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Abstract. For the interpretation of the storm event-induced

landslide distribution for an area, deterministic methods are

frequently used, while a region’s landslide susceptibility is

commonly predicted via a statistical approach based upon

multi-temporal landslide inventories and environmental fac-

tors. In this study we try to use an event-based landslide

inventory, a set of environmental variables and a triggering

factor to build a susceptibility model for a region which is

solved using a multivariate statistical method. Data for shal-

low landslides triggered by the 2002 typhoon, Toraji, in cen-

tral western Taiwan, are selected for training the suscepti-

bility model. The maximum rainfall intensity of the storm

event is found to be an effective triggering factor affecting

the landslide distribution and this is used in the model. The

model is built for the Kuohsing region and validated using

data from the neighboring Tungshih area and a subsequent

storm event – the 2004 typhoon, Mindulle, which affected

both the Kuohsing and the Tungshih areas. The results show

that we can accurately interpret the landslide distribution in

the study area and predict the occurrence of landslides in the

neighboring region in a subsequent typhoon event. The ad-

vantage of this statistical method is that neither hydrological

data, strength data, failure depth, nor a long-period landslide

inventory is needed as input.

1 Introduction

To study storm event-induced landslides on a regional scale,

a deterministic physical-based method is commonly used

which requires the employment of an infinite-slope model

and a hydrological model (Okimura and Ichikawa, 1985; Di-

etrich et al., 1986, 1995; Keefer et al., 1987; Montgomery
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and Dietrich, 1994; Wu and Sidle, 1995; Montgomery et al.,

1998; Terlien, 1998; Crozer, 1999; Polemic and Sdao, 1999;

Iverson, 2000; Borga et al., 2002; Wilkinson et al., 2002;

Crosta and Frattini, 2003; Malet et al., 2005; Baum et al.,

2005; Salciarini et al., 2006; Claessens et al., 2007a, 2007b;

Schmidt et al., 2008). This approach requires the strength

parameters, failure depth and soil conductibility for every

point in the limit-equilibrium slope stability calculation, a

requirement which can cause serious problems in terms of

acquisition and control of spatial variability of the variables

(Hutchinson, 1995; Guzzetti et al., 1999).

In landslide susceptibility analysis (LSA), it has been most

common to use a statistical approach, where landslide inven-

tories and causative factors are utilized to build a suscepti-

bility model for mapping or delineating areas prone to land-

slides. Many different methods and techniques for assess-

ing landslide hazards have been proposed and tested. These

have already been systematically compared and their advan-

tages and limitations outlined in the literature (Carrara, 1983;

Varnes, 1984; Carrara et al., 1995; Hutchinson, 1995; Man-

tovani et al., 1996; Aleotti and Chowdury, 1999; Chung and

Fabbri, 1999; Guzzetti et al., 1999; Wang et al., 2005; Chung,

2006; van Westen et al., 2006). Most of these approaches

require multi-temporal landslide inventories, so that the sus-

ceptibility model can predict landslide occurrence for a given

time period (Guzzetti et al., 1999). In previous statistical

models the triggering factors have seldom been emphasized.

In recent years, Dai and Lee (2003) used the rolling 24-

h rainfall as an independent variable for the building of a

storm-induced shallow landslide probabilistic model. Chang

et al. (2007) used the maximum 3-h rainfall and rainfall du-

ration in their logit model to model the rainfall conditions

critical for triggering landslides. Dahal et al. (2008) used

extreme 1-day rainfall records in their weights-of-evidence

model to predict the rainfall-induced landslide hazard. It has

become a trend to incorporate rainfall as an independent vari-

able into storm event-induced landslide modeling, but this
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method still needs validated and further defined for different

environments.

Multi-temporal landslide inventories are not yet available

for Taiwan. However, several typhoons (tropical cyclones)

strike Taiwan every year, which has given us the opportu-

nity to map an event-based landslide inventory for each ma-

jor typhoon. In this study we use an event-based landslide

inventory, considering rainfall as an independent variable in

our multivariate statistical susceptibility model. We care-

fully compare pre-event and post-event landslide inventories

to produce an event-based landslide inventory. We select

data for the shallow landslides triggered by the 2002 typhoon

Toraji in the Kuohsing region in central western Taiwan to

train the susceptibility model. The susceptibility model is

then validated using data from the neighboring Tungshih re-

gion, as well as data from a subsequent storm event – the

2004 typhoon, Mindulle. The advantages and shortcomings,

as well as practical use of this statistical method are dis-

cussed.

2 Regional settings and storm events

The study area comprises the Kuohsing and Tungshih quad-

rangles (coincide with the 1 to 50 000 scale map of Tai-

wan; 705.3 km2 and 703.9 km2 in area), which are located

in central western Taiwan (Fig. 1). Kuohsing is east of the

Taichung Basin where metropolitan Taichung is located, and

west of the Central Range. Tungshih is located immediately

north of Kuohsing. Geologically, the area falls partly in the

Western Foothills geologic province (western part) and partly

in the Hsueshan Range sub-province of the Central Range

geologic province (eastern part). The Western Foothills are

characterized by fold-and-thrust Neogene sedimentary strata;

the Hsueshan Range is typically characterized by a Pale-

ogene slate belt of argillite and quartzitic sandstone (Ho,

1975). The Shuilikeng Fault forms a boundary between these

two provinces (see Fig. 1).

Geomorphologically, the study area can be divided into

two types of terrains by the Hsuangtung Fault: western hilly

terrain and eastern mountainous terrain. The elevation in the

hilly terrain is generally less than 500 m with rocks consist-

ing of weakly cemented Pliocene and Pleistocene mudstone,

sandstone and conglomerate. The elevation in the mountain-

ous terrain is generally greater than 500 m with many peaks

exceeding 1000 m with rocks consisting of better-indurate

Eocene, Oligocene and Miocene, sandstone, shale, argillite

and quartzite. The geomorphic appearance in the hilly ter-

rain is more fragmented with short slopes, while the moun-

tainous terrain is solider and has longer slopes. Typical slope

gradients in the hilly terrain are between 10◦ and 30◦, with

a mode of about 16◦, while in the mountainous terrain, typi-

cal slope gradients are between 10◦ and 45◦, with a mode of

about 26◦.

The study area has a subtropical climate with average an-

nual precipitation of about 2400 mm, and on average, 159

rainy days per year. Approximately three typhoons strike this

area each year, mostly between July and October. The heav-

iest rainfall typically occurs in June, July and August; with

a monthly average during that period of about 400 mm. In

the dry season, October through March, the monthly average

precipitation is about 80 mm with a monthly average of about

8 rainy days. The sloped lands are usually green and covered

with vegetation. Gentle or moderate slope with gradients less

than 30% are usually cultivated while steep slopes tend to be

covered by bushes and shrubbery. Underneath the hill sur-

face, the slopes in the study region are for the most part man-

tled by permeable colluvium soils. Although the slopes in the

study area are green, shallow landslides are common during

a major earthquake or a typhoon event.

A disastrous earthquake – the Mw7.6 Chi-Chi earthquake

– occurred on 21 September 1999 in central western Tai-

wan (Ma et al., 1999; Kao and Chen, 2000). A huge thrust

ruptured along the Chelungpu fault about 3 km west of the

Kuohsing quadrangle, extending into the southwest corner

of the Tungshih quadrangle. The Kuohsing quadrangle and

most of the Tungshih quadrangle are located on the hang-

ing wall of the thrust fault. These areas suffered from se-

vere shaking during the main shock and aftershocks trigger-

ing 9272 large landslides (with areas greater than 625 m2),

with a total area of 127.8 km2 (Liao and Lee, 2000).

After the 1999 Chi-Chi earthquake disaster, two major ty-

phoons struck Taiwan, reactivating many landslides, espe-

cially in central western Taiwan, where slopes had already

been damaged or destabilized by the earthquake (Liao et al.,

2002). Typhoon Toraji passed through Taiwan from 28 July

to 31 July 2001. Typhoon Mindulle passed over Taiwan from

28 June to 3 July 2004. The properties of the rainfall and

losses due to these two typhoons are listed in Table 1. Storm-

induced landslides became a big problem after the 1999 Chi-

Chi earthquake. Debris flows and sediment transport became

a major problem for governmental authorities to cope with.

Although typhoon Mindulle brought a maximum total pre-

cipitation of 2125 mm to Taiwan, it caused less loss than

Toraji did. This may have been due to a more developed

hazard mitigation program and evacuation of people by the

government before the typhoon hazard occurred.

3 Methodology

This study comprises one element of an investigation of land-

slides in Taiwan carried out by the Central Geological Survey

(CGS) of Taiwan (Lee et al., 2005). The overall aim of the

CGS investigation is to produce a set of landslide suscepti-

bility maps (scale: 1/25 000) for all of Taiwan. Since this

is a target-oriented project, the methodology for producing

the landslide susceptibility maps must be objective and sim-

ple enough to meet the needs of future work. The specific
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Fig. 1. Location and geology of the study sites: (a) geologic map of Tungshih quadrangle; (b) geologic map of Kuohsing quadrangle; (c)

geologic provinces of Taiwan and index map; (d) legend for geologic maps.

needs of this project have given birth to several problems.

Firstly, since multi-temporal landslide inventories are not yet

available, and air-photos with good coverage and good time

resolution are only available back to 1979, it is difficult to

depend upon the use of a multi-temporal landslide inventory.

Secondly, the interruption of landslide time-sequence data by

strong earthquakes (such as the Chi-Chi earthquake), may

bias the data set used to train a susceptibility model. Thirdly,

since we need 263 maps cover the whole of Taiwan, ways

to preserve the continuity and consistency between adjoining

maps are crucial.

This third problem was solved by selecting a mature ana-

lytical method with the whole of Taiwan being divided into

several terrain zones. An LSA model was trained for each

specific terrain (Lee et al., 2005). To solve the first and sec-

ond problems, however, we were forced to consider using

www.nat-hazards-earth-syst-sci.net/8/941/2008/ Nat. Hazards Earth Syst. Sci., 8, 941–960, 2008
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Table 1. Rainfall characteristics and losses during the typhoon Toraji and the typhoon Mindulle.

Name of typhoon Toraji Mindulle

Duration of typhoon 28 July to 21 July 2001 28 June to 3 July 2004

Maximum total rainfall in Taiwan 650 mm∗1 2125 mm∗2

Duration of rainfall in Kuohsing quadrangle 19∼23 h 65∼84 h

Duration of rainfall in Tungshih quadrangle 22∼25 h 77∼85 h

Maximum total rainfall in Kuohsing quadrangle 436 mm (Amei)∗3 1630 mm (Amei)

Maximum total rainfall in Tungshih quadrangle 452 mm (Shinkai) 1315 mm (Wushihken)

Maximum rainfall intensity in Kuohsing quadrangle 131 mm/hr (Chinliu) 138 mm/hr (Shinbuokong)

Maximum rainfall intensity in Tungshih quadrangle 102 mm/hr (Shinkai) 125 mm/hr (Suanchi)

Property loss in Taiwan US$ 200 million US$ 140 million

Life loss in Taiwan 222 persons 45 persons

Note, ∗1: At the Nantienchi gauge station in Kaohsiung County, southern Taiwan.
∗2: At the Shihnan gauge station in Kaohsiung County, southern Taiwan.
∗3: Name in Parentheses is name of gauge station in the quadrangle.

an event-based landslide inventory and event-based landslide

susceptibility analysis (EB-LSA). We tested the EB-LSA for

different regions and different events in Taiwan before pub-

lishing an EB-LSA for earthquake-induced landslides in the

Kuohsing area (Lee et al., 2008).

3.1 Methods and working procedure

The methods and working procedure utilized in the present

study of storm-induced landslides generally follow those of

Lee et al. (2008). The first step includes image and data col-

lection, after which an event-based landslide inventory is es-

tablished (in this case for a storm event). In parallel with this,

the causative factors of the landslides are processed and the

triggering factors determined. These factors are then statisti-

cally tested, and the effective factors selected for susceptibil-

ity analysis. Each selected factor is rated, and their weighting

analyzed.

Discriminant analysis allows us to determine the maxi-

mum difference for each factor between the landslide group

and the non-landslide group, as well as the apparent weights

of the factors. A linear weighted summation of all factors is

used to calculate the landslide susceptibility index (LSI) for

each grid point. The LSIs are used to establish a landslide

ratio to LSI curve and determine the spatial probability of

landslide at each grid point. The landslide ratio used here is

the ratio of landslide pixels to total pixels in an LSI interval

(Lee et al., 2005, 2008), called the proportion of landslide

cells in Jibson et al. (2000). The spatial probability of land-

slides is then used for landslide susceptibility mapping. For

a more detailed description of EB-LSA, please refer to Lee

et al. (2008).

3.2 Selection of causative factors

There are more than fifty different landslide-related factors

commonly used (both in Taiwan and worldwide) for LSA

(Lin, 2003). In the present storm event-induced landslide

study, we selected fourteen of the most frequently used,

based on data abundance and availability. These causative

factors were lithology, slope gradient, slope aspect, terrain

roughness, slope roughness, total curvature (Wilson and Gal-

lant, 2000), local slope height, total slope height, topo-

graphic index (Kirkby, 1975), distance from a road, distance

from a fault, distance from a river head, distance from a

river bend, and the normalized differential vegetation index

(NDVI, Paruelo et al., 2004).

These factors were further tested, including the normal-

ity of each factor, correlation coefficient between any two

factors, and calculation of standardized differences (Davis,

2002) between the landslide group and non-landslide group

for each factor. A final selection of effective factors was de-

cided based upon the evaluation and test results.

3.3 Selection of a triggering factor

It is well known that rainfall plays an important role in trig-

gering landslides during a storm event. Most shallow slope

failures during or after a rainstorm are triggered by an in-

crease in pore pressure and a corresponding reduction in ef-

fective stress in the soil (Dai and Lee, 2003). Shallow soils

are often underlain by a relatively low permeability layer or

an impeding layer. The raising of the soil-water level above

the impeding layer during a rain storm may be influenced by

antecedent rainfall, the condition of the soil surface and its

vegetation, the soil properties, such as its porosity and hy-

draulic conductivity, and the upslope drainage area (Kirkby,

1975; Chow et al., 1988). Because typhoon rainfall in the

Taiwan region is usually heavy, the antecedent rainfall may
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be neglected as just having a minor effect. Vegetation cover

is reflected by the NDVI. Instead of slope length and upslope

area, we used a total-slope-height factor and the topographic

index. The soils are loose and permeable colluvium. We

may assume that the colluvium soils within a lithologic unit

will have similar properties but that there will be variations

between different lithologic units. Therefore, the lithology

factor is also related to hillslope hydrology.

To include the above-mentioned causative factors in the

statistical susceptibility model may connect rainfall to the

triggering of slope instability, and help in our interpretation

of the physical meaning. Rainfall intensity and duration or

cumulative rainfall are the most commonly used factors to

delineate landslide occurrence (Zezere and Rodrigues, 2002;

Guzzetti et al., 2007). In this study, the maximum hourly

rainfall (maximum rainfall intensity), the rolling 24-h rain-

fall, and the total rainfall of the storm event were considered

as candidate triggering factors. These factors were statisti-

cally tested, and evaluated to make a final decision.

3.4 Assessment of model performance and validation

The error matrix (Stehman, 1997), the receiver operating

characteristic (ROC) (Swets, 1988), and the prediction rate

curve (Chung and Fabbri, 2003) are the most commonly used

methods to assess a model’s performance in landslide and

other types of studies. For both the error matrix and the

ROC, the classification of true positives and false positives

are needed; a probability value of 0.5 is used in the logit

model to determine whether the model has made a correct

prediction (>0.5) or not (<0.5); a discriminant index λ0 is

used in the discriminant analysis to determine whether the

model has made a correct prediction (>λ0) or not (<λ0).

This clear cut boundary is deemed to be not as friendly as the

prediction rate curve, which needs only successive classes to

reflect the landslide potential. Furthermore, we used a dis-

criminant function to develop the LSIs; λ0 was not used in

the discriminant model. Therefore, the prediction rate curve

was selected in the present study.

Landslide data used to establish the model were first

grouped into several classes according to their LSIs. The

number of landslide pixels in each class was then divided

by the total number of pixels in that class, and a cumulative

curve was plotted. The area under the curve (AUC) is be-

tween 0 and 1; a higher value indicates a higher prediction

rate, whereas a value near 0.5 means the prediction is no bet-

ter than a random guess (Chung and Fabbri, 2003). In the as-

sessment, we classify AUC≧0.9 as excellent, 0.9>AUC≧0.8

as good, 0.8>AUC≧0.7 as fair, 0.7>AUC≧0.6 as poor,

AUC<0.6 as very poor.

The prediction rate curve may be used to assess the predic-

tion performance of the model, or used to validate a model

using different data sets. When the prediction rate curve is

used to assess model performance, we use the same data set

as for building the model to compute a success rate curve

(Chung and Fabbri, 1999). The success rate curve is used to

indicate how well the model fits the data.

4 Data acquisition and processing

The basic data utilized in this study included a 40 m×40 m

grid digital elevation model (DEM), SPOT images, 1/5000

photo-based contour maps, 1/50 000 geologic maps, and

hourly rainfall data. The DEMs were collected by the Aerial

Survey Office of Taiwan’s Forestry Bureau. They were trans-

ferred to a color-shaded image and were visually checked.

Defects were replaced by re-digitizing from a 1/5000 scale

photo-based contour map. Other abnormal points were cor-

rected using a median filter. Finally the DEMs were interpo-

lated to a 20 m×20 m grid cells using cubic spline interpola-

tion.

Selected SPOT images taken before and after the typhoon

events are shown in Table 2. All SPOT images were re-

ceived, processed and rectified by the Center for Space and

Remote Sensing Research, National Central University, Tai-

wan. Both multi-spectral (XS) and panchromatic (PAN) im-

ages were used. A fusing technique (Liu, 2000) was utilized

to produce a higher resolution false-color composite image

to facilitate landslide recognition. The pixel resolution after

fusing was 6.25 m.

1/50 000 geological maps were collected from the CGS.

Each map was overlaid with a shaded DEM and visually in-

spected in a Geographic Information System (GIS). Some

abnormal boundaries, mostly associated with alluvial and ter-

race deposits, were corrected. The ERDAS IMAGINE sys-

tem (ERDAS, 1997) was used to transform the geologic vec-

tor map to a raster image of 20 m×20 m grid cells.

The hourly rainfall data in and around the study region

were collected from the Central Weather Bureau and the Wa-

ter Resources Agency, Taiwan. These data were first plot-

ted and visually inspected to compare individual records for

consistency with neighboring gauge stations; abnormal data

was deleted. Rainfall data were finally interpolated into

20 m×20 m grid cells data as will be explained in Sect. 4.3.

All later processing and analysis for each susceptibility factor

and for the EB-LSA are based on the 20 m×20 m grid-cells

unit.

4.1 Event-based landslide inventories

An event-based landslide inventory is difficult to extract us-

ing aerial photographs alone. Complete sets of photographs

taken just before and soon after an event are rarely available.

An event-based landslide inventory, extracted from satellite

imagery, is often more practical and valid. A major disad-

vantage of using satellite imagery for extracting landslides is

that the spatial resolution may be less than that of an aerial

photograph, so that some small landslides may be missed.

However, not all of the landslide data are needed to establish
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Table 2. SPOT images used in the Kuohsing quadrangle.

Event Event Date Image Time Series number Type 

2001/07/02 G0015182 XS 
Before 

2001/07/02 G0014757 PAN 

2001/11/10 G0014977 XS 
Typhoon Toraji 

2001/07/28 

～  
2001/07/31 

After 
2001/11/10 G0014975 PAN 

2004/03/22 P0000575 XS 
Before 

2004/03/22 P0000511 PAN 

2004/07/12 P1040712 XS 
Typhoon Mindulle 

2004/06/28 

～  
2004/07/03 

After 
2004/07/12 X1040712 PAN 

～
～

Table 3. SPOT images used in the Tungshih quadrangle.

～
～

Event Event Date Image Time Series number Type 

2001/03/05 G0014517 XS 

Before 
2001/03/05 G0014518 PAN 

2001/11/10 G0014989 XS 
Typhoon Toraji 

2001/07/28 

～  
2001/07/31 

After 
2001/11/10 G0014990 PAN 

2004/04/12 P0000573 XS 
Before 

2004/04/12 P0000526 PAN 

2004/07/13 P1040713 XS 

2004/07/13 X1040713 PAN 

Typhoon Mindulle 
2004/06/28 

～  
2004/07/03 

After 

2004/08/26 A0408032 XS 

te Image Time 

a susceptibility model (Weirich and Blesius, 2007); missing

some small landslides is not an important issue.

SPOT images taken before and after the 2 typhoon events

were selected for each quadrangle (Tables 2 and 3) from

which two event-based landslide inventories for each of the

two quadrangles were prepared. A pre-event landslide inven-

tory was prepared for each event from a SPOT image taken

before the event; a post-event landslide inventory was pre-

pared from an image taken after that event, and finally an

event-based landslide inventory was derived by comparing

the pre-event and post-event inventories. An event-induced

landslide could be absent from the pre-event landslide inven-

tory, or present in both inventories (re-activated landslide).

Landslides found in both inventories were examined very

carefully for changes in tone and/or enlargement of extent

(Pan et al., 2004).

We found that landslide deposit areas should be included

in the above-mentioned landslide mapping procedure. Since

potential landslide sources are of interest in susceptibility

analysis, only source areas may be used to train the suscep-

tibility model. Therefore, we had to differentiate between

source areas and actual deposit areas. Landslide deposits

were identified by comparing the GIS landslide layer with

the 1/5000 scale photo-based contour map. The slope angle

or concentration of contour lines was used to differentiate

deposits from sources.

Each landslide inventory was completed using a geo-

graphic information system (GIS). The attributes include de-

tailed descriptions of the date/event, and the size and type

of each landslide object. Four event-based landslide inven-

tories were developed: Toraji event – Kuohsing, Toraji event

– Tungshih, Mindulle event – Kuohsing, and Mindulle event

– Tungshih. The spatial distribution of landslides triggered

Nat. Hazards Earth Syst. Sci., 8, 941–960, 2008 www.nat-hazards-earth-syst-sci.net/8/941/2008/
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Pre-event inventory Post-event inventory Event-triggered inventory 

 
a 

 
b 

Fig. 2. Spatial distribution of landslides in the study region. (a) Typhoon Toraji, (b) typhoon Mindulle. Upper quadrangle is the Tungshih

site, lower quadrangle is the Kuohsing site; black polygons indicate landslides, white polygons indicate no information is available from the

SPOT images.
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Table 4. Landslide numbers and areas in the Kuohsing and Tungshih quadrangles.

Typhoon/quadrangle
Pre-event existing landslides Post-event total landslides Event-triggered landslides

Number Area (ha.) Number Area (ha.) Number Area (ha.)

Toraji/KH 3147 1847 3772 1973 1772 715

Mindulle/KH 3872 568 5604 866 3415 651

Toraji/TS 1674 380 2928 788 2127 676

Mindulle/TS 3159 557 4171 626 2575 542

Note: KH: Kuohsing quadrangle; TS: Tungshih quadrangle.

 

Fig. 3. Schematic map showing the definition of factors. (A) eleva-

tion of crest, (B) horizontal distance to drainage, (C) height relative

to riverbed, (D) elevation of toe, (E) total slope height, (F) height

relative to crest, (G) height relative to toe, (H) horizontal distance to

crest, (I) horizontal distance to toe, (J) horizontal distance between

crest and toe, (K) slope length.

by the two events is summarized in Fig. 2, and listed in Ta-

ble 4. Only source areas of shallow landslides (including

rock falls), were used in the susceptibility analysis. Deep

seated slides, rock avalanches (located outside the present

study area) and debris flows were excluded in the present

study.

4.2 Landslide causative factors

The data set for each terrain was divided into a landslide

group and a non-landslide group. Tests of normality for each

factor, the calculation of the correlation coefficient between

any two factors, and the calculation of standardized differ-

ences between the landslide group and non-landslide group

for each factor were performed in order to select effective

factors for the discriminant analysis. Eight causative fac-

tors – lithology, slope gradient, slope aspect, terrain rough-

ness, slope roughness, total curvature, total slope height, and

NDVI – were judged to be effective factors to be used in the

discriminant analysis. Six of them have also been used for

earthquake-induced landslide susceptibility analysis by Lee

et al. (2008), whereas the NDVI factor and the total-slope-

height factor are additional factors.

The NDVI is an environmental factor indicating the abun-

dance of vegetation cover at a specific pixel point, and may

be used as an indicator at land-use. A higher NDVI value in-

dicates denser vegetation. Denser vegetation increases pre-

cipitation interception, and decreases the amount of infil-

tration, whereas barer land areas will have higher infiltra-

tion rates, which are associated with higher soil water levels,

which in turn contributes to slope failure. To obtain accu-

rate land-use information for establishing the susceptibility

model, the NDVI should be calculated from an image taken

prior to a storm event.

The total-slope-height for a given point on a slope is de-

fined as the height of the upper slope above the point (height

from point to crest) plus the slope height below the point

(height from toe to point) (F+G in Fig. 3). The total-slope-

height factor may be physically related to the magnitude of

the stress and the pore-water pressure in the lower slope; for

long slopes the surface and subsurface water is more likely

to be concentrated in the lower slope, causing instability. It

has been observed that storm-induced landslides tend to oc-

cur relatively low on the slopes (Chang and Hsu, 2004).

The topographic index, which is defined as the area drain-

ing through a point from upslope divided by the local slope

gradient at that point (Kirkby, 1975), is an important hydro-

logical factor related to landslides. However, it was found to

be ineffective for discriminating between the landslide and

non-landslide group data. This unusual result may be due to

the weakening of ridges in this study area by the coseismic

shaking of the Chi-Chi earthquake, so that many landslides

occurred on the upper-slopes close to the ridge tops. The oc-

currence of these landslides was due to weak soil strength

and open cracks on the slope which allowed overland flows

to seep into the soil.

All eight causative factors, except for total-slope-height,

were processed by the ERDAS IMAGINE system (ERDAS,

1997). The total-slope-height values were calculated from

a series of along-slope sections by a FORTRAN program
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Table 5. Descriptive statistics of causative factors other than lithology.

a. Hilly Terrain

Factor
Landslide Group Non-Landslide Group Landslide Ratio

Range Mean S.D. Range Mean S.D. Range Mean S.D.

Slope 0.0∼329.3 31.9 26.1 0.24∼333. 66.6 43.2 0.0∼66.67 15.9 17.4

Slope aspect 0.0∼360 – – 0.0∼360. – – 0.24∼2.65 – –

Topographic roughness 0.0∼9.0 1.1 0.9 0.0∼10.3 2.5 1.7 0.0∼100. 19.7 24.9

Slope roughness 0.04∼112. 13.3 9.6 4.0∼100. 30. 14.1 0.0∼29.8 9.35 8.84

Total Curvature –6.26∼–1.95 –4.61 0.77 –6.05∼–1.99 –3.69 0.53 0.0∼33.3 6.23 9.37

Total Slope height 0.0∼715. 62.5 94.8 0.0∼533. 159. 134. 0.0∼6.27 1.26 2.21

NDVI –0.74∼0.75 0.39 0.17 –0.54∼0.64 0.15 0.18 0.0∼16.7 2.95 3.79

b. Mountain Terrain

Factor
Landslide Group Non-Landslide Group Landslide Ratio

Range Mean S.D. Range Mean S.D. Range Mean S.D.

Slope 0.0∼353.9 51.6 30.9 0.5∼270. 84.5 36.0 0.0∼22.2 3.7 4.78

Slope aspect 0.0∼360. – – 0.0∼360. – – 0.16∼1.69 – –

Topographic roughness 0.0∼12.2 1.4 1.0 0.0∼8.3 2.3 1.4 0.0∼9.09 2.8 2.68

Slope roughness 0.15∼124.3 16.2 8.5 2.9∼86.8 23.0 10.1 0.0∼5.51 1.63 1.82

Total Curvature –6.29∼–1.79 –4.32 0.64 –6.29∼–2.31 –3.95 0.52 0.0∼10.0 1.63 2.28

Total Slope height 0.0∼1724. 293. 258. 0.0∼1633. 415. 263. 0.0∼1.89 0.95 0.63

NDVI –0.9∼0.82 0.45 0.15 –0.61∼0.68 0.16 0.24 0.0∼35.5 6.98 8.76

Table 6. Descriptive statistics of lithology factor.

Lithology
Hilly Terrain Mountain Terrain

% of study area Landslide ratio % of study area Landslide ratio

#1 5.66 0.01 7.12 0.44

#2 4.25 0.00 4.33 0.19

#3 13.49 0.00 2.09 0.00

#4 6.04 1.30 0.05 0.00

#5 46.16 2.52 0.59 1.25

#6 23.46 0.07 0.06 0.00

#7 – – 0.01 0.00

#8 0.44 0.10 10.84 0.70

#9 0.49 0.23 10.24 0.40

#10 – – 4.21 0.06

#11 – – 1.42 0.10

#12 – – 4.55 0.09

#13 – – 12.89 0.76

#14 – – 32.81 1.16

#15 – – 8.79 2.34

# Numbering for lithologic unit: 1. Alluvium; 2. Terrace Deposits; 3. Lateritic Terrace Deposits; 4. Toukoshan Formation (conglomerate

dominate); 5. Toukoshan Formation (sandstone and shale dominate); 6. Cholan Formation; 7. Kueichulin Formation; 8. Fulungyuan

Formation; 9. Hourdonqkeng Formation; 10. Shihmentsum Formation; 11. Takeng Formation, Tanliaoti Member; 12. Takeng Formation,

Shihszeku Member; 13. Shuichangliu formation; 14. Paileng Formation, Meitzulin Member; 15. Paileng Formation, Tungmou Member.

The formation names in 8–10 are local names for the Shuilikeng Formation as shown in Fig. 1.
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Fig. 4. Spatial distribution of original values of causative factors in the Kuohsing quadrangle. (left) Total-slope-height, (right) NDVI.
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Fig. 5. Frequency distribution of landslide and non-landslide group and landslide ratio of factors for the Toraji typhoon event in different

terrains in the Kuohsing quadrangle. Left column for hilly terrain. Middle column for mountainous terrain. Thick line indicates landslide

group, and thin line indicates non-landslide group. Right column for landslide ratio at both terrains, regression lines are indicated. Numbering

for lithologic unit is similar to that in Table 6.
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 a b 

Fig. 6. Rainfalls in Toraji typhoon event. (a) Maximum rainfall isopleths, (b) total rainfall isopleths.

developed for this study. The spatial distribution of the total-

slope-height and NDVI factors are shown in Fig. 4; those

for the slope gradient, slope aspect, topographic roughness,

slope roughness, total curvature and lithology are similar to

those in Fig. 4 in Lee et al. (2008) so it is not necessary to

repeat them here. The descriptive statistics for the causative

factors are listed in Tables 5 and 6. Plots of the frequency

distributions of the landslide and non-landslide groups in the

different terrains (hilly terrain and mountainous terrain) are

shown in the left and middle columns of Fig. 5. The right-

hand column shows the landslide ratios with respect to the

factor values. There is a positive correlation between the

factor and corresponding landslide ratio for both hilly ter-

rain and mountainous terrain for slope gradient, topographic

roughness, slope roughness, total curvature and total-slope-

height (Fig. 5c, i, l, o, r). A straight line may be fitted be-

tween the lower and upper bounds. There is a negative corre-

lation between NDVI and landslide ratio for both hilly terrain

and mountainous terrain (Fig. 5u). A straight line may also

be fitted between the lower and upper bounds. All plots were

visually inspected and evaluated. The landslide ratio of the

slope aspect shows a sinusoidal curve (Fig. 5f), and a sinu-

soid is fitted.

A factor was assigned a rating according to its landslide

ratio. The rated values were then normalized to be between 0

and 1, with 0 being a factor with a value less than or equal to

its lower threshold and 1 being a factor value greater than or

equal to its upper bound. Although the lithology factor data

are categorical in nature, a landslide ratio can also be found

for each lithologic unit, and a normalized score between 0

and 1 assigned.

4.3 Landslide triggering factors

In this study we used data from 68 rain gauge stations located

within the 12 map quadrangles in the study area: 5 stations in

the Kuohsing quadrangle and 11 in the Tungshih quadrangle

(Fig. 6). Each rainfall record plotted was checked visually,

and abnormal data were not used. Maximum rainfall inten-

sity and total rainfall values were calculated station by station

and then interpolated for each grid point using the ordinary

Kriging method (Goovaerts, 1997). Because the duration of

rainfall at the rain gauge stations in the Kuohsing quadrangle

ranged from 19 to 23 h, neither maximum daily rainfall nor

rolling 24-h rainfall were considered.

The frequency distribution of the landslide and non-

landslide groups as well as landslide ratio for these factors

were tested, plotted, and the results examined (Fig. 7a–f).

Both the total rainfall and the maximum rainfall intensity fac-

tors were tested statistically for effectiveness at discriminat-

ing between the landslide group and the non-landslide group,

based on which the maximum rainfall intensity was selected

as the triggering factor for the storm-induced LSA.

The maximum rainfall intensity was also assigned a rat-

ing according to the landslide ratio and considering a lower

threshold, similar to that for a causative factor. We also
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Fig. 8. Distribution of probability of failure (landslide ratio) with

respect to landslide susceptibility index in the Kuohsing quadran-

gle. Weibull distribution curves are shown: (a) hilly terrain; (b)

mountainous terrain.

needed to assign a slightly higher upper bound than the ac-

tual value encountered in the event. An EB-LSA model with

a credible upper bound for the triggering factor would be of

benefit when using this model for prediction, as higher rain-

fall intensity may be encountered in some scenarios.

5 Results and evaluation

Data in the Kuohsing quadrangle for shallow landslides trig-

gered by typhoon Toraji were used for the EB-LSA. All data

sets from the landslide group (5575 pixels in hilly terrain;

11 540 pixels in mountainous terrain) and a randomly se-

lected non-landslide data set of similar size were used in the

discriminant analysis. Gentle slopes, i.e., a slope gradient of

less than 10%, were regarded as stable, and were not included

in the discriminant analysis. These areas were also not con-

sidered in the evaluation of the results or the calculation of

the success rate or prediction rate curves.

The results of the analysis included a coefficient (apparent

weight) for each factor for both the hilly and mountainous

terrain (Table 7). Among the 9 factors used, the slope gradi-

ent factor has the highest coefficient and a large percentage

of the weighting. The environmental factor – NDVI, also car-

ries a large percentage of the weighting. As compared with

the above-mentioned two factors, the rainfall intensity factor

is not weighted as highly and needs further discussion.

These various weights were used to calculate the LSI for

each grid point, as with Eq. (5) in Lee et al. (2008). LSIs

were used to calculate the landslide ratio for each LSI class.

The spatial probability of landslide occurrence is indicated
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Table 7. Results of coefficients of the discriminant function for each terrain in the Kuohsing quadrangle.

Terrain Litho Slope Slope Asp Topo Rou Slope Rou Total Curv Total Slope NDVI Rain

Hilly 0.095 0.290 0.075 0.131 0.033 0.109 0.016 0.212 0.039

Mountain 0.052 0.246 0.134 0.110 –0.072 0.020 0.026 0.344 0.074

Note: Litho: Lithology. Slope: Slope gradient. Slope Asp: Slope aspect. Topo Rou: Topographic roughness. Slope Rou: Slope roughness.

Total Curv: Total curvature. Total Slope: Total slope height. NDVI: Normalized differential vegetation index. Rain: Maximum rainfall

intensity.

 

Fig. 9. Landslide susceptibility map of the Kuohsing quadrangle

developed using susceptibility model trained with Toraji inventory

at the Kuohsing quadrangle. Red indicates high susceptibility, yel-

low moderately high, green moderate, cyan low, and gray stable.

Landslides triggered by the typhoon Toraji are shown.

by the relation between the probability of failure (landslide

ratio) and the LSI (Fig. 8). The probability of failure curves

does show a strong trend of increasing probability of land-

slide occurrence with increasing susceptibility values. The

relation generally follows a Weibull distribution (Lee, 2006;

Lee et al., 2008). There are some fluctuations in the landslide

ratio when the susceptibility value is higher, simply because

there is less data available. The spatial probability of a land-

slide can then be used to map the susceptibility classes, as

shown in Fig. 9.
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Fig. 10. Success rate curve in the Kuoshing quadrangle and predic-

tion rate curve in the Tungshih quadrangle for the Toraji typhoon

event. (a) Hilly terrain, (b) mountainous terrain. AUCs are indi-

cated.

5.1 Success rate for the Kuohsing quadrangle

We now compare the distribution of actual landslides trig-

gered by typhoon Toraji with the event-based susceptibility

map (Fig. 9). This comparison shows that the landslide pat-

tern generally agrees with the pattern of the high suscepti-

bility classes. We further examine how the results fit the

data, using the prediction rate curve method (Chung and Fab-

bri, 2003). Landslide data used to establish the model were

grouped into several classes according to their LSIs, the num-

ber of landslide pixels in each class was divided by the total

number of pixels in that class, and a cumulative curve was

plotted. Since it is the full set of data from the landslide

group used to train the model and calculate the rates, we es-

sentially calculate a success rate. The success rate curves for

the two terrains are plotted in Fig. 10. The AUC values were

also calculated and are shown in Fig. 10.

The results for the hilly terrain are excellent

(AUC=0.9343) while those for the mountainous terrain

(AUC=0.8859) (in the Kuohsing quadrangle for the Toraji

typhoon event). The exclusion of slopes less than 10% from

these calculations, as noted above, may reduce the bias in

the success rate calculation, leading to a more conservative

result than if these slopes were included.
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Fig. 11. Landslide susceptibility map of the Tungshih quadrangle

developed using susceptibility model trained with Toraji inventory

in the Kuohsing quadrangle. Landslides triggered by the typhoon

Toraji are shown.

5.2 Validation in the Tungshih quadrangle

The same data sources and the same procedure were used to

validate the susceptibility model. We processed factors from

data from the same sources for the Tungshih quadrangle, and

used the factor weights from the Kuohsing quadrangle to cal-

culate the LSI for each grid point in the Tungshih quadran-

gle. The LSIs were then transferred to indicate probability of

failure using the equations shown in Fig. 8. The map of the

susceptibility classes for the grid points in this quadrangle is

shown in Fig. 11.

The results of the prediction rate calculation are shown in

Fig. 10. Again, flat areas, with slopes of less than 10%, were

not considered in the calculation of the prediction rate curve;

the results are again conservative. The prediction rate for

hilly terrain (AUC=0.8171) was less than that for the Kuohs-

ing quadrangle, whereas for mountainous terrain, the pre-

diction rate for both quadrangles was similar (AUC=0.8859

vs. 0.8903). This is a fairly good result. The lower predic-

tion rate for the hilly terrain may be explained as due to the

most widespread rock type – the Houyenshan conglomerate,

where numerous landslides were triggered by the Chi-Chi

earthquake and also reactivated during the typhoon Toraji,

not being present in the Tungshih quadrangle.

a b 

Fig. 12. Landslide susceptibility maps developed using susceptibil-

ity model trained with Toraji inventory in the Kuohsing quadrangle,

environmental factor – NDVI before typhoon Mindulle, and maxi-

mum rainfall intensities of typhoon Mindulle. Landslides triggered

by the typhoon Mindulle are shown. (a) Tungshih quadrangle, (b)

Kuohsing quadrangle.
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Fig. 13. Prediction rate curve for a subsequent event – the typhoon

Mindulle, in the Kuoshing and Tungshih quadrangles. (a) Hilly

terrain, (b) mountainous terrain. AUCs are indicated.

5.3 Validation using data from a subsequent event

We looked at landslides induced by Typhoon Mindulle for

additional validation. The same data sources and procedure

were used. Most factors are time-invariant, but this invari-

ance cannot be extended to environmental factors (Guzzetti

et al., 1999), such as rainfall and NDVI. We used rainfall

data gathered during typhoon Mindulle, from 28 June to

3 July 2004. NDVIs were calculated from a SPOT image

taken just before typhoon Mindulle. The landslides used for

validation were those in the event-based inventory that had

been derived from SPOT images taken before and after the

Mindulle event. Factor weights from the model of the Toraji

event in the Kuohsing quadrangle were adopted. The LSI

was then calculated for each grid point in both quadrangles.

The LSIs were then transferred to indicate probability of fail-

ure using the equations given in Fig. 8. The maps of the
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Table 8. AUC of success and prediction rates for the Kuohsing and Tungshih quadrangles.

Event Hilly terrain Mountainous terrain

Success rate of TOR at Kuohsing 0.9343 0.8859

Prediction rate of TOR at Tungshih 0.8171 0.8903

Prediction rate of MDL at Kuohsing 0.8564 0.8322

Prediction rate of MDL at Tungshih 0.9128 0.9208

Note: TOR: Toraji typhoon event. MDL: Mindulle typhoon event.

susceptibility classes for the grid points in both quadrangles

are shown in Fig. 12. The prediction rate curves are calcu-

lated and shown in Fig. 13.

The prediction rate for the subsequent event in the Kuohs-

ing quadrangle was less than the success rate by about 8 and

5 percent (in terms of the AUC) for the hilly and mountainous

terrains, respectively. For the Tungshih quadrangle, the pre-

diction rate for the subsequent event in the hilly terrain was

slightly lower than the success rate in the Kuohsing quadran-

gle by about 2 percent; however, in the mountainous terrain,

it was higher than the success rate by about 5 percent (Ta-

ble 8).

In summary, the application of the susceptibility model to

a subsequent event, whether in the training site or a neigh-

boring site, was good, as shown by the good prediction rate.

The performance in the Tungshih quadrangle was especially

good, with a prediction rate better than the success rate.

6 Discussion

The present study provides a statistical approach for the in-

terpretation of the storm event-induced landslide distribu-

tion and for the mapping of regional landslide susceptibil-

ity. There are some interesting aspects which need to be dis-

cussed.

6.1 Methodology and landslide triggering factors

The present EB-LSA differs from traditional statistical LSAs

in two ways. First, instead of a multi-temporal landslide in-

ventory, an event-based landslide inventory is used, and sec-

ond, the triggering factor is emphasized. It is a very impor-

tant to use both an event-based landslide inventory and a trig-

gering factor. Without the event-based landslide inventory,

the triggering factor is not significant; without the trigger-

ing factor, the single-period landslide inventory provides no

insight into temporal changes in the landslide distribution.

Of the two key issues in EB-LSA, the selection of a trig-

gering factor is more important. To select the best trigger-

ing factor, we compared the effectiveness of the total rainfall

and the maximum rainfall intensity of a storm event to dis-

criminate between the landslide group and the non-landslide

group. Based on these results, the maximum rainfall inten-

sity was selected as a discriminator. Hill slopes in the study

region are for the most part mantled by permeable collu-

vium soils. Shallow landslides on such slopes are often cor-

related to short-period rainfall intensity (Aleotti and Chow-

dury, 1999). On the other hand, if a slope is mantled by resid-

ual soils or clayey soils, it may be the total rainfall that con-

trols the soil water level, making this a better discriminator.

However, as mentioned in Sect. 5, the percentage of weight-

ing for rainfall intensity factor is not as high as expected,

when compared to the percentage of weighting for Arias in-

tensity factor in the earthquake-induced landslide study (Lee

et al., 2008): 0.419 and 0.242 for hilly terrain and for moun-

tainous terrain, respectively.

The reason for the relatively low weights for rainfall in-

tensity in the present case may be due to the inclusion of

many reactivated landslides in the landslide inventory used in

training the susceptibility model. Reactivated landslides tend

to occur under smaller rainfall than new ones. This reduces

the effectiveness of the rainfall intensity factor and lowers

the weighting percentage. Recent studies by our team in the

catchments area of the Shihmen Reservoir shows a high per-

centage of weighting for rainfall intensity factor, apparently

due to the fact that the landslides used to build the model are

mostly new (i.e., few reactivated landslides). If this is true,

it is recommended that reactivated landslides not be consid-

ered in the establishment of a landslide susceptibility model

in future studies.

When selecting a triggering factor, the dependency be-

tween factors must be examined. Generally, inter-factor de-

pendencies are common, as can be seen from the correlation

coefficients in Table 9. The correlation coefficients between

the factors used in this study ranged from –0.119 to 0.542.

The triggering factor – maximum rainfall intensity – also had

some dependency on other factors, however the correlation

coefficients were relatively small (0.024∼0.392) so it could

be used as an independent factor.

Is the maximum hourly rainfall the right explanatory vari-

able? Would the maximum 3-h, 6-h, or 12-h rainfall do? This

question needs to be tested with real data in further study.

If one has investigated the land cover, soil depth and per-

meability, this problem may be solvable using hillslope hy-

drology theory (Freeze, 1978; Dietrich et al., 1995; Borga et

al., 2002; Wilkinson et al., 2002; Malet et al., 2005). The
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Table 9. Correlation coefficients between susceptibility factors.

Litho Slope Slope Asp Topo Rou Slope Rou Total Curv NDVI Total Slope Rain

Litho 1.000 0.233 –0.006 0.193 0.243 0.182 0.031 0.275 0.382

Slope 0.233 1.000 –0.094 0.542 0.455 0.268 0.095 0.221 0.306

Slope Asp –0.006 –0.094 1.000 –0.009 –0.119 –0.074 –0.066 0.032 0.024

Topo Rou 0.193 0.542 –0.009 1.000 0.481 0.500 0.005 0.186 0.285

Slope Rou 0.243 0.455 –0.119 0.481 1.000 0.511 0.118 0.163 0.295

Total Curv 0.182 0.268 –0.074 0.500 0.511 1.000 –0.023 0.170 0.231

NDVI 0.031 0.095 –0.066 0.005 0.118 –0.023 1.000 0.013 0.056

Total slope 0.275 0.221 0.032 0.186 0.163 0.170 0.013 1.000 0.392

Rain 0.382 0.306 0.024 0.285 0.295 0.231 0.056 0.392 1.000

Note: Name of each factor is same as that in Table 7.

hydraulic conductivity of colluvium soils in Taiwan is about

10−3–10−4 m/s, or 101–102 m/day (first author personal ex-

perience from many engineering projects). It may take about

1 to several days for infiltration from the upper slope to be

transmitted to the lower slope to reach a steady-state hydro-

logic condition. However, colluvium soils may be loosened

by subsurface storms (Whipkey and Kirkby, 1978) so the

flow may be much faster. Field measurements of subsurface

flow or test data are absolutely needed for verification. Prior

to this verification, it may be more practical to include both

the rainfall intensity and duration, such as done by Chang

et al. (2007), or the maximum 1-hour and maximum rolling

24-h rainfall, in a statistical model.

To use more accurate rainfall distribution in the modeling

is also influential. Although the density of rain gauge sta-

tions is high, interpolation of rainfall data is still necessary.

In this study we used the ordinary Kriging method to interpo-

late rainfall data for each grid point. In future studies, multi-

variate geostatistical methods and the incorporation of more

auxiliary variables, such as surface elevation, slope gradient,

slope aspect, and radar data, into the analysis may be consid-

ered to improve the quality of the interpolation and minimize

the estimation error minimized (Goovaerts, 2000; Diodato

and Ceccarelli, 2005; Chang, 2007; Haberlandt, 2007).

Proper data selection is important to the building of a sus-

ceptibility model. Dai and Lee (2003) used two event-based

landslide inventories (for two different years) to build a sus-

ceptibility model. Only one specific event was used in train-

ing the susceptibility model in the present study. If a spe-

cific storm event gives a wide range of rainfall intensity in

the study area, then the model would be good for prediction.

Otherwise, it is better to select several storm events in the

study area to include a wide range of rainfall intensities. To

use more event data and to plan a good data selection scheme

may be considered in a further study.

6.2 Use of the susceptibility model for mapping

A landslide susceptibility map can be used for regional plan-

ning, site selection, and policy making for hazard mitigation.

It should faithfully reflect the relative hill-slope stability and

danger zones. The direct product of a landslide susceptibil-

ity map from the present EB-LSA allows for interpretation of

the landslide distribution after the specific event, but this may

be event-dependent. For example, if there is high rainfall in-

tensity present at some portion of the map, then that portion

would show high susceptibility or high landslide probability.

A landslide susceptibility map of this kind does not prop-

erly represent the relative slope stability under general rain-

fall conditions in the region.

To prepare better landslide susceptibility maps using the

EB-LSA model we should replace the event rainfall data by

the rainfall data for a particular return period, such as 10, 20,

50 or 100 years so as to produce a more uniform temporal

probability map of the region, such as that done by Dai and

Lee (2003). The temporal probability of a storm event may

be obtained by frequency analysis of the rainfall (Chow et

al., 1988). By combining the spatial probability and the tem-

poral probability, we could establish a probabilistic landslide

hazard model. Lee et al. (2005) proposed some examples

of landslide spatial probability for certain return-periods of

maximum rainfall intensity.

6.3 Use of the susceptibility model for prediction

Similar to the deterministic models, an EB-LSA storm model

is capable of landslide prediction, provided that the rainfall

distribution is known. In EB-LSA, an LSI can be calcu-

lated from a pre-trained landslide susceptibility model and

the value of the triggering factor of a scenario event. The

spatial probability of a landslide at any given point can then

be derived from a diagram of the probability of failure vs. the

LSI (Fig. 8).
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When using the EB-LSA model for prediction, the value of

the triggering factor is better within the range that the model

was trained. This is the case here. The range of maximum

rainfall intensity used in training the model is 43–131 mm/hr,

the range in the Tungshih quadrangle is 53–102 mm/hr; well

within this range. During the typhoon Mindulle event, the

range in the Kuohsing quadrangle is 67–138 mm/hr, the

range in Tungshih quadrangle is 36–125 mm/hr; either within

this range or not exceeding it by much. This is why the pre-

diction rates in the validations are good. A range of pre-

dicted rainfall intensity similar to that of the trained model is

preferable. Extrapolation or over range prediction is not so

controlled.

When used for prediction, the inherent past condition (like

land-use and soil moisture) must be preserved so that the

causative factors used in establishing the model are repre-

sentative of the background conditions for prediction. Of the

causative factors, NDVI is most sensitive, so it should be de-

rived from satellite images made close to the time of predic-

tion during a season which has similar weather conditions as

when the model was trained.

In Taiwan, hill slopes are commonly covered by loose and

permeable colluvium. Antecedent rainfall and land-use do

not affect the soil moisture very much. Land-use does af-

fect the amount of interception of rainfall, but the influence

is small during a heavy rainstorm. Factors derived from the

DEM may also remain unchanged, for shallow landslides do

not change the elevation too much (within the accuracy of

a DEM). The causative factors should preserve past condi-

tions with the NDVI being renewed, for the triggering factor

– maximum rainfall intensity to be effective. Therefore, the

susceptibility model may be used for prediction.

6.4 Perspectives

Up to now, the proposed EB-LSA has been capable of finding

the shallow landslide probability for certain return-periods of

storm rainfall, but we still regard this as a susceptibility anal-

ysis, because we cannot predict the size or run out distance

of a potential landslide (Burton and Bathurst, 1998; Guzzetti

et al., 2005; Claessens et al., 2007b). This means that an-

other important step is needed to upgrade the EB-LSA for

landslide hazard analysis (LHA).

The grid-cell units used in the present study are judged to

be valid, and their use is efficient and correct. However, fur-

ther study should take the interaction of the nearest neighbors

into consideration, to better predict the size of the landslide.

Slope units (Carrara et al., 1991; Guzzetti et al., 1999; Xie

et al., 2004) are one frequently used susceptibility mapping

unit. Parameters derived from a slope unit may reflect the

overall characteristics of the slope where a landslide occurs.

In the present study, we have used a total-slope-height fac-

tor to reflect the longitudinal dimension of a slope unit. If a

slope unit is used, then the transverse dimensions of a slope

would also be known. A method for slope-unit based grid-

cell analysis for EB-LSA is under active study by our group.

In the second-phase of the CGS landslide project, slope-unit

based landslide danger zone mapping will be employed.

The frequency of landslide occurrence is often dominated

by the triggering agent (Aleotti and Chowdury, 1999). There-

fore, EB-LSA models need to be closely linked to hydro-

logical frequency analysis for storm-induced landslide pre-

diction. Because the density of rain gauge stations is sel-

dom ideal, interpolation of rainfall data is always neces-

sary. Improvement by incorporating radar data (Chiang and

Chang, 2008) and/or using multivariate geostatistical meth-

ods (Chang, 2007) is needed.

The present discussion has been limited to shallow land-

slides. Other types of landslides, such as rock-falls, deep-

seated slides, and debris flows, require different methods

(mainly the incorporating of different mapping units and dif-

ferent causative factors). The movement of some types of

landslide can range from very slow to very rapid, meaning

that the danger level will be very different. This feature

should be carefully considered in any future LHA.

7 Conclusions and recommendations

A method of event-based landslide susceptibility analysis

(EB-LSA) was applied to data from a storm event-induced

shallow landslide study in the Kuohsing quadrangle. Results

show that our EB-LSA for storm event-induced landslides is

effective as confirmed by careful validation on a neighboring

region and on a subsequent event. The present methodology

and working procedure are feasible for both storm-induced

and earthquake-induced landslide studies.

EB-LSA uses an event-based landslide inventory derived

from a pre-event and a post-event remotely sensed image, a

set of environmental variables and a triggering factor to train

the susceptibility model. The combination of an event-based

landslide inventory and a triggering factor in the model al-

lows for effective interpretation of the event-induced land-

slide distribution. Landslide susceptibility mapping of this

kind is event-dependent; landslide probability at a given

point is known only when the triggering factor is given. For

actual mapping, it is recommended that the landslide sus-

ceptibility of a region be represented by a susceptibility map

using certain return-period rainfall values.

The maximum rainfall intensity (maximum hourly rain-

fall) is found to be an effective factor in the interpretation of

the event-induced landslide distribution in the present study.

However, if hill slopes are mantled by clayey soils, then the

story could be different; the rainfall duration or the total rain-

fall may control the result. An optimum selection of a rain-

fall factor or other factors needs to be determined for a given

region.

The present approach is feasible for regional susceptibility

mapping and is capable of prediction for a scenario event

without hydrological data, strength data, failure depth, or a
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long-period landslide inventory. It may be further developed

so that landslide size and run-out distance could be included.
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