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Abstract— The problem of high measurement noise in iden-
tification issue is treated in this paper for an innovative parallel
robotic manipulator. To consider the noise and the correlation
across the system’s output a complete statistical approach is
presented. The Maximum-Likelihood estimator is used for the
identification of the dynamics parameters. Furthermore the
experiments were designed based on a statistical criterion,
such that the resulting excitation trajectories minimize the
uncertainty bounds of the estimation. The experimental results
are consequently compared with those resulting from classic
deterministic approaches. This comparison demonstrates that
the presented methodology yields bias-free and asymptotic
efficient estimation.

I. INTRODUCTION

The background of this work is the innovative design
of the parallel robotic manipulator PaLiDA ([1], Fig. 1).
The machine has been developed by the Institute of Pro-
duction Engineering and Machine Tools at the university
of Hannover (IFW). The research is carried out in cooper-
ation with the Hannover Center of Mechatronics. Beside
high manoeuvrability and high dynamics ability, a main
goal was the development of novel actuation principle for
parallel kinematic machines (PKM). The idea was to qualify
linear direct drives for PKM applications. A commercial
electromagnetic linear motor originally designed for fast
lifting movements, is improved for the use in length-variable
struts [1]. This actuation principle has advantages com-
pared to conventional ball screw drives: fewer mechanical
components, no backlash, low inertia with a minimized
number of wear parts. A disadvantage remains though. It
is the lower accuracy of position measurement, because
only the internal hall sensors are used. Beside an additional
enhancement of the measurement process [1], the control
design has to consider the output noise for appropriate
control algorithms [2]. For PKM the use of model-based
feedforward control is crucial for accuracy improvement
because the nonlinear and coupled dynamics are dominant,
especially in the range of high dynamics [2], [3]. Therefore
it is of great importance to develop appropriate identification
algorithms in order to get accurately parameterized models
for control [2], [4], [5].

The challenge of this work is to provide bias-free esti-
mation of the dynamic parameters despite important noise
and disturbances. Inspired by the excellent theoretical back-
ground given in [6], [7] and former work on industrial
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Fig. 1. PKM PaLiDA - left: Test bed at the Hannover Industrial Fair
2001, right: CAD-model.

robotics [5], [8] a statistical approach for identification is
presented. This includes system analysis, experiment design
and appropriate estimation technique. Traditionally, linear
estimators are used for the identification of manipulator
dynamics [2], [3], [9], [10]. These methods are available
in a deterministic framework, when the assumption of low
disturbed regression matrix and non correlated output noise
is fulfilled. In a statistical framework it is advantageous
to use Maximum-Likelihood (ML) estimator for consistent
and asymptotically efficient and unbiased estimation [6],
[7]. The ML estimator was already formulated for robotic
applications in [8] and [11], but the non correlation of the
output was still assumed, such that the ML-algorithm is
reduced to the Gauss-Markov (GM) estimator. This simpli-
fication is removed in this work (section II) and the problem
is formulated for the general form of covariance matrices.
Additionally to the appropriate estimation technique, the
experiment design is also based on the statistical properties
of the estimator (section III). In stead of the conventional
deterministic input design criterion given by the condition
number of the regression matrix [9], [10], [12], the Cramér-
Rao lower bound of the estimation covariance is used. Such
design was referred by Ljung [6] as d-optimal design and
it yields the minimization of the volume of the probability
density region for the estimated parameters. Furthermore
the parametrization of the excitation trajectories is presented
according to the chosen criterion. It will be explained why
the harmonic and periodic trajectories presented in [5], [8],
[12] are more reliable and appropriate for PKM than con-
ventional ones known from industrial robotics and recently
proposed for parallel manipulators [9], [10]. In section IV a
detailed analysis of PaLiDA is presented. Additionally, the
results of an extensive experiment are presented to prove,
that the statistical experiment design yields parameter esti-
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mates with smaller uncertainty bounds. Finally in section V
the identification results of three LS, GM and ML estimators
are presented and the verification of bias-free estimation is
carried out experimentally.

II. ESTIMATION OF DYNAMIC PARAMETERS

The presented approach is based on the formulation of
the manipulator dynamics in a parameter linear form [2],
[3], [8]

Qa = A(λ, θ̇, θ̈)p, (1)

where λ, θ̇, and θ̈ are the n-dimensional minimal co-
ordinates, velocities and accelerations, which are called
kinematic information in the following. In the case of a 6-
DOF parallel manipulator the vector of minimal coordinates
contains the cartesian displacements and the orientation
angles of the platform. The n × m-matrix A refers to
the regression matrix and p is the m-dimensional vector
of minimal parameters [2], [12]. The measured variables
are the actuator forces, presented by the vector Qa and
the actuator lengths, presented by the vector qa. Both are
corrupted by disturbances η and δ

Qa = Q̄a + η
qa = q̄a + δ,

(2)

where Q̄a and q̄a denote the true values. Unlike serial
mechanisms1, the minimal coordinates can not be easily
measured and have to be determined numerically from
qa [2], [9], [12]. This is the most challenging issue in the
identification of parallel manipulators. The disturbance δ is
overlapped with numerical disturbances due to the direct
kinematics and differention, such that it is practically im-
possible to make any a-priori statement on the disturbances
of the regression matrix. However, the conventional Least-
Squares (LS) estimator is reliable and bias-free only for non
disturbed matrix A [2], [6], [7], which makes its use here
questionable. An experiment producing N noise corrupted
data vectors yields⎡

⎢⎣
Qa1

...
QaN

⎤
⎥⎦

︸ ︷︷ ︸
Γ

=

⎡
⎢⎣

A(λ1, θ̇1, θ̈1)
...

A(λN , θ̇N , θ̈N )

⎤
⎥⎦

︸ ︷︷ ︸
Ψ

p +

⎡
⎢⎣

e1

...
eN

⎤
⎥⎦

︸ ︷︷ ︸
η

. (3)

A Maximum-Likelihood estimate p̂ML maximizes the cost
function π(Γ|p), which is the probability density of the
random vector Γ being generated by a model with parame-
ters p [7]. To derive a numerically appropriate criterion,
π is considered to be a normal distribution. The noise
vectors are assumed to be gaussian with zero means. The
covariance matrices of the measurement and information
noise are denoted by Σ and ∆, respectively. Unlike com-
mon approaches, the covariances are not assumed to be

1for serial manipulators, the minimal coordinates are refereed to the
joint angles, which can be accurately measured by encoder devices.

diagonal, which is equivalent to the assumption of non-
correlation between the different system outputs [8], [11].
Instead, cross covariance is taken into account. All the
mentioned assumptions will be verified experimentally (see
section IV). It was proven in fundamental works [6], [7],
that the maximization of the likelihood or the log-likelihood
under the mentioned assumptions yields

p̂ML = arg
(

max
p

(
−1

2
(δT∆−1δ + ηTΣ−1η)

))
. (4)

For the symmetric covariance matrices, a Cholesky factor-
ization can be expressed by ∆−1 = DTD and Σ−1 =
STS. Equation (4) can be transformed to

p̂ML = arg
(

min
p

(
1
2
(δTDTDδ + ηTSTSη)

))
, (5)

and therefore to the formulation of a nonlinear Least-
Squares optimization problem

p̂ML = arg
(

min
p

1
2

(
‖Dδ‖2 + ‖Sη‖2

))
(6)

that can be implemented with any commercial optimization
tool [13]. If the information noise can be neglected (δ � 0),
the ML estimates simplifies and leads for models that are
linear in the parameter vectors (1) to the Gauss-Markov
(GM) estimator

p̂GM =
(
ΨTΣ−1Ψ

)−1

ΨTΣ−1Γ, (7)

which is the best linear unbiased estimator [6], [7]. The LS
estimator can be derived from (7) by setting Σ as a diagonal
matrix with equal entries.

III. OPTIMAL EXPERIMENT DESIGN

The optimal experiment design is the methodology to
determine an experiment for collecting N measurement
vector to get ”best” identification results. Ljung suggested
optimal input design, which is in our case the generation
of excitation trajectories T (ξ). The vector of trajectory
parameter ξ can be determined according a constrained
nonlinear optimization [6], [8], [12], which requires again
the definition of a criterion. It is sensitive to choose a
trajectory that is most informative about the dynamics. The
quantification of information amount can be given for the
ML approach by the Fisher information matrix [6], [7]

F = E

{
∂

∂p
ln(π(Γ|p))

∂

∂pT
ln(π(Γ|p))

}
. (8)

For infinite N → ∞ the distribution of p̂ML tends to the
gaussian unbiased one, denoted by N (p,F−1(p))[7], that
confirms the estimator property of asymptotical efficiency
and unbiasness. For a finite measurement set the uncertainty
given by the estimate covariance matrix P remains superior
to the asymptotical Cramér-Rao bound

P ≥ F−1. (9)
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It is suggestive to design excitation trajectories that maxi-
mize the amount of information present in the investigated
data and given by F . This is equivalent to a minimization
of the uncertainty of the parameter estimate or its lower
bound which is given by F−1. Since a constrained opti-
mization can not be expressed in a matrix sense, a scalar
value is necessary. Many optimality criteria can be found
in literature [6], [7] like the trace (A-optimality) of F
or its minimal Eigenvalue (C-optimality). In a statistical
framework it is advantageous to chose the d-optimality as
criterion where the determinant of the information matrix
is used. Minimizing det(F−1) yields the minimization of
the volume of the asymptotic confidence ellipsoids for
the parameter [7]. The optimal experiment design can be
expressed with respect to the optimal trajectory parameter
set ξo

ξo = arg min
ξ

(
det(F−1(ξ)))

)
. (10)

For practical implementation, it is not recommended to
invert numerically the disturbed information matrix. Fur-
thermore, the determinant can become very small, so it is
more efficient to minimize its logarithm [6], [8]

ξo = arg min
ξ

(− ln det(F(ξ))) . (11)

The d-optimality criterion is independent from any non-
singular scaling or reparametrization that does not de-
pend on the experiment itself [7]. The chosen approach
is based primarily on the use of ML for estimation. It
is demonstrated in the next section that the consideration
of statistical properties yields better parameter compared
to the deterministic approach, where the condition of the
information matrix is minimized.

Since the design of optimal input is a nonlinear con-
strained optimization process (10,11) it is sensitive to chose
an appropriate input or trajectory form T (ξ) and to consider
the system geometric properties and constraints to achieve
efficient computation and to reach convergence. The trajec-
tory can be described by

T (ξ) =
{
λ ∈ R

6,ft (λ, t, ξ) = 0,∀t ∈ [t0, te]
}

. (12)

Due to the limitation of the available workspace the task
of defining the functional expression of the holonomic
constraint ft (λ, t, ξ) = 0 is more challenging for parallel
manipulators. Any tilting of the end-effector platform yields
considerable reduction of the available workspace. Bounded
trajectories are more advantageous than classical approaches
of polynomial functions, that have not led to any satisfactory
results in our case [12]. In [8] a critical overview on known
approaches for trajectory parametrization is given and a
new approach is presented, where the excitation trajectories
consist of a finite sum of harmonic sine and cosine functions
in a form of a finite Fourier series. They are expressed in
cartesian frame, since they present the minimal coordinates

ft,i(λi, t, ξ
i) = λi(t)

−λi
0 −

∑n
k=1

(
µi

k

kωf
sin(kωf t) − νi

k

kωf
cos(kωf t)

) (13)
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Fig. 2. Example of an optimized excitation trajectory in cartesian
displacements (above) and tilting angles (below)

Each general coordinate λi corresponds an appropriate
trajectory parameter vector

ξi =
[

λi
0, µi

1, . . . , µi
n, νi

1, . . . , νi
n

]T
. (14)

ωf denotes the fundamental pulsation of the Fourier series
that is the same for all dof. The trajectory is periodic
with a period Tf = 2π/ωf and bounded, which yields
very efficient optimization process [12]. The vector of all
trajectory parameters ξ contains all ξi and the fundamental
pulsation ωf . Its dimension is equal to 6×(2×n+1)+1 =
12n + 7 and is then the number of the degrees of freedom
of the optimization problem. Figure 2 depicts exemplarily
one period of an optimized trajectory.

IV. APPLICATION TO THE INNOVATIVE HEXAPOD

PALIDA

This section presents the model of the considered par-
allel robot PaLiDA and experimental verification of the
assumptions made for the system and on the measurement
disturbances.

A. Dynamics Model Parameter

The robot consists in 6 struts and an end-effector platform
(see Fig. 1 and 3). The actuators are integrated into the
stators. Special custom cardan-rings allows high manoeu-
vrability a concentric rotation (passive joints α and β) [1].
PaLiDA is modelled with 19 bodies: the movable plat-
form (index E), 6 identical movable cardan rings (index 1),
6 identical stators (index 2) and 6 identical sliders (index 3).
The vector of minimal rigid-body parameters prb is derived
according to the methodologies known from robotics and
mechanics [2], [8], [10]. They are presented in Table I.
Moments of inertia are denoted by Ixx, Iyy and Izz . The
first order moments and masses are denoted respectively
by s and m. Additional indices relate to the concerned
body (1, 2, 3 or E) as defined above. Besides, the vectors
rE

Bj
=

[
rBxj

rByj
rBzj

]T
refer to those connecting the

joints Bj to the Tool Center Point (TCP). Friction losses
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are modelled as a sum of dry and viscous friction. Optimal
parametrization yields a common dry fiction coefficient
rα for all α-passive joints, a common coefficient rβ for
all β-passive joints, 6 dry friction coefficients r1···6 for
each actuator as well as 6 viscous damping coefficients
v1···6. Viscous dumping in passive joints is demonstrably
negligible [2], [4]. The integral model has consequently 10
rigid-body parameters and 14 friction coefficients (Table I).

TABLE I

RIGID-BODY AND FRICTION MODEL PARAMETERS.

rigid-body friction
p1 = Izz1 + Iyy2 + Izz3 [kgm2] rα [N ]
p2 = Ixx2 + Ixx3 − Iyy2 − Izz3 [kgm2] rβ [N ]
p3 = Izz2 + Iyy3 [kgm2] r1 [N ]
p4 = sy2 [kgm] r2 [N ]
p5 = sy3 [kgm] r3 [N ]

p6 = IxxE + m3
∑6

j=1(r2
Byj

+ r2
Bzj

) [kgm2] r4 [N ]

p7 = IyyE + m3
∑6

j=1(r
2
Bxj

+ r2
Bzj

) [kgm2] r5 [N ]

p8 = IzzE + m3
∑6

j=1(r2
Bxj

+ r2
Byj

) [kgm2] r6 [N ]

p9 = szE + m3
∑6

j=1 rBzj
[kgm] v1 [Nsm−1]

p10 = mE + 6 m3 [kg] v2 [Nsm−1]
v3 [Nsm−1]
v4 [Nsm−1]
v5 [Nsm−1]
v6 [Nsm−1]

Fig. 3. Strut components of PaLiDA.

B. Analysis of Measurement Disturbances

The assumptions made on the noise vectors η and δ
are verified in the following. Practically the analysis and
some experimental investigations are sufficient to deduce
very good approximation or measurement of the output
disturbances [1], [8]. The investigation of the output noise
of the direct linear drives of PaLiDA yields the normal
distribution given in Fig. 4. This shows that the output-noise
can be assumed to be gaussian independent and with zero-
mean. The application of ML is feasible. Furthermore the
identified standard deviations vary from 20 N to 30 N. Con-
sidering that the actuation range covered by the linear direct
drives is limited to ±230 N, the output measurement is
considerably noise-corrupted. The entries of the covariances
Σ and ∆ show that both matrices are strongly different from
the diagonal form, so that the algorithms proposed in [8],
[11] can not be applied. A 2-dimensional visualization of Σ
and ∆ is presented by Fig. 5, where the isolines calculated
from the matrices are presented. It shows especially that
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1

Fig. 4. experimentally investigated normalized output-noise distributions
of the 6 actuators. All x-axes denote the noise amplitude in [N].

the entries of the kinematic information noise vector δ are
more or less significantly cross-correlated.

C. Deterministic vs. Statistical Experiment Design

As mentioned above, the assumption of noise-free in-
formation justifies the use of the condition number of
the information matrix as a criterion for the input opti-
mization [2], [8], [10], [12]. This approach is called a
deterministic design. The statistical design, though, takes
the estimator statistical properties into account to define
the uncertainty volume of the parameter estimates as cri-
terion for the optimization and was introduced (10,11). To
compare both approaches the following extensive experi-
ment was performed. Two trajectories Td(ξd) and Ts(ξs)
were optimized starting from the same initial parameter
set until convergence and according to the deterministic
and statistical design, respectively. Both trajectories were
carried out 100 times. To have comparable and meaningful
results, both trajectories were evaluated for identification
by using LS-estimator. The statistical properties of the two
parameter vectors p̂d and p̂s are compared in terms of
the respective means and standard deviations. Figure 6
illustrates the experimental determined normal distributions
of three exemplarily chosen parameter. It is obvious, that the
statistically optimized trajectory Ts yields smaller standard
deviations, which means smaller estimation uncertainty [6],
[7]. This was observed for all estimated parameters (see
Table II), except the very small dry friction coefficients
in the passive joints. The results show also the excellent
repeatability of the identification approach, which is justi-
fied by the chosen trajectory form (12) and by the method
used for evaluation of the kinematic information presented
in [12]. Furthermore a difference in the mean values of the
estimation was observed. This issue is discussed in the next
section, where the final identification step is fulfilled to get
bias-free estimation.
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Fig. 5. 2-dimensional visualization of the entries of the covariance
matrices. up: output-covariance, down: information covariance

V. MAXIMUM-LIKELIHOOD IDENTIFICATION AND

MODEL VALIDATION

The estimation results in the last section were based
on the hypothesis of small disturbances in the kinematic
information. This assumption has to be verified by applying
a Maximum-Likelihood estimation. This consists in the
iterative procedure of a nonlinear optimization, starting with
the GM estimates [6], [7], [8], [11], [13]. The optimization
formulated in (6) has to be though slightly modified by
extending the argument vector to the parameter of the
measured trajectory:

[p̂ML ξ̂] = arg
(

min
p,ξ

1
2

(
‖Dδ‖2 + ‖Sη‖2

))
. (15)

The modification is necessary for three reasons: to account
for control errors and thus path deviations, to consider nu-
merical errors resulting by the calculation of the kinematic
variables λ, θ̇ and θ̈ from the measured actuator lengths
qa [12] and because the model errors δ and η can not be
calculated based on the knowledge of p only [8]. In table III
the estimation results are shown for different methods. By
comparing the identified rigid-body parameters with their a-
priori values given by CAD-Data [1], [2], it is obvious that
the ML approach yields best (in some case exact) results. It
is expected that the estimation of the friction coefficients
has the same quality, although if no a-priori values are
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Fig. 6. Normal distribution of estimated parameters resulting from
optimized experiments using deterministic (dotted line) and statistical
criterion.

TABLE II

STANDARD DEVIATIONS σd AND σs OF PARAMETER ESTIMATES

ACCORDING RESPECTIVELY TO DETERMINISTIC AND STATISTICAL

EXPERIMENT DESIGN

pi σdi σsi pi σdi σsi

p1 0.012 0.004 rα 0.012 0.021
p2 0.028 0.011 rβ 0.008 0.034
p3 0.017 0.008 r1 0.406 0.259
p4 0.012 0.004 r2 0.175 0.208
p5 0.014 0.010 r3 0.215 0.446
p6 1.8 10−3 1.6 10−3 r4 0.159 0.253
p7 1.0 10−3 1.1 10−3 r5 0.087 0.166
p8 1.5 10−3 1.2 10−3 r6 0.148 0.208
p9 1.7 10−3 0.9 10−3 v1 0.686 0.576
p10 0.007 0.013 v2 0.894 0.511

v3 0.794 0.530
v4 0.859 0.636
v5 1.259 0.520
v6 1.075 0.728

available for friction. The difference between the GM and
ML estimates demonstrates that the information matrix is
disturbed.

The estimated model can be validated for other trajec-
tories that was not used for identification. In our work, a
circular benchmark-motion is usually used [2], [4], [12].
The circle is located in the middle of the workspace and
is inclined by 30◦ in respect to the x-axis. The maximal
velocity is about 1 ms−1. Figure 7 shows the model residua
for 4 arbitrarily chosen actuators, where the differences
of measured forces and those predicted with the identi-
fied model are depicted. The calculated covariance of the
model estimation error yields for the 6 actuators 336.4N2,
298.4, 992.0N2, 594.1N2, 118.4N2 and 186.7N2, respec-
tively. The variances of the actuator measurement errors ηi

are: 412.8N2, 375.4N2, 883.0N2, 371.9N2, 547.2N2 and
970.9N2. For the illustrated drives the model error variances
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TABLE III

PARAMETER ESTIMATION RESULTS WITH LS, GM AND ML

pi LS GM ML a-priori
p1 −0.227 −0.033 −0.042 0.005
p2 1.127 1.135 1.083 0.947
p3 0.866 1.055 1.006 0.943
p4 0.440 0.622 0.578 0.579
p5 −1.201 −1.348 −1.300 −1.299
p6 0.298 0.246 0.240 0.240
p7 0.269 0.242 0.239 0.240
p8 0.132 0.133 0.125 0.123
p9 1.661 1.711 1.698 1.698
p10 16.233 16.509 16.329 16.307
rα 0.631 0.523 0.420 −
rβ 0.732 0.905 0.862 −
r1 15.029 12.658 11.958 −
r2 7.943 3.256 2.597 −
r3 18.262 18.905 14.794 −
r4 7.583 4.662 4.988 −
r5 5.380 4.743 3.451 −
r6 5.498 5.984 5.392 −
v1 11.452 16.359 20.602 −
v2 16.521 18.565 20.538 −
v3 16.658 9.947 14.218 −
v4 19.561 21.538 25.279 −
v5 20.747 28.885 26.050 −
v6 16.177 22.034 23.137 −

remain inferior to the output error variances. This verifies
that the model is unbiased. However, this is not the case
for actuator 3 and 4. It can be explained by the systematic
disturbance known in electromagnetic linear drives and
called cogging forces [1]. Their modelling and detection
are quite delicate because cogging forces are dependent
on machining tolerance of the single magnetic elements
in the motor and are sensitive to initial control errors. For
another trajectory with mirror-inverted geometry the model
error variances are 318.5N2, 168.5N2, 324.0N2, 235.3N2,
562.8N2 and 795.4N2, respectively. In such a case the
model is unbiased for all actuators. It can be concluded
that the estimated model is very accurate and unbiased if
the effect of the cogging force remains limited.

VI. CONCLUSIONS

Despite important measurement noise, the identification
of unbiased dynamic models for a parallel manipulator
with electromagnetic linear drives is demonstrated. The
various conditions suggested by the estimation theory are
verified experimentally, such that the Maximum-Likelihood
approach is demonstrated to be the most efficient and unbi-
ased. Furthermore the optimal experiment design in a sta-
tistical framework yields minimal uncertainty bounds of the
estimates, which is discussed theoretically and substantiated
experimentally. In addition, the chosen excitation trajectory
form is well appropriate for parallel manipulators because
it is suitable for the hard workspace constraints of such
mechanisms. The application of the presented approach is
very advantageous for the implementation of accurately
parameterized and unbiased control models.
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Fig. 7. Time history of model error for 4 arbitrarily chosen actuators
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