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Positron emission tomography is a medical imaging modality for producing 3D images of the spatial
distribution of biochemical tracers within the human body. The images are reconstructed from data
formed through detection of radiation resulting from the emission of positrons from radioisotopes
tagged onto the tracer of interest. These measurements are approximate line integrals from which the
image can be reconstructed using analytical inversion formulae. However these direct methods do not
allow accurate modeling either of the detector system or of the inherent statistical fluctuations in the
data. Here we review recent progress in developing statistical approaches to image estimation that can
overcome these limitations. We describe the various components of the physical model and review
different formulations of the inverse problem. The wide range of numerical procedures for solving
these problems are then reviewed. Finally, we describe recent work aimed at quantifying the quality
of the resulting images, both in terms of classical measures of estimator bias and variance, and also
using measures that are of more direct clinical relevance.
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1. Introduction

The physical basis for positron emission tomography (PET) lies
in the fact that a positron produced by a radioactive nucleus trav-
els a very short distance and then annihilates with an electron
to form a pair of high energy (511 keV) photons. The pair of
photons travel in opposite directions along a straight line path.
Detection of the positions at which the photon pair intersect a
ring of detectors, Fig. 1, allows us to approximately determine
the locus of a line containing the positron emitter. The total
number of photon pairs measured by a pair of detectors will be
proportional to the total number of positron emissions along the
line joining the detectors. If positron emitters are spatially dis-
tributed with density f (x) at location x, the number of detected
events between a pair of detectors is an approximate line integral
of f (x).

By tagging different molecules with positron emitters, PET
can be used to reconstruct images of the spatial distribution
of a wide range of biochemical probes. Typical applications
of PET include glucose metabolism studies for cancer detec-
tion and cardiac imaging, imaging of blood flow and volume,

and studies of neurochemistry using a range of positron labeled
neuro-receptors and transmitters. Tracer kinetics can also be
studied using PET by acquiring dynamic data sets. An excellent
review of the current state of the art of PET instrumentation and
applications can be found in Cherry and Phelps (1996). Here
we address only those aspects of system design and calibration
that directly impact on the design and performance of statisti-
cally based image estimators. However, we agree with the view
expressed by Ollinger and Fessler (1997), that much of the liter-
ature dealing with statistically based image reconstruction uses
an over-simplified model. Here we will attempt to provide a
balance between this and an overly detailed description of the
technical aspects of PET system design.

A PET scanner requires one or more rings of photon detectors
coupled to a timing circuit that detects coincident photon pairs
by checking that both photons arrive at the detectors within a
few nanoseconds of each other. A unique aspect of PET, as com-
pared to most other tomographic systems, is that the complete
ring of detectors surrounding the subject allows simultaneous
acquisition of a complete data set so that no rotation of the de-
tector system is required. A schematic view of two modern PET
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Fig. 1. The physical basis for PET: annihilation of a positron and an
electron produces a pair of 511 keV photons that are detected by a pair
of scintillation detectors

Fig. 2. Schematic of an axial cross section through (a) a 2D and (b) a
3D PET scanner. The septa in the 2D scanner stop out-of-plane photons
while the 3D scanner detects these events as additional data

scanners is shown in Fig. 2. Multiple rings of detectors surround
the patient with rings of dense material, or “septa”, separating
each ring. These septa stop photons traveling between rings so
that coincidence events are collected only between pairs of de-
tectors in a single ring. We will refer to this configuration as a
2D scanner since the data are separable and the image can be
reconstructed as a series of 2D sections.1 In contrast, the 3D
scanners have no septa so that coincidence photons can be de-
tected between planes. This results in a factor of 4 to 7 increase
in the total number of photons detected and hence increases the
signal to noise ratio. In this case the reconstruction problem is
not separable and must be treated directly in 3D.

In most scanners, the detectors consist of a combination
of scintillators and photomultiplier tubes (PMTs). Scintillators
used in PET include bismuth germinate (BGO), sodium iodide
(NaI) and lutetium oxyorthosilicate (LSO). These convert the
high energy 511 keV photons into a large number of low energy
photons which are then collected and amplified by the PMTs.
Typically 64 scintillation detectors will be coupled to four PMTs
as shown in Fig. 3. The output signal from all four PMTs is used
to determine in which of the 64 crystals the 511 keV photon
was absorbed. Arranging the detector blocks in circular fashion
produces a ring scanner; additional rings of blocks are added to
increase the axial field of view of the scanner.

With this basic picture of a PET system, we can now
turn to the issues of data modeling and image reconstruction.

Fig. 3. Photograph of a block-detector: an 8 by 8 array of BGO crystals
are coupled to four larger photomultiplier tubes (PMTs). The light
output from each crystal is shared between the PMTS. The resulting
output signals from the PMTs are used to decide from which crystal
this light originated

Fig. 4. Coincidence detection between parallel pairs of detectors in (a)
corresponds to one line of the Radon transform of the source distribution
in (b). A point source in (a) maps to a sinusoid in Radon transform
space (b)

Consider first the 2D arrangement. In the absence of an attenu-
ating medium and assuming perfect detectors, the total number
of coincidences between any detector pair is, approximately, a
line integral through the 2D source distribution. The set of line
integrals of a 2D function form its Radon transform, thus the co-
incidence data are readily sorted into a Radon transform or sino-
gram format as illustrated in Fig. 4. Once the sinogram data have
been collected, the source distribution can be reconstructed us-
ing the standard filtered backprojection (FBP) algorithm which
is a numerical method for inverting the Radon transform of a
2D function (Shepp and Logan 1974).

In the 3D case, the presence of oblique line-integral paths
between planes make the analytic method less straightforward.
Not only is there a huge increase in the amount of data, but
also the limited axial extent of the scanner results in missing
data in the oblique sinograms. One solution to this problem is to
use an analytic 3D reconstruction method in combination with
a reprojection procedure to fill in the missing data (Kinahan
and Rogers 1989). An alternative approach to 3D reconstruc-
tion is to “rebin” the data into equivalent 2D sinograms and
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apply 2D reconstruction algorithms to the result. The cruder
forms of rebinning lead to substantial resolution loss. However,
recent Fourier rebinning methods achieve impressive speed up
in computation with little loss in performance (Defrise et al.
1997).

While the analytic approaches result in fast reconstruction
algorithms, accuracy of the reconstructed images is limited by
the approximations implicit in the line integral model on which
the reconstruction formulae are based. In contrast, the statistical
methods that we will review here can adopt arbitrarily accu-
rate models for the mapping between the source volume and
the sinograms. A second limitation of the analytic approaches is
that they do not take account of the statistical variability inherent
in photon limited coincidence detection. The resulting noise in
the reconstructions is controlled, at the expense of resolution,
by varying the cut-off frequency of a linear filter applied to the
sinogram. Since the noise is signal dependent, this type of fil-
tering is not particularly effective at achieving an optimal bias-
variance trade-off. Again, the statistical approaches allow ex-
plicit modeling of statistical noise associated with photon limited
detection.

The combination of improved modeling of the detection pro-
cess and improved handling of statistical noise when using
statistically based methods offers the possibility for enhanced
performance of PET with both high count data (where model
accuracy limits resolution) and low count data (where statistical
noise limits resolution). In its simplest form the imaging prob-
lem can be cast as one of parameter estimation, where the data
are Poisson random variables with mean equal to a linear trans-
formation of the parameters. This formulation is complicated,
as we will describe here, by the impact of additional noise and
correction terms. To give an idea of the scale of the problem, a
single 3D scan from the latest generation of PET systems could
produce 107–108 sinogram elements with 106 image elements
to be estimated.

We have organized the paper as follows. We first develop a
model for the PET data based on the physics of coincidence
detection. We then review various formulations of the inverse
problem that derive from the Poisson model for the coincidence
data. Here we also address the issue of ill-posedness and review
the various forms of regularization used to overcome it. We then
turn our attention to the wide range of numerical methods for
optimizing the chosen cost function. We also describe some of

Table 1. Typical problem dimensions for reconstruction of images from the Siemens/CTI EXACT HR+ body scanner operating in 3D mode. Use
of sparse structures and symmetry reduce the size of the projection matrix to manageable proportions

Ring diameter, mm 826 Object size, mm 577× 577× 155
Detectors per ring 576 Object size, voxels 128× 128× 63
Number of rings 32 Voxel size, mm 4.5× 4.5× 2.4
Angles per sinogram 144 Full size of P 1013

Rays per angle 288 Storage size of Pgeom 42 Mbytes
Number of sinograms 239 Storage size of Pdet.blur 0.5 Mbytes
Projections per sinogram 41,472 Storage size of Pattn and Pdet.sens 40 Mbytes
Total projection rays 107 Total storage size of P 82.5 Mbytes

the recent work in evaluating estimator performance using basic
properties such as bias and variance, and also using task specific
evaluation. We conclude with some examples.

2. Data modeling

2.1. The coincidence model

For the purposes of this review, we will assume that the im-
age is represented using a finite set of basis functions. While
there has been some interest in alternative basis elements, (e.g.
smooth spherically symmetric “blobs” (Matej and Lewitt 1996)),
almost all researchers currently use a cubic voxel basis func-
tion. Each voxel is an indicator function on a cubic region cen-
tered at one of the image sampling points in a regular 2D or
3D lattice. The image value at each voxel is proportional to
the total number of positron-emitting nuclei contained in the
volume spanned by the voxel. A single index will be used to
represent the lexicographically ordered elements of the image,
f = { f j , j = 1, . . . , N }. Similarly, the elements of the mea-
sured sinograms will be represented in lexicographically ordered
form as y = {yi , i = 1, . . . ,M}. To give an idea of the size of
the problem, we have listed some of the basic parameters for a
3D whole body PET scanner in Table 1.

Since the data are inherently discrete and the detection pro-
cess approximately linear, the mapping between the source im-
age and the expected value of the true coincidence data can be
represented by a forward projection matrix, P ∈ RM×N . The
elements, pi j , contain the probabilities of detecting an emission
from voxel site j at detector pair i . As we will see below, the
measured data are corrupted by additive random coincidences,
r , and scattered coincidences, s, so that the basic model for the
mean of the data is:

ȳ= E[y]= P f + r + s (1)

The emission of positrons from a large number of radioactive
nuclei is well known to follow a Poisson distribution. Provided
that the detection of each photon pair by the system is inde-
pendent and can be modeled as a Bernoulli process, then the
sinogram data are a collection of Poisson random variables. The
independence in detection does not strictly hold since all PET
scanners are limited in the rate at which they can count – a
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restriction reflected in the so-called “dead-time” calibration fac-
tor, which is a measure of the fraction of time that the scanner
is unable to record new events because it is processing photons
that have already arrived. Here we will assume that the count
rates are sufficiently low that the system is operating in the linear
range and the data in (1) can be well modeled as Poisson with
mean ȳ. As we will see later, in most PET scanners the data are
actually pre-corrected for random coincidences so that they are
no longer Poisson. We now consider each of the three terms on
the right hand side of (1) and describe how they can be handled
within a statistical formulation of the inverse problem.

2.2. True coincidences

In an effort to develop an accurate and computationally effi-
cient representation of the projection data we have developed
the following factored representation:

P = Pdet.sens Pdet.blur Pattn Pgeom Ppositron (2)

This specific form has been used only in our own work, e.g. Qi
et al. (1998a). Factorizations that included some of these terms
were earlier proposed by Kearfott (1985) and Baker (1991). In
other cases, implicit factorizations are often used; for exam-
ple, when attenuation and detector normalization corrections
are applied separately from the forward or backward projection
procedures (Kaufman 1987) or when a Gaussian blurring of the
computed sinogram is used to match the approximate response
of the detectors.

Ppositron: the emitted positron travels a small distance before
annihilating with an electron. The distance is dependent on
the specific isotope and the density of the surrounding tis-
sue. In water, the common PET isotopes have full-width-at-
half-maximum (FWHM) ranges between 0.1 mm for 18F and
0.5 mm for 15O. The range distributions are long tailed so
that although these factors are negligible for 18F studies, they
are one of the primary factors limiting resolution in 15O stud-
ies. We can include positron range in the PET data model
by making Ppositron a local image blurring operator that is ap-
plied to the true source distribution (Terstegge et al. 1996). If
we assume that the density inside the patient is that of water,
then these factors would be shift invariant. More sophisticated
modeling with shift-variant blurs would involve the use of an
attenuation map (see Section 2.3) to determine spatially vari-
ant positron range distributions. In most work to date these
factors have not been included in the model, although there
have been attempts to de-convolve these factors from either
the sinogram data or the reconstructed image (Haber, Derenzo
and Uber 1990).

Pgeom: is a matrix that contains the geometrical mapping between
the source and data. The (i, j)th element is equal to the proba-
bility that a photon pair produced in voxel j reaches the front
faces of the detector pair i. While the conventional model for
this is based on computing the intersection of a tube joining
the detector pair with each voxel, a more correct model is

based on the solid angle subtended at each of the detectors by
each voxel (Hoffman et al. 1982). We can account for finite
voxel size by numerically integrating the solid angles over the
volume of each voxel.

The dominant cost in almost all iterative PET reconstruc-
tion algorithms is that involved in forward and backward
projection. Using the factored form above, the most ex-
pensive part of this operation is multiplication by Pgeom or
its transpose. Consequently, it is very important that this
matrix be represented effectively to minimize storage and
computation costs. Although Pgeom is extremely large, it
is also very sparse with a high degree of symmetry. The
sparseness arises from the small fraction of voxels that can
produce coincidences at each detector pair. In 2D there is also
a total of an 8-fold rotation and reflection symmetry in the
geometric projection matrix for a circular ring of detectors; in
3D there are additional symmetries for coincidences between
detector rings (Johnson et al. 1995, Chen, Lee and Cho
1991, Qi et al. 1998a). Further savings in storage costs and
computation time can be realized by storing only non-zero
elements and using run-length coding. The reductions that
can be achieved are illustrated in Table 1.

Pattn: the geometric term above will determine the number
of photons reaching the detectors in the absence of an
attenuating medium. In fact, the body prevents a substantial
fraction of photons reaching the detectors, primarily through
Compton scattering of one or both photons (Barrett and
Swindell 1981). It is straightforward to show that the
probability of attenuation is approximately constant for
all photon pairs that would otherwise impinge on a given
detector pair. Thus the attenuation factor can be represented
by a diagonal matrix containing the survival probabilities.
Accurate attenuation factors are crucial for obtaining high
quality PET images and we return to this topic in Section 2.3.

Pdet.blur: Once photons arrive at the detectors, the detection
process is complicated by a number of factors which we
have lumped into the matrix Pdet.blur. This matrix acts as a
local blurring function applied to the sinogram formed by
multiplying the source distribution by the positron range and
geometric projection matrices. The blurring occurs for three
primary reasons: (i) the photons are not exactly co-linear; (ii)
photons may be scattered from one crystal to another resulting
in a mis-positioning of the detected photon; (iii) the crystal
surface is not always orthogonal to the direction of arrival of
the photon so that a photon may penetrate through one or more
crystals before being stopped. These factors are illustrated
in Fig. 5. In principle the non-colinearity effect should have
been combined with the geometric projection matrix, but
we have found that it can be included in the blurring factors
without noticeable loss in model accuracy. Exact computation
of the three factors is not practical. Instead we have used
Monte Carlo simulations in which we track large numbers
of photon pairs through a simplified model of the detectors
(Mumcuoglu et al. 1996). As with the geometric projection
matrix, there is a great deal of symmetry in these blur factors.
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Fig. 5. Figure shows various factors that complicate the basic PET
model: (a) scatter within the body (b) random coincidences (c) inter-
crystal scatter (d) crystal penetration

Furthermore the blurring only extends over a small area of the
sinogram so that storage and computation costs associated
with these factors are small. By factoring these effects out
of the geometric projection matrix we achieve a reduction by
a factor of approximately three in the geometric projection
matrix size and comparable savings in reconstruction time.

Pdet.sens: Once a photon pair reaches a detector it may not be
detected since no detector is 100% efficient. Pdet.sens is a
diagonal matrix that contains the detection efficiency of
each detector pair. The terms that contribute to these factors
include the intrinsic sensitivities of the individual crystals,
the relative position of the crystals within a detector block,
and geometric factors related to the distance of the detector
pair from the center of the field of view (Casey, Gadagkar and
Newport 1995). These factors are all measured through cali-
bration procedures and are typically provided to the user in a
form that can be used to directly generate the diagonal Pdet.sens

matrix. An additional complicating factor is that of system
dead-time. This is an approximate measure of the fraction
of counts lost due to the detectors being unable to detect
new photons while the system is occupied with events that
were previously detected. The dead-time correction factor is
usually estimated from the singles rate. It should be noted
that the dead-time effect causes non-linear behavior at high
count rates and methods to account for this are still needed.

2.3. Attenuation effects

A substantial fraction of the photons emitted through positron-
electron annihilation do not directly exit the body. Rather they

undergo Compton scattering (Barrett and Swindell 1981) in
which the energy of the photon is reduced and its direction is
altered. If this photon is later detected, then a scattered event is
recorded as discussed below. Whether or not the scattered pho-
ton is detected, there is a net loss of counts along the original
path on which the photon pair was traveling. It is straightforward
to show that the probability of attenuation along any straight line
path is independent of the location along the path that the orig-
inal annihilation occurs. The survival probability for a photon
pair is equal to exp{−∫ µ(x) dl}, where µ(x) is the linear atten-
uation coefficient at x and the integral is taken along the straight
line path.

In most instances the attenuation factor is found using an
external transmission source. These sources are usually either a
ring of positron emitting material that surrounds the patient, or
a rotating rod of activity. Photons traveling along straight line
paths through the patient are attenuated according to the same
probability as emitted photons within the body traveling on the
same paths. A simple estimate of the probability of survival can
be computed as the ratio of the number of photon pairs detected
with the patient present (the transmission scan) to the number
detected in the absence of the patient or attenuating medium (the
blank scan).

This simple division method of computing survival probabili-
ties produces high variance and biased estimates. Errors are par-
ticularly large when the number of detected transmission counts
is low. Alternatively, the transmission data can be used to re-
construct an image of the linear attenuation coefficients via sta-
tistical methods very similar to those reviewed below. As with
emission data, the transmission scans are photon limited and
contain scattered and random coincidences. Formulation of the
transmission reconstruction problem follows in a similar manner
to the emission methods described here, with the primary differ-
ence being that the mean of the data contain the line integrals of
the attenuation image in exponential form. Rather than pursue
this issue further here, we refer the interested reader to Lange,
Bahn and Little (1987), Fessler et al. (1997), Mumcuoglu et al.
(1994).

2.4. Scattered and random coincidences

The true coincidence data are corrupted by two forms of addi-
tive noise. These are the scatter and randoms components, with
means s and r respectively, in (1). Scattered events refer to coin-
cidence detection after one or both of the photons has undergone
Compton scattering. Clearly, after scattering, we can no longer
assume that positron emission occurred along the path joining
the two detectors.

Scattered photons have lower energy than their unscattered
511 keV counterparts. Consequently some of the scattered
events can be removed by rejecting events for which the energy
detected by the PMTs does not exceed some reasonable thresh-
old. Unfortunately, setting of this threshold sufficiently high to
reject most of the scattered radiation will also result in rejec-
tion of a large fraction of unscattered photons due to the poor
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energy resolution of BGO detectors. For the most commonly
used BGO detectors with the standard energy thresholds, 2D
PET studies typically have a scattered to true coincidence ratio of
about 10%, while in 3D studies the fraction often exceeds 30%.
Typically scatter contributions to the data tend to be fairly uni-
form. They are often simply ignored in qualitative studies since
they result in an approximately constant offset in the image when
using linear estimators. When non-linear methods are used, or
when accurate quantitation is required, these factors must be
modeled.

Given the distribution of the source image and an image of the
linear attenuation coefficient, an accurate scatter profile can be
computed using the Klein-Nishina formula for Compton scat-
ter (Barrett and Swindell 1981). Since the scatter profiles are
smooth, it is possible to compute them with reasonable compu-
tational load from a low resolution, preliminary reconstruction
of the emission source. Once this is estimated, the scatter contri-
bution can be viewed as a known offset in the mean of the data
in (1) rather than as an explicit function of the data that must be
re-computed with each new estimate of the image. Model based
scatter methods are described in Ollinger, Johns and Burney
(1992), Watson, Newport and Casey (1995), Mumcuoglu, Leahy
and Cherry (1996). In the following we will assume that the scat-
ter component in the data has been estimated using one of these
methods.

Random coincidences (henceforth called “randoms”), as
mentioned above, are caused by the detection of two indepen-
dent photons within the coincidence timing window. The ran-
doms contribution to the data is a function of the length of this
timing window and of the source activity. By simply delaying
the timing window by a fixed amount, one can obtain data which
consist of purely randoms and with the same mean number of
counts as for the non-delayed window. Thus on most scanners,
a randoms corrected data set is collected in which two timing
windows are used, one to collect true and random coincidences,
the second to collect randoms only. The difference of these two
is the corrected data. While this does correct the data, in mean,
for the randoms, the resulting data has increased variance due
to the subtraction of two Poisson processes. This has important
implications for the data model as discussed below.

3. Formulating the inverse problem

3.1. Likelihood functions

The great majority of publications employing statistical PET
models assume the data y is Poisson with mean ȳ and distribution

p( y | f ) =
M∏

i=1

ȳ yi

i e−ȳi

yi !
(3)

The corresponding log-likelihood, after dropping constants, is

L( y | f ) =
M∑

i=1

yi log ȳi − ȳi (4)

The mean ȳ is related to the image through the affine transform
(1). In most cases, the effects of scatter and randoms, whether
present or subtracted from the data, are simply ignored and the
data are assumed to follow this Poisson model with mean y=Pf.

In an effort to reduce computation costs and numerical prob-
lems associated with the logarithm that occurs in the log-
likelihood function (Bouman and Sauer 1996) suggests using
a quadratic approximation to the data:

L( y | f ) = −1

2

M∑
i=1

(ȳi − yi )2

σ̂ 2
i

(5)

where σ̂ is an estimate of the variance of each measurement. For
Poisson data the variance should equal the mean ȳi and is often
approximated using the observed data yi . This approximation
can be improved using a forward projection of an early estimate
of the image when using iterative reconstruction algorithms.

The Poisson model above is appropriate only when the data
have not been corrected for randoms, and when the randoms
and scatter components are explicitly included in the model.
When operated in standard mode, PET scanners pre-correct for
randoms by computing the difference between coincidences col-
lected using a standard timing window and those in a delayed
timing window. These data are Poisson processes with means
ȳ = E[ y] = Pf + r + s and r, respectively. The precorrected
data y has mean Pf + s and variance Pf + 2r + s so that a
Poisson model does not reflect the true variance. The true distri-
bution has a numerically intractable form and an approximation
should be used (Yavuz and Fessler 1998). One possibility is to
modify the quadratic approximation in (5) using an increased
variance as proposed in Fessler (1994). A better approximation
is the shifted-Poisson model in which the first two moments
of the corrected data are matched by assuming that y + 2r is
Poisson with mean Pf+ 2r+ s. This results in the modified log
likelihood (Yavuz and Fessler 1998):

L( y | f ) =
M∑

i=1

(yi + 2ri ) log ((P f )i + 2ri + si )

− ((P f )i + 2ri + si ) (6)

In closing this section we note that likelihood functions that
model the increase in variance due to randoms subtraction re-
quire estimates of the mean of this randoms process. These must,
in turn, be estimated from the measurements and calibration data
(Fessler 1994, Qi et al. 1998b).

3.2. Priors

Direct maximum likelihood (ML) estimates of PET images ex-
hibit high variance due to ill-conditioning. Some form of regu-
larization is required to produce acceptable images. Often this is
accomplished simply by starting with a smooth initial estimate
and terminating an ML search before convergence. Here we
consider explicit regularization procedures in which a prior dis-
tribution is introduced through a Bayesian reformulation of the
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problem to resolve the ill-conditioning in the likelihood function.
Some authors prefer to present these regularization procedures
as penalized ML methods but the differences are largely seman-
tic, except in the case where the penalty functions are explicit
functions of the data, e.g. Fessler and Rogers (1996).

Bayesian methods can address the ill-posedness inherent in
PET image estimation through the introduction of random field
models for the unknown image. In an attempt to capture the lo-
cally structured properties of images, researchers in emission
tomography, and many other applications of image process-
ing, have adopted Gibbs distributions as suitable priors. The
Markovian properties of these distributions make them theoret-
ically attractive as a formalism for describing empirical local
image properties, as well as computationally appealing since
the local nature of their associated energy functions result in
computationally efficient update strategies.

Let S = {1, 2, . . . , N } denote the ordered set of image voxel
indices. The Gibbs distribution is defined on a neighborhood
system which associates a set of sites W j ⊂ S with each site j .
The neighborhood system must satisfy the property that i ∈ W j

iff j ∈ Wi . The sites in W j are typically the collection of voxels
closest, up to some maximum Euclidean distance, to site j . The
Gibbs distribution has the general form

p( f | β) = 1

Z
e−βU ( f ) (7)

where U( f ) is the Gibbs energy function defined as a sum of
potentials, each of which is a function of a subset or clique
ck ⊂ S. The cliques for a particular neighborhood system must
satisfy the condition that each pair of sites in each clique ck are
mutual neighbors.

The form of Gibbs distributions most commonly used in im-
age processing are those for which the energy function U( f )
contains potentials defined only on pair-wise cliques of neigh-
boring voxels:

U ( f ) =
N∑

j=1

∑
k∈W j ,k> j

φ jk( f j − fk) (8)

For a 3D problem, the neighbors of an internal voxel would be
the nearest 6 voxels for a 1st order model, or the nearest 26
voxels for a 2nd order model (with appropriate modifications
for the boundaries of the lattice).

The potential functions φ jk( f j − fk) are chosen to attempt to
reflect two conflicting image properties: (i) images are locally
smooth, (ii) except where they are not! For example, in PET im-
ages we might expect to see smooth variations in tracer uptake
within a specific organ or type of tissue, and abrupt changes as
we move between different organs or tissue types. A wide range
of functions have been studied in the literature that attempt to
produce local smoothing while not removing or blurring true
boundaries or edges in the image. All have the basic property
that they are monotonic non-decreasing functions of the abso-
lute intensity difference |( f j − fk)|. Taking the square of this
function leads to a Gauss-Markov prior which produces smooth

images with very low probability of sharp transitions in inten-
sity. In an attempt to increase the probability of these sharp
transitions, Bouman and Sauer (1996) propose using the gener-
alized p-Gaussian model where φ( f ) = | f |p, 1 < p < 2. An
alternative function with similar behavior, that derives from the
literature on robust estimation, is the Huber prior in which the
continuous function φ( f ) switches from quadratic to linear at
a user specified transition point (Huber 1981, Qi et al. 1998a).
The function φ( f ) = log cosh(c f ), where c is a user speci-
fied parameter, has similar behavior except that the function has
the advantage of continuous derivatives, but with higher compu-
tation costs (Green 1990). All of these examples produce convex
energy functions.

In an attempt to produce even sharper intensity transitions,
several highly non convex functions have also been proposed.
For example, Geman and McClure (1985), who were also the
first to specifically use Gibbs distributions in emission tomog-
raphy, proposed the function φ( f ) = f 2

f 2+δ2 . This and other non-
convex potentials have the property that the derivative of the
function decreases once the intensity difference exceeds some
threshold. The limiting case of this approach is found in the
weak membrane model which is quadratically increasing up to
some threshold and then remains constant beyond this (Gindi
et al. 1993).

Higher order neighborhoods are able to capture more com-
plex correlation structure than the simple pair-wise models
(Chan, Herman and Levitan 1995). Unfortunately, the problem
of choosing and justifying such a model becomes increasingly
difficult with the size of the neighborhood. One example where
a higher order neighborhood has been used to nice effect is the
thin plate spline model of Lee, Rangarajan and Gindi (1995).
This model uses a discrete approximation to the bending energy
of a thin-plate as the Gibbs energy function. Since the thin plate
energy involves second order derivatives, higher order cliques
must be used in the model.

Rather than implicitly modeling image boundaries as in the
examples above, the compound MRFs include a second coupled
random field, defined on a dual lattice, that explicitly represents
the boundaries in the image. The dual lattice points are placed
between each pair of sites in the image lattice and are set to
unity if there is an image boundary between that pair of voxels,
otherwise they are set to zero. In this case, the number of un-
known parameters to be estimated is doubled. The boundary is
usually estimated from the current estimate of the image at each
iteration. In this way, the prior can explicitly model edges in the
image, and introduce additional potential terms to encourage the
formation of connected boundaries (Geman and Geman 1984).
A wide range of compound MRFs have been studied in the PET
literature, e.g. Lee, Rangarajan and Gindi (1995), Johnson et al.
(1991), Leahy and Yan (1991).

One of the primary attractions of the compound MRFs is that
they serve as a natural framework for incorporating anatom-
ical information into the reconstruction process (Leahy and
Yan 1991, Gindi et al. 1991, 1993). Since different anatomical
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structures have different physiological functions, we can expect
to see differences in tracer uptake between structures. This gen-
eral observation is borne out in high resolution autoradiographic
images in which functional images also clearly reveal the mor-
phology of the underlying structures (Gindi et al. 1993). Be-
cause the anatomical modalities, such MR and CT, have supe-
rior resolution to PET, fairly accurate estimates of anatomical
boundaries can be formed. These can then be used to influ-
ence the formation of the boundary process in the PET image
estimation procedure.

3.3. The posterior density

The likelihood function and image prior are combined through
Bayes rule to produce the posterior density

p( f | y ) = p( y | f )p( f )

p( y )
. (9)

Bayesian formulations of the PET problem are usually reduced
to computing a maximum a posteriori (MAP) estimate of the
image as the maximizer of the posterior. Taking the log of the
posterior and dropping constants, we have the basic form of the
MAP objective function

8( f , y) = L( y | f )− βU ( f ). (10)

The log likelihood functions in Section 3.1 are concave so that
8( f, y) will also be concave if the Gibbs energy is convex. In this
case, a global maximum can be found using standard nonlinear
optimization methods.

If MRFs with non-convex potential functions are used then
local maxima will exist for the MAP objective function. Global
search techniques such as simulated annealing are typically im-
practical for PET reconstruction because of the number of voxels
in a typical image. Furthermore, the non-local property of the
forward and backward projection results in a fully coupled pos-
terior, i.e. the posterior density does not share the local neigh-
borhood system of the prior. In practice, local searches for a
stationary point of the objective function are typically used to
find a local maximum of 8( f, y). In addition to the difficulty in
computing MAP estimates for non-convex priors, it should be
noted that the solutions are also inherently discontinuous with
respect to the data. This can result in high variance estimates.
When using compound MRFs, the reconstruction problem is
further complicated by the need to estimate the additional set of
discrete variables that represent image boundaries.

There are a much broader class of Bayesian estimators that
could be developed to minimize an expected loss computed over
the posterior density. These could be developed to optimize the
reconstruction algorithm for specific well-defined tasks. One ex-
ample of a Bayesian formulation that does not involve the com-
putation of a MAP estimate was described by Bowsher et al.
(1996). A hierarchical MRF model for emission tomography
is described in which the image consists of regions of activity,
each of which has an intensity that is assumed to vary smoothly
about its mean. The procedure described involves estimating the

support of each of these regions and their mean intensities. Sev-
eral other researchers, e.g. Green (1996), Weir (1997), Higdon
et al. (1997), have proposed alternative Markov Chain Monte
Carlo methods for image estimation. These methods are attrac-
tive since they are better suited to more complex priors and the
use of hyperprior densities on unknown parameters, however the
high computational burden is a major obstacle preventing their
widespread use.

4. Image estimation

4.1. ML estimators

Since there is no closed form solution of the ML problem for
the Poisson likelihood, solutions are computed iteratively. Itera-
tive estimation schemes in PET have their basis in the row-action
method or ART (algebraic reconstruction techniques) developed
during the 1970s (Censor 1983). ART solves a set of linear equa-
tions by successive projection of the image estimate onto the hy-
perplanes defined by each equation. The approach is attractive
for the sparse matrix structures encountered in PET but has no
statistically optimal properties. In cases where the data are con-
sistent, ART will converge to a solution of the equations y= Pf.
In the inconsistent case, the iterations will not converge to a sin-
gle solution and the properties of the image at a particular stop-
ping point will be dependent on the sequence in which the data
are ordered. Many variations on the ART theme can be found in
the literature (Censor 1983) but we will restrict attention here to
estimators that are based on explicit statistical data models.

Rockmore and Macovski (1976) published an early paper on
ML methods for emission tomography, but it was the work of
Shepp and Vardi (1982) and Lange and Carson (1984), who
applied the EM algorithm of Dempster, Laird and Rubin (1977)
to the problem, that lead to the current interest in ML approaches
for PET. It is interesting to note that one of the major attractions
of this method to the nuclear medicine community was that the
EM method produces an elegant closed-form update equation
reminiscent of the earlier ART methods.

The EM algorithm is based on the introduction of a set of
complete but unobservable data, w , that relates the incomplete
observed data y to the image f. The algorithm alternates between
computing the conditional mean of the complete data log like-
lihood function, ln p (w | f ), from y and the current image
estimate f (k), and then maximizing this quantity with respect to
the image:

E-step: Q
(

f | f (k)
) = E

[
ln L(w | f ) | y; f (k)

]
(11)

M-step: f k+1 = arg max
f

Q
(

f | f (k)
)

For the PET reconstruction problem the complete data is chosen
as w = {{wi j }Nj=1}Mi=1 with eachwi j denoting the emissions from
voxel j being detected by detector pair i (Lange and Carson
1984, Vardi, Shepp and Kaufman 1985). In this model, randoms
and scatter are ignored but modifications to deal with these as
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additive factors are straightforward. The final EM algorithm has
the form:

E-step: Q
(

f | f (k)
)

=
∑

j

(
f (k)

j

∑
i

pi j yi∑
l pil f (k)

l

log ( pi j f j )− f j

∑
i

pi j

)
(12)

M-step:

f (k+1)
j = f j

(k)∑
i pi j

∑
i

pi j yi∑
l pil f (k)

l

Two problems were widely noted with this algorithm: it is slow
to converge and the images have high variance. The variance
problem is inherent in the ill-conditioning of the Fisher infor-
mation matrix. In practice it is controlled in EM implementations
using either stopping rules (Veklerov and Llacer 1987, Coakley
1991, Johnson 1994a) or post-smoothing of the reconstruction
(Llacer et al. 1993, Silverman et al. 1990). An alternative ap-
proach to avoiding instability is to use Grenander’s method of
sieves (Grenander 1981). The basic idea is to maximize the like-
lihood over a constrained subspace and then relax the constraint
by allowing the subspace to grow with the sample size. This usu-
ally produces consistent estimates provided that the sieve grows
sufficiently slowly with sample size. Snyder and Miller (1985)
have successfully applied this approach to PET using a Gaussian
convolution-kernel sieve.

Many researchers, (Lewitt and Muehllehner 1986, Kaufman
1987, Rajeevan, Rajgopal and Krishna 1992), have studied meth-
ods for speeding up the EM algorithm by re-writing the EM
update equation (12) as:

f (k+1)
j = f (k)

j + f (k)
j

1∑
i pi j

∂L
(

y | f (k)
)

∂ f j
. (13)

Re-written in this way, EM looks like a special case of gradi-
ent ascent and some degree of speed-up can be realized using
over-relaxation or line-search methods. More substantial gains
are achieved by returning to standard gradient ascent methods,
and in particular pre-conditioned conjugate gradient searches
(Kaufman 1993).

One distinct attraction of the original EM algorithm is that the
updates impose a natural non-negativity constraint. This is not
shared by the gradient-based methods and imposition of a non-
negativity condition on these methods requires careful handling
(Kaufman 1993). An alternative to gradient based searches is to
use iterated coordinate ascent (ICA) methods in which the voxels
are updated sequentially, thus making imposition of the non-
negativity constraint trivial. ICA also leads to dramatic speed up
in convergence rate in comparison to the EM algorithm (Sauer
and Bouman 1993). We will return to gradient based and ICA
approaches in our discussion of regularized methods.

The ordered subsets EM (OSEM) algorithm (Hudson and
Larkin 1994) is a modification of the EM algorithm in which

each update uses only a subset of the data. Let {Si }pi=1 be a
disjoint partition of the integer interval [1,M] = ⋃p

i=1 Si . Let
k denote the index for a complete cycle and i the index for a
sub-iteration, and define f (k,0) = f (k−1), f (k,p) = f (k). Then
the update equation for OSEM is given by

f (k,i)
j = f (k,i−1)

j∑
i∈Si

pi j

∑
i∈Si

pi j yi∑
l pil f (k,i−1)

l

,

for j = 1, . . . , N , i = 1, . . . , p. (14)

Typically, each subset will consist of a group of projections,
with the number of subsets equal to an integer fraction of the to-
tal number of projections. “Subset balance” is recommended in
(Hudson and Larkin 1994), i.e. the subsets should be chosen so
that an emission from each pixel has equal probability of being
detected in each of the subsets. In practice this can be difficult to
achieve due to spatially varying attenuation and detector sensi-
tivities. The grouping of projections within the subsets will alter
both the convergence rate and the sequence of images generated.
To avoid directional artifacts, the projections are usually chosen
to have maximum separation in angle in each subset. Earlier
examples of iterating over subsets of the data for ML estima-
tion in emission tomography can be found in Hebert, Leahy and
Singh (1990), Holte et al. (1990). OSEM produces remarkable
improvements in convergence rates in the early iterations, al-
though subsequent iterations over the entire data is required for
ultimate convergence. Byrne (1997) has reported the empirical
observation that OSEM seems to enter a limit cycle condition
when the number of subsets remains greater than one, but cur-
rently there has been no proof that OSEM will always exhibit
such behavior.

As with the original EM algorithm, OSEM produces high
variance at large iteration numbers. This is typically controlled
using either early termination or post smoothing of the image.
Although OSEM does not converge in general, it is currently
the most widely used iterative method for statistically based
reconstruction in emission tomography. This is primarily due
to the obvious improvements in image quality over standard
filtered backprojection methods coupled with the relatively low
computational cost involved in using this method.

A more general treatment of block iterative algorithms, of
which OSEM is a special case, is given in Byrne (1997). Con-
vergence properties for a number of block iterative methods
are investigated and their limit cycle behavior for inconsistent
data described. Another interesting variant on OSEM is the row-
action maximum likelihood algorithm (RAMLA) of Browne and
De Pierro (1996). This is similar to OSEM, but is shown to con-
verge to a true ML solution under certain conditions.

While the EM and OSEM methods were originally derived
for the pure Poisson model, modifications for the case of an
offset due to randoms and scatter or increase in variance due
to randoms subtraction have also been developed (Lange and
Carson 1984, Politte and Snyder 1991, Qi et al. 1998b).
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4.2. Bayesian methods and other forms of regularization

The EM algorithm can be directly extended to include prior
terms by using the generalized EM (GEM) method (Dempster,
Laird and Rubin 1977, Hebert and Leahy 1989). The treatment
of the complete data remains the same as for ML-EM, so that
the E-step given in (12) does not change. With the addition
of the prior, the M-step must now maximize the log posterior
given the complete data, w , i.e.

M-step:

f k+1 = arg max
f

∑
j

(
f (k)

j e j

(
f (k)

)× log ( f j )− f j

∑
i

pi j

)
−βU ( f ) (15)

where e j ( f (k)) = ∑
i pi j yi/(

∑
l pil f (k)

l ). In the absence of a
non-negativity constraint, the necessary condition can be ob-
tained by differentiating and setting the result to zero:

f (k)
j e j

(
f (k)

)
f j

−
∑

i

pi j − β ∂

∂ f j
U ( f ) = 0, j = 1, . . . , N

(16)

For the case where a non-negativity constraint is used, (16)
can be replaced by the appropriate Kuhn-Tucker conditions. Di-
rect solutions of (16) exist only for priors in which the voxels
are statistically independent, such as the gamma prior (Lange,
Bahn and Little 1987, Wang and Gindi 1997). For the case
where voxels are not independent, a gradient search can be
applied to the optimization subproblem in (16) (Hebert and
Leahy 1989).

Green (1990) proposed a “one-step-late” (OSL) algorithm to
solve (16). The partial derivatives of U ( f ) are evaluated at the
current estimate f (k), resulting in the simple update equation

f (k+1)
j = f (k)

j∑
i pi j + β ∂

∂ f j
U ( f )| f= f (k)

e j

(
f (k)

)
. (17)

This procedure only converges to a MAP solution under re-
stricted conditions, although Lange (1990) described a modi-
fied version of OSL with stronger convergence properties. De
Pierro (1995) used an alternative functional substitution method
to solve the problem. The objective function is approximated lo-
cally by a separable function of the current estimate f (k), so
that the M-step involves only a one dimensional maximization
that can be solved using either an analytic or Newton-Raphson
method. This technique has provable convergence with an ap-
propriate choice of the approximating separable function.

The GEM algorithm is readily modified for use with com-
pound MRFs. In that case a set of binary line site variables must
also be estimated. These variables are appended to the set of
parameters to be estimated in the M-step. Since these variables
are binary, standard gradient optimization methods cannot be

applied. Instead, mean field annealing methods have been used
(Leahy and Yan 1991, Bilbro et al. 1992, Gindi et al. 1991).

An alternative to the GEM algorithm is the space-alternating
generalized EM (SAGE) method (Fessler and Hero 1995,
McLachlan and Krishnan 1997). Unlike the EM algorithms
which update image voxels simultaneously, SAGE updates im-
age voxels sequentially using a sequence of small “hidden” data
spaces. Because the sequential update decouples the M-step, the
maximization can often be performed analytically. Hidden data
spaces that are less informative than those used for ordinary
EM are able to accelerate the convergence rate yet maintain the
desirable monotonicity properties of EM algorithms.

Attempts to produce faster convergence have involved return-
ing to more generic optimization techniques based either on gra-
dient or coordinate-wise ascent. The gradient ascent methods
(Kaufman 1987, Mumcuoglu, Leahy and Cherry 1996, Fessler
and Ficaro 1996) employing preconditioners and conjugate gra-
dients can give very fast convergence. They are also easily ex-
tended to include estimation of line processes using mean field
annealing methods (Mumcuoglu et al. 1994, Bilbro et al. 1992).

A major problem in using gradient-based methods is the in-
corporation of the non-negativity constraint. Attempts to address
this problem include using restricted line searches (Kaufman
1987), bent line searches (Kaufman 1987), penalty function
methods (Mumcuoglu et al. 1994) and active set approaches
(Kaufman 1993, Mumcuoglu, Leahy and Cherry 1996).

The non-negativity constraint is more easily dealt with using
coordinate-wise updates. While there are a number of variations
on this basic theme (Fessler 1994, Bouman and Sauer 1996,
Sauer and Bouman 1993), the essence of these methods is to up-
date each voxel in turn so as to maximize the objective function
with respect to that voxel. Given the current estimate f (k), the
update for the j th voxel is

f (k+1)
j = arg max

x≥0
[L( y | f )

−βU ( f )] f=( f (k+1)
1 , f (k+1)

2 ,..., f (k+1)
j−1 ,x, f (k)

j+1,..., f (k)
N ).

(18)

To solve the 1D maximization problem, polynomial approxima-
tions of the log likelihood function can be used to reduce the up-
date step to closed form (Fessler 1995). The Newton-Raphson
method can be used for the general case (Bouman and Sauer
1996). These methods can easily incorporate the non-negativity
constraint and achieve similar convergence rates to precondi-
tioned conjugate gradient (PCG) methods. If an ICA algorithm
updates voxels in a raster-scan fashion, then the algorithm will
exhibit a faster convergence rate in the scan direction than in the
orthogonal direction. To avoid this problem, it is preferable to
update the image voxels using either four different raster-scan
orderings or a random ordering (Fessler 1994).

The computational cost of statistical reconstruction methods
are heavily dependent on the specific implementation as well as
the number of iterations required and the number of forward and
backward projection operations per iteration. The ICA methods
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access one voxel per iteration so that it is important that the pro-
jection matrix be stored in a voxel-driven format. However, we
have found that it is easier to achieve efficient storage of the pro-
jection matrix described in Section 2 using a ray-driven format,
which is more suitable for gradient based methods. Partitioning
the updates among multiple processors is also more straightfor-
ward for the gradient based methods than ICA. However, both
ICA and gradient based methods produce substantially faster
convergence than the EM algorithm and its variants, and have
the advantage over the OSEM method that, when used to com-
pute a MAP estimate, they are stable at higher iterations so that
selection of the stopping point of the algorithm is not critical.

4.3. Parameter selection

A key problem in the use of regularized or Bayesian methods is
the selection of the regularization parameters, or equivalently,
the hyperparameters of the prior. MAP estimates of the image f
computed from (10) are clearly functions of β, which controls
the relative influence of the prior and that of the likelihood. If β
is too large, the prior will tend to have an over-smoothing effect
on the solution. Conversely, if it is too small, the MAP estimate
may be unstable, reducing to the ML solution as β goes to zero.

Data-driven selection of the hyperparameter is often per-
formed in an ad hoc fashion through visual inspection of the
resulting images. Making the parameter user selectable is analo-
gous to the case in filtered backprojection image reconstruction
where the user selects a filter cut-off frequency to choose image
resolution and hence effects a subjective trade-off between bias
and variance. Objective measures of image quality can also serve
as the basis for user selection of the hyperparameter. When com-
bined with the method for uniform resolution discussed below
(Fessler and Rogers 1996), one can build an object indepen-
dent table relating the prior parameter to the spatial resolution
of the resulting image. The parameter can then be selected for
the desired spatial resolution by the user. Alternatively, the hy-
perparameter can be selected to maximize the local contrast to
noise ratio as described in Qi and Leahy (1998).

We can separate other approaches for choosing β in to two
broad classes: (i) treating β as a regularization parameter and
applying techniques such as generalized cross validation and
the L-curve; and (ii) estimation theoretic approaches such as
maximum likelihood.

The generalized cross-validation (GCV) method (Craven and
Wahba 1979) has been applied in Bayesian image restoration
and reconstruction (Johnson 1994b). Several difficulties are as-
sociated with this method: the GCV function is often very flat
and its minimum is difficult to locate numerically (Varah 1983).
Also the method may fail to select the correct hyperparameter
when measurement noise is highly correlated (Wahba 1990).
For problems of large dimensionality, this method may be im-
practical due to the amount of computation required. A Monte
Carlo approximation of GCV was proposed to eliminate this
drawback (Girard 1995). The L-curve method is based on the
empirical observation that the corner of the L-curve corresponds

to a good choice of β in terms of other validation measures
(Hansen 1992). The L-curve has similar performance to GCV for
uncorrelated measurement errors but, under certain restrictions,
also works for correlated errors (Hansen 1992). Unfortunately
the corner of the L-curve is difficult to find without multiple
evaluations of the MAP solution for different hyperparameter
values so that the computational cost is high.

As an alternative to the regularization based methods, the
hyperparameter can be selected using ML estimation. The prob-
lem can be viewed in an incomplete/complete data framework
in which the image is the (unobserved) complete data and the
PET coincidence data are the (observed) incomplete data. Hy-
perparameter selection is therefore a natural candidate for the
EM algorithm although the high dimensionality of the densities
involved makes a true EM approach impractical. Markov Chain
Monte Carlo methods (Besag et al. 1995) have been proposed
for overcoming the intractability of ML parameter estimation
(Geman and McClure 1987, Zhang, Modestino and Langan
1994, Saquib, Bouman and Sauer 1998, Geyer and Thompson
1992), but the computation costs remain high. Zhou, Leahy and
Qi (1997) developed a ML approach based on mean field ap-
proximation. In this method, separable approximations of the
prior and posterior densities are used to compute an approximate
ML solution with lower computational cost than the MCMC
methods. Other estimation methods, such as the generalized
maximum likelihood approaches (Besag 1986, Lakshmanan and
Derin 1989) and the method of moments (Geman and McClure
1987, Manbeck 1990), have also been studied. These methods
have lower computational cost, but they do not share the de-
sirable properties of true ML estimation and often exhibit poor
performance.

5. Examining estimator performance

5.1. Resolution

Shift invariant linear imaging systems are often characterized by
their point spread function (PSF). Noiseless data from a point
source will produce an image of the PSF so that measurement
of the full-width-at-half-maximum (FWHM) of the PSF is a
measure of system resolution. This measure is useful for images
reconstructed using filtered backprojection since the reconstruc-
tion procedure is linear. For non-linear estimators, PSFs are spa-
tially variant and object dependent. Therefore, the PSF can only
be examined locally and with a specific object. The local im-
pulse response (Stamos et al. 1988, Fessler and Rogers 1996)
or the effective local Gaussian resolution (Liow and Strother
1993) have been used to quantify the resolution properties of
the statistical reconstructions.

It has been shown by Fessler and Rogers (1996) that the use
of a shift invariant regularizing function or prior in (10) will pro-
duce spatially variant resolution. This is due to the decreasing
influence of the prior as the noise variance in the data decreases;
since the noise is spatially variant, so will be the influence of the
prior and hence so will the resolution. These authors propose a
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data dependent quadratic penalty function from which a nearly
uniform local impulse response can be obtained. As mentioned
in Section 4.3, this spatially-invariant property enables the se-
lection of a “hyperparameter” based on the desired image res-
olution. In this case, the spatially varying weighting gives rise
to a predictable, and shift invariant, resolution analogous to the
FWHM resolution reported for the linear reconstruction meth-
ods. Of course, in this case, (10) cannot be viewed as a true
posterior density since the prior term is data dependent.

5.2. Estimator bias and variance

Closed-form expressions of estimator bias and variance are eas-
ily derived for linear reconstruction methods (Barrett 1990).
Variance properties of linear FBP reconstruction have been stud-
ied intensively, e.g. Alpert et al. (1982), Huesman (1984), Palmer
et al. (1985), Carson et al. (1993), Maitra and O’Sullivan (1998).
Derivation for the case of non-linear estimators is substantially
more difficult. Monte Carlo studies can always be used to study
the performance of any of the estimators and algorithms dis-
cussed above and has been widely used to explore bias-variance
trade-offs in iterative algorithms, e.g. Carson et al. (1994). More
recently there has been a great deal of progress in the develop-
ment of approximate analytic expressions for estimator bias and
variance which make it practical to explore algorithm behavior
in a far more efficient manner.

An important advance was made by Barrett, Wilson and Tsui
(1994) who derived approximate recursive formulae for com-
puting the first and second order statistics for the ML EM al-
gorithm as a function of iteration. The results agree well with
Monte Carlo studies for the lower iterations at which the EM al-
gorithm is usually terminated, and also at higher iterations when
a large number of photon pairs are detected (Wilson, Tsui and
Barrett 1994). Wang and Gindi (1997) made a further advance
by extending this analysis to the subset of the GEM algorithms
for MAP estimation in which a closed form update step is used.
These results were able to accurately approximate the first and
second order statistics of the GEM algorithm for two special
cases: (i) the case in which the prior is an independent gamma
distribution on the voxel intensities: and (ii) the OSL algorithm
for multivariate Gaussian priors.

The main limitation of these methods is that explicit update
equations are required. A larger class of algorithms for PET
estimation have implicitly defined solutions which require nu-
merical optimization at each iteration. To derive the statistics
of these estimators, (Fessler 1996) studied the behavior at fixed
points of the iterations. The objective functions must satisfy
certain differentiability criteria, and have a unique, stable fixed
point which can be found as the point where the partial deriva-
tives are zero. As a result, inequality constraints and stopping
rules are precluded. Fortunately, the non-negativity constraints
in PET image reconstruction have little effect on the nonzero
voxel locations, so the mean and variance approximations for
an unconstrained estimator may agree closely with the actual
performance of an estimator implemented with non-negativity

constraints (Fessler 1996). Comparison of these formulae with
results of Monte Carlo studies showed generally good agreement
except in regions of very low activity. Qi and Leahy (1999b) have
developed a method for compensating for the effect of the non-
negativity constraint in variance.

Recently, we have extended this approach by deriving simpli-
fied approximate expressions for the resolution and covariance
of MAP reconstructions (Qi and Leahy 1998). These results are
fast to compute requiring a combination of backward projection
and Fourier transforms. These closed form expressions avoid
the numerical matrix inversion required in Fessler (1996) and
hence reveal more clearly the relationship between the hyperpa-
rameter and the variance and resolution. The methods in Fessler
(1996) and Qi and Leahy (1998) can also be used in “plug-in”
form to compute surprisingly accurate estimates of the estimator
variance using a single data set.

Hero, Fessler and Usman (1996) proposed an alternative to
exploring estimator bias-variance tradeoffs by using the uniform
Cramer-Rao bound. They introduce a delta-sigma plane, which
is indexed by the norm of the estimator bias gradient and the
variance of the estimator. The norm of the bias gradient is related
to the maximum variation in the estimator bias function over a
neighborhood of the parameter space. The larger the norm of the
bias gradient, the larger the uncompensatable bias the estimator
will have. Using a uniform Cramer-Rao bound on the estimator
variance, a delta-sigma tradeoff curve can be generated, which
defines an unachievable region on the delta-sigma plane for a
specified statistical model. This delta-sigma tradeoff curve can
then be used to compare different statistical models and also to
assess estimator performance.

In concluding this section on classical performance measures
for image estimates, a note of caution is appropriate. The limited
resolution of PET systems and the finite size of the voxels give
rise to “partial volume” effects. A user-selected region of inter-
est over which the uptake is to be quantified will often include
partial volume voxels which are not entirely contained in the
anatomical region of interest simply because of the finite size of
the voxels. This effect is exacerbated by the finite resolution of
the PET images, so that activity that is actually confined to a spe-
cific anatomical structure will spread into neighboring regions.
These partial volume effects produce biases in the estimated ac-
tivity that can far exceed errors that result from the limitations
of the reconstruction method itself. Methods for partial volume
correction when computing regional activity are currently be-
ing developed, e.g. Meltzer et al. (1990), but are, as yet, not in
widespread use.

5.3. Task specific evaluation

There are two distinct applications of clinical PET. The first of
these is to provide quantitative measures of the uptake of the
tracer in a volume of interest specified by the user. These quan-
titative measures can be used in monitoring disease progression
and in pharmacokinetic studies. The second major application
of PET is in the detection of small cancerous lesions in the
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body indicating the presence of primary cancers or metastatic
disease in the patient (Strauss and Conti 1991). It is important
in developing reconstruction methods, and even more so when
evaluating them, that the ultimate applications are kept in mind.
While estimator bias and variance are clearly relevant to the task
of accurate quantitation, they do not directly reflect on the al-
gorithm’s performance for lesion detection. Here we will briefly
discuss some of the approaches used for algorithm evaluation
that are applicable to lesion detection.

The gold standard for measuring lesion detectability is the
ROC (receiver operating characteristic) study (Gilland et al.
1992, Llacer 1993). A study comparing false positive vs. false
negative rates for human observers for the task of lesion detec-
tion in images reconstructed using two or more different meth-
ods indicates which is superior for this task. These tests require
access to data in which the presence or absence of lesions is
independently verified. In practice, real clinical studies of this
type are virtually impossible to find in the numbers necessary
to establish statistically significant differences between different
reconstruction methods. Instead these studies can be performed
by introducing artificial (computer generated) lesions into oth-
erwise normal scans (Llacer 1993, Farquhar 1998) and again
evaluating two or more algorithms using human observers.

While computer generated lesions can be used to produce
realistic images for ROC studies, the need for human observers
makes these studies extremely time consuming and limits the
range of parameters that can realistically be explored. Using
computers as “observers” is a potential solution to the problem.
There is now a substantial body of literature dealing with the
development of computer observers that reflect human observer
performance in lesion detection (Yao and Barrett 1992, Abbey
and Barrett 1996). As these techniques mature they can be used
to compare algorithm performance through computer generated
ROC curves (e.g. King, de Vries and Soares 1997, Chan, Leahy
and Cherry 1997).

In addition to simple visual inspection of PET images, semi-
quantitative analysis is often performed as an aid in deciding
on the presence or absence of a lesion. These measures include
standardized uptake ratios (SURs) and ratios of lesion to back-
ground (Adler et al. 1993, Lowe et al. 1994, Duhaylongsod
et al. 1995). As with the ROC studies, appropriate clinical data
is scarce. Instead studies that reflect the performance that may
be achieved using these measures can be performed by comput-
ing contrast recovery coefficients (CRC) vs. background noise
variance using lesions in simulated or phantom data (Liow and
Strother 1991, Kinahan et al. 1995).

6. Examples

We conclude this review with a few recent results. The first study,
Fig. 6, shows coronal sections of a 3D glucose metabolism image
of a normal volunteer collected using the tracer 18FDG (Cherry
and Phelps 1996). The data was collected in 3D mode using a
whole body CTI ECAT HR+ scanner. To produce the image, data

Fig. 6. Example of a whole body 18 FDG scan: (a) FBP without atten-
uation correction; (b) FBP with attenuation correction; (c) MAP; (d)
OSEM; (e) MAP reconstruction of transmission image.

was collected for several different bed positions of the subject
within the scanner. The 3D images were then reconstructed for
each bed position. The images shown represent a single sec-
tion through the subject along the axis of the scanner. In each
of the emission images, the highest uptake can clearly be seen in
the heart, in which the glucose is metabolized, and the bladder,
in which the unmetabolized tracer accumulates. These results
show the lower noise property of the MAP (Fig. 6(c)) and OSEM
(Fig. 6(d)) images in comparison to the FBP study (Fig. 6(b)).
The lower uptake of the tracer in muscle tissue and the abdomi-
nal organs is far more clearly delineated in the MAP and OSEM
images than the FBP. Also shown in this figure is an attenuation
image (Fig. 6(e)) that was reconstructed from a transmission
scan of the subject–this image was used to compute the atten-
uation correction factors as described in Qi et al. (1998b). The
attenuation image reveals the lower attenuation in the lungs and
higher attenuation in bone. We note that the FBP images are
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Fig. 7. Example of a rat brain scan using the high resolution microPET scanner. Shown in this figure are coronal slices through the rat brain
reconstructed using FBP with a ramp reconstruction filter for maximum resolution (top row) and MAP (bottom row). Note the higher tracer uptake
in the cortical and subcortical grey matter that is clear in the MAP images but not in the FBP.

far less noisy if they are not attenuation corrected as shown in
Fig. 6(a), but in this case the images are not quantitative.

The above example shows improvements in image quality
that can be realized using statistical methods when the number of
detected coincidence events per voxel is low. Shown in Fig. 7 are
images reconstructed from the microPET small animal scanner
(Cherry et al. 1997). This is a small high resolution 3D scanner
that utilizes the scintillator LSO in its detectors. In this example,
the number of counts per image voxel was far higher so that it is
the accuracy of the system model, rather than noise, that deter-
mines the ultimate image resolution. Shown here are coronal
sections through an 18FDG study of a rat brain reconstructed
using FBP and MAP. The FBP images were reconstructed for
maximum resolution yet are unable to match that of the MAP
images which clearly reveal the higher uptake of 18FDG in the
cortex and subcortical nuclei than the intervening white matter.

Comparison of different reconstruction algorithms can be
performed using theoretical analysis, Monte Carlo simulation
studies, and experimental studies of phantom and human data,
as described in Section 5. In Fig. 8 we show the results of a
phantom study performed using simulated lesions placed in a
simple thorax phantom. The lesions had higher activity than the
background structures – a detailed description of the experiment
can be found in Qi et al. (1998b). Shown in the figure are plots of
the contrast recovery coefficient (CRC) (i.e. the measured lesion
to background contrast in the reconstructed image normalized by
the true constrast in the phantom) vs. the estimated background
noise standard deviation. As higher degrees of smoothing are
used, the background noise is reduced but so is the contrast in
the lesion. At a particular noise level, a higher contrast is indica-
tive of a higher probability of detecting a lesion. Shown in the
figure are the results for four different sizes of lesion computed
for various degrees of smoothing. These results show that both
OSEM and MAP consistently produce superior contrast recov-
ery than FBP at matched noise levels, and that the MAP method
produces a small additional improvement over OSEM.

Our final example shows a result obtained using the theoret-
ical approximations described in Qi and Leahy (1998, 1999).
In Fig. 9 we show the variance of each voxel computed us-
ing the theoretical approximation and a Monte Carlo method.

Fig. 8. Comparison of CRCs versus background standard deviation
for four different sized lesions in a thorax phantom reconstructed using
MAP (‘+’), OSEM (‘◦’), and FBP (‘×’ and ‘4’) – the two different
FBP results are for two different voxel sizes. Lesion size: (a) 0.2 ml
lesion, (b) 0.45 ml lesion, (c) 1.0 ml lesion, and (d) 1.9 ml lesion

The data represent a simulation of the CTI ECAT HR+ scan-
ner operating in 2D mode. An average of 200,000 counts per
data set were generated for 8,000 Monte Carlo runs. From each
of these a 128× 128 voxel image was reconstructed using the
MAP method in Qi et al. (1998b). The variances were com-
puted using the Monte Carlo method and also using the method
in Qi and Leahy (1999). There is generally good agreement be-
tween the theoretical and Monte Carlo variance estimates. The
advantage of the theoretical method over the Monte Carlo is that
the computation cost for the former is similar to that for a sin-
gle reconstruction. Furthermore, these approximations can be
used in a “plug-in” mode to estimate voxel-wise variance from
a single data set.
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Fig. 9. Example of variance computation for a 2D brain phantom. (a)
The brain phantom. (b) Comparison of profiles of variance images–
solid line denotes theoretical results and “×” Monte Carlo result. (c)
variance image computed using theoretical approximation, (d) variance
image from 8000 Monte Carlo reconstructions

7. Conclusions

We have attempted to provide a brief introduction to issues in-
volved in computing images from PET data and the methods that
have been developed to solve this problem. While we have dis-
cussed various approaches to evaluating algorithm performance,
we have not addressed the issue of relative performance of dif-
ferent algorithms. It is clear from the substantial literature on
statistically based PET reconstruction algorithms that virtually
any implementation of an ML or MAP estimator will produce
generally superior performance to the standard filtered backpro-
jection protocols that are used in most clinical PET facilities.
The differences between the various ML and MAP implementa-
tions are probably less striking, but nonetheless important if, for
instance, they impact on the specificity and sensitivity of PET
in early cancer detection.

The two major objections to the use of iterative statistically
based methods for PET image reconstruction that have often
been raised are that the computational cost is too high and that
the behavior of these nonlinear methods is not well understood.
With recent advances in low cost, high performance computers,
the first of these objections is no longer a significant obstacle
to the adoption of statistically based methods in clinical PET.
Recent advances in producing accurate measures of image bias
and variance have done much to answer the second objection.
As PET instrumentation matures, it appears reasonable to expect
that these approaches will be adopted as the preferred method
for image estimation.
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Note

1. This picture is rather simplified since 2D systems do allow
detection of events between adjacent rings. These are used to
reconstruct additional transaxial images, so that the thickness
of each plane is half of the axial extent of a single detector
ring and the number of reconstructed planes in a 2D scanner
is usually 2P − 1 where P is the number of detector rings.
This arrangement is illustrated in Fig. 2(a).
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