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Statistical approaches in landscape genetics: an evaluation
of methods for linking landscape and genetic data

Niko Balkenhol, Lisette P. Waits and Raymond J. Dezzani

N. Balkenhol (nbalkenhol@vandals.uidaho.edu) and L. P. Waits Dept of Fish and Wildlife Resources, Univ. of Idaho, Moscow, ID
83844-1136, USA. � R. J. Dezzani, Dept of Geography, Univ. of Idaho, Moscow, ID 83844-3021, USA.

The goal of landscape genetics is to detect and explain landscape effects on genetic diversity and structure. Despite the
increasing popularity of landscape genetic approaches, the statistical methods for linking genetic and landscape data
remain largely untested. This lack of method evaluation makes it difficult to compare studies utilizing different statistics,
and compromises the future development and application of the field. To investigate the suitability and comparability of
various statistical approaches used in landscape genetics, we simulated data sets corresponding to five landscape-genetic
scenarios. We then analyzed these data with eleven methods, and compared the methods based on their statistical power,
type-1 error rates, and their overall ability to lead researchers to accurate conclusions about landscape-genetic
relationships. Results suggest that some of the most commonly applied techniques (e.g. Mantel and partial Mantel tests)
have high type-1 error rates, and that multivariate, non-linear methods are better suited for landscape genetic data
analysis. Furthermore, different methods generally show only moderate levels of agreement. Thus, analyzing a data set
with only one method could yield method-dependent results, potentially leading to erroneous conclusions. Based on
these findings, we give recommendations for choosing optimal combinations of statistical methods, and identify future
research needs for landscape genetic data analyses.

Landscape genetics is an emerging interdisciplinary research
area that combines population genetics, landscape ecology,
and spatial statistics (Manel et al. 2003, Storfer et al. 2007).
The goal of landscape genetics is to describe and explain
how landscape attributes affect genetic variation of plant
and animal populations. Landscape genetic approaches have
the potential to greatly enhance our knowledge of how
landscape heterogeneity influences genetic population
structure, gene flow, and adaptation (Holderegger and
Wagner 2008). Results from landscape genetic studies are
also increasingly used to address questions related to species
management and conservation (Epps et al. 2007). Because
of the immense potential for theoretical and applied
contributions, the number of landscape genetic studies is
growing rapidly (Holderegger and Wagner 2006). At the
same time, the statistical approaches used to infer land-
scape-genetic relationships remain largely untested.

Landscape genetic research usually involves two analy-
tical steps (Manel et al. 2003) that can be combined within
a single analysis. In the first step, patterns of genetic
variation are described, and in the second step, these
patterns are statistically correlated with environmental
(e.g. landscape) variables. Thus, the final goal of landscape
genetics is the quantification of landscape effects on genetic
variation (Storfer et al. 2007). In the last few years, a
multitude of statistical approaches have been proposed for

this second step of landscape genetics. These methods range
from relatively simple correlation statistics to more ad-
vanced and complex Bayesian modeling approaches.
Furthermore, different methods require different input
formats for the landscape data, which can be either pair-
wise (e.g. landscape resistance measured between all sample
locations; Adriaensen et al. 2003), or patch-specific (e.g.
habitat types or connectivity indices; Moilanen and
Nieminen 2002). Additional research is greatly needed to
determine whether all of the proposed methods produce
accurate, valid, and repeatable results in a landscape genetic
context.

Researchers interested in landscape genetics are faced
with a large variety of analysis options with no current
guidelines or recommendations on choosing appropriate
methods. A better understanding of the advantages and
limitations of current analytical approaches is needed to
develop a theoretical framework for landscape genetics,
improve the accuracy of interpretations, and allow compar-
isons across studies. Furthermore, evaluating existing
statistical approaches is crucial to the long-term develop-
ment of landscape genetics as it is the first step for
developing new and improved analysis approaches.

Here, we present the first evaluation of analytical
approaches currently used for the second step of landscape
genetics. We evaluate eleven statistical techniques through
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the analysis of simulated data with known landscape-genetic
relationships, and compare methods based on their statis-
tical power, type-1 error rates, and overall success rates.
Specifically, our goals are to: 1) compare the utility of
different methods available for analyzing landscape genetic
data; 2) develop recommendations for choosing an optimal
set of methods for analyzing empirical data sets; and 3)
identify remaining challenges and future research needs
related to landscape genetic data analysis.

Methods

Landscape-genetic simulations

Evaluating the performance of different methods currently
used in landscape genetics requires the use of data sets with
known landscape-genetic relationships. Simulations are ideal
for this purpose, because they can establish a direct (i.e. non-
confounding) relationship between landscape variables and
simulated genetic data. However, software for simulating
such landscape genetic data currently does not exist, making
the simulation approach challenging. Therefore, to create
data with non-ambiguous landscape-genetic relationships,

we obtained landscape data from a Geographic Information
System (GIS) to derive input parameters for an existing
population genetic simulation program. For this simulation
approach, we identified five landscape genetic scenarios
commonly reported in the literature, and for each scenario
determined the expected statistical relationship between
landscape and genetic data (Table 1). We then used these
expected statistical relationships for genetic simulations in
Easypop 2.01 (Balloux 2002), an individual-based simula-
tion program in which multi-locus genotypes can be
simulated forward in time and under a large variety of
conditions (i.e. varying mating schemes, mutation rates,
migration models etc.).

Scenario A � null: in this scenario, gene flow is not
influenced by any spatial or landscape variables. Genetic
structure can arise independently from the landscape, for
example due to mutation, drift, or non-random mating
schemes (Wright 1977). Also, the landscape data used in a
study may not encompass those landscape features that
actually influence gene flow, so that no significant correla-
tions should be detected. To simulate such a null scenario,
we used a simple island model of migration, in which gene
flow does not depend on any spatial or landscape
parameters.

Table 1. Description of simulated scenarios, including expected statistical relationship between landscape and genetic data.

Scenario Description and
ecological
justification

Statistical
expectation

Easypop
(Balloux 2002)
simulations

Empirical
example

A � null Genetic differentiation among
populations is not influenced
by space or landscape
variables.

Measures of genetic
differentiation should not be
correlated with any spatial or
landscape variables.

Island model with 12
populations.

Blank et al.
2007

B � isolation-by-
distance (IBD) only

In species with spatially
limited dispersal, genetic
differentiation is influenced
by spatial distances among
populations, and populations
further apart show stronger
genetic differentiation.

Measures of genetic
differentiation should be
correlated with geographic
distance ‘‘B’’ among
populations.

Spatial migration model, in
which gene flow depends on
mean dispersal distance and
geographic distances (‘‘B’’)
among populations.

Rose et al.
2006

C � landscape
resistance

The number of migrants
exchanged among
populations often depends on
the landscape between them,
with populations separated by
high resistance landscapes
showing greater genetic
differentiation.

Measures of genetic
differentiation should be
correlated with least-cost
distance ‘‘C’’, which is not
correlated with geographic
distance.

Spatial migration model,
with coordinates obtained
from nmMDS of least-cost
distance matrix ‘‘C’’. This
least-cost distance is not
correlated with geographic
distance.

Cushman et al.
2006

D � landscape
resistance and IBD

The number of migrants
exchanged among
populations often depends on
the landscape and distance
between them, with
populations separated by
high resistance landscapes
showing greater genetic
differentiation.

Measures of genetic
differentiation should
be correlated with least-cost
distance ‘‘D’’, which is
correlated with
geographic distance.

Spatial migration model, with
coordinates obtained from
nmMDS of least-cost distance
matrix ‘‘D’’. This effective
distance is correlated with
geographic distance.

Spear et al.
2005

E � landscape
boundaries

Genetic differentiation among
populations can be caused by
(linear) landscape boundaries
(e.g. roads, changes in habitat
type), with lower migration
rates across boundaries.

Measures of genetic
differentiation should be
correlated with a ‘‘boundary
indicator’’, i.e. a categorical
variable indicating whether
populations are on the same
side of a boundary or not.

Hierarchical island model
with higher migration rates
within archipelagos, and
lower migration rates among
archipelagos separated by
landscape boundaries. The
number of archipelagos
ranged from 2 to 5,
representing 1 to 4
boundaries.

Epps et al.
2005
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Scenario B � isolation-by-distance (IBD): under isolation-
by-distance (IBD), populations separated by greater geo-
graphic (i.e. straight-line or Euclidean) distances show
greater levels of genetic differentiation (Wright 1943).
Such a pattern can arise when gene flow (i.e. the exchange
of migrants, seed, or pollen) mostly occurs among spatially
close populations, for example in species with limited
dispersal abilities (Trizio et al. 2005). Statistically, this
means that a significant correlation exists between pair-wise
geographic distances and measures of genetic differentiation
(e.g. FST; Wright 1943) among populations. Since biotic,
species-specific (i.e. landscape-independent) processes are
regulating gene flow in this scenario, it represents a ‘‘false’’
gradient (Legendre 1993). This means that external,
environmental processes are not responsible for observed
genetic patterns. Thus, in simulations of this scenario, gene
flow and resulting genetic differentiation should only be
influenced by geographic distances among populations. To
simulate this scenario, we used the spatial migration model
in Easypop, in which the number of migrants exchanged
between two populations depends on the separation
distance between them.

Scenario C � landscape resistance: in some species,
dispersal is not spatially limited, but the landscape matrix
between populations influences individual movements, and
thus, gene flow (Ricketts 2001). Populations connected by
low-resistance landscapes exchange greater number of
migrants, resulting in a significant correlation between
genetic differentiation and measures of landscape resistance
(McRae 2006). When gene flow is independent of space,
and only influenced by the landscape matrix (‘‘pure’’
landscape effect), geographic distances among populations
should not be significantly correlated with genetic data.
Thus, we based simulations of this scenario on resistance
distances that were not correlated with geographic distances.
These resistance distances were then used to describe
population separation in the spatial migration model of
Easypop.

Scenario D � landscape resistance and IBD: oftentimes,
space and landscape resistance will simultaneously influence
gene flow (Trizio et al. 2005). Furthermore, landscape
resistance is often measured as a function of both distance
and resistance between population pairs (e.g. least-cost
distance or length of least-cost path; Ray 2005). Thus,
populations that are far apart in space are often also
separated by high resistance distances, making the distinc-
tion between purely spatial and true landscape effects
particularly challenging in practice (Cushman et al.
2006). Statistically, this scenario is characterized by an
interaction between spatial and landscape effects, and gene
flow is influenced by a combination of geographic distances
and landscape resistances. Thus, to simulate this scenario,
we used resistance distances that were correlated with
geographic distances, making it possible to statistically
differentiate this scenario from scenario C described above.

Scenario E � landscape boundaries: genetic structure can
also be influenced by distinct landscape boundaries, for
example changes in habitat types, roads, or rivers (Sacks
et al. 2004, Epps et al. 2005). When such boundaries
impede individual movement, gene flow can be limited,
leading to increased genetic differentiation across bound-
aries. Thus, genetic differentiation is correlated with the

presence or absence of boundaries between populations.
This scenario was simulated in Easypop via the hierarchical
island model of migration. In this model, migration among
populations belonging to the same group of islands or
archipelago (i.e. populations not separated by boundaries) is
higher than among populations belonging to different
groups (i.e. populations separated by landscape boundaries).

The data required to simulate the different scenarios
were extracted from real and artificial landscape data as
follows: first, we delineated five study areas across the state
of Idaho (USA) (see Supplementary material for more
information on the study areas). Then, we created locations
for twelve populations in each of these areas, and calculated
geographic distances among populations belonging to a
certain study area (separation distance ‘‘B’’). In addition, we
calculated least-cost distances among population pairs
within each study area (separation distance ‘‘D’’). We
obtained the cost grids required for these least-cost analyses
by assigning resistance values to habitat types found within
the study areas. Habitat types were based on Idaho GAP
data, and cost values ranged from 1 to 1000. Since the goal
was to simulate statistical landscape-genetic relationships,
the exact compositions and configurations of the land-
scapes, resolution of the data, or the ecological meaning of
the cost values are not important, as long as the required
correlations among the different separation distances were
met (Table 1).

In addition to this cost grid based on real landscape data,
we manually digitized an artificial cost grid for each study
area, and used it to calculate a second set of least-cost
distances among population pairs (separation distances
‘‘C’’). The artificial cost grids were constructed so that
spatially close populations were separated by high-resistance
habitat, while low-resistance habitats connected populations
that were spatially far apart. This approach ensured that
separation distances C for a study area were not correlated
with Euclidean distances B in that area, so that the
landscape resistance scenario C could be simulated. All
distance calculations were performed in the Arcview
extension PATHMATRIX (Ray 2005). Finally, we deter-
mined which population pairs were separated by ‘‘landscape
boundaries’’ (e.g. rivers, roads, changes in habitat types).

We then used the landscape data obtained from each
study area as input parameters for the genetic simulations in
Easypop (Table 1). Since the spatial model available in
Easypop requires user-input coordinates rather than dis-
tances, all distance matrices (i.e. distances B, C, and D)
were transformed into two-dimensional coordinates via
non-metric multidimensional scaling. Non-metric multi-
dimensional scaling (nmMDS) is an effective way to
summarize pair-wise relationships contained in multivariate
distance matrices (Borg and Groenen 2005), and was
calculated in Systat 11 (Systat Software 2004). Resulting
nmMDS coordinates were then used to describe effective
separation distances among populations in the Easypop
simulations.

We used each parameter set for four independent genetic
simulations in Easypop, so that each scenario was created 20
times (i.e. four genetic simulations in each of the five study
areas), leading to a total of 100 landscape-genetic data sets.
In each simulation, genetic data for 2400 individuals (100
females and 100 males per population) were created for 15
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microsatellite loci following a mixed model of allelic
mutation (SSM/KAM option in Easypop). Each simulation
was run for 10 000 generations to ensure that populations
reached migration-drift equilibrium.

The simulation approach was designed to produce data
sets with direct and clear landscape-genetic relationships,
while controlling for other factors that may impact the
analysis of empirical data. Thus, the number of simulated
individuals was chosen to be very high, and population
sizes, sex-ratios, number of loci, generation times, etc., were
held constant across simulations. However, the scenarios
were ecologically realistic, and simulations led to a wide
range of data sets that have characteristics similar to those
found in empirical studies (Results).

Data analysis

For each simulated population, we calculated expected
heterozygosity (He) in GENEPOP (Raymond and Rousset
1995), and estimated pair-wise FST values among popula-
tions in FSTAT (Goudet 1995). Significance of FST values
was determined through 4999 randomizations. Correlations
among the various distance matrices (i.e. distances B, C,
and D) were assessed through a Mantel test in ZT (Bonnet
and Van de Peer 2002) with 999 999 permutations.

Methods used to test for landscape-genetic
relationships

We used eleven different statistical approaches to test for
landscape-genetic relationships in the data sets. These
methods are briefly described below and summarized in
Table 2. An in-depth review of the methods is beyond the
scope of this paper, and readers are referred to the method
references, program manuals, general statistical textbooks,
and other review papers (Legendre and Legendre 1998,
Legendre 2000, Clarke and Warwick 2001, Manly 2007)
for more detailed information. The programs used to
perform the statistical tests, including the number of
permutations and other relevant program settings are listed
in Table 2.

A: methods using pair-wise landscape data
1) Mantel test: the standard Mantel test (Mantel 1967) is
currently the most-commonly applied method in landscape
genetics, and uses permutations to assess the significance of
the linear correlation coefficient (r) between two pair-wise
(dis-)similarity matrices.

2) RELATE: the RELATE procedure proposed by
Clarke and Warwick (2001) is a non-linear alterative to
the Mantel test, and calculates the rank-correlation between
two pair-wise (dis-)similarity matrices, using permutations
to assess significance. Even though RELATE has not yet
been applied in landscape genetics, we included it in our
analyses, because it provides an intuitive, non-linear
extension of the Mantel statistic.

3) MRDM: to assess the effects of several landscape
variables, multiple regression of distance matrices (MRDM)
has been used in landscape genetics (Holzhauer et al. 2006).
Such multiple regression approaches can test for effects of

all landscape variables simultaneously (Manly 1986), or add
significant explanatory variables through a step-wise proce-
dure (Legendre et al. 1994).

4) BIMR: Bayesian inference of immigration rates
(BIMR; Faubet and Gaggiotti 2008) is a new method
that uses genetic and pair-wise environmental data to
estimate recent migration rates among populations, and to
identify the environmental factors that likely influence
migration. The approach is based on a generalized linear
model (GLM), and uses Markov Chain Monte Carlo
(MCMC) methods to obtain posterior estimates.

B: methods using location-specific landscape data
5) GESTE: the software GESTE (genetic structure in-
ference based on genetic and environmental data; Foll and
Gaggiotti 2006) implements a hierarchical Bayesian ap-
proach to estimate population-specific FST values and to
evaluate which local environmental factors likely contrib-
uted to observed genetic structures. Similar to BIMR, it is
based on a GLM, and uses MCMC’s to estimate posterior
distributions.

6) dbRDA: distance-based redundancy analysis
(dbRDA; Legendre and Anderson 1999, McArdle and
Anderson 2001) is a multivariate method that assesses the
influence of local environmental factors on values in a
linearly dependent (dis-)similarity matrix through permuta-
tions. To account for confounding spatial effects, coordi-
nates of sample areas can be incorporated into the model as
covariates (partial dbRDA).

7) BIOENV/BEST: the non-parametric BIOENV (or
BEST) procedure (Clarke and Ainsworth 1993) calculates a
Spearman-rank correlation coefficient between the pair-wise
response matrix and multivariate distances derived from the
predictor variables (i.e. the landscape variables). The
method uses all possible combinations of predictor variables
to determine the models that best fit the dependent data,
assesses the significance of the single best model, and
determines which variables are associated with this model.

8) CCA: canonical correspondence analysis (CCA; ter
Braak 1986) has been used to infer environmental impacts
on genetic variation (Angers et al. 1999). CCA is a
constraint ordination technique that assumes a uni-modal
relationship when describing gradients in the first set of
variables (i.e. the dependent variable) in terms of the second
(explanatory) variable set. For genetic data, population-
specific allele frequencies can be used for the dependent
variable set (Angers et al. 1999).

In addition to these eight ‘‘full’’ methods that test for
marginal effects, we also applied three partial methods. In
these methods, purely spatial effects on genetic differentia-
tion are accounted for before assessing landscape effects.
These partial options are often used in landscape genetics to
separate true landscape effects from purely spatial effects.

9) Partial Mantel test: in a partial Mantel test (Smouse et
al. 1986), the effect of one pair-wise matrix is controlled for
(i.e. its effect is ‘‘partialled out’’) before assessing the
correlation between the two remaining matrices. Essentially,
this is accomplished by subsequently using the residuals of a
first standard Mantel test in a second Mantel test.

10) and 11) Partial dbRDA and partial CCA: in a partial
dbRDA and partial CCA, coordinates of sampling locations
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Table 2. Description of statistical approaches, software and program settings used to analyze simulated data sets.

Statistical
approach

Method
reference

Description Genetic data Landscape data Software used
in this study

Software
settings

Example
application

(Partial)
Mantel test

Mantel 1967,
Smouse et al.
1986

Permutation-based test for
correlation between two
distance matrices. In a
partial Mantel test,
correlation is assessed
between two distance
matrices, while
controlling for effects of
factors in a third matrix.

Pair-wise measure of
genetic differentiation
(e.g. pair-wise Fst).

Pair-wise measures of
spatial/effective
separation (e.g.
geographic or least-cost).

ZT (Bonnet and
Van der Peer 2002)

999 999
permutations

Coulon et al.
2004

RELATE Clarke and
Warwick 2001

Test for rank-correlation
between two distance
matrices.

Pair-wise measure of
genetic differentiation
(e.g. pair-wise Fst).

Pair-wise measures of
spatial/effective separation
(e.g. geographic or
least-cost).

PRIMER 6
(Primer-E 2006)

9999
permutations

None, yet

Multiple regression
on distance matrices
(MRDM)

Legendre
et al. 1994

(Stepwise) regression of a
dependent distance matrix
and multiple independent
pair-wise matrices.

Pair-wise measure of
genetic differentiation
(e.g. pair-wise Fst).

Pair-wise measures of
spatial/effective separation
(e.g. geographic or
least-cost).

PERMUTE! 3.4 alpha
9 (Legendre et al. 1994)

9999 permutations,
forward selection
with p to enterB01

Holzhauer et al.
2006

Bayesian inference
of immigration rates
(BIMR)

Faubet and
Gaggiotti 2008

Bayesian model-based
approach that uses MCMC
techniques to estimate
migration rates and
identifies environmental
variables that most likely
influenced observed
genetic patterns.

Number of exchanged
migrants (estimated
from genotype data as
part of the method).

Pair-wise measures of
spatial/effective separation
(e.g. geographic or
least-cost).

BIMR (Faubet and
Gaggiotti 2008)

Default settings None, yet

Genetic structure
inference based on
genetic and
environmental
data (GESTE)

Foll and
Gaggiotti 2006

Bayesian model-based
approach that uses MCMC
techniques to estimate
population-specific
Fsts, and identifies
environmental variables
that most likely influenced
observed genetic patterns.

Population-specific
Fst (estimated from
genotype data as part
of the method).

Point-wise measures
(e.g. coordinates or
connectivity indices).

GESTE v1 (Foll
and Gaggiotti 2006)

Default settings Leclerc et al.
2008

(Partial) distance-based
redundancy analysis
(dbRDA)

McArdle and
Anderson 2001

Canonical form of
principal coordinates
analysis; a direct
ordination method used to
explain one dataset
(e.g. genetic structure) by
another dataset (e.g.
landscape data). In the
partial option, coordinates
are fitted as co-variates.

Pair-wise measure of
genetic differentiation
(e.g. pair-wise Fst).

Point-wise measures
(e.g. coordinates or
connectivity indices).

DISTLM v5
(Anderson 2004)

9999 unrestricted
permutations under
the regression model

Pilot et al.
2006

BIOENV Clarke and
Ainsworth 1993

Multivariate, non-para-
metric method that deter-
mines the model that best
explains data of a (dis-)
similarity matrix.

Pair-wise measure of
genetic differentiation
(e.g. pair-wise Fst).

Point-wise measures
(e.g. coordinates or
connectivity indices).

PRIMER 6
(Primer-E 2006)

9999 permutations Spear et al.
2005
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can be fitted as co-variates. The confounding effects of these
covariates are accounted for before fitting the final model.

Incorporation of genetic data

For methods requiring a matrix of pair-wise genetic data
(i.e. all methods except GESTE, CCA, and BIMR; Table
2), we used pair-wise FST’s (BIOENV, RELATE) or
linearized FST (all others; Rousset 1997) to describe genetic
differentiation. For CCA, we calculated allele frequencies
for each population, following Angers et al. (1999). BIMR
and GESTE estimate migration rates and population-
specific FST values directly from genotype data.

Incorporation of landscape data

When pair-wise landscape data were required, we used
distance matrices B, C, and D to describe effective distance
among populations. Choosing either untransformed, ln-, or
log10-transformed separation distances had little effect (data
not shown), and results are based on log10-transformed
geographic distances and untransformed resistances.

To measure the presence of landscape boundaries, we
created dummy matrices that indicated whether a popula-
tion pair was separated by a boundary or not (noted in the
matrix as 1 or 0, respectively). For methods working with
population-specific landscape measures, we created a
dummy variable that placed a population in a certain area
not bisected by landscape boundaries (i.e. the population
received a ‘‘1’’ in the column belonging to that area, and a
‘‘0’’ in all other columns).

For several methods (i.e. BIOENV, dbRDA, GESTE,
CCA), pair-wise separation distances (i.e. distances C and
D) had to be transformed into point-wise measures. This
can be achieved through patch- or population-specific
connectivity indices often used in meta-population ecology
(Moilanen and Nieminen 2002). While most landscape
genetic studies utilize pair-wise measures of landscape
resistance, population-specific connectivity indices have
also been applied in a landscape genetics context (Key-
ghobadi et al. 2005). Following Foll and Gaggiotti (2006),
pair-wise distances were transformed into population-
specific connectivity indices using the formula:

Sj�
X

exp(�bdij) (1)

where Sj is the connectivity index for population j, dij is a
measure of pair-wise distance between populations j and i
(e.g. geographic distances B, or resistance distances C or D),
and the b coefficient estimates the distance effect on
migration probabilities. The implications of using popula-
tion-specific vs pair-wise measurements are further elabo-
rated in the discussion section.

Method implementation

We used all 11 approaches to statistically test for effects of
the four landscape variables (i.e. geographic distance B,
least-cost distance C, least-cost distance D, landscape
boundaries) belonging to a certain study area. Variables
were tested for individually (full and partial Mantel test,Ta
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RELATE, full and partial dbRDA) or simultaneously (full
and partial CCA, MRDM, BIOENV, BIMR). The GESTE
approach is currently limited to a maximum of two
landscape variables, so that three analyses were run with
this multivariate method: one test for effects of geographic
distances, a second test for effects of separation distances C
and D, and a third test for effects of landscape boundaries.
Also, one of the scenarios included four areas not bisected
by landscape boundaries. Since no more than three distinct
areas can be coded for with two variables, this scenario was
omitted from the GESTE analyses.

Interpretation of statistical results

Generally, we interpreted p-values B0.05 as a statistically
significant influence of a tested landscape variables. For
MRDM, we chose a forward, stepwise selection procedure,
and a p-value of 0.1 was used to select variables to be
included to the model. Variables included into the final
model were interpreted as having a significant influence on
genetic differentiation. We chose the higher p-value of 0.1
because it is automatically Bonferroni-corrected by the
PERMUTE program, so that a p-value of 0.05 would be
too conservative. For the BIOENV procedure, variables
included in the best model were identified as influential,
provided that the best model was significant. For the two
Bayesian approaches (GESTE and BIMR), we examined the
best supported model to determine important landscape
variables. Partial Mantel tests, partial dbRDA, and partial
CCA were only applied to data sets in which a significant
influence of a landscape variable was detected.

Evaluation of method success

To test the utility of the various statistical approaches, we
calculated power, type-1 error rates, and overall success
rates. The power of each method was assessed by calculating
the proportion of tests in which the simulated landscape-
genetic relationship was correctly detected.

Type-1 error rates indicated how often a method
suggested a statistically significant landscape-genetic rela-
tionship when no such relationship was simulated. For each
method, the proportion of tests that incorrectly detected
significant effects was calculated, and the proportion of tests
that could be expected to be erroneously significant by
chance (i.e. 5%) was subtracted. Thus, reported error rates
are corrected for the number of tests performed with each
method, and account for the assumed error level of alpha�
0.05.

Finally, we calculated overall success rates as the
proportion of analyses that led to correct conclusions about
simulated landscape-genetic relationships. Analyzing a data
set was considered successful if a method indicated a
significant effect of the landscape variable used in the
simulations, but not of any other, incorrect variables. Thus,
overall success rates combine power and corrected type-1
error rates of each method into a single measure of method
performance.

We calculated the three measures for each method over
all landscape genetic scenarios combined, and separately for
each scenario. The partial methods to account for spatial

effects are generally not used in isolation, but instead are
applied subsequently to full versions of the methods. We
therefore estimated the three performance measures for the
combination of full and partial method options, and refer
to them as Mantel combo, dbRDA combo, and CCA
combo, respectively.

Evaluation of method congruence

To assess the agreement among methods, we used Fleiss’
Kappa statistic (Fleiss 1971). This statistic calculates the
proportion of cases that are identically classified by two
raters, while accounting for rater agreement that could
result from chance. For this study, the cases are the different
simulated data sets, and the raters are the various statistical
approaches. Thus, the Kappa statistic calculates the propor-
tion of data sets that resulted in the same landscape-genetic
conclusions with a certain pair of methods. The statistic
ranges from B0 (no agreement) to 1 (complete agreement),
and was interpreted following guidelines given by Landis
and Koch (1977). Kappa was calculated over all methods
and for all pairs of methods. For methods with a partial
option (i.e. Mantel tests, dbRDA, CCA), we only included
results for the option with better overall success rates.

Results

Simulated data

All pair-wise FST values among populations were signifi-
cantly different from zero (pB0.05) in all simulated
scenarios and ranged from 0.0114 to 0.1387. Expected
heterozygosity within populations ranged from 0.70 to 0.96.
Geographic distances B and effective distances D were
always significantly correlated with each other (Mantel pB
0.01; range of Mantel r: 0.109 to 0.535), while effective
distances C were not correlated with either B or D (Mantel
p�0.05).

These values demonstrate that our simulations led to a
wide range of genetic structure scenarios, and that the
landscape variables showed statistical correlations that could
readily be encountered in empirical studies. Thus, despite
the relative simplicity of our simulations, our study should
give an accurate and realistic summary of general method
properties for landscape genetic analyses.

Method performance

Across all landscape genetic scenarios, overall success rates
were relatively high for all methods (average 0.76), but
varied from 0.59 (standard Mantel tests) to 0.92 (CCA
combo; Table 3). Furthermore, the trade-off between power
and type-1 error rates was apparent across all scenarios.
While five of the methods had high overall power (i.e.
power�0.94), these methods generally also had high type-
1 error rates (up to 11%). On the other hand, some
methods (e.g. GESTE, partial dbRDA) had very low type-1
error rates, but also low power. GESTE did not detect the
simulated influence of landscape boundaries (power�0 for
the E scenario), but performed quite well for the other
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scenarios. When omitting the E scenario, overall power for
GESTE improved to 0.7, and its overall success rate was
slightly above average (0.78).

In summary, the best methods for analyzing the
simulated landscape genetic data were (partial) CCA,
MRDM, and BIMR (Table 3). These multivariate methods
provided a good balance between type-1 error and power,
thus leading to correct conclusions for a high percentage of
analyzed data sets (overall success rates]0.87).

When comparing the different landscape genetic scenar-
ios, highest overall success rates were observed for the null
scenario (A). For this scenario, most methods accurately
concluded that none of the spatial or landscape variables
had a significant influence on genetic structures. The
standard Mantel test, the Mantel combo, and the RELATE
procedure all had very high error rates under the B scenario
(IBD only) of 0.3, 0.25, and 0.22, respectively. In fact, the
standard Mantel test had a success rate of zero for the IBD
scenario, because it incorrectly suggested significant influ-
ences of additional landscape variables (i.e. in addition to
space) in all data sets. The two Mantel approaches also had
highest error rates under the D scenario (landscape
resistance/IBD) of 0.21 (Mantel combo) and 0.1 (standard
Mantel test), and over all scenarios (0.11 and 0.09
respectively).

BIMR, on the other hand, sometimes identified an
erroneous variable, but seldom led to incorrect conclusions
when the true variable was identified, thus leading to higher
overall success rates (i.e. BIMR suggested the impact of the
correct variable, or of an incorrect variable, but not of both
in the same data set). The CCA approaches and GESTE
were the only methods that had a corrected type-1 error rate
of zero across all scenarios.

Method congruence

The overall Kappa statistic of 0.506 suggested a moderate
level of agreement across all methods (Table 4). Generally,
methods that performed well had high levels of agreement
with other methods that showed good performance.
However, MRDM and the partial Mantel approach had
very high agreement according to the Kappa statistic
(0.828). This high level of relative agreement is caused by
the fact that errors in MRDM always coincided with errors
made by the partial Mantel test. Thus, the two methods
often had difficulties with the same data sets and can be
considered redundant, even though MRDM performed
much better than the partial Mantel test. Also, BIMR
showed only low to moderate levels of agreement with
partial CCA and MRDM, even though these three methods
had highest overall success rates. This means that data sets
leading to incorrect results in BIMR were not problematic
for MRDM or partial CCA.

Discussion

Our analyses of data sets with known landscape-genetic
relationships led to several important findings. First, the
most commonly used techniques (i.e. standard Mantel tests
and subsequently applied partial Mantel tests) have veryTa
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high type-1 error rates. Errors were caused by the methods’
inability to distinguish between landscape effects that
actually influenced genetic structure and other correlated
distances. Thus, with our simulated data, the Mantel
approaches often suggested the importance of landscape
variables that do not really influence gene flow. This
illustrates the challenge of distinguishing between spatial
effects (i.e. pure IBD) and true landscape effects with the
Mantel tests. Furthermore, standard Mantel tests based on
landscape variables not used in the simulations often led to
slightly higher correlation coefficients than tests based on
the correct variable. Thus, assessing the relative importance
of landscape variables by comparing the strength of raw
r-values obtained from multiple standard Mantel tests is
likely inappropriate for landscape genetic purposes.

BIMR also had a high type-1 error rate under the B
scenario (0.1), but had better overall success rates than the
two Mantel approaches. This difference is caused by the
independent calculations of power, error and success rates:
while Mantel tests always identified effective distance B as
being influential (power�1), they also often suggested a
significant effect of additional variables, thus having low
overall success rates.

Oftentimes, studies test for the influence of more than
one separation distance among sampling localities (Spear et
al. 2005, Cushman et al. 2006, Epps et al. 2007), but
multicollinearity among these separation distances is seldom
considered. Whether different measures of population
separation are correlated or not will depend on the
landscape, and on the exact approach to measure inter-
population distances (e.g. least cost distances, length of
least-cost path, currents derived from circuit theory; McRae
2006). We recommend that researchers report correlations
among all distance matrices utilized in their studies, and
carefully evaluate whether multicollinearity could be pro-
blematic for Mantel approaches. In fact, even when
correlations among different separation distances are insig-
nificant, results obtained from the Mantel approaches
should be interpreted with caution. The Mantel tests are
insensitive to non-linear relationships, and the usefulness of
the partial Mantel test for genetic studies has been
questioned (Raufaste and Rousset 2001, Castellano and
Balletto 2002, Rousset 2002). In sum, there are few reasons
for using Mantel approaches in landscape genetics, except
that these tests are easy to conduct and interpret. Thus,
Mantel tests may be most appropriate for preliminary or
exploratory analyses in the early stages of landscape genetic
research projects. Such exploratory analyses are neglected in

current landscape genetic studies, and little attention is
given to data distributions and response curves. We visually
inspected the distribution of our data, and the shape of the
landscape-genetic relationships. Many of the data sets
showed multi-modal and skewed distributions, and using
linearized FST did not always lead to truly linear response
curves. While we did not detect any trends in method
performances with respect to data distributions and
response curves, this may be due to the relatively small
sample sizes. Thus, researchers should evaluate and report
the characteristics of their data, and future studies should
evaluate how sensitive various methods are to violations of
underlying assumptions, such as data normality and
linearity. Also, the utility of more advanced statistical
approaches related to the Mantel statistic (e.g. Mantel
correlograms; Smouse et al. 1986) needs to be investigated
separately.

The multivariate methods implemented in PERMUTE
(for multiple regression on distance matrices) and BIMR
were more successful in detecting the simulated landscape-
genetic relationships. PERMUTE uses a step-wise proce-
dure to infer the influences of predictor variables, and this
approach worked well with our simulated data, which had
only few populations, few predictor variables, and very clear
landscape-genetic relationships. However, step-wise ap-
proaches have been criticized for biased and inconsistent
results (Whittingham et al. 2006), and the performance of
stepwise MRDM with larger, more complex data sets (e.g.
for individual-level analyses) needs additional evaluation.
Also, MRDM cannot directly account for possible variable
interactions, and assumes a strictly linear relationship
between dependent and independent variables. The BIMR
method, on the other hand, relaxes this assumption through
the use of a GLM, and can include variable interactions in
the model. Thus, this approach should be suitable for
analyzing very complex empirical data sets, but it can only
be used for population-level analyses.

CCA can be adapted for individual-level analyses, for
example by coding alleles as absent (0), in heterozygote state
(1), or homozygote state (2) (Cushman et al. 2006). The
(partial) CCA performed very well in this study, despite the
fact that it is not designed for explanatory data measured
between sampling localities, so that pair-wise distances had
to be transformed into population-specific connectivity
indices. Results suggest that these local connectivity indices
can be use as an alternative to pair-wise measures, even
though these indices essentially summarize the variation of
the data, and often require additional parameters (e.g.

Table 4. Method congruence assessed through Kappa statistics. The interpretation of statistics is given above the diagonal and follows
recommendations of Landis and Koch (1977): Kappa B0: no agreement; 0�0.2: very low agreement; 0.21�0.4: low agreement; 0.61�0.8:
substantial agreement, 0.81�1: full agreement. For method abbreviations, see Table 2.

MRDM CCA combo BIMR dbRDA RELATE BIOENV Mantel combo GESTE All methods

MRDM � Substantial Moderate Substantial Substantial Substantial Full Very low
CCA combo 0.750 � Low Substantial Moderate Substantial Substantial Very low
BIMR 0.425 0.409 � Low Low Moderate Moderate Low Kappa:
dbRDA 0.629 0.635 0.400 � Moderate Moderate Very low 0.506
RELATE 0.678 0.511 0.319 0.412 � Moderate Substantial Very low (Moderate
BIOENV 0.680 0.746 0.411 0.676 0.456 � Substantial Moderate agreement)
Mantel combo 0.828 0.687 0.413 0.555 0.641 0.668 � Very low
GESTE 0.125 0.131 0.220 0.118 0.181 0.430 0.152 �
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dispersal distance) to be estimated. The discussion of how
to quantify connectivity is ongoing, and our study should
not be interpreted as favoring one approach over the other.
Expressing landscape data through population-specific
measurements focuses on processes operating at sampling
locations, while pair-wise measurements emphasize in-
between processes. Thus, in-between measures describe
connectivity as an attribute of the landscape, while local
indices describe it as an attribute of an individual patch or
population (Fischer and Lindenmayer 2007). In reality,
landscape variables both at and in-between sampling sites
can influence gene flow. For example, population sizes and
density-dependent emigration rates can be influenced by
the size and quality of a patch, while the fate of emigrants is
influenced by the matrix among patches (Fahrig 2007).
Thus, connectivity indices may not be appropriate and
effective for all data sets, but certainly have potential for
landscape genetics, because they can include additional
information such as patch or population sizes, habitat
quality or carrying capacities (Saura and Pascual-Hortal
2007). Emerging graph-theoretic approaches (Urban and
Keith 2001) could also greatly contribute to the develop-
ment of meaningful connectivity measures for landscape
genetics. Overall, both patch-specific and pair-wise mea-
surements have advantages and limitations, and how to
quantify effective separation distances for landscape genetics
should depend on the exact research questions and predic-
tions.

Partial CCA was most effective in accounting for spatial
effects (i.e. IBD) through the incorporation of coordinates
as covariates. Also, the method can be integrated with
geostatistics to distinguish between spatial autocorrelation
and spatial dependence (Wagner 2004). Furthermore, CCA
was specifically designed for very large, complex data sets,
and it can be adjusted for non-linear response curves
(Makarenkov and Legendre 2002). Overall, CCA has great
potential to be an effective and highly flexible technique in
landscape genetics, and we encourage scientists to explore
its utility in more detail.

Study limitations

Our simulation-based study was designed to identify
advantages and limitations of statistical approaches used
in landscape genetics. However, simulations always involve
assumptions and simplifications that need to be considered
when interpreting results. For all our simulations, the
number of sampled populations, number of individuals
per populations, sex ratio, and number of loci were held
constant. We also did not incorporate any historic land-
scape influences, asymmetrical gene flow patterns, non-
equilibrium conditions, fluctuating population sizes or
(meta-)population dynamics into our simulations. Finally,
we focused on neutral genetic structure among populations
as one component of genetic variation (Lowe et al. 2004,
Holderegger et al. 2006).

Partially, our simulation approach was limited by the lack
of landscape genetic simulation software. However, our goal
was to obtain a general overview of method performance
across a diversity of well-established gene flow scenarios.
While our simulations do not include all possible complex-

ities of empirical data, the simulated scenarios encompass a
wide range of landscape-genetic relationship found in
empirical studies. This resulted in data sets with feasible
and clear landscape-genetic relationships, making it possible
to compare the different methods in an intuitive framework.

In addition to these simulation-based limitations, the
comparison of results was challenging due to the large
variety of statistical approaches. Most of the methods we
evaluated were not developed for genetic data, and those
that were are still difficult to compare directly. For example,
GESTE estimates population-specific indices that describe
genetic structure among subpopulations of a larger meta-
population system. BIMR, on the other hand, estimates
recent migration rates among sampling areas, and identifies
environmental factors that influence these rates. Thus, while
the two methods may seem computationally similar, they
actually have quite different goals. Nevertheless, all of the
methods can be used to statistically test for landscape-
genetic relationships, and they can be compared based on
this commonality. To do so, our objective was to make the
interpretation of results as simple and fair as possible, but
our approach may have favored certain techniques over
others. For example, the two Bayesian approaches (BIMR
and GESTE) were used in a hypothesis-testing framework,
which is obviously in contradiction to Bayesian theory.
Furthermore, Foll and Gagiotti (2006) cautioned that while
Bayesian approaches can be highly effective, they also
require a good understanding of the underlying theory,
and careful evaluation of model performance. However,
results in both Bayesian methods were often very clear,
with a single model identified as most likely by percentages
�60%. Thus, even without strict hypothesis testing,
researchers probably would have come to the same land-
scape-genetic conclusions. While BIMR performed well
with our data, the GESTE program could not detect the
influences of landscape boundaries, possibly because the
analysis of this scenario involved categorical predictor
variables. Considering that GESTE showed good perfor-
mance in a previous evaluation involving categorical data
(Foll and Gaggiotti 2006), it is possible that our coding of
landscape boundaries through dummy variables, or the
chosen MCMC parameter settings were not optimal.
Furthermore, GESTE, CCA, BIOENV, and dbRDA were
not designed for landscape data measured between sampling
locations, which could explain the generally lower power of
these methods. Finally, dbRDA is also available in a step-
wise modeling framework (Pilot et al. 2006), which may be
more appropriate for landscape genetic data analysis.
Despite these limitations, the analysis of the simulated
data was valuable for comparing and evaluating current
statistical approaches used in landscape genetics. We
encourage others to expand this work by evaluating new
methods and more complex scenarios. For example, the
impact of varying simulation parameters, number of loci,
and number of individuals sampled per population could be
evaluated through sensitivity analyses. Similarly, our study
did not evaluate the sensitivity of methods to imperfectly or
incorrectly defined cost values for the calculation of land-
scape resistances. The influences of landscape composition
and configuration on landscape genetic analyses can also
not be evaluated from our study. We simulated data sets
similar to those found in empirical studies, by basing our
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analyses on readily available GAP data. A different approach
could consist of simulating neutral landscapes, in which
configuration and composition can be controlled. By
repeatedly simulating similar landscapes for the subsequent
genetic simulations, it would be possible to determine
which methods work best for landscapes showing certain
characteristics. Finally, we focused on population-level
analyses, but an increasing number of studies analyzes
genetic patterns among individuals (Manel et al. 2003,
Coulon et al. 2004, Cushman et al. 2006). Except for
GESTE and BIMR, all of the tested methods can
theoretically be used with individual-level data, but this
does not mean that they are all suitable for individual-based
analyses. For example, methods that require location-
specific connectivity indices are difficult to apply to
individuals, because connectivity indices are intended to
describe connectivity among populations or patches.
Furthermore, sample sizes for individual-level analyses are
often much higher than for population-level analyses, and
software available for some of the tested methods may
simply not be able to handle such large data sets (e.g.
PERMUTE for stepwise regression).

Overall, many additional research possibilities remain,
and emerging simulation software (e.g. EcoGenetics,
/<www2.unil.ch/biomapper/ecogenetics/index.html>) will
make such evaluations easier and more accessible.

Suggestions for future analytical improvement

In addition to evaluation of existing methods, developing
improved techniques is necessary to advance landscape
genetic analyses. The four most successful approaches are all
multivariate, and three of them are not (strictly) linear.
When omitting the E scenario (landscape boundaries),
GESTE is a fifth multivariate, not strictly linear method
with better-than-average performance. We therefore en-
courage researchers to apply and develop other statistical
approaches that are multivariate and non-linear. For
example, generalized dissimilarity modeling (GDM) is a
non-linear extension of matrix regression, and can directly
be applied to a pair-wise matrix of (dis-)similarities (Ferrier
et al. 2007). Thus, this method could potentially be useful
for landscape genetics, but it has not been applied in this
context.

Furthermore, future analytical development should focus
on methods that are non-linear, multivariate (including
variable interactions), and provide options for effectively
separating spatial autocorrelation from true landscape
effects. Finally, incorporating both at and in-between
landscape variables into a single analysis may be beneficial
for some data sets. Gravity-type models can use both kinds
of data, and they are currently introduced into landscape
genetics by Murphy (2008).

In addition to finding and developing effective statistical
methods, researchers also need to further develop the
general analytical framework used in landscape genetics.
Currently, most landscape genetic analyses are limited to a
simple hypothesis testing approach, and we have followed
this approach in our simulation study. However, this
approach implicitly assumes that the null-hypothesis is
known and true, and it only separates ‘‘important’’ (i.e.

statistically significant) and ‘‘not important’’ (i.e. statisti-
cally insignificant) landscape variables, without evaluating
their relative biological importance. Most current studies
also do not state their null- and alternative hypotheses a
priori, and simple hypothesis testing is likely ineffective for
analyzing very complex relationships.

Based on the relatively high type-1 errors shown in this
study, researchers should report what landscape-genetic
mechanisms they are testing for, instead of trying to find
reasonable explanations for observed relationships a poster-
iori. Sometimes, good expectations for landscape-genetic
relationships are difficult to derive, because little is known
about a study organism. In such cases, data mining
approaches (e.g. RandomForests; Breiman 2001, Murphy
2008) could be used to detect important patterns. However,
in most instances, some data on species biology and
landscape ecology exist, and these data should be used to
develop valid and feasible predictions about how the
landscape is influencing genetic variation. Conceptual
flowcharts and graphs (e.g. cascading graph diagrams;
Aarssen 2004) can facilitate this process, by simplifying
and structuring assumed causal relationships between land-
scape variables and genetic patterns. Identifying the actual
biological and ecological mechanisms that link landscape
heterogeneity to genetic variation will greatly improve
landscape genetic inferences, and lead to a better under-
standing of genetic processes in real landscapes.

Except for the two Bayesian approaches, current meth-
ods add little to our understanding of relative effects of
various landscape variables. Many alternatives to classical
hypothesis-testing exist (Stephens et al. 2007), and land-
scape geneticists should evaluate the potential of these
approaches for the analysis of their data. For example,
information-theoretic approaches (Burnham and Anderson
2002) can be useful in finding factors influencing genetic
data (Yang 2004, Spear et al. 2005), and could help to
develop predictive landscape genetic models. However,
landscape genetic data is often pair-wise, and future research
needs to determine whether certain information-theoretic
approaches can be used for this kind of data. Appropriately
identified models could be used to predict genetic con-
sequences of various climate and landscape change scenar-
ios, and thus would be an important contribution to
ongoing research efforts. Since most landscape genetic
data will show spatial autocorrelation, modeling techniques
that explicitly account for, and make use of, spatial
autocorrelation (Lichstein et al. 2002, Epperson 2003) are
particularly promising.

Conclusions and recommendations for current
studies

Results obtained in this study suggest that no single,
optimal method currently exists for landscape genetic
analyses, but certain methods clearly performed better
than others in our simulated scenarios. Also, results show
only moderate agreement among methods, so that different
analytical choices could lead to varying and potentially
erroneous conclusions. On the other hand, some methods
showed very high levels of agreement, and are therefore
redundant. Based on these results, we recommend that
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researchers apply multiple, non-redundant statistical ap-
proaches for landscape genetic data analysis. Specifically,
combinations of BIMR and MRDM appear effective when
landscape effects between sampling location are of interest.
When the focus is on population-specific landscape effects,
(partial) CCA and GESTE can be combined, though the
use of the latter with categorical data warrants further
investigation. Considering the highly complex nature of
landscape genetics and the large variety of landscape genetic
research questions, it is unlikely that a single method will
ever suit all research needs. Using multiple methods to
analyze the same data will lead to increased certainty of
inferences, and ensures that conclusions drawn from land-
scape genetic analyses are valid.

In conclusion, much additional research is needed in
method development and validation, and for deriving
landscape genetic theory that is truly based on landscape-
ecological principles. For now, recommendations based on
this study will hopefully make landscape genetics studies
more comparable and reliable, and contribute to the future
development of this promising field.
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