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Abstract

We apply the techniques of stochastic integration with respect to the frac-

tional Brownian motion and the theory of regularity and supremum estimation

for stochastic processes to study the maximum likelihood estimator (MLE) for

the drift parameter of stochastic processes satisfying stochastic equations driven

by fractional Brownian motion with any level of H�older-regularity (any Hurst

parameter). We prove existence and strong consistency of the MLE for linear

and nonlinear equations. We also prove that a version of the MLE using only

discrete observations is still a strongly consistent estimator.
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1 Introduction

Stochastic calculus with respect to fractional Brownian motion (fBm) has recently

known an intensive development, motivated by the wide array of applications of this

family of stochastic processes. For example, recent work and empirical studies have

shown that tra�c in modern packet-based high-speed networks frequently exhibits

fractal behavior over a wide range of time scales;.in quantitative �nance and econo-

metrics, the fractional Black-Scholes model has been recently introduced (see e.g.

[18], [14]) and this motivates the statistical study of stochastic di�erential equations

governed by fBm.

The topic of parameter estimation for stochastic di�erential equations driven by

standard Brownian motion is of course not new. Di�usion processes are widely used

for modeling continuous time phenomena; therefore statistical inference for di�usion

processes has been an active research area over the last decades. When the whole

trajectory of the di�usion can be observed, then the parameter estimation problem

is relatively simple, but of practical contemporary interest are works in which an

approximate estimator, using only information gleaned from the underlying process

in discrete time, is able to do as well as an estimator that uses continuously gathered

information. Several methods have been employed to construct good estimators for

this challenging question of discretely observed di�usions; among these methods,

we refer to numerical approximation to the likelihood function (see A��t-Sahalia [1],

Poulsen [33], Beskos et al. [4]), martingale estimating functions (see Bibby and

Sorensen [5] ), indirect statistical inference (see Gourieroux et al. [17]), or the

Bayesian approach (see Elerian et al. [15]), some sharp probabilistic bounds on

the convergence of estimators in [6], or [12], [32], [10] for particular situations. We

mention the survey [37] for parameter estimation in discrete cases, further details
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in the works of [26], [19], or the book [21].

Parameter estimation questions for stochastic di�erential equations driven by

fBm are, in contrast, in their infancy. Some of the main contributions include [24],

[23], [35] or [25]. We take up these estimation questions in this article. Our purpose is

to contribute further to the study of the statistical aspects of the fractional stochastic

calculus, by introducing the systematic use of e�cient tools from stochastic analysis,

to yield results which hold in some non-linear generality. We consider the following

stochastic equation

Xt = �

Z t

0
b(Xs)ds+B

H
t ; X0 = 0 (1)

where BH is a fBm with Hurst parameter H 2 (0; 1) and the nonlinear function b

satis�es some regularity and non-degeneracy conditions. We estimate the parameter

� on the basis of the observation of the trajectory of the process X. The parameter

H, which is assumed to be known, characterizes the local behavior of the process,

with H�older-regularity increasing with H; if H = 1=2, fBm is standard Brownian

motion (BM), and thus has independent increments; if H > 1=2, the increments of

fBm are positively correlated, and the process is more regular than BM; if H < 1=2,

the increments are negatively correlated, and the process is less regular than BM. H

also characterizes the speed of decay of the correlation between distant increments.

Estimating long-range dependence parameters is a di�cult problem in itself, which

has received various levels of attention depending on the context; the text [3] can be

consulted for an overview of the question; we have found the yet unpublished work

[11], available online, which appears to propose a good solution applicable directly

to fBm. Herein we do not address the Hurst parameter estimation issue.

The results we prove in this paper are as follows: for every H in (0; 1)

� we give concrete assumptions on the nonlinear coe�cient b to ensure existence
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of the maximum likelihood estimator (MLE) for � (Proposition 1);

� under certain hypotheses on b which include non-linear classes, we prove the

strong consistency of the MLE (Theorems 2 and 3, depending on whether

H < 1=2 or H > 1=2; and Proposition 2 and Lemma 3 for the scope of non-

linear applicability of these theorems); note that for H > 1=2 and b linear,

this has also been proved in [23];

� the bias and mean-square error for the MLE are estimated in the linear case

(Proposition 3); this result was established for H > 1=2 in [23].

In this paper we also present a �rst practical implementation of the MLE stud-

ied herein, using only discrete observations of the solution X of equation (1), by

replacing integrals with their Riemann sum approximations. We show that

� in linear and some non-linear cases, the discretization time-step for the Rie-

mann sum approximations of the MLE can be �xed while still allowing for a

strongly consistent estimator (Proposition 5 and Theorem 4).

To establish all these results, we use techniques in stochastic analysis including

the Malliavin calculus, and supremum estimations for stochastic processes. The

Malliavin calculus, or the stochastic calculus of variations, was introduced by P.

Malliavin in [28] and developed by D. Nualart in [30]. Its original purpose was

to study the existence and the regularity of the density of solutions to stochastic

di�erential equations. Since our hypotheses in the present paper to ensure existence

and strong consistency of the MLE are given in terms of certain densities (see

Condition (C)), the techniques of the Malliavin calculus appear as a natural tool.

We believe our paper is the �rst instance where the Malliavin calculus and supre-

mum estimations are used to treat parameter estimation questions for fractional
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stochastic equations. These techniques should have applications and implications

in statistics and probability reaching beyond the question of MLE for fBm. Indeed,

even in the case of (Itô-) di�usion models, the strong consistency of an estimator

follows if one can prove that an expression of the type It :=
R t
0 f

2(Xs)ds tends to

1 as t ! 1 almost surely, but a limited number of methods has been employed

to deal with this kind of problem (if X is Gaussian the Laplace transform can be

computed explicitly to show that limt!1 It =1 a.s.; if X is an ergodic di�usion, a

local time argument can be used; particular situations have also been considered in

[19], [20]). Our stochastic analytic tools constitute a new possibility, judging by the

fact that the case of H < 1=2 is well within the reach of our tools, in contrast with

the other above-mentioned methods, as employed in particular in [23] (see however

a general Bayesian-type problem discussed in [24]).

The organization of our paper is as follows. Section 2 contains preliminaries

on the fBm. In Section 3 we show the existence of the MLE for the parameter

� in (7) and in Section 4 we study its asymptotic behavior. Section 5 contains

some additional results in the case when the drift function is linear. In Section 6, a

discretized version of the MLE is studied. Some crucial technical proofs appear in

the Appendix (Section 7) while other more minor ones can be found in an extended

version of this article posted on arXiv.org. We gratefully acknowledge our debt

to the insightful comments of the editor, associate editor, and two referees, which

resulted in several important improvements on an earlier version of this paper.

2 Preliminaries on fBm and fractional calculus

We consider (BHt )t2[0;T ], B
H
0 = 0 a fBm with Hurst parameter H 2 (0; 1), in a prob-

ability space (
;F ;P), i.e. a centered Gaussian process with covariance function R
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given by

R(t; s) = E
�
BHt B

H
s

�
=
1

2

�
t2H + s2H � jt� sj2H

�
s; t 2 [0; T ]: (2)

Let us denote by K the kernel of the fBm such that (see e.g. [29])

BHt =

Z t

0
K(t; s)dWs (3)

where W is a Wiener process (standard Brownian motion) under P. Denote by EH

the set of step functions on [0; T ] and let H be the canonical Hilbert space of the

fBm; that is, H is the closure of E with respect to the scalar product h1[0;t]; 1[0;s]iH =

R(t; s): The mapping 1[0;t] ! BHt can be extended to a isometry between H and the

Gaussian space generated by BH and we denote by BH(') the image of ' 2 H by

this isometry.

We also introduce the operator K� from EH to L2([0; T ]) de�ned by

(K�')(s) = K(T; s)'(s) +

Z T

s
('(r)� '(s))@K

@r
(r; s)dr: (4)

With this notation we have (K�1[0;t])(s) = K(t; s) and hence the process

Wt =

Z t

0
(K�;�11[0;t])(s)dB

H
s (5)

is a Wiener process (see [2]); in fact, it is the Wiener process referred to in formula

(3), and for any non-random ' 2 H, we have BH (') =
R T
0 (K

�')(s)dW (s), where

the latter is a standard Wiener integral with respect to W .

Lastly we will use some elements of fractional calculus, with notation that can

be found in [31] or our arXiv extended version, including the Riemann-Liouville

fractional integral I�0+f(t) and derivative D
�
0+f(t) of any f 2 L1[0; T ] for � > 0.

The linear isomorphism KH from L2([0; T ]) onto I
H+ 1

2
+ (L2([0; T ])) whose kernel is

K(t; s) has an inverse which, depending on whether H < 1=2 or H > 1=2, equals

�
K�1
H h

�
(s) = sH�

1
2 I

1
2
�H

0+ (s
1
2
�Hh0(s))(s); or = sH�

1
2D

H� 1
2

0+ (s
1
2
�Hh0(s))(s): (6)
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3 The maximum likelihood estimator for fBm-driven

stochastic di�erential equations

We will analyze the estimation of the parameter � 2 � � R based on the observation

of the solution X of the stochastic di�erential equation

Xt = �

Z t

0
b(Xs)ds+B

H
t ; X0 = 0 (7)

where BH is a fBm with H 2 (0; 1) and b : R! R is a measurable function. There

are some strong known results concerning equation (7). In [31] strong existence and

uniqueness is proved assuming only the linear growth

jb(x)j � C(1 + jxj)

for b when H < 1
2 , and assuming H�older-continuous of order � 2 (1 �

1
2H ; 1) when

H > 1=2. An extension is obtained in [7] when H > 1
2 if one adds a bounded

nondecreasing left (or right) continuous function to the H�older-continuous function

b. In this paper, we will only be using Lipshitz-continuous functions b.

Throughout the paper, we will typically avoid the use of explicit H-dependent

constants appearing in the de�nitions of the operator kernels related to this calculus,

since our main interest consists of asymptotic properties for estimators. In conse-

quence, we will use the notation C(H); c(H); cH ; � � � for generic constants depending

on H, which may change from line to line.

Our MLE construction is based on the following observation (see [31]). Consider

the process ~BHt = B
H
t +

R t
0 usds where the process u is adapted and with integrable

paths. Then we can write

~BHt =

Z t

0
K(t; s)dZs (8)
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where

Zt =Wt +

Z t

0
K�1
H

�Z �

0
urdr

�
(s)ds: (9)

We have the following Girsanov theorem.

Theorem 1 i) Assume that u is an adapted process with integrable paths such that

t!
Z t

0
usds 2 I

H+ 1
2

0+

�
L2([0; T ])

�
a.s.

ii) Assume that E(VT ) = 1 where

VT = exp

 
�
Z T

0
K�1
H

�Z �

0
urdr

�
(s)dWs �

1

2

Z T

0

�
K�1
H

�Z �

0
urdr

�
(s)

�2
ds

!
:

(10)

Then under the probability measure ~P de�ned by d~P=dP = VT it holds that the

process Z de�ned in (9) is a Brownian motion and the process ~BH (8) is a fractional

Brownian motion on [0; T ].

Hypothesis. We need to make, at this stage and throughout the remainder of the

paper, the following assumption on the drift: b is di�erentiable with bounded

derivative b0; thus the a�ne growth condition holds.

This Girsanov theorem is the basis for the following expression of the MLE.

Proposition 1 Denote, for every t 2 [0; T ], by

Qt = Qt (X) = K
�1
H

�Z �

0
b(Xr)dr

�
(t): (11)

Then Q 2 L2([0; T ]) almost surely and the MLE is given by

�t = �
R t
0 QsdWsR t
0 Q

2
sds

: (12)

Before proving Proposition 1, we need the following estimates:
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Lemma 1 For every s; t 2 [0; T ],

sup
s�t

jXsj �
�
C�t+ sup

s�t

��BHs ��� eC�t (13)

and

jXt �Xsj � C�
 
1 + sup

u�T
jXuj

!
jt� sj+

��BHt �BHs �� : (14)

Proof: With C the linear growth constant of b, we have, for any s

jXsj �
Z s

0
j�j jb(Xu)j du+

��BHs �� � C� Z s

0
(1 + jXuj) du+ sup

u�s

��BHu ��
and by Gronwall's lemma

jXsj �
�
C�s+ sup

u�s

��BHu ��� eC�s; s 2 [0; T ]

and the estimate (13) follows. The second estimate follows by b's a�ne growth.

Proof of Proposition 1. Let

h (t) =

Z t

0
b (Xs) ds:

We prove that the process h satis�es i) and ii) of Theorem 1. Note �rst that the

application of the operator K�1
H preserves the adaptability. We treat separately the

cases when H is bigger or less than one half.

The case H < 1=2: To prove i), we only need to show that Q 2 L2 ([0; T ]) P-a.s.

Now using relation (6) we thus have, for some constant CH which may change from

line to line, using the hypothesis jb (x)j � C (1 + jxj), for all s � T ,

jQsj � CHsH�1=2
����Z s

0
(s� u)�1=2�H u1=2�Hb (Xu) du

���� � CH �1 + sup
u�s

jXuj
�
; (15)

which we can rewrite, thanks to Lemma 1, as

sup
s�T

jQsj � C (H;T )
 
1 + sup

s�T
jX (s)j

!
;
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which, thanks to inequality (13), is of course much stronger than Q 2 L2 ([0; T ]) a.s.

To prove ii) it su�ces to show that there exists a constant � > 0 such that

sup
s�T

E
�
exp(�Q2s)

�
<1:

Since Q satis�es (15), the above exponential moment is a trivial consequence of

inequality (13) and the Fernique's theorem on the exponential integrability of the

square of a seminorm of a Gaussian process.

The case H > 1=2: Using formula (6) we have in this case that

Qs = cH

"
s
1
2
�Hb(Xs) +

�
H � 1

2

�
sH�

1
2

Z s

0

b(Xs)s
1
2
�H � b(Xu)u

1
2
�H

(s� u)H+ 1
2

du

#
(16)

= cH

"
s
1
2
�Hb(Xs) +

�
H � 1

2

�
sH�

1
2 b(Xs)

Z s

0

s
1
2
�H � u 12�H

(s� u)H+ 1
2

du

+

�
H � 1

2

�
sH�

1
2

Z s

0

b(Xs)� b(Xu)
(s� u)H+ 1

2

u
1
2
�Hdu

#
and using the fact thatZ s

0

�
s
1
2
�H � u

1
2
�H
�
(s� u)�H�

1
2du = c(H)s1�2H

we get

jQsj � cH

 
s
1
2
�H jb(Xs)j+ sH�

1
2

Z s

0

b(Xs)� b(Xu)
(s� u)H+ 1

2

u
1
2
�Hdu

!
:= A(s) +B(s):

The �rst term A(s) above can be treated as in [31], proof of Theorem 3, due to

our Lipschitz assumption on b. We obtain that for every � > 1,

E

�
exp(�

Z t

0
A2sds)

�
<1: (17)

To obtain the same conclusion for the second summand B(s) we note that by Lemma

1, up to a multiplicative constant, the random variable

G = sup
0�u<s�T

jXs �Xuj
ju� sjH�"
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is bounded by  
1 + sup

u�T
jXuj

!
jt� sj1�H+" + sup

0�u<s�T

jBHs �BHu j
ju� sjH�"

and it su�ces to use the calculations contained in [31].

Conclusion. Properties i) and ii) are established for both cases of H, and we

may apply Theorem 1. Expression (12) for the MLE follows a standard calculation,

since (using the notation P� for the probability measure induced by (Xs)0�s�t, and

the fact that P0 = P),

F (�) := log
dP�
dP0

= ��
Z t

0
QsdWs �

�2

2

Z t

0
Q2sds: (18)

We �nish this section with some remarks that will relate our construction to

previous works ([24], [23], [35]). Details about these links are given in Section 5.

Alternative form of the MLE. By (7) we can write, by integrating the quantity

K�;�11[0;t](s) for s between 0 and t,Z t

0

�
K�;�11[0;t](�)

�
(s)dXs = �

Z t

0

�
K�;�11[0;t](�)

�
(s)b(Xs)ds+Wt: (19)

On the other hand, by (7) again,

Xt =

Z t

0
K(t; s)dZs (20)

where Z is given by (9). Therefore, we have the equalityZ t

0

�
K�;�11[0;t](�)

�
(s)dXs = Zt: (21)

By combining (19) and (21) we obtainZ t

0
K�1
H

�Z �

0
b(Xr)dr

�
(s)ds =

Z t

0

�
K�;�11[0;t](�)

�
(s)b(Xs)ds
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and thus the function t!
R t
0

�
K�;�11[0;t](�)

�
(s)b(Xs)ds is absolutely continu-

ous with respect to the Lebesgue measure and

Qt =
d

dt

Z t

0

�
K�;�11[0;t](�)

�
(s)b(Xs)ds: (22)

By (9) we get that the function (18) can be written as

F (�) = ��
Z t

0
QsdZs +

�2

2

Z t

0
Q2sds:

As a consequence, the maximum likelihood estimator �t has the equivalent

form

�t =

R t
0 QsdZsR t
0 Q

2
sds

: (23)

The above formula (23) shows explicitly that the estimator �t is observable if

we observe the whole trajectory of the solution X.

4 Asymptotic behavior of the maximum likelihood es-

timator

This section is devoted to studying the strong consistency of the MLE (12). A

similar result has been proven in the case b(x) � x and H > 1
2 in [23]. We propose

here a proof of strong consistency for a class of functions b which contains signi�cant

non-linear examples. By replacing (9) in (23), we obtain that

�t � � =
R t
0 QsdWsR t
0 Q

2
sds

with Q given by (11) or (22). To prove that �t ! � almost surely as t!1 (which

means by de�nition that the estimator �t is strongly consistent), by the strong law

of large numbers we need only show that

lim
t!1

Z t

0
Q2sds =1 a.s. : (24)
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To prove that limt!1
R t
0 Q

2
sds =1 in a non-linear case, it is necessary to make

some assumption of non-degeneracy on the behavior of b. In order to illustrate our

method using the least amount of technicalities, we will restrict our study to the

case where the function jbj satis�es a simple probabilistic estimate with respect to

fractional Brownian motion.

(C) There exist positive constants t0 and Kb, both depending only on H and the

function b, and a constant  < 1= (1 +H) such that for all t � t0 and all

" > 0, we have ~P
�
jQt (~!)j =

p
t < "

�
� "tHKb, where under ~P, ~! has the law

of fractional Brownian motion with parameter H.

4.1 The case H < 1
2

In this part we prove the following result.

Theorem 2 Assume that H < 1=2 and that Condition (C) holds. Then the esti-

mator �t is strongly consistent, that is,

lim
t!1

�t = � almost surely:

Before proving this theorem, we discuss Condition (C). To understand this

condition, we �rst note that with �tH the positive measure on [0; t] de�ned by

�tH (dr) = (r=t)
1=2�H (t� r)�1=2�H dr, according to the representation (6), we have

Qt =

Z t

0
�tH (ds) b(~!s)

and therefore, by the change of variables r = s=t,

Qtp
t
=

Z 1

0
�1H (dr)

b (~!tr)

tH
(25)

D
=

Z 1

0
�1H (dr)

b
�
tH ~!r

�
tH

; (26)
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where the last inequality is in distribution under ~P.

If b has somewhat of a linear behavior, we can easily imagine that b
�
tH ~!r

�
=tH

will be of the same order as b (~!r). Therefore Qt=
p
t should behave, in distribution

for �xed t, similarly to the universal random variable
R 1
0 �

1
H (dr) b (~!r) (whose dis-

tribution depends only on b and H). Generally speaking, if this random variable

has a bounded density, the strongest version of condition (C), i.e. with  = 0, will

follow. In the linear case, of course, the factors tH disappear from expression (26),

leaving a random variable which is indeed known to have has a bounded density,

uniformly in t, by the arcsine law. The presence of the factor tH in Condition (C)

gives even more exibility, however, since in particular it allows a bound on the

density of Qt=
p
t to be proportional to tH .

Leaving aside these vague considerations, we now give, in Proposition 2, a simple

su�cient condition on b which implies condition (C). The proof of this condition

uses the tools of the Malliavin calculus; as such, it requires some extra regularity on

b. We also give a class of non-linear examples of b's satisfying (C) (Condition (28)

in Lemma 3) which are more restricted in their global behavior than in Proposition

2, but do not require any sort of local regularity for b.

Proposition 2 Assume H < 1=2. Assume that b0 is bounded and that b00 satis�es

jb00 (x)j � b1=
�
1 + jxj�

�
for some � 2 (H= (1�H) ; 1). Assume that jb0j is bounded

below by a positive constant b0. Then, letting  = 1� �, Condition (C) holds.

Remark 1 The condition  < 1= (1 +H) from Condition (C) translates as � >

H= (1�H), which is consistent with � < 1 because H < 1=2:

The non-degeneracy condition on jb0j above can be relaxed. If, for x � x0,

jb0 (x)j � x�� holds, then Condition (C) holds as long as � does not exceed a positive

constant �0 (H) depending only on H. We omit the very technical proof of this fact.
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The hypothesis of fractional power decay on b00, while crucial, does allow b to have

a highly non-linear behavior. Compare with Lemma 3 below, which would correspond

to the case � = 1 here.

The hypotheses of the above proposition imply that b is monotone.

The proof of Proposition 2 requires a criterion from the Malliavin calculus, which

we present here. The book [30] by D. Nualart is an excellent source for proofs of

the results we quote. Here we will only need to use the following properties of the

Malliavin derivative D with respect to W (recall that W is the standard Brownian

motion used in the representation (3), i.e. de�ned in (5)). For simplicity of notation

we assume that all times are bounded by T = 1. The operator D, from a subset

of L2 (
) into L2 (
� [0; 1]), is essentially the only one which is consistent with the

following two rules:

1. Consider a centered random variable in the Gaussian space generated by W

(�rst chaos); it can be therefore represented as Z = W (f) =
R 1
0 f (s) dW (s)

for some non-random function f 2 L2 ([0; 1]). The operator D picks out the

function f , in the sense that for any r 2 [0; 1],

DrZ = f (r) :

2. D is compatible with the chain rule, in the sense that for any � 2 C1 (R) such

that both F := � (Z) and �0 (Z) belongs to L2 (
), for any r 2 [0; 1],

DrF = Dr� (Z) = �
0 (Z)DrZ = �

0 (Z) f (r) :

For instance, using these two rules, de�nition (3) and formula (5) relative to the

fBm ~! under ~P, we have that under ~P, for any r � s,

Drb
�
tH ~!s

�
= tHb0

�
tH ~!s

�
K (s; r) : (27)
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It is convenient to de�ne the domain of D as the subset D1;2 of r.v.'s F 2 L2 (
)

such that D�F 2 L2 (
� [0; 1]). Denote the norm in L2 ([0; 1]) by k�k. The set D1;2

forms a Hilbert space under the norm de�ned by

kFk21;2 = E jF j
2 +E kD�Fk2 = E jF j2 +E

Z 1

0
jDrF j2 dr:

Similarly, we can de�ne the second Malliavin derivative D2F as a member of L2(
�

[0; 1]2), using an iteration of two Malliavin derivatives, and its associated Hilbert

space D2;2. Non-Hilbert spaces, using other powers than 2, can also be de�ned.

For instance, the space D2;4 is that of random variables F having two Malliavin

derivatives, and satisfying

kFk42;4 = E jF j
4 +E kD�Fk2 +E

D2�;�F4L2([0;1]2)
= E jF j4 +E

Z 1

0
jDrF j2 dr +E

�Z 1

0
jDrDsF j2 drds

�2
<1

We also note that the so-called Ornstein-Uhlenbeck operator L acts as follows (see

[30, Proposition 1.4.4]):

LF = L� (Z) = �Z�0 (Z) + �00 (Z) kfk2 :

We have the following Lemma, whose proof we omit because it follows from ([30,

Proposition 2.1.1. and Exercise 2.1.1]).

Lemma 2 Let F be a random variable in D2;4, such that E
h
kDFk�8

i
<1. Then

F has a continuous and bounded density f given by

f (x) = E

"
1(F>x)

 
�LF
kDFk2

� 2



DF 
DF ;D2F

�
L2([0;1]2)

kDFk4

!#

Proof of Proposition 2. Using (26), and the notation � = �H1 , let

F =
Qtp
t
=

Z 1

0
� (dr)

b
�
tH ~!r

�
tH

:
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It is su�cient to prove that F has a density which is bounded by Kbt
H where the

constant Kb depends only on b and H. Indeed ~P
�
jQt (~!)j =

p
t < "

�
�
R "
0 Kbt

Hdx =

"tHKb. In this proof, Cb;H denotes a constant depending only on b and H, whose

value may change from line to line.

Step 1: calculating the terms in Lemma 2. We begin with the calculation of DF .

Since the Malliavin derivative is linear, we get DrF = t
�H R 1

0 � (ds)Dr
�
b
�
tH ~!s

��
.

Then from (27) we get DrF =
R 1
r � (ds) b

0 �tH ~!s�K (s; r) : Thus we can calculate
kDFk2 =

Z 1

0
dr

����Z 1

r
� (ds) b0

�
tH ~!s

�
K (s; r)

����2
=

Z 1

0

Z 1

0
� (ds)�

�
ds0
�
b0
�
tH ~!s

�
b0
�
tH ~!s0

� Z min(s;s0)

0
K (s; r)K

�
s; r0

�
dr

=

Z 1

0

Z 1

0
� (ds)�

�
ds0
�
b0
�
tH ~!s

�
b0
�
tH ~!s0

�
R
�
s; s0

�
;

where R is the covariance of fBm in (2). A similar calculation yields

D2q;rF = t
H

Z 1

max(q;r)
� (ds) b00

�
tH ~!s

�
K (s; r)K (s; q)

and

D2F2
L2([0;1]2)

= t2H
Z 1

0

Z 1

0
� (ds)�

�
ds0
�
b00
�
tH ~!s

�
b00
�
tH ~!s0

� ��R �s; s0���2 :
For the Ornstein-Uhlenbeck operator, which is also linear, we get

�LF =
Z 1

0
� (ds)

�
b0
�
tH ~!s

�
~!s + b

00 �tH ~!s� tHs2H� :
Step 2: estimating the terms in Lemma 2. With the expressions in the previous

step, using the hypotheses of the proposition, we now obtain, for some constant CH

depending only on H,

~E [jLF j] � CH

 b01 + tHb1 Z 1

0
� (ds) s2H ~E

"
1

1 + t�H j~!sj�

#!

= CH

 b01 + tHb1E
"Z 1

0
� (ds) s2H

1

1 + (ts)�H jZj�

#!
;
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where Z is a generic standard normal random variable. We deal �rst with the

integral in s. For s 2 [0; 1=2], � (ds) has a bounded density, and thus for any a > 0

and any � < 1, we have
R 1=2
0 ds (1 + as�)�1 � (1� �)�1 a�1; on the other hand,

for s 2 [1=2; 1], we can bound
�
1 + (ts)�H jZj�

��1
above by (t=2)��H jZj���1. We

immediately obtain, using a = t�H jZj� and � = �H,

~E [jLF j] � CH;b

 
1 + tH(1��)

1

1� �HE
h
jZj��

i
+ tH(1��)E

h
jZj��

i Z 1

1=2

ds

(1� s)1=2+H

!

� CH;b
�
1 + tH(1��)

�
:

The estimation of
D2F is similar. Using its expression in the previous step, the

measure d�=ds�d�=ds0�R (s; s0), and the fact that
R 1
0 ds (1 + as

�)�2 � (1� 2�)�1 a�2,

with � = �H < 1=2, we get

~E
D2F

L2([0;1]2)
� Cb;HtH(1��):

Also almost surely, for any p � 2, for some constant CH;p depending only on H and

p, since b0 has a constant sign, we obtain

1

kDFkp =
 ZZ

[0;1]2
� (ds)�

�
ds0
�
R
�
s; s0

� ��b0 �tH ~!s� b0 �tH ~!s0���
!�p=2

� CH;pb�p0 :

Lastly, it is convenient to invoke the Cauchy-Schwartz inequality to get

DF 
DF ;D2F

�
L2([0;1]2)

kDFk4
�

D2F
L2([0;1]2)

kDFk2
;

Step 3: applying Lemma 2; conclusion. The third estimate in the previous step

(for p = 8) proves trivially that ~E kDFk�8 is �nite. That F 2 D2;4 follows again

trivially from the boundedness of b0 and b00 using the expressions in Step 1. Thus

Lemma 2 applies. We conclude from the estimates in the previous step that F has

a density f which is bounded as

f (x) � CH;b
�
1 + tH(1��)

�
b�20
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With t � 1, the conclusion of the proposition follows.

A smaller class of functions b satisfying condition (C) and covering all H 2 (0; 1),

is given in the following, proved in the extended version of this article on arXiv.org.

Lemma 3 Let H 2 (0; 1). Assume xb(x) has a constant sign for all x 2 R+ and a

constant sign for all x 2 R�. Assume

jb (x) =xj = c+ h (x) (28)

for all x, where c is a �xed positive constant, and limx!1 h (x) = 0. Then Condition

(C) is satis�ed with  = 0.

Condition (C) also holds for any b of the above form to which a constant C is

added: j(b (x)� C) =xj = c+ h (x) and limx!1 h (x) = 0. Note that this condition

is less restrictive than saying b is asymptotically a�ne, since it covers the family

b (x) = C + cx + (jxj ^ 1)� for any � 2 (0; 1). In some sense, Condition (C) with

 = 0 appears to be morally equivalent to this class of functions.

Proof of Theorem 2.

Step 1: setup. Since we only want to show that (24) holds, and since
R t
0 jQsj

2 ds

is increasing, it is su�cient to satisfy condition (24) for t tending to in�nity along a

sequence (tn)n2N. We write, according to (6), for each �xed t � 0,

It = It (X) :=

Z t

0
jQs (X)j2 ds =

Z t

0

����Z s

0
�sH (dr) b(Xr)

����2 ds
where X is the solution of the Langevin equation (7) and the positive measure �sH is

de�ned by �sH (dr) = (r=s)1=2�H (s� r)�1=2�H dr. Since the theorem's conclusion

is an almost sure statement about X, and from the Girsanov Theorem 1 applied to

X, the measures P and ~P are equivalent, it is enough work under ~P, i.e. to assume
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that X = ~! is a standard fBm; we omit the dependence of Qs and It on X = ~!, for

simplicity.

We will show that with tn = nk for some positive integer k chosen below , Itn

converges to 1, by restricting the integration de�ning Itn to a small interval of

length bn = n
�j near tn, where j will be another integer chosen below. Indeed

Itn =

Z tn

0
jQsj2 ds �

Z tn

tn�bn
jQsj2 ds

� bn jQtn j2 �
Z tn

tn�bn
jQtn �Qsj jQtn +Qsj ds

� bn

 
jQtn j2 � sup

s2[tn�bn;tn]
jQtn �Qsj jQtn +Qsj

!
:

� bn jQtn j2 � 2bn sup
s2[0;tn]

jQsj sup
s2[tn�bn;tn]

jQtn �Qsj

:= An �Bn: (29)

Step 2: the diverging term An. The term An is easily shown to converge to

in�nity almost surely thanks to condition (C) modulo a condition on j and k. Indeed,

we have for any sequence an;

P
h
bn jQtn j2 < a2n

i
� KbtHn an (bntn)

�1=2 = Kbn
k(H�1=2)+j=2an:

In order for the right-hand side of the last expression to be summable in n while

being able to choose limn!1 an = 0, it is su�cient to impose

j + 2 < (1� 2H) k: (30)

Thus speci�cally, under this condition, with a2n = n
` for 0 < ` < (1� 2H) k�j�2,

we have by the Borel-Cantelli lemma the existence of an almost surely �nite n0 such

that n > n0 implies An = bn jQtn j2 > n`.

Step 3: the error term Bn. To control the term Bn we need two estimates,

whose proofs are based on elementary facts on the trajectories of fBm, namely
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boundedness and H�older-continuity, which are derived from that process's Gaussian

and scaling properties. Details are in this article's extended arXiv.org version. For

any sequences bn; tn such that bn � tn (meaning limn bn=tn = 0), for any �xed

" > 0, there exists an almost-surely �nite random variable c" such that for all n > 0,

we have

sup
s2[0;tn]

jQsj � c" (tn)1=2+" : (31)

and

sup
s;t2[tn�bn;tn]

jQt �Qsj � c" (tn)1=2�H+" (bn)H�" : (32)

One immediately obtains the following: almost-surely

Bn � 2c2"bn (tn)
1=2+" (tn)

1=2�H+" (bn)
H�" = 2c2"n

k(1�H+2")�j(1+H�"):

The statement that Bn converges to 0 (i.e. that " can be chosen positive while having

the power in the last expression above be negative) now follows from assuming that

j and k are related by

k (1�H)� j (1 +H) < 0: (33)

Step 4: conclusion. We may now use the results of the last two parts, namely

that An > n` while limn!1Bn = 0, to conclude from (29) that the statement of

the theorem holds, provided that conditions (30) and (33) hold, i.e.

j + 2

1� 2H < k <
1 +H

1�H j:

The theorem now follows because the relation  < 1= (1 +H) in Condition (C)

implies that if j is large enough, we do indeed have j+2
1�2H < 1+H

1�H j.

4.2 The case H > 1
2

Due to the fact that the function Q is less regular in this case, we should not expect

that the proof of the following Theorem be a consequence of the proof in the case
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H < 1=2: Nevertheless, it deviates from the former proof very little. On the other

hand, we cannot rely on Proposition 2 to �nd a convenient su�cient condition for

Condition (C); instead one can look to the non-linear class of examples in Lemma

3, which satisfy the strong version ( = 0) of Condition (C) for all H 2 (0; 1): The

next result's proof is in the Appendix.

Theorem 3 Assume that H > 1
2 and b satis�es Condition (C) with  = 0 (e.g. b

satis�es Condition (28) in Lemma 3). Then the maximum likelihood estimator �t is

strongly consistent.

5 The linear case

In this section we present some comments in the case when the drift b is linear. We

will assume that b(x) � x to simplify the presentation. In this case, the solution

X to equation (7) is the fractional Ornstein-Uhlenbeck process and it is possible

to prove more precise results concerning the asymptotic behavior of the maximum

likelihood estimator.

Remark 2 In [9], it is shown that for any H 2 (0; 1) there is an unique almost

surely continuous process X satisfying (7), and it can be represented as

Xt =

Z t

0
e�(t�u)dBHu ; t 2 [0; T ] (34)

where the above integral is a Wiener integral with respect with BH (which exists also

as a pathwise Riemann-Stieltjes integral). It follows from the stationarity of the

increments of BH that X is stationary and the decay of its auto-covariance function

is like a power function. The process X is ergodic, and for H > 1
2 , it exhibits a

long-range dependence.
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Let us briey recall the method employed in [23] to estimate the drift parameter

of the fractional OU process. Let us consider the function , for 0 < s < t � 1,

k(t; s) = c�1H s
1
2
�H(t� s)

1
2
�H with cH = 2H�(

3

2
�H)�(H +

1

2
) (35)

and let us denote its Wiener integral with respect to BH by

MH
t =

Z t

0
k(t; s)dBHs : (36)

It has been proved in [29] that MH is a Gaussian martingale with bracket

hMHit := !Ht = ��1H t
2�2H with �H =

2H�(3� 2H)�(H + 1
2)

�(32 �H)
: (37)

The authors called MH the fundamental martingale associated to fBm. Therefore,

observing the process X given by (7) is the same thing as observing the process

ZKBt =

Z t

0
k(t; s)dXs

which is actually a semimartingale with the decomposition

ZKBt = �

Z t

0
QKBs d!Hs +M

H
t (38)

where

QKBt =
d

d!H

Z t

0
k(t; s)Xsds; t 2 [0; T ]: (39)

By using Girsanov's theorem (see [29] and [23]) we obtain that the MLE is given by

�t := �
KB
t =

R t
0 Q

KB
s dZKBsR t

0 (Q
KB
s )2d!Hs

: (40)

Remark 3 We can observe that our operator (12) or (23) coincides (possibly up to

a multiplicative constant) with the one used in [23] and given by (40). Assume that

H < 1
2 ; the case H > 1

2 is just a little more technical.
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Proof. Using relations (11) and (35) we can write

Qt = C(H)t
H� 1

2

Z t

0
s
1
2
�H(t� s)�

1
2
�Hb(Xs)ds

= C(H)tH�
1
2

Z t

0

d

dt
k(t; s)b(Xs)ds = C(H)t

H� 1
2
d

dt

Z t

0
k(t; s)b(Xs)ds:

It is not di�cult to see that d
dt

R t
0 k(t; s)b(Xs)ds = C(H)t

1�2HQKBt and therefore

Qt = C(H)t
1=2�HQKBt : (41)

On the other hand, it can be similarly seen that

ZKBt = C(H)

Z t

0
s
1
2
�HdZs: (42)

and the estimation given by (40) and (23) coincide up to a constant.

To compute the expression of the bias and of the mean square error and to prove

the strong consistency of the estimator, one has the option, in this explicit linear

situation, to compute the Laplace transform of the quantity
R t
0 (Q

KB
s )2d!Hs . This is

done for H > 1=2 in [23], Section 3.2, and the following properties are obtained:

� the estimator �t is strongly consistent, that is,

�t ! � almost surely when t!1;

� the bias and the mean square error are given by

{ If � < 0, when t!1, then

E(�t � �) v
2

t
, E(�t � �)2 v

2

t
j�j; (43)

{ If � > 0, when t!1, then

E(�t � �) v �2
p
� sin�H�

3
2 e��t

p
t (44)

E(�t � �)2 v 2
p
� sin�H�

5
2 e��t

p
t: (45)



Statistics of Fractional Brownian Motion 25

It is interesting to realize that the rate of convergence of the bias and of the

mean square error does not depends on H. In fact the only di�erence between the

classical case (see [27]) and the fractional case is the presence of the constant
p
�H

in (43), (44), and (45). It is natural to expect the same results if H < 1
2 . This is

true, as stated below, and proved in the Appendix in Section 7.2.

Proposition 3 If H < 1
2 , then (43), (44), and (45) hold.

6 Discretization

In this last section we present a discretization result which allows the implementation

of an MLE for an fBm-driven stochastic di�erential equation.

We �rst provide background information on discretely observed di�usion pro-

cesses in the classical situation when the driving noise is the standard Brownian

motion. Assume that

dXt = b(Xt; �) + �(Xt; �)dWt

where �; b are known functions,W is a standardWiener process and � is the unknown

parameter. If continuous information is available, the parameter estimation by using

maximum likelihood method is somewhat simpler; indeed, the maximum likelihood

function can be obtained by means of the standard Girsanov theorem and there are

results on the asymptotic behavior of the estimator (consistency, e�ciency etc...).

We refer to the monographs [8], [36] or [22] for complete expositions of this topic.

\Real-world" data is, however, typically discretely sampled (for example stock

prices collected once a day, or, at best, at every tick). Therefore, statistical inference

for discretely observed di�usion is of great interest for practical purposes and at the

same time, it poses a challenging problem. Here the main obstacle is the fact that
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discrete-time transition functions are not known analytically and consequently the

likelihood function is in general not tractable. In this situation there are alternative

methods to treat the problem. Among these methods, we refer to numerical approx-

imation to the likelihood function (see A��t-Sahalia [1], Poulsen [33], Beskos et al.

[4]), martingale estimating functions (see Bibby and Sorensen [5] ), indirect statisti-

cal inference (see Gourieroux et al. [17] ) or Bayesian approaches (see Elerian et al.

[15]). We refer to [37] for a survey of methods of estimations in the discrete case.

When the transition functions of the di�usion X are known, and �(x; �) = �x with

� unknown and not depending on �, then Dacunha-Castelle and Florens-Zmirou [12]

propose a maximum likelihood estimator which is strongly consistent for the pair

(�; �). They also gives a measure of the loss of information due to the discretization

as a function depending on the interval between two observations.

A more particular situation is the case when � is known (assume that � = 1).

Then the maximum likelihood function, given by exp(�
R t
0 b(Xs)dXs�

�2

2

R t
0 b(Xs)

2ds),

can been approximated using Riemann sums as

exp

 
�

N�1X
i=0

b(Xti)
�
Xti+1 �Xti

�
� �

2

2

N�1X
i=0

b(Xti)
2(ti+1 � ti)

!
:

As a consequence the following maximum likelihood estimator can be obtained from

the discrete observations of the process X at times t0; : : : ; tN in a �xed interval

[0; T ]; with discrete mesh size decreasing to 0 as N !1:

�N;T = �
PN�1
i=0 b(Xti)(Xti+1 �Xti)PN�1
i=0 jb(Xti)j

2 (ti+1 � ti)
(46)

(see [26], including proof of convergence to the continuous MLE).

In the fractional case, we are aware of no such results. We propose a �rst concrete

solution to the problem. We choose to work with the formula (23) by replacing the

stochastic integral in the numerator and the Riemann integral in the denominator
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by their corresponding approximate Riemann sums, using discrete integer time.

Speci�cally we de�ne for any integer n � 1,

��n :=

Pn
m=0Qm (Zm+1 � Zm)Pn

m=0 jQmj
2 : (47)

Our goal in this section is to prove that ��n is in fact a consistent estimator for �. By

our Theorems 2 and 3, it is of course su�cient to prove that limn!1
�
��n � �n

�
= 0

almost surely. One could also consider the question of the discretization of �T using

a �ne time mesh for �xed T , and showing that this discretization converges almost

surely to �t; by time-scaling such a goal is actually equivalent to our own.

It is crucial to note that in the fractional case the process Q given by (11)

depends continuously on X and therefore the discrete observation of X does not

allow directly to obtain the discrete observation of Q. We explain how to remedy

this issue: Qm appearing in (47) can be easily approximated if we know the values

of Xn; n � 1 since only a deterministic integral appears in the expression of (11);

indeed, for H < 1
2 , the quantity

�Qn = c(H)n
H� 1

2

n�1X
j=0

(n� j)�H�
1
2 j

1
2
�Hb(Xj) (48)

can be deduced from observations and it holds that limn(Qn� �Qn) = 0 almost surely.

This last fact requires a proof, which is simpler than the proof of convergence of

��n � �n to 0, but still warrants care; we present the crucial estimates of this proof

in the appendix, in Section 7.3.1.

Note moreover that calculation of ��n also relies on Zm, which is not observable;

yet from formula (21), where Zm is expressed as a stochastic integral of a deter-

ministic function against the increments of X, again, we may replace all the Zm's

by their Riemann sum; proving that these sums converge to the Zm's follows from

calculations which are easier than those presented in Section 7.3.1, because they
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only require discretizing the deterministic integrand. We summarize this discussion

in the following precise statement, referring to Section 7.3.1 for indications of its

proof.

Proposition 4 With �Qn as in (48) and �Zn =
Pn�1
j=0

�
K�;�11[0;n](�)

�
(j) (Xj+1 �Xj),

then almost surely ��n � ��n converges to 0, where ��n is given by (47) with Z and Q

replaced by �Z and �Q.

Let hMin denote the quadratic variation at time n of a square-integrable mar-

tingale M . We introduce the following two semimartingales:

At :=

Z t

0
QsdZs (49)

Bt :=

Z t

0
Q[s]dZs (50)

where [s] denotes the integer part of s. We clearly haveBn =
Pn�1
m=0Qm (Zm+1 � Zm).

Thus using the fact that Z is a Brownian motion under ~P, we see that

hBin =
n�1X
m=0

jQmj2 (51)

while

hA�Bin =
Z n

0

��Qs �Q[s]��2 ds = n�1X
m=0

Z m+1

m
jQs �Qmj2 ds: (52)

Therefore from de�nitions (12) and (47) we immediately get the expressions

�n =
An
hAin

and ��n =
Bn
hBin

:

The following proposition de�nes a strategy for proving that ��n { and, by the pre-

vious proposition, ��n { is a consistent estimator for �. See the Appendix, Section

7.3.2, for its proof.

Proposition 5 Let H 2 (0; 1). If there exists a constant � > 0 such that
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� n� hA�Bin = hBin is bounded almost surely for n large enough,

� for all k � 1, for some constant K > 0, almost surely, for large n, hBikn �

KE
h
hBikn

i
;

� and for all k > 1, E
h
jhA�Binj

k
i
� n�k�E

h
jhBinj

k
i
,

then almost surely limn!1 ��n = �.

The following theorem, proved in Section 7.3.3 under the condition (C') below,

which is stronger than (C), still allows for non-linear examples.

Theorem 4 Assume b0 is bounded and the following condition holds:

(C') There exist constant t0;Kb > 0 depending only on H and b, such that for all

t � t0 and all " > 0, ~P
�
jQt (~!)j =

p
t < "

�
� "Kb, where under ~P, ~! has the

law of fBm with parameter H.

Then for all H 2 (0; 1=2), almost surely limn!1 ��n = � where the discretization

��n of the maximum likelihood estimator �n is de�ned in (47). If H 2 (1=2; 1), the

same conclusion holds if we assume in addition that b00 is bounded.

By Proposition 4, the above statements hold with �� replaced by ��.

Remark 4 Condition (C') holds as soon as the random variable Qt (~!) =
p
t has a

density that is bounded uniformly t. When H < 1=2, this is a statement about the

random variables
R 1
0 �

H
1 (ds) b

�
tH ~!s

�
t�H . In all cases, Condition (C') holds for the

class of non-linear functions de�ned in Lemma 3.

We conjecture that Theorem (4) holds if we replace (C') by (C), in view for

example of the fact that the conditions of Proposition 5 hold for any � < 2H. Step

1 in the theorem's proof is the obstacle to us establishing this.
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7 Appendix

7.1 Proof of the Theorem 3

Recall from the proof of Proposition 1 that we can write

Qt = c(H)t
1
2
�Hb(Xt) + c

0(H)

Z t

0
�tH(dr) (b(Xt)� b(Xr)) : (53)

We note that in this case the expression �tH(dr) does not determine a measure, but

we still use this notation to simplify the presentation; the Lipschitz assumption on

b and the H�older property of X do ensure the existence of the integral.

One can actually follow the proof in the case H < 1
2 line by line. All we have

to do here is to prove an equivalent of relations (31) and (32) on the supremum

and variations of Q, this being the only point where the form of Q, which di�ers

depending on whether H is bigger or less than 1=2, is used. We briey indicate

how the second summand of Q in (53) (which is the most di�cult to handle) can

be treated.

Under ~P, we denote X by ~!, since its law is that of standard fBm. The quan-

tity Q0t :=
R t
0 �

t
H(dr) (b(Xt)� b(Xr)) equals

R 1
0 �

1
H(dr)t

�H(b(tH ~!1) � b(tH ~!r)) in

distribution. Now, let V 0t := t
� 1
2Q0t. Omitting the details, we state that instead of

relations (31) and (32) on Q0, it is equivalent to show the following bound for some

M > 2:

~E

"
sup

s;t2[tn�bn;tn]

��V 0t � V 0s ��M
#
� CM;H;b

�
bn
tn

�HM
; (54)

which follows from some elementary calculations, and a standard application of

the Kolmogorov lemma on continuity (see [34, Theorem I.2.1]). Details are in the

extended version of this article on arXiv. A direct proof, via (31) and (32), not via

(54), is also possible.
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7.2 Proof of Proposition 3

To avoid tedious calculations with fractional integrals and derivatives, we will take

advantage of the calculations performed in [23] when H > 1
2 ; nevertheless we believe

that a direct proof is also possible. Actually the only moment when the authors of

[23] use the fact that H is bigger than 1
2 is the computation of the process Q. By

relations (20) and (22) we can write

Qt =
d

dt

Z t

0

Z t

v

�
K�;�11[0;t](�)

�
(s)K(s; v)dsdZv

Note that from the formulas presented in Section 2, we have

�
K�;�11[0;t](�)

�
(s) = c(H)s

1
2
�H
Z t

s
u
1
2
�H(u� s)�H�

1
2 ; H <

1

2
;

�
K�;�11[0;t](�)

�
(s) = c(H)s

1
2
�H d

ds

Z t

s
u
1
2
�H(u� s)�H+

1
2 ; H >

1

2

To unify the notation, we write

�
K�;�11[0;t](�)

�
(s) = c(H)s

1
2
�H d

ds

Z t

s
u
1
2
�H(u� s)�H+

1
2 ; H 2 (0; 1)

and we just observe that the constant c(H) above is analytic with respect to H. Let

us consider, for v � t a function A(v; t) such thatZ t

v
A(v; s)ds =

Z t

v

�
K�;�11[0;t](�)

�
(s)K(s; v)ds:

Then, obviously, Qt =
R t
0 A(t; v)dZv:

On the other hand, it has been proved in [23] (see relations (3.4) and (3.5)

therein) that for H > 1
2 , Q

KB
t =

R t
0 A

KB(t; v)dZKBv with AKB(t; s) = c(H)(t2H�1+

s2H�1): Using the relations between Q and QKB and between Z and ZKB (see

Remark 3), it follows that, for every H > 1
2 , and s < t,

A(s; t) = c(H)

"�s
t

� 1
2
�H

+

�
t

s

� 1
2
�H
#
: (55)
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We show that the above relation (55) is true for H < 1
2 as well. We use an argument

inspired by [13], proof of Theorem 3.1. We observe that the functions

H 2 (0; 1)! A(s; t) and H 2 (0; 1)! c(H)

"�s
t

� 1
2
�H

+

�
t

s

� 1
2
�H
#

are analytic with respect to H and coincide on (1=2; 1). Moreover, both are well-

de�ned for every H 2 (0; 1) (in fact it follows from [23] that A is well-de�ned for

H > 1
2 and it is more regular for H � 1

2). To conclude (55) for every H 2 (0; 1),

we invoke the fact that if f; g : (a; b) ! R are two analytic functions and the set

fx 2 (a; b); f(x) = g(x)g has an accumulation point in (a; b), then f = g.

As a consequence, (55) holds for every H 2 (0; 1) and this shows thatZ t

0
QsdZs =

Z t

0
QKBs dZKBs = c(H)

�
ZKBt

Z t

0
r2H�1dZKBr � t

�
and all calculations contained in [23], Sections 3.2, 4 and 5 hold for every H.

7.3 Proof of Theorem 4

7.3.1 Proof of Proposition 4

For conciseness, we only indicate how to establish one of the crucial estimates for

this proposition, that the quantity

Sn :=

Pn
m=0

�
Qm � �Qm

�
(Zm+1 � Zm)Pn

m=0 jQmj
2

converges to 0 almost surely, and then only for H < 1=2. Since we want to show that

Sn tends to 0 almost surely, and P and ~P share the same null sets, we may assume

that Z is a Brownian motion, and X is a fractional Brownian motion adapted to

Z's �ltration.

De�ne the quantity

Rn =
n�1X
j=0

(n� j)�H�1=2 j1=2�H
Z j+1

j
(b (Xj)� b (Xs)) ds:



Statistics of Fractional Brownian Motion 33

This is related to Sn via the fact that m
H�1=2 jRmj = Qm � �Qm. We claim that for

any " > 0, almost surely, for large m; that is m � m0, jRmj � r0+m�H+1+"cH kb0k

where r0 is a �xed random variable. This is su�cient to conclude that limn Sn =

0. Indeed, we will see below (Section 7.3.3, Step 2, inequality (61)) that almost

surely, for large n,
Pn
m=0 jQmj

2 � n2. Then sum of all terms in the numera-

tor of Sn for m � m0, after having been divided by Sn's denominator, tend to

0 when n ! 1. On the other hand, the IID terms fZm+1 � Zmgm2N are stan-

dard normal, so that one trivially proves that almost surely for n � m0 (abu-

sively using the same m0 as above), up to some non-random universal constant c,

jZm+1 � Zmj � c
p
logm. It follows that the portion of Sn for m � m0 is bounded

above by n�2
Pn
m=0m

H�1=2 �r0 +m�H+1+"cH kb0k
�p
logm, which is itself bounded

above by (r0 + cH kb0k)n3=2+" which obviously tends to 0 as n ! 1 as soon as

" < 1=2.

Now let us prove our claim on Rm. It is a known fact, which is obtained using

standard tools from Gaussian analysis, or simply the Kolmogorov lemma (see [34,

Theorem I.2.1]), that for any M � 1

E

"
sup

s;t2[j;j+1]
jXt �XsjM

#
� jHM :

The usual application of the Borel-Cantelli lemma after Chebyshev's inequality

for an M large enough, implies that for any � > H, almost surely, for large j,
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sups;t2[j;j+1] jXt �Xsj � j�. Consequently for any " > 0,

jRmj � 2
b0 m0X

j=0

(n� j)�H�1=2 j1=2�H
Z j+1

j
jXj �Xsj ds

+
b0 n�1X

j=m0

(n� j)�H�1=2 j1=2�H sup
s2[j;j+1]

jXj �Xsj

= r0 + n
�2H b0 n�1X

j=m0

(1� j=n)�H�1=2 (j=n)1=2�H sup
s2[j;j+1]

jXj �Xsj

� r0 + n�2HnH+"
n�1X
j=m0

(1� j=n)�H�1=2 (j=n)1=2�H (j=n)H+"

= r0 + cHn
�H+"+1 (1 +O (1=n)) ;

where the last estimate is in virtue of the Riemann sums for
R 1
0

x1=2+"

(1�x)H+1=2
dx.

7.3.2 Proof of Proposition 5

By our Theorems 2 and 3, it is of course su�cient to prove that limn!1
�
��n � �n

�
=

0: In preparation for this, we �rst note that by classical properties for quadratic

variations, and using our hypothesis, for large enough n, we have

jhBin � hAinj = jh(B �A) ; (B +A)inj

� jhB +Ainj
1=2 jhB �Ainj

1=2

�
p
2n�� jhBinj

1=2 jhAin + hBinj
1=2 : (56)

Now we prove that (56) implies almost surely,

lim
n!1

hAin
hBin

= 1: (57)

Indeed let xn = hAin = hBin. Then we can write

jxn � 1j =
jhBin � hAinj

hBin

�
p
2n�� jhBinj

�1=2 jhAin + hBinj
1=2 = c

p
2n�� j1 + xnj1=2 :
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where c is a possibly random almost surely �nite constant. Let " > 0 be given;

it is elementary to check that the inequality (x� 1)2 � 2" (x+ 1) is equivalent to

jx� (1 + ")j �
p
4"+ "2. For us this implies immediately jxn � 1j � 6cn��, proving

the claim (57).

Now we have

�n � ��n =
An
hAin

� Bn
hBin

=
An �Bn
hBin

+An
hBin � hAin
hAin hBin

: (58)

Using (56) we have that the second term in (58) is bounded above in absolute value

by
p
2n��

An
hAin

jhAin + hBinj
1=2

jhBinj
1=2

=
p
2n��

An
hAin

�
hAin
hBin

+ 1

�1=2
:

By Theorems 2 and 3, An= hAin converges to the �nite constant �. By the limit (57),

the last term in the above expression converges to 2, so that the entire expression

converges to 0. Let k and  be �xed positive values. For the �rst term in (58), using

our hypotheses, by Chebyshev's and the Burkholder-Davis-Gundy inequalities, and

from the expression of the semimartingales Z as Zt =
R t
0 QsdWs + �

R t
0 Qsds, we

have

P
h
jAn �Bnjk > n�kE

h
hBikn

ii
� nkE�1

h
hBikn

i
E
h
jAn �Bnjk

i
� c(�)2knkn�k�:

Thus picking a positive value  < � and choosing k large enough, by the Borell-

Cantelli lemma, almost surely, for n large enough

jAn �Bnj � n�E
h
hBikn

i1=k
� 1

K
n� hBin ;

which �nishes the proof of the proposition.
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7.3.3 Proof of Theorem 4 (Steps 1 through 4)

In this entire proof, n0 (!) will denote a random, almost surely �nite, integer; it

may change from line to line, as it is introduced via various di�erent applications

of the Borel-Cantelli lemma, but one only needs to take the supremum of all such

integers to have correct statements throughout.

Step 0. Strategy. First note that since the probability measures P and ~P are

equivalent (see Theorem 1), almost sure statements under one measure are equiv-

alent to statements about the same stochastic processes under the other measure,

and therefore we may prove the statements in the theorem by assuming that the

process Z in the de�nitions (49) and (50) is a standard Brownian motion, since such

is its law under ~P. Furthermore, for the same reason, we can assume that, in these

same de�nitions, Q is given by formula (11) where X is replaced by ~! whose law is

that of standard fBm. We will use speci�cally, instead of (11), the explicit formula

(25) when H < 1=2: For H > 1=2 the formula (16) must be used instead, which

shows the need for a control of b's second derivative. For the sake of conciseness,

we restrict our proofs to the case H < 1=2. The result of the theorem is established

as soon as one can verify the hypotheses of Proposition 5. Here we present only the

proof of the �rst of the three hypotheses. The other two are proved using similar or

simpler techniques. To achieve our goal in this proof, it is thus su�cient to prove

that almost surely, for large n, hBin � n�1 while hA�Bin � n�2 where the val-

ues �1 and �2 are non random and �1 > �2. We establish these estimates in the

appendix.

Step 1. Bounding jQj2 below. Using only Condition (C'), we immediately get,

for any  2 (0; 1=2�H), for any large t,

P
h
jQtj < t1=2�

i
� Kbt� :
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To be able to apply the Borel-Cantelli lemma, we now let t = nA where n is an

integer and A is a constant exceeding �1. We then get, almost surely, for any

n > n0 (!),

jQnA j > nA(1=2�): (59)

We also bound other Qm0 's that are in close proximity to QnA . For any �xed integer

�m, consider the set I �m of integers m0 in the interval [ �m � �m4 ; �m], where  is also

assumed to be less than 1=4. Then by inequality (32), for any " > 0, for some

almost-surely �nite r.v. c",

sup
m02I �m

jQ �m �Qm0 j � c" �m1=2�H+" � �m4
�H�"

= c" �m
1=2�(H�")(1�4) = c" �m

1=2�"0

where "0 = (H � ") (1� 4) is positive for " < H and our hypothesis on . Thus

with 0 < "0 < H (1� 4), almost surely we may write that

jQm0 j > jQ �mj � c" �m1=2�"0 :

Certainly, if �m is of the form nA for large enough n, by choosing  small enough, we

obtain that the lower bound �m1=2� on jQ �mj2 obtained in (59) is dominant compared

to �m1=2�" for " close to H (1� 4). Hence we get, almost surely, with �m = nA large

enough, for all m0 2 [ �m� �m4 ; �m]

jQm0 j2 > jQ �mj2
 
1� c" �m

1=2�"0

jQ �mj

!2
� jQ �mj2 =2: (60)

Step 2. Bounding hBi from below. For n given, let n1 be the largest integer

such that nA1 � n < (n1 + 1)
A : Also assume n is large enough so that nA1 � n0 (!).
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Thus, applying (60) with �m = nA1 ,

hBim �
nA1X
m=0

jQmj2 �
���QnA1 ���2 + X

m0=nA1 �(nA1 )
4

jQm0 j2

�
���QnA1 ���2 + 2�1 X

m0=nA1 �(nA1 )
4

���QnA1 ���2 � ���QnA1 ���2 �nA1 �4 :
We can now invoke (59) to say that almost surely, for n > n0 (!)

A

hBin � (n1)
A(2�2) �nA1 �4 = 2�1 (n1)A(2+2) :

Given that we may write nA1
�
1 + n�11

�
> n, so that nA1 > n=2, we can �nally

conclude that

hBin �
1

21+2A(1+)
n2+2 : (61)

Step 3. Bounding hA�Bi's terms from above. We may generically bound the

general term of hA�Bin, directly using the bound (32) and its associated random

variable c": almost surely, for all m � 0,Z m+1

m
jQs �Qmj2 ds �

Z m+1

m
ds sup

t2[m;m+1]
jQt �Qmj2

= sup
t2[m;m+1]

jQt �Qmj2

� c"
�
m1=2�H+"1H�"

�2
= m1�2H+2": (62)

We conclude that for any � = 1� " < H, almost surely, for all m,Z m+1

m
jQs �Qmj2 ds � c"m1�2�:

Step 4. Conclusion. From the formula hA�Bin =
Pn�1
m=0

Rm+1
m jQs �Qmj2 ds,

using the last estimate of the previous step, we get

hA�Bin � c"n
2�2�:
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From the �nal estimate (61) of Step 2, we may now write almost surely

hA�Bin
hBin

� c"

n2(+�)
:

Hence the �rst statement of Proposition 5 is established for any � < 2H.
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