSF. We observe that the (approximated)

signal model in this case is now given by

(79)

where

The measured signal will then be . Consequently, the

estimate of the parameter vector will be changed to

(80)

in which the second term on the right-hand side is identi-

fied as the “estimator bias.” We are now able to show that

follows a Gaussian PDF with mean and vari-

ance . Using this, we can compute the PDF of

which is again a Gaussian pdf with mean

and variance . The pdf of the suggested test

statistics which is compared to a prespecified threshold similar

to the expression in (13)

(81)

is characterized by a noncentral Chi-squared pdf under both hy-

potheses [11, p. 32]. To this end, we conclude that the detection

performance in the presence of mismatch is characterized by

(82)

(83)

where

(84)

(85)

are the resulting noncentrality parameters. It is also worth em-

phasizing here that in order to obtain and , the value of

in the expression above needs to be computed according to the

desired and by using the formula in (16).

Now as an example we again use (74) to compute the varia-

tion in probability of detection and false alarm rate. Hereafter,

we present the results for the case where the desired detection

and false alarm rates are and , respectively. Figs. 20

and 21 show the variation in probability of error versus (which

controls the stretching or compressing the PSF as in (74) for two
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Fig. 20. Variation in the error rate versus parameter variation in PSF; h(r) = jinc (r); (88).

Fig. 21. Variation in the error rate versus parameter variation in PSF; Gaussian window; (88).

different kernels, each of which at different values of . The

change in the total probability of error is computed by

(86)

(87)

(88)
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Fig. 22. Variation in the error rate versus d for fixed �; jinc-squared PSF.

Fig. 23. The maximum tolerable � versus d for the fixed probability of error; jinc-squared PSF.

Firstly we observe that the detector performance is severely af-

fected for a smaller (e.g., . Roughly speaking, for the

range of , the proposed detector completely fails if

exceeds .

In Fig. 22 we observe how the probability of error changes

as a function of for a given (i.e., variation in PSF).13 Also

13Hereafter, we only consider negative �.

Fig. 23 depicts the variations in PSF which can be tolerated

such that the probability of error is lower than a certain level.

Clearly, this amount highly depends on the separation between

point sources. For a small separation, even a minimal variation

in PSF can cause dramatically unpleasant results. It is worth

noting that the SNR used to generate these figures is the same

as that required for under no model mismatch.
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Fig. 24. Maximum tolerable � which can be compensated by sufficiently increasing SNR versus given d; jinc-squared PSF.

Another interesting question in this regard would be how

much extra SNR is required to compensate the error caused by

a model mismatch. To answer this question let us consider the

case where and are the desired detection

and false alarm rate, respectively. To satisfy these conditions

we can calculate the threshold which must be equal to in

(13). However, if there exists any mismatch caused by the vari-

ation in PSF, according to (84) and (85), by some calculations,

we have and in order to achieve the error

rates above. In other words, for a given , increasing the

SNR can provide the desired detection accuracy only if the fol-

lowing inequalities hold simultaneously:

(89)

(90)

We note that the first inequality enforces the pdf of the test

statistic under to have smaller noncentrality parameter so

that the required is accessible, whereas the second inequality

plays the reverse role for the pdf under . We can unify the in-

equalities in (89) and (90) as

(91)

Under the above condition a sufficiently high value of SNR can

compensate the effect of model mismatch. To be more realistic

let us also carry out the analysis for the case where we allow

the probability of error to be equal to 0.02 (i.e., and

. The threshold remains the same. However, to

satisfy the new conditions we only need and .

In other words it is possible to have an error rate less than

if

(92)

As an illustration of the above analysis, let us consider the case

where PSF undergoes the same effect as in (74). Fig. 24 shows

the amount of mismatch which can be compensated by presum-

ably high SNR (theoretically as for a given dis-

tance . We demonstrate two cases: the case where no extra

error can be tolerated and the case where we allow

. The results clearly indicate that specially for small

distance between point sources the detector is extremely sensi-

tive to (unknown) variation of PSF.

VI. PRACTICAL ASPECTS AND EXTENSIONS

In this section, we briefly discuss some future extensions and

practical aspects of the analyzes developed in the paper.

A. Application in Astronomical Imaging and Image

Processing: A Primary Case Study

A complete extension of the current work to a real problem in

astronomy requires a careful study and is beyond the scope of

this paper. Typically, the question of resolvability in astronomy

introduces new aspects to the problem such as presence of other

interfering phenomena, objects, clutter, non-Gaussian noise and

also time-varying PSF. Each of these issues should be carefully

treated and incorporated in the analysis. As an example, we

have addressed the issue of variation and mismatches in PSF

in Section V.
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Fig. 25. Original image.

Fig. 26. Measured image.

In this section we present a basic application of the proposed

detector to a related but slightly simplified problem. The under-

lying image to be restored is a collection of point sources (or

more precisely pairs of closely spaced point sources) and the

collected data is a discrete noisy and blurred version of it as

shown respectively in Figs. 25 and 26.

In the astronomical data analysis community, a well-known

deconvolution method named CLEAN is widely used [23].

CLEAN strictly assumes that the underlying image consists

of point sources and estimates their locations and intensities.

Furthermore, the PSF is assumed to be known. It first finds the

point which has the maximum brightness and subtracts

the effect of the (estimated) point sources (i.e., the convolution

of and the PSF). Then the resulted signal

is iteratively used to find and remove other point sources until

the energy of the residual signal reaches a prespecified noise

level. The result of applying this method to the image in Fig. 25

is demonstrated in Fig. 27. Obviously, the use of CLEAN is

limited by the width of PSF, since any pair of point sources

Fig. 27. Result of applying CLEAN method to the image in Fig. 26.

Fig. 28. The result of modified CLEAN (CLEAN associated with the local
detectors).

which are spaced within a distance related to the width of the

PSF is identified as a single point source.

We argue that the resolvability of CLEAN can be significantly

improved by employing the local detector we have proposed in

this article. We include our local detection machinery in this ap-

proach in the following way. First instead of searching for the

point with the maximum brightness, we find the point with the

largest intensity after convolving the data with PSF.14 This ap-

proach will help us to locate the midpoint of the pairs of point

sources within a properly chosen window. Once this point is

identified, one can conveniently set up the local detector to de-

termine the number of point sources in the neighborhood of the

point and also estimate the distance between point sources and

their intensities.

A basic implementation of this approach was carried out and

the result of applying it to Fig. 25 is shown in Fig. 28, which

closely follows the structure of the original data. To have a better

14A quantitative proof of the optimality of this approach is given in [20], [18].
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Fig. 29. Residual: difference between the measured image and convolution of
Fig. 28 and PSF.

indication of the claimed improvement, see the image in Fig. 29

which is the difference between the collected image (Fig. 26)

and the convolution of the output image (Fig. 28) with the PSF.

B. An Application to Physical Fault Detection in Integrate

Circuit Manufacturing

Integrated circuit manufacturing processes require transfer-

ring a circuit pattern (including logic gates, memory cells, etc.)

onto the silicon wafers. This process is referred to as lithog-

raphy. However, because of several factors (like irregularity of

surface or mask imperfection) the above process may introduce

some errors in replicating the pattern. These errors translate into

short or open circuits which make the manufactured IC use-

less. Hence, there is a need for metrology and inspection to de-

tect these physical defects or faults. The commonly employed

method is to image the printed wafer using an SEM (Scanning

Electron Microscope) and to inspect this image by matching

with the desired, expected pattern. Over time, the dimensions of

the printed circuits are becoming increasingly small (currently

65 nm), and this, coupled with the resolution limits of the SEM,

lead to a heavily blurred and noisy version of the desired image

of the wafer. We have briefly explained how to employ and ex-

tend the proposed detection frameworks to such inspection tasks

in [17]. However the developed detector evaluates the correct-

ness of a circuit or mask in a simple way and for comprehensive

and practical purposes the method we propose needs to be gen-

eralized. Such generalization requires better understanding of

the physical models of the underlying systems.

VII. CONCLUSION

In this paper we investigated the problem of resolving two

closely spaced point sources (beyond the Rayleigh limit) from

noise-corrupted, blurred, and possibly undersampled images.

We have studied three different frameworks to derive perfor-

mance limits on minimum resolvability, namely, a detection-

theoretic approach, an estimation-theoretic analysis, and an in-

formation-theoretic approach. We have discussed the case of

under-Nyquist sampling in several parts of this paper because of

its significance in, for example, image super-resolution recon-

struction [3], [15], [4]. To our knowledge, this paper presents

the first direct analysis of resolution limits in imaging for un-

dersampled images.

For the detection-theoretic approach, we have put forward a

hypothesis testing framework and derived the relationship be-

tween the required SNR and the detectable distance between

point sources. We explicitly found a general, fundamental, and

informative relationship to quantify a (statistical) measure of

resolution, and also to reveal the effect of point spread function

and sampling parameters on resolvability. The established ex-

pressions are in general applicable to any point spread function

and any arbitrary sampling scheme. The analysis for the under-

sampled images demonstrates explicitly how the performance

is affected by the sampling phases (sampling offset), while in

the over-Nyquist case the performance is independent from the

sampling offset.

In the process of addressing the fundamental relationship be-

tween SNR and resolvability, we also proposed a corresponding

detector which can be implemented in practice to estimate the

locations and intensities of point sources from a degraded (noisy

and blurred) image. As an example of implementing such a tech-

nique, one can first apply a running windowed energy detector

to determine whether a pattern (generated by a point source)

within the window is present or not. Then as a refinement step,

the proposed detector will be applied to resolve the overlapping

patterns originated by two closely-spaced point sources.

We studied the asymptotic performance of the ML estimate

of the unknown parameters, using the Fisher information ma-

trix. Deriving a lower bound on the variance of the parameter

, in particular, was rather helpful in confirming the results

of detection-theoretic analysis and also justifying the effect

of estimation accuracy on the performance of the proposed

detector. We also derived the symmetric Kullback-Liebler dis-

tance for the underlying problem by extending its standard form

to higher order terms. This analysis provides an upper bound

on the detection performance we have derived in Section II

and also connects the Fisher information matrix with this

performance bound.

As a practical matter, we presented a sensitivity/variational

analysis to find the effect of known or unknown variation of

PSF on the performance of the detector discussed in Section II.

The results of this part are useful to compute the effect of a

known variation of PSF on performance of an imaging system

and to quantify the degradation of such a system due to imper-

fect knowledge of the model of the imaging system.

Furthermore, we have briefly discussed some of the practical

uses of the proposed methodology to other fields such as astro-

nomical data analysis tasks and circuit inspection applications.

As for future directions, one open area is to extend this frame-

work to a more complicated scenario where the PSF is partially

known or is associated with some stochastic parameters. An-

other direction is to study the case of unknown motion between

frames. Also, as mentioned before, the problem of resolving

point sources is a canonical case study in imaging and image

processing. We believe more general imaging problems can be

treated with the same techniques employed in this paper, with

proper extension (and complication) of the imaging models.

Resolution limit in photon-limited imaging systems is an-

other important case study that needs to be investigated. The
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noise in these systems is no longer additive readout noise and

follows the Poisson process. Also, in many cases the underlying

image itself may contain different forms of noise and in partic-

ular clutter or unwanted interference which are also described

by a probabilistic function.

Another challenging direction is to investigate the perfor-

mance of the imaging systems with time-varying characteris-

tics (for example, time-varying PSF particularly in astronomical

applications). Such behavior may be modeled by some proba-

bilistic descriptions as well. The analysis here requires a some-

what more sophisticated machinery.

We have briefly studied the resolution problem for the case

where the measured signal is contaminated by Poisson noise (for

example in photon-limited imaging) in [17]. This is an important

case study in astronomical applications and SEM imaging.

APPENDIX A

ANGULAR SYMMETRIC PSF

Let us consider the case of angular symmetric PSF

such as that corresponding to circular

aperture. Following relationships for the partial derivatives can

be written in the polar form :

After doing some math and by applying

We can show that

(93)

(94)

(95)

(96)

Fig. 30. E ;E ;E , and E are the energy of the discrete signals within
depicted areas.

by using

Therefore

SNR (97)

APPENDIX B

SAMPLING THEORY FOR UNDER-NYQUIST MEASUREMENTS

To begin, let us first mention that for the case of over-Nyquist

sampling, following relationships are hold:

(98)

(99)

Whereas in the under-Nyquist case, assuming that is

symmetric (real and band limited to

and , we will have (100)–(103) shown at the

bottom of the next page where denote the real part.15 For

instance, if and we will

similarly have

(105)

where denote the energy of signal considering there is no

aliasing effect and and are the terms related to

aliasing in horizontal, vertical and diagonal directions as de-

picted in Fig. 30.

It is worth mentioning that for the general energy terms

we will have terms as well

(106)

15We have used the following identity to derive the above results

a = ja j + 2 <fa a g (104)
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APPENDIX C

DERIVATION OF THE FISHER INFORMATION MATRIX

Let and denote the sets of samples of the first and the

second frames, respectively. From (53), the Fisher Information

matrix can be written as

(107)

where is defined in (108)–(115) shown

at the bottom of the next page.

APPENDIX D

COMPUTING THE KULLBACK–LIEBLER DISTANCE IN (57)

Directly using the results in [12, p. 26], we can obtain the

following expression for KLD:

(116)

where is the Fisher Information measure [10, p 40].

(117)

However, for the hypothesis test of interest in (4), is zero

and (116) is not directly applicable. Here we extend the ap-

proach in [12, p. 26] by considering higher order terms. Con-

sider the following Taylor expansion:

(118)

(119)

Noting that16

(120)

We will have

16Since p(g; d) is an even (and differentiable) function around d = 0.

(100)

(101)

(102)

(103)
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As a result, we can write (118) as

(121)

On the other hand, we observe that

(122)

Therefore, we show (123) and (124) at the bottom of the next

page. As we see from (123), the divergence for the underlying

hypothesis testing problem is directly related to the second

derivative of the Fisher information matrix evaluated at .

APPENDIX E

DERIVATION OF AND IN (70)

Computing and requires the following:

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)
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where we assume that

as or . Therefore, we show (125)–(126) at the bottom

of the page, where

(123)

(124)

(125)

and

(126)
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