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Abstract

Accurate systems biology modeling requires a complete catalog of protein complexes and
their constituent proteins. We discuss a graph-theoretic/statistical algorithm for local dynamic
modeling of protein complexes using data from affinity purification-mass spectrometry experi-
ments. The algorithm readily accommodates multicomplex membership by individual proteins
and dynamic complex composition, two biological realities not accounted for in existing topolog-
ical descriptions of the overall protein network. A likelihood-based objective function guides the
protein complex modeling algorithm. With an accurate complex membership catalog in place,
systems biology can proceed with greater precision.
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Introduction

Systems biology networks rely on functional macromolecules, often multipro-
tein complexes, to accomplish the work of the cell. A catalog of these com-
plexes and their constituent proteins is a necessary, but recently unavailable,
component of accurate systems biology modeling. To fully understand the
interactive relationships of cellular modules, investigators need to account
for both stable and dynamic complex composition, as well as multicomplex
membership by individual proteins. Currently, large-scale topological de-
scriptions of the overall protein network are available using protein-protein
complex comemberships and binary physical interactions detected by affinity
purification-mass spectrometry (AP-MS) and yeast two hybrid (Y2H) tech-
nologies, respectively (Jeong et al., 2001, Salwinski and Eisenberg, 2003).
Scholtens et al. (2004) discuss additional computational methodology for as-
certaining local dynamic models of precise protein complex membership from
AP-MS data and outline the next steps required for integrating the different,
but complementary, information offered by AP-MS and Y2H. In this paper,
we develop in detail the likelihood-based objective function that drives the
technology reported by Scholtens et al. (2004). Furthermore, we specifically
note how biological particulars of AP-MS data fit into the graph theoretic and
statistical paradigms that motivate the complex identification algorithm.

Graph Theoretic Paradigm

Graphs consisting of nodes and edges are particularly helpful for representing
both the complex membership estimation problem and the available AP-MS
and Y2H data. Figures 1A)-1D) contain four physical topology schemes for
hypothetical protein complexes with nodes representing proteins and edges
representing physical interactions. Separate complexes are denoted by differ-
ent edge colors. We use these four schemes to demonstrate the important
structural differences between the desired protein complex catalog and the
different assays of protein-protein relationships.

Protein Complex Membership Graph, A

Our goal is to estimate A, a bipartite graph representing the desired protein
complex catalog. One set of nodes in A, VJ = {P1, ..., PJ}, represents J
proteins and another set of nodes in A, VK = {C1, ...., CK}, represents K
protein complexes. An edge in A connecting Pj and Ck indicates membership
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Figure 1: A, Y , and U for Four Hypothetical Protein Complex Schemes
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of Pj in Ck for all j = 1, ..., J and k = 1, ..., K. Since the number of complexes
K is unknown, estimation of A implicitly requires estimation of K. Ideally, we
would like to estimate A for all proteins and complexes in the cell, but we are
restricted by the set of proteins involved in the AP-MS experiments and the
set of complexes they are in. Figures 1E)-1H) depict A for the four complex
schemes in Figures 1A)-1D), respectively.

The graph A accounts for two biological realities not accommodated in
other automated algorithms for the analysis of AP-MS data (Jansen et al.,
2003). First, it allows for multi-complex membership by individual proteins
since a protein, a node in VJ , can be connected to multiple complexes, nodes
in VK . Second, dynamic complexes that allow different subunits at different
times can be represented as separate nodes in VK according to all possible com-
positions. These two allowances are of fundamental importance for procuring
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an accurate protein complex catalog, and are readily incorporated into the
bipartite graph structure.

Protein-Protein Complex Comembership Graph, YVB

AP-MS technology does not directly assay the edges in A. Instead, it assays
the edges of YVB

, a graph of complex comembership, by finding all hits that
are comembers in at least one complex with each bait. YVB

is related to A
through a transformation we call YVB

= (A ⊗ A′)VB
, where VB is the sub-

set of proteins in VJ that are used as baits in an AP-MS experiment, and
VH = VJ\VB is the complementary subset of proteins in VJ that are found as
hits but never used as baits. YVB

can be thought of as the graph of pairwise
complex comemberships based on “ideal” observations from purifications with
the set of baits VB assuming perfectly sensitive and perfectly specific AP-MS
technology. If VB = VJ , then all proteins with at least one common complex
membership are connected by reciprocated edges in YVB

, and proteins without
common complex affiliations are unconnected. Sets of nodes in YVB

for which
all pairwise (reciprocated) edges exist, i.e. complete subgraphs, correspond to
sets of proteins that are all comembers in at least one complex. Maximal com-
plete subgraphs in YVB

contain entire sets of proteins composing one complex.
Figures 1I) - 1L) depict the corresponding YVB

graphs for Figures 1A)-1D)
when all proteins are used as baits, presuming AP-MS technology with perfect
sensitivity and specificity. While the mapping from A to YVB

is unique under
the transformation YVB

= (A ⊗ A′)VB
, the reverse mapping from YVB

to A
is many-to-one. Maximal complete subgraphs resolve this lack of uniqueness,
and so our complex membership estimation algorithm searches for collections
of proteins in VJ which, given the observable data, resemble maximal complete
subgraphs.

In actual AP-MS experiments, VJ �= VB, and the distinction between bait
proteins and hit-only proteins is essential to knowing which complex comem-
berships are looked for, and which are not. The graphs in Figure 2 depict
YVB

for the complexes in Figures 1A) - 1D) using different sets of bait pro-
teins. Complex comemberships for pairs of bait proteins are tested twice, once
during each respective purification, and are represented by red reciprocated
edges in YVB

. For bait-hit-only pairs, complex comembership is only tested
once since the hit-only protein is never used as a bait. In YVB

, gray unrecip-
rocated edges from baits to non-baits represent existing singly tested complex
comemberships. For pairs of hit-only proteins, complex comembership is never
tested, and in YVB

, no edges connect hit-only proteins. The incomplete view of
all possible pairwise complex comemberships prevents a direct mapping from
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maximal subgraphs in YVB
to A. When only one protein is used as a bait,

as in Figures 2E) - 2H), all four hypothetical complex schemes result in iden-
tical YVB

graphs, despite their very different true organization. Additional
purifications help resolve complex comembership to an extent, but the topol-
ogy among the remaining hit-only proteins is unknown. We have no basis on
which to decide if the hit-only proteins form one complex with their common
baits, separate complexes, or something in between since we cannot locate the
maximal complete subgraphs in the partially tested YVB

.

Figure 2: Complex Comembership Graphs Y for Different Sets of Baits
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To deal with the problem of indiscernable maximal complete subgraphs
due to untested complex comemberships, we define a special type of maxi-
mal complete subgraph for AP-MS bait-hit data: a BH-complete subgraph is a
collection of nb nodes in VB and nh nodes in VH for which all nb(nb − 1) recip-
rocated bait-bait edges exist, and all nb(nh) unreciprocated bait-hit-only edges
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exist. A maximal BH-complete subgraph is a BH-complete subgraph that is
not contained in any other BH-complete subgraph. We account for the precise
set of observed data, including bait/hit protein status and tested/untested
complex comemberships, by searching for maximal BH-complete subgraphs in
YVB

and reporting these as complex estimates. Effectively, when using the
data available from a partially observed YVB

, we assume that two hit-only
proteins that are complex comembers with a common bait are also complex
comembers with each other. This assumption should motivate further AP-MS
experiments to test the actual complex comembership among pairs of hit-only
proteins reported to be in the same complex by our algorithm. In general,
maximal BH-complete subgraphs with a low proportion of bait proteins out of
the total number of proteins represented may in fact compose more than one
complex.

Observed AP-MS Graphs, ZVB

Using the set of bait proteins VB, AP-MS technology assays the true complex
comembership edges in YVB

, and we record these observations in the graph
ZVB

. For a purification using bait protein Pb ∈ VB, directed edges are drawn
from the node Pb to the nodes for all observed hit proteins. In practice, AP-
MS technology is neither perfectly sensitive nor specific, resulting in both FN
and FP assignment of edges. Since the doubly tested bait-bait edges are not
necessarily consistently detected in both purifications, unreciprocated edges in
ZVB

may connect elements in VB; in YVB
, unreciprocated edges between nodes

in VB are impossible. See Supporting Information for further discussion of FN
and FP observations.

Protein-Protein Physical Interaction Graphs, U

Y2H technology does not measure the same complex comembership relation-
ships as AP-MS technology. Instead, it detects direct binary physical interac-
tions between pairs of proteins. Figures 1M)-1P) depict U for data resulting
from hypothetical perfectly sensitive and specific Y2H experiments for the
complexes in Figures 1A)-1D), respectively, with nodes representing proteins
and edges representing physical interactions. In U , a missing edge between two
proteins only implies lack of physical interaction, not lack of complex comem-
bership. The topology required of complex comembers in U is that some edge
path, possibly through other proteins, connects them. This necessary crite-
ria is not sufficient for complex identification, however, since sets of proteins
connected by edge paths in U do not always form complexes. In contrast,
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for YVB
, sets of complex comembers in A form BH-complete subgraphs, and

excepting nonidentifiable subcomplexes, maximal BH-complete subgraphs in
YVB

translate back to A.
There is also a substantial difference in the interpretation of the terms FN

and FP for AP-MS and Y2H technology, further underscoring the need to
carefully distinguish between the two data types. If two proteins are complex
comembers but do not directly interact, a FP Y2H observation of such a pair
would be a true positive (TP) AP-MS observation. Similarly, a FN AP-MS
observation of this same pair would be a true negative (TN) Y2H observation.
While a TP Y2H observation is indicative of both physical interaction and
complex comembership, a TN Y2H observation is uninformative regarding
complex membership. Due to its direct relationship with A, AP-MS data is
better suited for complex membership estimation. Once complex membership
is known, an important next step would be to use complementary Y2H data
to elucidate the actual physical connectivity among proteins.

Relating A, Y , and Z

In summary, the bipartite graph A can be transformed to YVB
= (A⊗A′)VB

, the
true complex comembership graph that is assayed by AP-MS technology. The
observed portion of YVB

based on a set of bait proteins VB, is then recorded in a
graph ZVB

, which is subject to both FN and FP assignment of edges. In short,
the transition from true complex composition to the observed AP-MS data
can be represented as A → YVB

→ ZVB
. Our complex membership estimation

algorithm begins with the observed data ZVB
and works toward an estimated Â,

or ZVB
→ Â, by searching for structures in ZVB

that closely resemble maximal
BH-complete subgraphs. Our algorithm incorporates user-specified sensitivity
and specificity parameters that allow a group of proteins to be identified as a
complex, even though there may be some missing edges from the maximal BH-
complete subgraph. External evidence, such as cellular component data from
the Gene Ontology (GO) Consortium, can also be included to lend credence
to the existence of an edge, even though it is not observed in the data.

Matrix Representation

The three graphs A, Y , and Z can be represented as matrices. The bipartite
graph A can be represented as an affiliation matrix, a data structure and
concept frequently used in social networks analysis (Wasserman and Faust,
1999). The affiliation matrix A has J rows corresponding to the set VJ of J
proteins and K columns corresponding to the set VK of K complexes. An
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entry of 1 in the jth row and kth column of A, or A[j,k], indicates membership
of Pj in Ck (j = 1, ..., J , k = 1, ..., K), and an entry of 0 indicates lack of
membership. For ease of notation, we assume that the first N = |VB| ≤ J
rows of A correspond to the N bait proteins.

Y is related to A through the product of A with its transpose, Y = A ⊗
A′, under the Boolean algebra defined by 0 × 0 = 0 × 1 = 1 × 0 = 0 +
0 = 0 and 1 × 1 = 0 + 1 = 1 + 0 = 1 + 1 = 1. The symmetric matrix
Y contains the set of true complex comemberships assayed by the AP-MS
technology. For all i, j ∈ {1, ..., J}, if A[i, k] = A[j, k] = 1 for at least one k ∈
{1, ..., K}, then Y [i, j] = 1. If we let the J rows of Y represent baits and the J
columns of Y represent hits, then Y [i, j] = 1 if bait protein i “ideally” finds hit
protein j in its purification, and 0 otherwise. For these “ideal” observations,
Y [i, j] = Y [j, i]. Actual AP-MS experiments only assay the first N rows of
Y according to the set VB of baits, or Y [1:N, ] = YVB

. Y can be divided into
three sections, corresponding to doubly tested, singly tested, and untested
complex comemberships. 1) Y [1:N, 1:N ] = YVB

[, 1:N ] records symmetric bait-
bait complex comemberships that are tested twice. 2) Y [1:N, (N+1):J ] =
YVB

[, (N+1):J ] records bait-hit-only complex comemberships that are tested
once. 3) Y [(N+1):J, 1:J ] represents possible AP-MS purifications using the
set of proteins VH that were never performed.

The matrix ZVB
is an N × J matrix which represents the observed version

of YZB
= Y [1:N, ] using the actual data gathered in an AP-MS experiment.

For i = 1, ..., N and j = 1, ..., J (i �= j), ZVB
[i, j] = 1 if bait protein i finds hit

protein j, and 0 otherwise. We assign ZVB
[i, i] = 1 for i = 1...N . Even though

YVB
[, 1:N ] is necessarily symmetric, ZVB

[, 1:N ] may be asymmetric due to the
possibility of FN and FP observations.

For the discussion of the statistical model, we will refer to the matrix
representations of A, YVB

, and ZVB
, but the corresponding graph structures

could also be used. For ease of notation, the VB subscripts in YVB
and ZVB

will be dropped.

Statistical Paradigm

The graph theoretic paradigm clarifies the nature of AP-MS and Y2H data
and their relationship to protein complex membership recorded in A. The
existence of FP and FN observations makes perfect detection of maximal BH-
compelte subgraphs in YVB

impossible, thus motivating a statistical approach
to estimating A from ZVB

. Proposed estimates of A are evaluated according
to the two-component objective function
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P (Z|A, µ, α) = L(Z|Y = A ⊗ A′, µ, α) × C(Z|A, µ, α), (1)

where the first component, L(Z|Y = A ⊗ A′, µ, α), is the likelihood of Z,
given Y = A⊗A′, and the second component, C(Z|A, µ, α), is a probabilistic
measure of the degree to which the proposed complexes in A each reflect their
assumed underlying maximal BH-complete graph structure. Both L(Z|Y =
A⊗A′, µ, α) and C(Z|A, µ, α) depend on µ and α, user-specified parameters set
to reflect the believed specificity and sensitivity of the AP-MS technology. An
extension for incorporating external similarity data is discussed in Supporting
Information.

L(Z|Y = A ⊗ A′, µ, α) (2), is the likelihood for independent Bernoulli
observations of the existence of an edge under a logistic regression model.
L(Z|Y = A ⊗ A′, µ, α) (2) depends on A through Y [1:N, ] = (A ⊗ A′)[1:N, ],
and in our setting, the values of Yij are to be estimated. Specifically, define

L(Z|Y = A⊗A′, µ, α) =

N∏
i=1

N∏
j=1,j �=i

p
Zij

ij (1−pij)
1−Zij×

N∏
l=1

(N+M)∏
m=(N+1)

pZlm
lm (1−plm)(1−Zlm),

(2)
where log (pij/(1 − pij)) = µ + αYij. If Yij = 1, then pij is the probability of
observing an edge between proteins i and j, given that they are comembers in
at least one complex, i.e. the sensitivity. If Yij = 0, then pij is the probability
of observing an edge between proteins i and j, even though they are not
actually in a complex together, i.e. the FP probability. We assume that any
errors made in the observation of edges are independent of each other.

A range of values can be specified for µ and α, but we make two as-
sumptions in the specifications. First, that Pr(Zij = 0|µ, α, Yij = 0) >
.5, and Pr(Zij = 1|µ, α, Yij = 1) > .5, corresponding to sensitivity and speci-
ficity values each greater than .5. Second, that Pr(Zij = 0|µ, α, Yij = 1) >
Pr(Zij = 1|µ, α, Yij = 0), that is, the FN probability is higher than the FP
probability. The purification step in AP-MS technology makes this assumption
reasonable. In practice, we find that very small values of Pr(Zij = 1|µ, α, Yij =
0) and moderate values of Pr(Zij = 1|µ, α, Yij = 1) seem to yield the most
biologically meaningful results.

Maximization of L(Z|Y = A ⊗ A′, µ, α) to estimate the values of Yij is
straightforward. The contribution of singly tested edges to the likelihood is
maximized if Yij = Zij. For doubly tested edges, the contribution of these data
to the likelihood is maximized if (Yij, Yji) = max(Zij, Zji). Our algorithm be-
gins by assigning the maximum likelihood estimates of Yij for i = 1, ..., I and
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j = 1, ..., (N + M), resulting in Ŷinit. The initial estimate of A, Âinit, then
consists of K̂init columns recording protein membership in the K̂init maxi-
mal BH-complete subgraphs that exist in the graph determined by Ŷinit. The
maximal BH-complete subgraphs represent a set of complex proposals that,
based on the likelihood alone, appear to compose protein complexes. We
present an algorithm for maximal BH-complete subgraph detection in Sup-
porting Information; adaptations of other maximal subgraph algorithms are
also a possibility (Bron and Kerbosch, 1973).

The initial estimate of complex membership based strictly on the likelihood
does not allow missing edges from the BH-complete subgraphs between baits
and hit-only proteins, and if only one bait–hit-only edge from an existing
complex is a FN, the complex will be estimated as two complexes in Âinit.
Since the thousands of individual edges in Y are tested at most twice, it
is plausible that the maximum likelihood estimate Ŷinit may not accurately
reflect reality; C(Z|A, µ, α) offers a second criteria to further refine Â and
thus improve upon the estimate based solely on L(Z|Y = A ⊗ A′, µ, α). The
second part of P (Z|A, µ, α) (1), namely C(Z|A, µ, α), is designed to allow
combinations of the complex estimates in Â that increase C(Z|A, µ, α) in favor
of small decreases in L(Z|Y = A ⊗ A′, µ, α).

Suppose the kth column of Â contains a proposed complex, ck, consisting
of a set bk of nk bait proteins and a set hk of mk hit-only proteins. Since the
edges in our graph represent complex comembership, the true BH-complete
subgraph for a set of proteins forming one complex should contain nk×(nk−1)
reciprocated edges connecting all pairs of baits and nk × mk unreciprocated
edges connecting all baits to all hit-only proteins. Since the AP-MS technology
is not perfectly sensitive, only a number, xk, of the total number tk = nk ×
(nk + mk − 1) of edges might be observed, with tk − xk unobserved. The
consistency of xk with the believed sensitivity of the AP-MS technology can
be measured for each complex according to

Γ(ck) =

(
tk
xk

) ∏
g∈bk

∏
h∈bk∪hk,h �=g

ezgh(µ+α)

1 + eµ+α
(3)

for k = 1, ..., K. Γ(ck) is the binomial probability for the number of observed
edges in the proposed BH-complete subgraph for complex ck, given the sensi-
tivity of the AP-MS technology.

The allocation pattern of the missing edges is as important as the number
of missing edges in a subgraph for a proposed complex. The randomness of
the allocation of the missing edges that are observed in the data, denoted by
Φ(ck), can be measured by the cumulative probability of observing a particular
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missing edge pattern for the edges in complex ck or something more extreme
using the hypergeometric distribution (e.g., a two-sided p-value from Fisher’s
exact test). We measure the randomness of the missing edge pattern based on
indegree rather than outdegree. When an AP-MS tag is applied to a protein,
in some cases, it may change the conformation of that protein, rendering it
incapable of binding to some or all of its usual complex partners. If a bait
protein does not find several complex partners, the measure of Φ(ck) according
to indegree does not penalize for systematic missing edges. If, however, a
protein is found by few baits in the complex, then the protein seems not a
member of the complex.

C(Z|A, µ, α) is taken to be the product of Γ(ck) and Φ(ck) for all K pro-
posed complexes: C(Z|A, µ, α) =

∏K
k=1 Φ(ck)Γ(ck). Since 0 < Φ(ck) <= 1 and

0 < Γ(ck) < 1, C(Z|A, µ, α) tends to increase for a smaller number of high
quality complexes.

The complex estimation procedure iteratively updates Â, beginning with
the initial maximal subgraph estimate for the complexes Âinit by proposing
pairwise combinations of the complexes recorded in the columns of Â. If the set
of proteins associated with two complexes in Â increase P (Z|A, µ, α) (1) when
treated as one complex, then the combination is accepted. The acceptance
criterion amounts to testing whether log Pk∗ − log Pk1,k2, the difference in the
log of P (Z|A, µ, α) when ck1 and ck2 are combined into ck∗, is greater than
zero. Algebraic details are provided in Supplementary Information. Accepting
refinements to Â that increase P (Z|A, µ, α) yields complexes that are both
reflective of approximate maximal BH-complete subgraph structure for protein
complexes and consistent with the observed AP-MS data. A tuning parameter
could be used to further refine the contributions of L(Z|Y = A⊗A′, µ, α) and
C(Z|A, µ, α) in the algorithm.

Complex Membership Estimation Algorithm

The entire complex membership estimation algorithm proceeds as follows and
is executable using the R (Ihaka and Gentleman, 1996) package apComplex

available at http://www.bioconductor.org. In practice, there may be a slight
difference in the final complex estimates depending on the order in which pro-
posals are made for complex combination. We recommend first ordering the
initial complex estimates according to the number of bait proteins, and propos-
ing combinations of these complexes with other complexes. The complex es-
timates with the highest number of baits are based on the largest amount of
observed data, and are therefore potentially more reliable starting points for
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the combination procedure than the complex estimates with fewer baits.

1. Maximize L(Z|Y = A⊗A′, α, µ) (2) by setting Ŷinitij = Zij for all singly

tested edges and (Ŷinitij , Ŷinitji
) = max(Zij, Zji) for all doubly tested

edges.

2. Find an initial estimate for A, Âinit, consisting of all maximal BH-
complete subgraphs in Ŷinit.

3. Order the columns of Âinit according to the number of baits.

4. Set k = 1 and K̂init = number of columns of Âinit.

5. Set Â = Âinit and K̂ = K̂init.

6. For ck = Â[, k], find the set Ak of columns of Â, excluding ck, that share
at least one common entry of “1”. Calculate log Pk∗ − log Pk1,k2 for ck

paired with all elements in Ak.

7. If at least one value of log Pk∗− log Pk1,k2 for ck and the elements of Ak is
greater than 0, replace ck with the union of ck and cAk,max

, the element
of Ak with which ck has the largest value of log Pk∗ − log Pk1,k2. Remove

cAk,max
from Â, as well as any complexes that are now subsets of ck. Set

K̂ = the number of columns of Â.

8. If none of the values of log Pk∗ − log Pk1,k2 for ck and the elements of Ak

are greater than 0, set k = k + 1 and return to step 5.

9. Repeat until k = K.

Our algorithm results in three types of complex predictions: 1) multi-
bait-multi-edge (MBME) complexes containing more than one bait and more
than one edge in the subgraph; 2) single-bait-multi-hit (SBMH) complexes
containing one bait and a collection of hits; and 3) unreciprocated bait-bait
(UnRBB) complexes containing two proteins, both used as baits, connected
by one unreciprocated edge. The quality of the complex predictions from our
algorithm depends on the number of baits in each complex since this relates
directly to the amount of observed data for each complex. MBME complexes
contain data from multiple purifications, allowing a more detailed estimation
of the complex comembership structure among the hits. SBMH complexes
may have more structure than reported since the edges among the hits are
untested. The edges in UnRBB complexes may result from FP observations
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since they are tested twice, observed once, and are not contextually confirmed
by other edges. Investigators are encouraged to examine the MBME complexes
as the most reliable outputs, and use the SBMH and UnRBB complexes to
develop future experiments.

Simulation Study

To assess the accuracy of our complex identification algorithm, we performed
a simulation study with N = 200 bait proteins, M = 400 hit-only proteins,
and K = 55 complexes. To determine the size of the first 50 complexes, we
generated 50 random variables from a Poisson distribution with λ = 10 result-
ing in complexes with a range of 2 through 17 proteins. For each complex, we
then randomly selected a set of proteins equal to the complex size for mem-
bership in the complex. Since in reality, there is likely more overlap between
protein complexes than expected by random chance, we hand-generated the
last 5 complexes. For the 51st complex, we selected an existing complex of size
10 and changed two of the hit proteins to other hits. For the 52nd complex,
we selected a different existing complex of size 10 and changed two of the bait
proteins to other baits. The 53rd complex was formed by taking an existing
complex with 5 members, and switching one bait and one hit to a different
bait and hit. Complex 54 is a subset of 3 bait proteins from a large 14-protein
complex along with an extra hit. Complex 55 is a 6-protein complex consisting
of 3 proteins from each of two different 7-protein complexes.

After the complexes were formed, we calculated Y = A⊗A′ , and then ap-
plied an error model to generate FN and FP observations. We replaced the set
of TP edges with random Bernoulli observations with P(1)=.80. We replaced
the set of TN edges with random Bernoulli observations with P(1)=.0035. The
FP probability was chosen so that the number of observed edges in the data
set was approximately 50% FP observations and 50% TP observations (von
Mering et al., 2002). The FP probability used for a single edge is very small
since the number of TNs far exceeds the number of TPs.

In an AP-MS experiment, some bait proteins may have a higher tendency
to report FP interactions, that is, the bait might be “sticky”. To simulate this,
we random selected 10 bait proteins, and made their FP probability equal to
.035, ten times the FP probability used for other proteins. We may also have
proteins that, due to conformational changes by the AP-MS tag, are rendered
incapable of binding to complex comembers when used as baits. To simulate
this, we randomly selected 10 baits, and eliminated all observed edges from
these baits to their respective hits.
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After simulation of the observed data, we applied our complex estimation
algorithm. We used a measure of complex similarity, ω, to assess the accuracy
of our predicted complexes with the true complexes recorded in A. For a
true complex, say AC , and a predicted complex, BC , define ω(AC, BC) =
min(i/a, i/b), where i is the number of proteins in the intersection of AC and
BC , a is the number of proteins in AC , and b is the number of proteins in BC .
This measure finds the proportion of common proteins from the point of view
of both complexes, and takes the minimum as a conservative measure of the
overlap.

We applied the complex estimation procedure with values of .60,.70, .80 and
.90 for the sensitivity. The results of the simulation for these four values are
reported in Tables 1 and 2. Table 1 records the number of complex estimates
with ω > .70 for all true complexes in A, organized by complex size and the
number of baits. For larger complexes, a sensitivity value of .90 prevented the
combination of columns of Â since there were too many missing edges to be
consistent with such a high sensitivity. For example, four complex estimates
had values of ω > .70 for the true complex with five bait proteins and 17
total proteins. As the sensitivity parameter decreased, more missing edges
were acceptable in the model, and these four disjoint complex estimates were
combined into two complexes for sensitivity values of .80 and .70, and finally
one complex for a sensitivity of .60. In other cases when the sensitivity was set
to .90, such as the protein complex with eleven proteins and seven baits, the
complex estimates were forced to remain so disjointed that values of ω > .70
were not achieved by any of the complex estimates. Once the sensitivity values
were decreased, enough proteins were included in the estimate to be uniquely
associated with that complex.

For larger complexes, more permissive sensitivity values were effective at
uniquely mapping estimates to true complexes, but for smaller complexes,
too many proteins were often permitted in the estimate, thus overestimating
complex composition. For the complex with seven proteins and three baits,
the sensitivity value of .60 allowed several additional proteins to enter the
complex, and the complex was too big to be uniquely identified with the a
true complex. This same complex had several proposals as unique estimates
for the other sensitivity parameters.

We were unable to uniquely identify any of the five complexes with only one
bait for two main reasons. First, we specified a .20 probability of not observ-
ing an edge, given it did truly exist. Several of these bait-hit edges were not
observed in the data, and since there was only one attempt at finding them in
the experiment, this prevented the possibility of predicting complex comem-
bership for these proteins. Second, the bait proteins involved in these five
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Table 1: Simulation Values for ω = min( i
a
, i

b
)

exp{µ+α}
1+exp{µ+α} = .60 exp µ+α

1+exp µ+α
= .70

Complex Number of Bait Proteins Number of Bait Proteins
Size 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 0 - - - - - - - 0 - - - - - - -
3 - - - - - - - - - - - - - - - -
4 - - 0 - - - - - - - 0 - - - - -
5 - 1,0,1 - - - - - - - 1,1,0 - - - - - -
6 0 - 1,0 1 - - - - 0 - 1,0 1 - - - -
7 - 1 0 1,1 - - - - - 1 3 1,1 - - - -
8 0,0 1 1,0,1 - - - - - 0,0 1 1,1,2 - - - - -
9 - 1 1,1 - - - - - - 1 1,1 - - - - -
10 0 0,1 1,0 - 1 1,1 - - 0 0,0 1,0 - 1 1,1 - -
11 - 0,0 1 - - 1 1 - - 1,1 3 - - 2 2 -
12 - - 1 1,1 - 1 - - - - 1 1,1 - 1 - -
13 - - 1 - 1 1 1 - - - 2 - 1 1 1 -
14 - - 0 - 1 1 - 1 - - 2 - 2 1 - 1
15 - - - - - - 1,1 1 - - - - - - 1,1 1
16 - - - - - - - - - - - - - - - -
17 - - - - 1 - 1 - - - - - 2 - 2 -

exp{µ+α}
1+exp{µ+α} = .80 exp{µ+α}

1+exp{µ+α} = .90

Complex Number of Bait Proteins Number of Bait Proteins
Size 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 0 - - - - - - - 0 - - - - - - -
3 - - - - - - - - - - - - - - - -
4 - - 0 - - - - - - - 0 - - - - -
5 - 1,1,0 - - - - - - - 1,1,0 - - - - - -
6 0 - 1,1 1 - - - - 0 - 1,1 1 - - - -
7 - 1 3 2,1 - - - - - 1 4 2,1 - - - -
8 0,0 2 2,1,2 - - - - - 0,0 2 2,1,2 - - - - -
9 - 1 1,1 - - - - - - 1 2,2 - - - - -
10 0 0,0 1,0 - 1 1,1 - - 0 0,0 0,0 - 1 1,1 - -
11 - 2,1 3 - - 3 2 - - 2,1 4 - - 0 0 -
12 - - 1 2,0 - 2 - - - - 2 0,0 - 1 - -
13 - - 2 - 1 2 2 - - - 3 - 0 2 1 -
14 - - 3 - 2 2 - 2 - - 4 - 2 3 - 4
15 - - - - - - 1,1 2 - - - - - - 2,3 2
16 - - - - - - - - - - - - - - - -
17 - - - - 2 - 2 - - - - - 4 - 3 -

complexes were also involved in other complexes. The SBMH complexes re-
maining at the end of the complex estimation algorithm included components
of the actual SBMH complexes as subsets. The lack of other purification infor-
mation for these complexes prevented their unique identification. In general,
increasing complex size, and an increased number of bait proteins, facilitated
more unique mappings from an estimated complex to a true complex.

The largest amount of unique mappings to true complex estimates occurred
for the sensitivity value of .70. The improved estimates for a lower sensitiv-
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Table 2: Summary Statistics for Simulation Complexes

total # # identified # UnRBB # SBMH
of estimated with true complex complexes complexes

P (0|1) complexes
.60 281 35 116 86
.70 333 53 117 136
.80 386 65 117 155
.90 463 71 117 166

ity value than the actual true positive probability reflects the modal binomial
distribution. The true positive probability of .80 generally removes approxi-
mately 20% of the edges from the complete graph, but many of the graphs lose
more than this amount and are still consistent with the .80 sensitivity. The use
of a lower sensitivity rate than actually expected for the AP-MS technology
in the complex estimation algorithm will accomodate such complexes.

For the first of the hand-crafted complexes, we were able to uniquely iden-
tify this 10-protein-6 bait complex, as well as its original counterpart using
all four sensitivity parameters. For a large complex with a high proportion of
baits, the algorithm is fairly robust to the parameter specification. The sec-
ond hand-crafted complex was identical to another 10-protein complex with
3 baits, only with 2 different hits. Due to the nature of the bait-hit data,
we would not expect to be able to uniquely identify this complex. In fact,
the connectivity for this 52nd complex happened to be quite low, and we were
unable to identify a complex that closely resembled this complex using any of
the sensitivity specifications. The 53rd complex consisted of the same proteins
as a different 5 protein complex, but with one bait and one hit switched. The
original complex was successfully identified for all parameter specifications,
but due to poor connectivity, the 53rd complex only had a successfully over-
lapping estimate for a sensitivity value of .60. The 54th complex consisted
of a subset of 3 baits from a larger complex, with one extra hit. This com-
plex was reported as a subset of these three baits with all other hits from
the original complex, as well as the extra hit. If this extra hit had in fact
been a bait protein, we likely would have been able to uniquely identify this
complex. The 55th complex was a combination of 3 baits and 4 hits from two
other complexes, and was uniquely identified for sensitivity values of .80 and
.90. For the more permissive parameter specifications, these proteins were
combined with several of the extra hits from the original complexes. The re-
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sults for these five hand-designed complexes demonstrate the dependence of
the complex estimates upon the bait/hit status of the protein, the sensitivity
value specification, and the amount of overlap with other complexes. Since
one sensitivity value does not necessarily work better uniformly over all com-
plex sizes, it may be advisable to perform the estimation procedure with a few
different values, and then examine the results for a sense of the connectivity
of the proteins in the predicted complexes.

Table 2 reports the total number of estimated complexes, the number of
complexes identified with one of the true complexes in A, the number of Un-
RBB complexes, and the number of SBMH complexes for all sensitivity values.
A predicted complex was determined to be associated with a true complex if
ω > .7. This criteria requires an overlap of at least 70% of the proteins from
the perspective of both the predicted complex and the true complex. The
complexes that are uniquely identified with a true complex tend to be com-
plexes with more than one bait, with increasing accuracy as the total complex
size increases. The large number of UnRBB complexes are primarily due to
the generous portion of FP observations entered into the simulation, and the
SBMH complexes in general contain complexes that lack adequate edge data
for unique identification. The sensitivity value of .70 most successfully mapped
53 complex estimates to the 55 true complexes.

Results using Publicly Available AP-MS Data

Both Gavin et al. (2002) and Ho et al. (2002) published data sets resulting from
high throughput AP-MS experiments. The two groups have somewhat differ-
ent lab procedures that affect the number of observed bait-hit pairs. Gavin et
al. use a tandem-affinity purification (TAP) process that consists of two pu-
rification steps and then identify the hits using peptide mass fingerprinting by
matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS.
In a method they term high-throughput mass spectromic protein complex
identification (HMS-PCI), Ho, et al. overexpress the bait proteins, perform a
one-step purification procedure, and then identify the hits using ultrasensitive
liquid chromatography (LC)-tandem MS. A comparison of the two techniques
is made in von Mering et al. (2002) and Bader and Hogue (2002).

The TAP data consist of 589 ‘raw’ purifications, available in Supplemen-
tary Table 1 of Gavin et al. at http://www.nature.com. Excluding homod-
imers, there are 455 bait proteins and 909 hit-only proteins. Gavin et al.
group the purifications into 232 annotated “yTAP” complexes, available in
Supplementary Table 3 of Gavin et al. at http://www.nature.com and at
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http://yeast.cellzome.com. The exact method used to perform this grouping
is not described, but it is said to be made on the basis of substantial overlaps
between the purifications (p. 143 in Gavin et al.).

For our analysis of the TAP data, we specified a sensitivity of 0.75 and
specificity of .995, and used a GO-based similarity measure in an extended
logistic regression model with β = −0.2 (see Supporting Information). Our
complex identification algorithm predicted a total of 708 complexes, including
123 UnRBB pairs, 325 SBMH complexes, and 260 MBME complexes. We
compared several of the 260 MBME complexes with the yTAP complexes
and found that our estimates more closely reflected well-characterized protein
complexes. Complexes such as Arp2/3, Orc, PP2A, and RNA polymerases I,
II, and III demonstrate the accuracy of our results. Readers are encouraged to
investigate all 708 complexes at http://www.bioconductor.org/Docs/Papers/
2003/apComplex. As a specific example, here we discuss the results for the
messenger RNA cleavage and polyadenylation factors as they compare to the
yTAP predictions.

Messenger RNA cleavage and polyadenylation requires the cooperativity
of cleavage factor I (CFI), polydenylation factor I (PFI), and Pap1 (poly(A)
polymerase). Current belief is that CFI is composed of two subunits, CFIA
(Rna14, Rna15, Pf11, Clp1) and CFIB (Hrp1). PFI is believed to consist of
CFII, a complex of four units (Cft1, Cft2, Ysh1, and Pta1) and the additional
proteins Pfs1, Pfs2, Fip1, Yth1, Mpe1, and Pti1 (Gross and Moore, 2001,
Skaar and Greenleaf, 2002, Zhao et al., 1997, Vo et al., 2001, Russnak et al.,
1995). Our algorithm distinguishes between the two distinct CFI and PFI
complexes, as demonstrated in Figure 3. We estimate that Rna14 is part
of the PFI complex; perhaps it serves in a communicative role between PFI
and CFI. Gavin, et al. report CFI and PFI as part of the same complex in
yTAP-C162 (see Supporting Information).

The HMS-PCI data set, available at http://www.mdsp.com/yeast, con-
tains 493 bait proteins, and 1085 hit-only proteins. We applied our complex
estimation algorithm to these data with the same GO-based similarity mea-
sure, β value of -.2, and sensitivity of .75, but specified a slightly higher false
positive probability of .01 compared to the .005 probability used for the TAP
analysis. The HMS-PCI lab process only includes one round of mild purifi-
cation, and Bader and Hogue (2002) suggest that LC-tandem MS, while very
sensitive, does have the propensity to identify low level background proteins
that are not specifically associated with other proteins in the purification.

Our analysis resulted in a total of 1008 complexes including 329 UnRBB
complexes and 437 SBMH complexes. The remaining 242 MBME complexes
were in some cases similar to those found in the TAP data. For example, the
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Figure 3: Our Complex Estimates for Cleavage Factor I and Polyadenylation
Factor I Proteins
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COPI coatomer complex is known to consist of seven proteins: Cop1, Ret2,
Ret3, Sec21, Sec26, Sec27, and Sec28 (Duden et al., 1998). Using the TAP
data, we identify a complex containing all seven, along with an extra pro-
tein Mrpl10. Using the HMS-PCI data, we identify a seven-subunit complex
containing all COPI coatomer proteins except Ret3 and an additional protein
Prb1 (see Supporting Information). Ret3 was not among the set of proteins
reported with the HMS-PCI data. The identification of this protein complex
using both data sets confirms the reproducibility of results for overlapping
baits in different experiments. The observations of Mrpl10 and Prb1 inter-
acting with this complex may be spurious, or they may suggest avenues for
further investigation.
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The set of proteins included in the HMS-PCI data set was quite different
from that of the TAP data set with only 81 common bait proteins, thus en-
abling the identification of complexes that were otherwise unobserved in the
TAP data. One example is the three-subunit Rad50-Mre11-Xrs2 complex in-
volved in several biological processes including homologous recombination and
DNA damage signaling (Trujillo et al., 2003) (see Supporting Information).
We identify this complex using the HMS-PCI data, but we do not identify the
complex using the TAP data since none of the three were used as baits in the
TAP experiment.

A large scale comparison of our TAP complexes and Gavin, et al.’s yTAP
groupings with a list of 267 curated protein complexes available at MIPS
(ftp://ftpmips.gsf.de/yeast/catalogues/ complexes/complex 130603) shows that
we accurately identify approximately twice the number of previously charac-
terized complexes with very high compositional accuracy compared to Gavin,
et al. The details of this comparison are available in Scholtens et al. (2004).
High correspondence with previously characterized protein complexes confirms
the general accuracy of the complex membership catalog estimated by our al-
gorithm.

Conclusion

Local dynamic models of protein complex membership offer a characteriza-
tion of functional modules that compose cellular systems at a finer level of
detail than overall network topology descriptions. We apply graph theoretic
and statistical principles to accommodate biological particulars of the dynamic
modeling problem, as well as the available Y2H and AP-MS data, resulting
in local models that closely reflect well-documented complexes. The accuracy
with which we can estimate previously characterized protein complexes sug-
gests the utility of our results for designing new biological investigations. We
can predict new complexes, suggest complex involvement on behalf of unchar-
acterized proteins, and investigate communication between cellular systems by
ascertaining complex comembership for proteins known to be associated with
different pathways. Joint analyses of protein complexes with other data, such
as Y2H physical interactions, binding domains, and gene expression profiles
are a promising next step for investigation into the physical mechanics and
transcriptional control of the modular systems responsible for cellular activ-
ity. With a catalog of functional macromolecules in place, systems biology
modeling can proceed with greater precision.
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Supporting Information

Scholtens and Gentleman, Making Sense of High-Throughput Protein-
Protein Interaction Data

Figure 4: False Positive and False Negative Edges

We note here that the notions of false negative (FN) and false positive (FP)
apply to observations of the edges in YVB

, not the edges in A. If YVB
is as

depicted in Figure 4A), then we might actually observe FN edges like those
missing in ZVB

between P2 − P4 and P1 − P3 in Figure 4B). We might also
observe FP edges, such as the edge between P3 − P7 in Figure 4C). If a FN
edge was assumed to be at the level of A, as between P6 and C1 in Figure
4E), then ZVB

would have three missing edges between P1 − P6, P2 − P6, and
P3 − P6. If a FP was assumed to occur in A, as between P7 and C1 in Figure
4F), then three FP edges would be observed between P1 − P7, P2 − P7, and
P3 −P7. Since AP-MS technology directly assays the graph YVB

= (A⊗A′)VB
,

not A, we account for random errors in the edges of ZVB
as they reflect YVB

.

Figure 4: False Positive and False Negative Edges
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Complex Combination Acceptance Criteria

The complex estimation procedure iteratively updates Â, beginning with the
initial maximal subgraph estimate for the complexes Âinit by proposing pair-
wise combinations of the complexes recorded in the columns of Â. If the set
of proteins associated with two complexes in Â increase P (Z|A, µ, α) when
treated as one complex, where

P (Z|A, µ, α) = L(Z|Y = A ⊗ A′, µ, α) × C(Z|A, µ, α), (4)

then the combination is accepted. The acceptance criteria is quite simple to
test. Suppose complexes ck1 and ck2 with subgraphs Gck1

and Gck2
, respec-

tively, are treated as one complex ck∗ with subgraph Gck∗ . Let Snew = {(g, h) :
egh ∈ Gck∗\(Gck1

∪ Gck2
)} where egh is the edge connecting bait protein g to

hit protein h; that is, Snew is the set of all edges that are part of Gck∗ that
were not originally part of either Gck1

or Gck2
. Then the difference in the log of

P (Z|A, µ, α) when ck1 and ck2 are combined into ck∗, Pk∗, versus uncombined,
Pk1,k2 is

log Pk∗ − log Pk1,k2 = log Φ(ck∗) − log Φ(ck1) − log Φ(ck2)

+ log Γ(k∗) − log Γ(ck1) − log Γ(ck2)

+
∑
Snew

[αzgh − log(1 + eµ+α) + log(1 + eµ)]

= log Φ(ck∗) − log Φ(ck1) − log Φ(ck2)

log

(
tk∗
xk∗

)
− log

(
tk1

xk1

)
− log

(
tk2

xk2

)

+
∑
i∈bk∗

∑
j∈bk∗∪hk∗,j �=i

[zij(µ + α) − log(1 + eµ+α)]

−
∑
q∈bk1

∑
r∈bk1∪hk1,r �=q

[zqr(µ + α) − log(1 + eµ+α)]

−
∑
u∈bk2

∑
v∈bk2∪hk2,v �=u

[zuv(µ + α) − log(1 + eµ+α)]

+
∑
Snew

[αzgh − log(1 + eµ+α) + log(1 + eµ)]. (5)

In our algorithm, if log Pk∗− log Pk1,k2 (5) is larger than zero, then the combi-
nation of ck1 and ck2 into ck∗ is accepted.
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Incorporating External Similarity Data

A similarity measure 0 ≤ sij ≤ 1, based on data external to the AP-MS
experiment for each pair of proteins i and j, can be included in the logistic
regression model for pij with an amount of influence determined by a parameter
β. Let pij = Pr(Zij = 1|µ, α, β, Yij, Sij = sij) and

log

(
pij

1 − pij

)
= µ + αYij + βsij. (6)

Specification of the β parameter is best done by examining the contribution
of the bait-bait observations to the likelihood. If a bait-bait pair connected
by one unreciprocated edge has a high similarity measure sij = sji, then the
contribution of the (0, 1) or (1, 0) observations to L(Z|Y = A ⊗ A′, µ, α, β, S)
should approach that of the (1, 1) edges. When Yij = Yji = 1 the difference in
the log likelihood contribution � for (1, 1) edges and (0, 1) (or (1, 0)) edges is

�(1,1) − �(0,1) = µ + α + βsij. (7)

For �(1,1) − �(0,1) (7) to decrease in sij, it must be that β is less than 0. The
assumption that P (Zij = 1|Yij = 1, Sij = sij) > .5, indicating that the AP-
MS technology has sensitivity greater than .5 independent of the similarity
measure, further requires that β is greater than −(µ + α).

High similarity measures for (0, 0) bait-bait observations, or for 0 bait-hit
observations, should lend credence to the existence of the edge, even though it
is missing according to the AP-MS data. The difference in the log likelihood
contribution for an unobserved edge when Ŷij = 1 and Ŷij = 0 is

�Ŷij=1 − �Ŷij=0 = − log(1 + exp{µ + α + βsij}) + log(1 + exp{µ + βsij}). (8)

For each unobserved edge, �Ŷij=1 − �Ŷij=0 < 0, but for increasing values of
sij, �Ŷij=1 − �Ŷij=0 increases. When combining two complexes with fairly high

connectivity and/or high similarity measures, the negative contribution of a
few unobserved edges with high similarity scores may well be overruled by the
strength of the evidence of the other edges in the subgraph.

The value for pij that depends on sij can also be incorporated into the
Γ(ck) values in C(Z|A, µ, α). Since the value of pij decreases with increasing
sij values, a lower proportion of edges in the graph must then be observed for
the complex to be consistent with the maximal BH-complete graph structure.

The simple decision criteria for combining two complexes can be expanded
to include the similarity measure as follows:
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log Pk∗ − log Pk1,k2 = log Φ(ck∗) − log Φ(ck1) − log Φ(ck2)

+ log Γ(k∗) − log Γ(ck1) − log Γ(ck2)

+
∑
Snew

[αzgh − log(1 + eµ+α+βsgh) + log(1 + eµ+βsgh)]

= log Φ(ck∗) − log Φ(ck1) − log Φ(ck2)

log

(
tk∗
xk∗

)
− log

(
tk1

xk1

)
− log

(
tk2

xk2

)

+
∑
i∈bk∗

∑
j∈bk∗∪hk∗,j �=i

[zij(µ + α + βsij) − log(1 + eµ+α+βsij )]

−
∑
q∈bk1

∑
r∈bk1∪hk1,r �=q

[zqr(µ + α + βsqr) − log(1 + eµ+α+βsqr)]

−
∑
u∈bk2

∑
v∈bk2∪hk2,v �=u

[zuv(µ + α + βsuv) − log(1 + eµ+α+βsuv)]

+
∑
Snew

[αzgh − log(1 + eµ+α+βsgh) + log(1 + eµ+βsgh)]. (9)

If log Pk∗ − log Pk1,k2 (9) is greater than zero, then ck1 and ck2 are combined
to form ck∗.

Figure 5: Example of Similarity Measure using GO Cel-
lular Component Annotation

In our analysis of publicly available data, we used a similarity measure for
the proteins based on cellular component data available from GO. GO anno-
tation is based on a rooted acyclic directed graph in which nodes represent
annotation terms, and directed edges connect one annotation term to a more
specific, but related, annotation term. The GO graph allows for several paths
from the root to the annotation node for a protein. Furthermore, proteins may
be annotated at different nodes, also resulting in multiple paths through the
graph for a particular protein. For two proteins i and j, we calculated all of
the paths from the root of the GO graph to the node(s) at which the proteins
were annotated. We then calculated sij = max(gmax/pi, gmax/pj) where pi is
the number of nodes on the path for protein i and pj is the number of nodes
on the path for protein j that maximally overlap at gmax nodes. We used this
measure for analyses of the publicly available AP-MS data with β = −.2. Our
GO-based similarity measure for proteins Rbp2 and Rpc40 is demonstrated
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in Figure 5. Rpb2 is annotated at the GO tree node “DNA-directed RNA
polymerase II, core complex” and Rpc40 is annotated at both “DNA-directed
RNA polymerase I complex” and “DNA-directed RNA polymerase III com-
plex”. The similarity measure for these two proteins is 4/5 using sij defined
as above.

Figure 5: Example of Similarity Measure using GO Cellular Component An-
notation
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Maximal BH-Complete Subgraph Identification Algorithm

Efficient maximal subgraph finding for undirected graphs has long been a
topic of research among statisticians and computer scientists. The methods
that exist for undirected graphs assume (necessarily) that the adjacency ma-
trix corresponding to the graph is both square and symmetric. The available
adjacency matrix for AP-MS data is the rectangular N(N +M) matrix Z, the
observed form of Y [1 : N, ]. The algorithm we apply for maximal subgraph
identification begins after initial estimates of (Yij, Yji) for the unreciprocated
doubly tested edges have been made, and Yinit[1 : N, 1 : N ] is symmetric. Since
the connectivity between proteins that were only found as hits and never used
as baits is unknown, we effectively assume that all hits connected to a common
bait are also connected to each other. This permits hits to be identified as
part of the same maximal subgraph, and eventually part of the same protein
complex, as long as their connectivity to the baits resembles that of the other
hits.

Given input of Y = Yinit[1 : N, ] the algorithm proceeds as described in
Supporting Information. The resultant maximal BH-complete subgraphs are
represented as an affiliation matrix called M with N + M rows and KMG

columns where KMG is the number of maximal BH-complete subgraphs.

Algorithm

Bait-Hit Maximal Subgraphs(Y )
Argument: Y the N × (N + M) bait-hit adjacency matrix with Y [1:N, 1:N ]
symmetric;
Function: REDUCEMAT removes columns of a matrix for which all elements
are less than all elements of another column in the matrix;

1 begin
2 M := Y [1, ]
3 for each i ∈ {2, ..., N} do
4 Set g = repeat(0, N + M)
5 g[i : (N + M)] = Y [i, i : (N + M)]
6 G = ∅
7 V = {columns of M : ∀ v ∈ V , v[i] = 1 and v[j] > g[j] for some j ∈ {i + 1, ..., N + M}
8 if (V = ∅) then continue
9 else do
10 for each v ∈ V do
11 M = M\v
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12 v1 = v
13 v1[i] = 0
14 G = G ∪ v1

15 v2 = v
16 v2[(i + 1) : (N + M)] = min(v[(i + 1) : (N + M)], g[(i + 1) : (N + M)])
17 G = G ∪ v2

18 G = G ∪ g
19 M = M∪ G
20 M = REDUCEMAT (M)
21 return M
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Figure 6: yTAP-C162, Gavin, et al.(2002)

Below is a graph representation of the cleavage factor I (CFI) and polyadeny-
lation factor I (PFI) complexes as reported by Gavin, et al. While these two
complexes are functionally dependent, they are physically separate in the cell.
We were able to distinguish between the two complexes using our algorithm
and the TAP data.

Figure 6: yTAP-C162, Gavin et al. (2002)

C ft1

C ft2

C lp1

F ip1

Pap1

Pcf11

P fs2

P ta1

R ef2

R na14

R na15

S su72

YKL059C

YOR179C

Ysh1

Yth1

Act1

C ka1

E no2

Glc7

Hhf2Hta1

P fk1

S ec13

S ec31S sa3

Taf60

Tif4632Tye7

Vid24

Vps53

YCL046W

YGR156W

YHL035C

YLR221CYML030W

27

Scholtens and Gentleman: Making Sense of Protein-Protein Interaction Data

Published by Berkeley Electronic Press, 2004



Figure 7: COPI Coatomer Complex Estimates

Below is a graph representation of the COPI coatomer complex estimates
using both the TAP data and the HMS-PCI data. Seven proteins are known to
compose the COPI coatomer complex: Cop1, Ret2, Ret3, Sec21, Sec26, Sec27,
and Sec28. Ret3 was not reported in the HMS-PCI data set. The interactions
of Mrpl10 and Prb1 with this complex may be spurious observations, or they
may suggest areas of further research.

Figure 7: COPI coatomer Complex Estimates
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Figure 8: Rad50-Mre11-Xrs2 Complex Estimate

Below is a graph representation of the Rad50-Mre11-Xrs2 complex, detected
using the HMS-PCI data but not the TAP data. These three proteins were
not used as baits in the TAP data.

Figure 8: Rad50-Mre11-Xrs2 Complex Estimate
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