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Statistical aspects of ultracold resonant scattering
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Compared to purely atomic collisions, ultracold collisions involving molecules have the potential to support a

much larger number of Fano-Feshbach resonances due to the huge amount of ro-vibrational states available. In

order to handle such ultracold atom-molecule collisions, we formulate a theory that incorporates the ro-vibrational

Fano-Feshbach resonances in a statistical manner while treating the physics of the long-range scattering, which

is sensitive to such things as hyperfine states, collision energy, and any applied electromagnetic fields, exactly

within multichannel quantum defect theory. Uniting these two techniques, we can assess the influence of highly

resonant scattering in the threshold regime, and in particular its dependence on the hyperfine state selected for

the collision. This allows us to explore the onset of Ericson fluctuations in the regime of overlapping resonances,

which are well known in nuclear physics but completely unexplored in the ultracold domain.
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I. INTRODUCTION

Resonances have always played a key role in scattering

experiments across many areas of physics, serving to nail down

our understanding of the interaction between the collision

partners. They play an additional role in dilute, ultracold

atomic and molecular gases, where resonance positions can

be moved relative to the (essentially zero) collision energy by

means of applied electromagnetic fields. This circumstance

allows one to control collision cross sections, as well as mean-

field interactions in quantum degenerate gases. Dozens of

magnetic-field Fano-Feshbach resonances have been identified

and characterized in ultracold collisions of various alkali-metal

atoms [1]; many are now working tools for research in

many-body quantum physics. In the case of cold collisions of

alkali-metal atoms, the resonant states differ from the incident

scattering states by the change of an internal spin. For this

reason, the number of resonant states remains typically small

and the resonances themselves usually remain well separated

and tractable.

This situation can be different, however, for collisions

involving cold molecules, where rotational and vibrational

excitations can also contribute to resonant states. Many such

resonances have been predicted in theoretical treatments of

cold molecular scattering [2–12]. While the number of reso-

nances naturally grows in this case, nevertheless the individual

resonances are typically well resolved and manageable in num-

ber. This is particularly evident in cold collisions of molecules

with helium atoms, relevant to buffer gas cooling, where light

masses and shallow potential energy surfaces conspire to keep

the density of resonant states low [13,14]. Resonances appear

to be resolved even in collisions involving light objects other

than helium such as O2 [2], Rb + OH [15], N + NH [16], or

Mg + NH [17]. In relatively “clean” systems like these, there

remains hope of explicitly identifying the quantum numbers

of resonances, and using them to back out accurate potential

energy surfaces (PES). Indeed, energy resolution afforded at

ultralow temperatures may allow for the elucidation of van der

Waals [18,19] or transition state [20,21] resonances, important

for unraveling chemical reactions when a barrier is present.

There remains, however, a class of heavier molecules that

have been or will be produced at ultracold temperatures.

Notable among these, and the subject of this paper, are

diatomic species consisting of pairs of alkali-metal atoms.

When such a molecule collides with another alkali-metal atom,

the PES is sufficiently deep that tens of vibrational levels, and

hundreds of rotational levels, may be energetically accessible.

In this case the density of resonant states (DOS) may be so high

that individual resonances may not even be resolved, let alone

identified. In such a case, it would be worthwhile to understand

the effect of all these resonances on observed collision cross

sections.

Theories relating to high-DOS scattering have long ago

been formulated, notably in chemistry and in nuclear physics.

On the one hand, the theory of unimolecular dissociation

regards the problem in the time domain. If a polyatomic

molecule is given enough energy to break a particular bond,

say by absorbing an appropriate photon, it does not necessarily

immediately dissociate. Rather, it can lose energy in many

irrelevant degrees of freedom until, by accident, sufficient

energy lands in the desired bond to break it. The theory of

this process, known as the Rice-Ramsperger-Kassel-Marcus

(RRKM) theory [22], expresses the mean rate of dissociation

as

kRRKM =
1

2π

Na

h̄ρ
. (1)

Here, ρ represents the (very large) density of resonant states,

while Na represents the (small) number of quantum states

available at the transition state which lead to dissociation.

On the other hand, scattering experiments in nuclear theory

have inspired statistical ideas of highly resonant scattering

more in the energy domain. Again, a high density of states

is expected because of the many strongly interacting nucleon

degrees of freedom inside a compound nucleus. In this case it

is typical to treat the energies of the resonances (especially

if they are individually distinguished) as random numbers

with a characteristic mean level spacing d = 1/ρ. Whereas

noninteracting energy levels are distributed so that their level

spacings obey a Poisson distribution, instead these strongly

interacting levels obey a distribution derived by Dyson and

Wigner. This distribution is regarded as characteristic of
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spectra for systems whose classical analogues are chaotic

[23–25].

In this energy-domain picture, the resonance widths are

related, sometimes in a subtle way, to the Hamiltonian matrix

elements Wμa that couple a bound resonant state μ of the

collision complex to a scattering state a [26–28]. In the random

matrix theory of nuclear scattering, these matrix elements

are themselves random numbers, distributed about a mean

resonance width Ŵ̄. The theory identifies two distinct regimes

of resonant scattering. In the first, Ŵ̄/d ≪ 1, meaning that the

resonances are resolvable (though still distributed randomly).

In the other limit, Ŵ̄/d ≫ 1, the resonances overlap. Rather

than washing out completely, however, the resulting spectrum

exhibits “Ericson fluctuations” on a scale set by Ŵ̄ itself

[29,30]. Both regimes are observed in nuclear physics, with

Ericson fluctuations typically appearing at higher energies

[31].

In this article we apply the methods of random matrix theory

to cold collisions within the Wigner threshold regime. The ob-

ject of our study will be atom-diatom collisions, which possess

far fewer degrees of freedom than the polyatomic molecules or

complex nuclei described above. Nevertheless, it has been well

established that the same ideas apply to nominally “simpler”

systems, even to the level of a single electron in a diamagnetic

Rydberg state [32,33] or to conductance fluctuations in a

semiconductor device [23], in the quantum chaos regime.

To apply the statistical model to cold collisions, we must

balance the highly resonant, strongly coupled, 103K energy

physics of the complex against the delicate sub-mK energy

scales of the ultracold. To do this, we exploit ideas of

multichannel quantum defect theory (MQDT) [34,35]. This

theory makes a clean distinction between the physics of the

complex, which is pertinent when the colliding species are

close together; and the physics of the long-range scattering,

which is sensitive to such things as the hyperfine states of the

atom and molecule, the low collision energy, and any applied

electromagnetic fields. Uniting these two disparate sets of

phenomena, we can assess the influence of highly resonant

scattering in the threshold regime, and in particular its depen-

dence on the hyperfine state selected for the collision. Although

the multichannel scattering cross sections are derived from a

fairly realistic framework, we find nevertheless that the simple

RRKM rate Eq. (1) is a useful tool for interpreting the results,

even at ultracold temperature.

The present work is outlined as follows. In Sec. II we detail

our theoretical framework, which is divided into two aspects.

Section II A introduces the general scattering framework and

the treatment of the long-range interactions via MQDT. In

Sec. II B we then present our approach of treating the highly

resonant short-range part by means of a statistical framework

derived from random matrix theory. The essential input

parameter for the statistical theory is the density of states for the

short-range resonances; in Sec. II C we provide estimates for

all nonreactive A + AB alkali-metal dimer pairs. The question

of including the density of states due to the nuclear spin

degrees of freedom is addressed in Sec. II D. In Sec. III A

we present exemplary elastic cross sections within the Wigner

threshold law regime that are derived from our theoretical

framework. Two particular examples are chosen: K + LiK,

where resonances remain well separated, and Rb + KRb,

where the DOS is high. In addition, magnetic-field-dependent

thermal rates are provided. Section III B finally shows that

ultracold atom-molecule collisions demonstrate the onset of

Ericson fluctuations on a completely different energy scale

than in nuclear physics. In Sec. IV we comment on what

might be learned from experimental data by comparing to

the predictions and assumptions of our model. With Sec. V we

provide a brief conclusion and an outlook on further directions

for our theory of highly resonant scattering.

II. THEORETICAL FRAMEWORK

We deal here with the three-body physics of ultracold

alkali-metal atoms, a calculation that could, in principle, be

performed in substantial detail [36,37]. It is, however, an

immense labor, and the results, while qualitatively meaningful,

are unlikely to be quantitatively accurate. Even in cases where

the calculations can be converged, the relevant potential energy

surfaces are not known to sufficiently high accuracy for

ultracold collisions. Nevertheless, the scattering framework is

standard. In this section we develop this framework, including

our approximate, statistical version of the resonant states.

A. Scattering framework

We begin with a diatomic molecule AB (where A and B
denote alkali-metal atoms) in its 1� electronic ground state, its

v = 0 vibrational ground state, and its n = 0 rotational ground

state, according to the Hund’s case (b) coupling scheme.

Examples of such molecules have been produced in gases of

order μK temperatures [38–41]. The molecules may or may

not be also prepared in their ground state of nuclear spin I [42].

These molecules will collide with another alkali-metal atom

C (typically one of A or B) in its 2S ground state, and with its

own accessible hyperfine degrees of freedom.

For the time being, we consider cases where chemical

reactions are not energetically allowed at ultralow temperature.

Therefore, the only collisions we consider are those that can

change the nuclear spin quantum numbers. Generally, we are

interested in the regime where the atom’s spin state can be

labeled by |f,mf 〉, even in the presence of a magnetic field. For

the molecule, we assume a magnetic field sufficiently large that

the nuclear spins IA and IB are decoupled and the states can be

characterized by their individual projections on the magnetic

field axis, |IAMA,IBMB〉. The observables then consist of the

collision rate constants,

KMA,MB ,f mf →M ′
A,M ′

B ,f ′m′
f

=
〈

vσMA,MB ,f mf →M ′
A,M ′

B ,f ′m′
f

〉

, (2)

where v is the relative velocity before the collision and σ is the

collision cross section. We omit the nuclear spins IA and IB in

Eq. (2) since they are not subject to change in the collisions we

are considering. Assuming a decomposition into partial waves

|LML〉 for the relative motion, the cross section is given by

σMA,MB ,f mf →M ′
A,M ′

B ,f ′m′
f

=
π

k2

∑

LMLL′M ′
L

∣

∣1 − SM ′
AM ′

Bf ′m′
f L′M ′

L;MAMBf mf LML

∣

∣

2
, (3)

in terms of the scattering matrix elements Sa′a . The S

matrix describes the possible rearrangement of angular mo-

mentum during the collision but must conserve the total
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FIG. 1. (Color online) Schematics of our MQDT approach (not

to scale). In the long-range part, R > Rm, we only consider the ro-

vibrational ground state of the molecule, but include all Na atomic and

molecular hyperfine states and different partial waves (not shown).

In the asymptotic region, R → ∞, No of them are energetically open

and Nc are closed. The MQDT treatment transforms the short-range

K matrix K sr, defined at Rm, into a physical scattering matrix Sphys

from which quantities such as elastic and inelastic cross sections

can be deduced. K sr includes the information on the ro-vibrational

resonances which occur in the short-range part, R < Rm.

projection, M = M ′
A + M ′

B + m′
f + M ′

L + m′
n =MA + MB +

mf + ML + mn, with the quantization axis applied along the

magnetic field direction, if any. In the above equality we

included the projection mn of the rotational quantum number

n of the molecule, which is needed when considering possible

resonant states. For the incident and outgoing channels,

however, we will always assume the ro-vibrational ground

state (i.e., v = n = mn = 0). For notational convenience we

hereafter denote these scattering channel indices as

|a〉 = |v = n = 0,MAMBf mf LML〉. (4)

Calculation of a schematic but realistic Sa′a , including its

energy- and magnetic-field-dependent resonance structure, is

the goal of this article.

To achieve this goal, we exploit the conceptual difference

between the spin channels |a〉 that describe physics at large

interparticle separation R; and the numerous resonant states

|μ〉 that differ by rotational and vibrational quantum numbers

from a, and that describe states of the scattering complex.

This general separation of states is illustrated schematically in

Fig. 1. For separations R greater than some characteristic dis-

tance Rm, the channels a are assumed to be independent of one

another and described by simplified long-range interactions of

the form

Va(R) = −
C6

R6
+

h̄2La(La + 1)

2mrR2
+ Ea(B), (5)

where Ea(B) is the threshold of the ath channel, which may

depend on a magnetic field B. Here, mr is the reduced mass of

the scattering partners and C6 is their van der Waals coefficient,

which is taken to be isotropic in this model.

Dividing the scattering process into short- and long-range

parts forms the basis of quantum defect theory (QDT). Here,

we utilize a multichannel formulation of QDT along the lines

of Ref. [35]. The key feature of MQDT is that—once the

MQDT parameters have been determined for a given class of

potentials—one only needs to provide the reactance matrix

Ksr = i(1 − Ssr)(1 + Ssr)−1 which is defined at the matching

radius Rm between the short and the long range. The MQDT

formalism as outlined in this section then takes care of the

propagation for R > Rm and directly yields the physical

scattering matrix Sphys, which defines the solution vectors

ψ (a) of the coupled channel equations for the whole scattering

process,

ψ
(a)
a′ (R)

R→∞= δa′af
−
a (R) − S

phys

a′a f +
a′ (R). (6)

f ±
a =

√

2mr/πh̄2kae
±i(kaR−Laπ/2) are outgoing (+) and in-

coming (−) spherical waves, respectively. Once determined,

Sphys can easily be converted into various observables describ-

ing the scattering process.

We apply this formalism explicitly only to the small number

Na of hyperfine channels belonging to the ro-vibrational

ground state of the molecule and the ground electronic state

of the atom. Of these, some number No will be energetically

open, meaning that for these channels E > Ea and the collision

partners can escape to infinity. The remaining Nc = Na − No

closed channels do not contribute directly to the physical

scattering matrix, and must be “eliminated” by the usual

algebraic procedures of MQDT.

To do so, the short-range K matrix Ksr is partitioned into

its open and closed channels at Rm,

Ksr =
(

Ksr
oo Ksr

oc

Ksr
co Ksr

cc

)

. (7)

The closed channels are eliminated in the MQDT sense

through

K̃ = Ksr
oo − Ksr

oc

(

Ksr
cc + tan β

)−1
Ksr

co, (8)

where β is a closed-channel MQDT parameter [35]. The

modified reactance matrix K̃ has dimension No × No and

shows the potential influence of closed channel pathways.

The transformation to an energy-normalized, nonanalytic

long-range representation is achieved by

K = A
1
2 K̃(1 + GK̃)−1A

1
2 . (9)

The physical scattering matrix is finally formed by

Sphys = eiη(1 + iK)(1 − iK)−1eiη. (10)

A, G, η, and β are diagonal matrices in the asymptotic

channel space, consisting of the relevant MQDT parameters.

The latter are determined as in Refs. [35,43]. In the present

form of MQDT we encounter two sets of long-range ref-

erence functions: (f 0,g0) are smooth, analytic functions of

energy; whereas, (f,g) are energy-normalized but nonanalytic

functions of energy. (f,g) are solutions of the Schrödinger

equation in the presence of a long-range potential V lr(R)

and are related to the energy-normalized spherical Bessel and

Neumann functions via

f (R)
R→∞−−−→ kR

√

2mr/πk [jl(kR) cos η − nl(kR) sin η],

g(R)
R→∞−−−→ kR

√

2mr/πk [jl(kR) sin η + nl(kR) cos η].

(11)

062712-3



MICHAEL MAYLE, BRANDON P. RUZIC, AND JOHN L. BOHN PHYSICAL REVIEW A 85, 062712 (2012)

Equation (11) defines the MQDT parameter η. The parameter

β is a negative energy phase that represents the phase

accumulated in V lr(R). The energy-normalized base pair (f,g)

is related to the energy-analytic base pair (f 0,g0) through the

transformation
(

f 0

g0

)

=
(

A− 1
2 0

−A− 1
2G A

1
2

)(

f

g

)

, (12)

which defines the MQDT parameters A and G.

MQDT has been a hugely successful tool for organizing

apparently complex spectra of atoms [44] and in simply

describing resonant scattering, both at thermal energies [45,46]

and in ultracold atom collisions [35,47–49]. Much of its

appeal in these circumstances lies in the fact that a matching

radius Rm can be chosen so the channels that will be closed

as R → ∞ remain classically open at R = Rm. If this is

so, the short-range K matrix becomes a weakly energy-

dependent quantity, and complex spectra can be unified by the

simple algebraic procedures described above. For molecular

scattering, it remains to be seen whether this same simplicity

occurs, since for any Rm there may be many channels that are

already classically closed, and hence, impart resonant structure

to Ksr. Indeed, there is already some hint in applications of

MQDT to cold molecule collisions that Rm must be chosen

carefully to maximize the simplicity of Ksr [12].

In the present case of highly resonant scattering, we in fact

approach quite the opposite limit, where for any reasonable Rm

most of the resonant ro-vibrational channels are already closed.

Thus, our Ksr will necessarily be highly energy dependent,

exhibiting already the resonances of interest. Although it is

difficult to compute, it remains nevertheless a well-defined

quantity in the theory. For our present purposes, we employ

MQDT as a quick, algebraic solution to producing scattering

matrices Sphys for a given Ksr. Arriving at a physically

reasonable Ksr is the task we turn to next.

B. Statistical short-range K matrix

In treating the long-range collision physics by means of

MQDT, the only quantity left to be determined is the short-

range K matrix. It is indexed by the Na asymptotic channels

a, but is influenced by the myriad (i.e., N ≫ Na) of resonant

states μ. Quite generally, it can be expressed as [31]

Ksr
a,b(E) = −π

N
∑

μ=1

WaμWμb

E − Eμ

. (13)

Equation (13) is expressed in the eigenspace of a short-range

Hamiltonian H sr that gives rise to the (unperturbed) short-

range levels at Eμ. Waμ = Wμa are (assumed-to-be energy

independent) coupling matrix elements between resonance μ

and asymptotic channel a. The mean coupling strength of the

ath asymptotic channel to the short-range resonances is given

by the dimensionless parameter

R(0)
a =

π

2
ρŴ̄a, (14)

where Ŵ̄a = (2π/N )
∑N

μ=1 |Wμa|2 is the zero-order average

partial width to the decay channel a [28] and ρ is the DOS of

the resonances, evaluated at the incident energy.

The input parameters for the resonant scattering theory,

Eq. (13), are the zero-order positions Eμ of the resonances

and the coupling elements Waμ to the asymptotic channels.

However, both are usually unknown unless the short-range

part is known with high precision. To provide Eq. (13) with

reasonable input parameters, we utilize a statistical model

where Eμ and Waμ are taken as random variables. This model

follows closely the random matrix theory approach in nuclear

reaction physics [31] and can be also found in theoretical

works on quantum transport [23], as well as in the theory

of chemical reactions [28]. By employing such a model, we

assume that the collision complex corresponds classically to

a long, chaotic trajectory that ergodically explores a large

portion of the allowed phase space.

Acknowledging the statistical nature of the short-range

resonance levels, we apply random matrix theory to Ksr based

on the Gaussian orthogonal ensemble (GOE) according to [31].

In particular, we assume that the spectrum Eμ of the resonant

states is determined by a Hamiltonian H GOE that is a member

of the GOE. As such, the nearest-neighbor distribution of the

spectrum satisfies the Wigner-Dyson distribution,

P (sμ) ≡ P (s) =
π

2
se−πs2/4, (15)

where sμ = |Eμ+1 − Eμ|/d is the nearest-neighbor level

spacing in units of the mean level spacing [24]. In practice,

we produce the spectrum Eμ for a given DOS ρ = 1/d by

constructing first a set {sμ} of nearest-neighbor splittings

satisfying Eq. (15) [50]; the spectrum is then given by

Eμ = E0 +
∑μ−1

i=1 sμ, where E0 is an appropriately chosen

offset. An exemplary GOE spectrum for Rb + KRb scattering

is reproduced in Fig. 2 along with its nearest-neighbor

distribution.

Since Ksr is expressed in the frame where H GOE is diagonal,

the coupling matrix W becomes a random process itself

[31]. More precisely, its elements are given by uncorrelated,

Gaussian-distributed random variables with mean 0 and

variance ν2
a . Hence, Ŵ̄a = 2πν2

a are the mean zero-order partial

widths. From Eq. (14) we find

ν2
a =

R(0)
a

ρπ2
. (16)

Thus, in order to describe the short-range physics within the

statistical model, it is sufficient to specify the DOS ρ of the

short-range resonances and the mean coupling strength R(0)
a to

the asymptotic channels. In the present work, we will usually

assume R(0)
a = 1 for which the transmission coefficient Ta

between the short- and long-range channels [28,29,31],

Ta =
4R(0)

a
[

1 + R
(0)
a

]2
, (17)

reaches unity. In other words, outbound flux that has left the

collision complex and reaches Rm is assumed to continue out

with unit probability. Some of this flux will later be reflected

back to small R due to details of the hyperfine channels |a〉.
This effect, however, is fully accounted for in MQDT.

Having a unit transmission probability corresponds to

the RRKM limit of transition state theory, reached for

barrierless reactions. In transition state theory, the decay rate

of a metastable state (here, the short-range resonances) is
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FIG. 2. (Color online) Schematic overview (not to scale) of the

origin of the short-range resonances and their distribution. (Bottom)

The atom-molecule potential is modeled by a Lennard-Jones po-

tential, Eq. (19). The resonant channels stem from ro-vibrationally

excited states of the molecule. For ultracold temperatures, the

incident and outgoing scattering channels are restricted to the ground

ro-vibrational state of the molecule. Within this ground state, the

various spin states are treated explicitly by means of MQDT. (Top)

Exemplary short-range spectrum for s-wave collisions of Rb + KRb;

it is constructed to satisfy the Wigner-Dyson distribution for the

nearest neighbors [cf. Eq. (15)].

proportional to the ratio between the number Na of open

channels (here, the asymptotic channels) and the level density

ρ of the metastable states [22]. Indeed, one recovers for the

decay rate k,

k =
∑Na

a=1 Ta

2πh̄ρ
=

Na

2πh̄ρ
= kRRKM, (18)

when Ta = 1 [28]. In general, however, R(0)
a can act as a fitting

parameter to real spectra, revealing further details on the short-

range physics.

C. Ro-vibrational density of states

Having the statistical model for the short-range K matrix

in hand, Eq. (13), the question of computing the mean density

of states itself remains. Since in general we do not know the

short-range potential in detail, it is impossible to calculate

the real atom-diatom ro-vibrational spectrum, which would

give rise to the short-range resonances in question. We thus

pursue the following strategy to get an adequate estimate of

the short-range ro-vibrational density of states ρrv (see also

Fig. 2):

(1) The short-range interaction is approximated by a

Lennard-Jones potential along the reaction coordinate R plus

the centrifugal energy due to the end-over-end rotation angular

momentum L of the atom and the molecule about one another,

V (L)
sr (R) =

C12

R12
−

C6

R6
+

L(L + 1)

2mrR2
. (19)

A fairly realistic estimation of the long-range behavior of

this potential is to assume C6,B+AB = C6,AB + C6,B2
[51]; a

convenient compilation of the C6 coefficients of all alkali-

metal dimers can be found in [52], and we use these here. The

C12 coefficient in Eq. (19) refers to the short-range behavior of

the potential. It can be expressed in terms of the overall depth

De of the potential and the C6 coefficient via C12 = C2
6/4De;

in the present work, we employ the realistic depths De as

calculated in [53]. De refers to the dissociation energy of the

ground-state trimer AB2 into AB + B.

(2) For every partial wave L of interest, we calculate the

bound state energies E(L)
α of V (L)

sr (R). α labels the vibrational

quantum number in R, and each of these states represents a

possible short-range resonance.

(3) Each asymptotic ro-vibrational channel (v,n) can give

rise to such short-range resonance states. With each of

these channels we associate a set of resonance energies

E(L,v,n)
α that is offset by the corresponding channel threshold

(i.e., E(L,v,n)
α = E(L)

α + Ev,n). The total angular momentum

J = L + n is assumed to be conserved in the usual quantum

mechanical way, hence the triangular conditions hold for the

possible combinations of L and n. In particular, for J = 0

(s-wave collisions), only L = n is possible.

(4) All allowed energies E(L,v,n)
α form a total spectrum.

From this spectrum we can extract the mean level spacing

d and the level density ρrv = 1/d associated with the ro-

vibrational resonant states. In doing so, we restrict ourselves to

a certain energy interval centered around the incoming channel

threshold.

(5) The analysis so far does not account for any degeneracy

of the energy levels. We consider the case where only the total
magnetic quantum number M is conserved. Since M = MA +
MB + mf + ML + mn, there are numerous possibilities to

couple to a given total M . These degeneracies are accounted

for when calculating the final DOS.

Specific examples of DOS calculated in this way are

presented in Tables I and II. The former shows the dependence

of the resulting DOS on the maximal ro-vibrational quantum

numbers vmax,nmax used in the estimate; the Rb + KRb

collision is chosen as a particular example. The DOS increases

TABLE I. Ro-vibrational DOS ρrv(mK−1) for 87Rb + 40K87Rb

collisions as a function of the maximal allowed vibrational (rows) and

rotational (columns) quantum numbers. The total angular momentum

J = L + n is assumed to be conserved; the values reported here are

for J = 0, ML + mn = 0. Including more than 25 vibrational and

100 rotational levels does not increase the DOS further.

vmax/nmax 10 20 40 60 80 100

0 0.12 0.23 0.38 0.53 0.66 0.79

2 0.14 0.29 0.57 0.93 1.28 1.61

10 0.17 0.40 0.93 1.65 2.53 3.46

20 0.18 0.46 1.20 2.22 3.46 4.81

25 0.20 0.49 1.29 2.34 3.59 4.94
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TABLE II. Properties characterizing the atom-molecule potential,

Eq. (19), and the resulting ro-vibrational DOS for various atom-

molecule pairs. The DOS are calculated for L = 0. We picked the

isotopes 6Li, 23Na, 40K, 87Rb, and 133Cs. The X 1�+ molecular PES

needed for the calculation of the ro-vibrational states of the AB

molecule are taken from the references provided in the last column.

De C6 ρrv EvdW ρrv

(cm−1) (a.u.) (mK−1) (mK) (units of E−1
vdW) Refs.

Na + LiNa 2872 3015 0.19 0.569 0.11 [54]

K + LiK 2124 6190 0.33 0.184 0.06 [55]

Rb + LiRb 2036 7159 0.76 0.056 0.04 [56]

Cs + LiCs 2502 9785 1.41 0.026 0.04 [57]

K + NaK 1851 6297 1.22 0.150 0.18 [58]

Rb + NaRb 1752 7273 2.73 0.050 0.14 [59]

Cs + NaCs 2186 9910 4.96 0.024 0.12 [60]

Rb + KRb 1684 8798 4.95 0.041 0.20 [61]

Cs + KCs 1821 11752 7.68 0.020 0.16 [62]

Cs + RbCs 1825 12135 12.11 0.017 0.21 [63]

with the number of allowed ro-vibrational levels vmax,nmax and

saturates if a large number of ro-vibrational levels is included.

This saturation is because of the finite sampling interval for

the calculation of the mean DOS: The bound states belonging

to highly excited ro-vibrational molecular levels simply lie

outside the sampling region. We remark that the final densities

of states are rather insensitive to the particular sampling

interval chosen; in the present work, we use an interval of ±5 K

centered at the ro-vibrational ground state. In addition, as can

be seen in Table I, the dependence of ρrv on vmax,nmax is rather

weak. Thus, for example, if atoms in the collision complex can

for some reason only access states up to nmax = 60 rather than

nmax = 100, this would only change our estimate by a factor of

two. In general, we expect something like one ro-vibrational

resonance per mK for s-wave scattering of Rb + KRb. This

estimate assumes that the molecular states of AB are all in

their singlet electronic manifold. We estimate that including

the (much shallower) triplet states would increase the DOS

by ∼ 10%. Therefore, we do not consider these states in the

present work.

We provide similar estimates of ro-vibrational DOS for

various collision partners in Table II, assuming that all

energetically allowed v and n states contribute. We also

include in this table the basic molecular data from which the

DOS estimates were obtained. As one might expect, ρrv is

larger for heavier collision systems. In particular, the DOS

for Cs + RbCs collisions is two orders of magnitude higher

than for the light Na + LiNa collision complex. A useful

way to express ρrv is in units of states per van der Waals

energy EvdW = h̄3(2mr )−3/2C
−1/2

6 ; see also Table II. In this

representation, the larger van der Waals energy scale of lighter

molecules compensates for their smaller number of bound

states. In the end, all considered DOS are roughly the same,

namely, ρrv(E−1
vdW) ≈ 0.1 within a factor of 3.

The DOS provided in Tables I and II are specific examples

for J = 0, for which L = n needs to be satisfied in order to

conserve the total angular momentum J = L + n. For J �= 0,

there are 2J + 1 possibilities for L and n to couple (L = n,

L = n ± 1, . . . , L = n ± J ), and therefore the DOS increases

by approximately the same factor.

We remark that in the above considerations the presence of

nuclear spin degrees of freedom is not taken into account. In

the following subsection we will therefore discuss the possible

influence of the spin on the densities of states.

D. The role of nuclear spins

Thus far we have considered only the density of states due

to rotations and vibrations (i.e., due to the relative motion

of the three alkali-metal atoms) denoted by ρrv. The DOS

will multiply, however, if the nuclear spin degrees of freedom

become involved. To see whether the nuclear spin may change

during the collision, we employ a semiclassical analysis as

follows. Once the collision complex is formed, it lives, on

average, for an amount of time τ that is related to the mean

resonance width by τ = h̄/Ŵ̄. During this time, the nucleus

of any given atom follows a chaotic trajectory through phase

space, according to our ergodic assumption. The nuclear spins

are influenced during this time by a hyperfine Hamiltonian Hhf

that varies in time as the collision complex explores the phase

space. The dominant part of this Hamiltonian arises from the

magnetic dipole interaction of the nuclear spin with the spin of

the electron immediately in orbit above it in the same atom. The

electron spin, however, is subject to fluctuations during this

classical trajectory. We therefore expect that the nuclear spin

experiences a rapidly time-varying change in its Hamiltonian,

δHhf(t).

The magnitude of these fluctuations can be estimated by

the following argument. We regard the collision complex

semiclassically as a repeated set of mini-collisions, occurring

at average time intervals �t . For instance, at one moment

the complex might resemble A + (BC)∗ (i.e., the A atom is

loosely bound to a molecule BC which is excited into some

ro-vibrational state). Because BC is excited, A cannot escape,

but rather returns to collide again. This collision might result

in a different complex, say B + (AC)∗. Consider then the

nucleus attached to atom A. Before this collision, this nucleus

experiences the unpaired electron on the A atom, and hence

essentially the entire hyperfine interaction determined by the

corresponding magnetic dipole constant Ahf [64]. After the

collision, the atom A is locked into a singlet state with atom C,

and the nucleus sees no hyperfine interaction at all, apart from

the modest nuclear quadrupole interaction. Thus, the hyperfine

interaction experienced by any given nucleus in the complex is

effectively switched randomly between full strength and zero,

at random intervals ∼ �t .

Let h̄ω12 denote the energy difference between two nuclear

spin states in the absence of these fluctuations. Then, a nucleus

initially in one of the states will end up in the other at time τ

with a probability amplitude

c(τ ) =
1

ih̄

∫ τ

0

dt eiω12tδHhf(t) =
√

2π

ih̄
δH̃hf(ω12), (20)

in terms of the Fourier transform δH̃hf(ω12). The perturbing

Hamiltonian δHhf(t) will fluctuate on a characteristic time

scale �t , set roughly by the mean collision time of an atom

in the complex with another atom. The Fourier transform

of δHhf(t) is then nonzero only over some finite bandwidth
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� = 2π/�t . To conserve the intensity of the fluctuations over

τ in the time domain and � in the frequency domain, the

root-mean-squared averages of the fluctuation and its Fourier

transform must satisfy

√

〈[δHhf(t)]2〉t
√

τ ≈
√

〈[δH̃hf(ω)]2〉
ω

√
�. (21)

If we assume that the time domain fluctuations are random

white noise, then the power spectrum is approximately

independent of frequency within the bandwidth �. That

is, δH̃hf(ω) = δH̃
(0)
hf = const. and

√

〈[δH̃hf(ω)]2〉ω = δH̃
(0)
hf

correspondingly. In particular, we assign it this value at the

transition frequency, δH̃hf(ω12) = δH̃
(0)
hf . Employing c(τ ) =√

2π/(ih̄)δH̃hf(ω12) and
√

〈[δHhf(t)]2〉t = Ahf/2, we find for

an estimate of the transition probability

P = |c(τ )|2 =

∣

∣

∣

∣

∣

√
2π

ih̄

√

〈[δHhf(t)]2〉t
√

τ

�

∣

∣

∣

∣

∣

2

= π2

(

Ahfτ

h

) (

Ahf�t

h

)

. (22)

The first factor in parentheses denotes the size of the

perturbation, times the length of time it acts, which would be

the probability that a smoothly varying perturbation changes

the spin state. The second factor in parentheses accounts

for the fluctuations on a time scale �t . Once the perturbing

Hamiltonian takes a certain value, the nuclear spin has only

a time �t to respond to this perturbation (i.e., by precessing

around the instantaneous local magnetic field). After time �t ,

the perturbation randomly switches to something else, and the

nuclear spin attempts to follow a new local field. If �t is much

smaller than the nuclear-spin-changing period 2π/ω12 (as it is

in our case), then the nuclear spin has a hard time changing

at all; more rapid collisions actually reduce the transition

probability. On the other hand, if the collisions occur rarely

on the time scale 2π/ω12, then the relevant �t is reciprocal to

the hyperfine interaction itself. In this case, the second factor

in (22) is unity, and we reduce to the familiar case of a slowly

varying perturbation.

Representative values of P in case of s-wave collisions are

given in Table III for some of the atom-molecule pairs we

are considering. For calculating these values, we estimate the

complex lifetime by means of its RRKM value, τ = h̄/Ŵ̄ =

TABLE III. Mean collision time �t [Eq. (24)], lifetime τ , nuclear

spin transition probability P [Eq. (22)], and nuclear spin enhancement

factor Nnuc [Eq. (26)] for various collision complexes in case of L = 0.

�t (s) τ (s) P Nnuc

Na + LiNa 9.1 × 10−12 9.4 × 10−9 6.6 × 10−1 4

K + LiK 1.7 × 10−11 1.6 × 10−8 2.1 × 10−1 9

Rb + LiRb 2.8 × 10−11 3.6 × 10−8 1.2 × 102 4

Cs + LiCs 3.9 × 10−11 6.8 × 10−8 4.3 × 102 4

K + NaK 3.7 × 10−11 5.8 × 10−8 1.7 16

Rb + NaRb 6.4 × 10−11 1.3 × 10−7 9.7 × 102 4

Cs + NaCs 9.1 × 10−11 2.4 × 10−7 1.1 × 103 4

Rb + KRb 1.0 × 10−10 2.4 × 10−7 2.8 × 103 31

Cs + KCs 1.5 × 10−10 3.7 × 10−7 2.8 × 103 91

Cs + RbCs 2.3 × 10−10 5.8 × 10−7 6.9 × 103 4

2πh̄ρrv, where ρrv is the ro-vibrational DOS of the collision

complex as provided in Table II for L = 0.

The mean collision time can be estimated by averaging

over classical trajectories in a pure C6 potential as follows.

The time the atom needs to get out of the collision complex,

climbing the potential Va(R) until the classical turning point

R0 where the kinetic energy vanishes, and then falling back

into the complex, can be approximated by twice the time it

needs to fall from R0 all the way in,

�t0(R0) = 2

∫ R0

0

dR

v(R)
=

√

2mr

C6

R4
0

∫ 1

0

dx

(

1

x6
− 1

)−1/2

=
Ŵ

(

2
3

)

Ŵ
(

1
6

)

√

2πmr

C6

R4
0, (23)

where v(R) =
√

2[E − Va(R)]/mr = R3
0

√
2C6/mr

√

R6
0/R

6 − 1 is the atom’s classical velocity as a function of

R. The mean collision time �t follows from averaging over

all turning points, starting at the equilibrium position Re of

the potential up to some maximal Rmax,

�t = (Rmax − Re)−1

∫ Rmax

Re

dR0�t0(R0)

=
1

5

Ŵ
(

2
3

)

Ŵ
(

1
6

)

√

2πmr

C6

(1 − Re/Rmax)−1R4
max. (24)

The outermost turning point considered, Rmax =
(C6/2Bdimer

rot )1/6, is reached if the collision complex

scatters into the energetically lowest closed channel, which

is the first rotationally excited state of the molecule with

E = −2Bdimer
rot . Explicit values of �t for various molecules

cover the nanosecond to picosecond regime (cf. Table III).

Using a pure C6 potential as in Eq. (23) instead of our model

Lennard-Jones potential and integrating all the way to zero

instead of stopping at Re is an excellent approximation; in the

case of Rb + KRb, for example, the introduced error is less

than 1%.

In cases where P is of order unity or larger (typical for heavy

molecules), the nuclear spin is almost certain to change during

the lifetime of the complex. Therefore, the nuclear spin degree

of freedom also contributes to the total DOS. For constructing

our statistical models we would then use

ρ = ρrvNnuc, (25)

where Nnuc denotes the number of nuclear spin states. The

latter is determined via

Nnuc =
L

∑

ML=−L

f (M,ML), (26)

where f (M,ML) is the number of possible spin states

|MAMBf mf 〉 that conserve the total magnetic quantum

number M for a given ML. We remark that in principle the

ro-vibrational DOS ρrv also depends on ML; however, this

dependence is negligible such that Eq. (25) is a valid approx-

imation. Specific examples of Nnuc are listed in Table III. In

calculating Nnuc we include all hyperfine states of the atom but

restrict ourselves to singlet molecular states. Triplet molecular

states lead to excited electronic quartet and doublet states of
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the triatomic collision complex which are connected to the

considered doublet ground state via avoided crossings [6]. The

contribution of these states can be assessed by calculating their

DOS at the threshold of the ground-state doublet potential. Our

estimate shows that the overall DOS would increase only on

the order of 10%. Hence, we continue to focus on singlet

molecular states solely.

Our estimate of nuclear spin-changing probability P is

admittedly crude and represents at best an order-of-magnitude

estimate. Nevertheless, all we really need to know is whether

P is likely to be much larger than unity. For heavier molecules,

this appears to be the case, and we will include nuclear spins

in the DOS for our Rb + KRb example below. However, for

some lighter species, such as K + LiK, we expect nuclear spins

to be fairly well conserved during the collision.

The determination of the complex lifetime τ is not influ-

enced by the inclusion of the nuclear spin states since both the

DOS as well as the number of asymptotic channels increase

by the same factor: τ = 2πh̄ρ/Na = 2πh̄(ρrv × Nnuc)/Nnuc =
τ = 2πh̄ρrv.

III. HIGHLY RESONANT SCATTERING NEAR

THRESHOLD

Using the model described above, we now calculate

simulated collision cross sections in the ultralow energy limit.

A. Elastic scattering

We have seen that the density of states can vary widely,

depending on the particular species we consider. For this

reason, in this section we will explore two schematic cases,

where the DOS is either “low” or “high,” meaning few or

many resonant states within the characteristic energy scale

EvdW within which the Wigner threshold laws hold.

For the weakly resonant case, we pick 40K + 6Li40K. For

this particular example, we do not expect nuclear spin states

to be changed (P = 0.2) and hence expect only 0.06 s-wave

resonances per Evdw (cf. Tables II and III). Exemplary elastic

partial wave cross sections up to L = 4 as a function of the

collision energy are shown in Fig. 3; the incident channel is

the absolute ground state of both the atom and the molecule,

so only elastic scattering is possible. As expected from the

low DOS, within the given energy range (up to 2 × EvdW)

resonances are encountered only sporadically and are thus well

resolved. Therefore, the Wigner-law behavior of the elastic

cross sections is evident: σ el ∝ E2L for L = 0,1, and σ el ∝ E3

for L � 2 [65]. We remark that the resonances found in Fig. 3

are determined within our statistical approach and hence are

representative, not predictive. For a quantitative description

of low-resonant cases such as K + LiK a full coupled channel

calculation is necessary, at least to provide a realistic short-

range K matrix; the long-range part then may still be treated

by means of MQDT [12].

Let us now switch to a high DOS, for which the present

theory is intended. As a particular example we choose
87Rb +40 K87Rb collisions [66] for which we expect the

nuclear spin states to be changed during the formation of the

collision complex (P > 1). Because of Eqs. (25) and (26),

the actual DOS depends on the partial wave considered. For
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FIG. 3. (Color online) Elastic partial wave cross sections for

K + LiK collisions; the top panel shows the corresponding cumulative

elastic cross sections. The incident channel is the absolute ground

state; the maximum collision energy is twice the van der Waals energy

scale EvdW.

higher partial waves L, the 2L + 1 projections ML of the

orbital angular momentum allow for a greater variety of spin

and rotational states that conserve a given total magnetic

quantum number M . The resulting DOS for Rb + KRb as a

function of L,ML are tabulated in Table IV. Not only does the

DOS increase rapidly as a function of L, but also all angular

momentum projections ML need to be summed to form the

final partial wave cross section. Since to every ML a different

short-range spectrum is attached, this increases the DOS by

an additional factor of approximately 2L + 1 compared to

the case of a single ML. This rapid increase of the number

of resonances can be observed in Fig. 4(b). As indicated by

Table IV, within one EvdW there are fewer than 10 resonances

for s-wave collisions, over 100 for p-wave collisions, and

already close to 1000 for d-wave collisions.

TABLE IV. Density of states ρ for 87Rb +40 K87Rb collisions as

a function of the partial wave and its magnetic quantum number.

The total magnetic quantum number is always chosen such that the

absolute ground state is included.

L ML ρ (G−1) ρ (μK−1) L ML ρ (G−1) ρ (μK−1)

0 0 5.1 0.15 3 1 226.9 6.76

1 −1 39.9 1.19 3 2 226.9 6.76

1 0 44.2 1.32 3 3 213.7 6.36

1 1 46.2 1.37 4 −4 157.8 4.70

2 −2 85.9 2.56 4 −3 203.1 6.05

2 −1 104.3 3.11 4 −2 248.5 7.40

2 0 117.2 3.49 4 −1 291.0 8.67

2 1 123.6 3.68 4 0 325.0 9.68

2 2 123.6 3.68 4 1 344.7 10.26

3 −3 123.9 3.69 4 2 344.7 10.26

3 −2 158.3 4.71 4 3 325.0 9.67

3 −1 189.3 5.64 4 4 291.0 8.67

3 0 213.7 6.36
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FIG. 4. (Color online) Elastic cross section for Rb + KRb colli-

sions in the absolute ground state. The maximum collision energy is

twice the van der Waals energy scale EvdW. (a) Shows the sum of the

individual partial waves depicted in (b). (c) Provides a comparison

of higher (L � 2) partial wave cross sections including [black lines,

same as in (b)] and omitting [orange(gray) lines] the long-range phase

shift tan δ ∝ k4 due to the C6/R
6 van der Waals dispersion potential.

For ultracold temperatures usually all collision processes

except for s-wave collisions are suppressed. In the case of

highly resonant scattering as we investigate here, however,

there are plenty of resonance peaks due to higher partial waves

[cf. Fig. 4(a)]. Due to the threshold scaling of resonance widths

[67], these events are isolated and should in principle be well

resolvable at the very cold end, Ec ≪ EvdW. Closer to EvdW, on

the other hand, higher partial waves are not as suppressed and

in addition resonances start to overlap. Hence, in this regime

the appearance of the total cross section eventually is no longer

determined by the background scattering cross section with a

few resonances on top of it, but rather by the interplay of many

overlapping resonances.

The increasing number of resonant states with increasing

partial wave is not the whole story, however. As Fig. 4(b)

shows, the number of visible resonances increases from L = 0

to 1 to 2, but fewer resonances appear for L > 2. The reason for

this can again be found in the Wigner threshold laws. Recall

that the elastic scattering phase shifts for a van der Waals

potential have two distinct components. There is a short-range

component δsr ∝ k2L+1, which vanishes faster with energy for

higher partial waves because the incident wave function has an

1µK
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FIG. 5. Elastic s-wave rate constants for Rb + KRb collisions in

the absolute ground state. Depicted is the thermalized rate constant

for a temperature of 1 μK, 10 μK, and 100 μK, respectively (top to

bottom).

ever-greater centrifugal barrier to tunnel through. There is also

a long-range component δlr ∝ k4, which arises from scattering

outside the outer classical turning point of the centrifugal po-

tential [65]. Since the resonances originate in short-range scat-

tering, they appear in δsr, whereby this part of the cross section

can be dwarfed by δlr for L > 2. To show this more explicitly,

we separate out the short-range contribution in Fig. 4(c); within

the MQDT theory, this amounts to neglecting the eiη terms

in Eq. (10). We therefore conclude that, while the number

of resonances grows rapidly with increasing partial waves,

nevertheless they are unlikely to be observed in the ultracold.

Instead of the elastic cross sections as a function of

collision energy, presented in Fig. 4, in experimental practice

one is more likely to measure scattering rate constants that

are thermally averaged. Moreover, often the temperature is

fixed and, instead, an external magnetic field is varied to

tune the various scattering channels with respect to each

other. For these reasons, we provide in Fig. 5 the thermally

averaged elastic rate constant Kel = 〈v σ el〉 as a function

of magnetic field, again for Rb + KRb. Because of the vast

difference in energy scales, we assume that the short-range

physics is independent of the applied magnetic field. As a

consequence, the collision complex probes the short-range

resonance spectrum with a rate corresponding to the Zeeman

shift of the incident channel (i.e., energies are converted into

magnetic field strengths via E = −μmagB). For the particular

example of 87Rb + 40K87Rb with the absolute ground state as

incident channel, this Zeeman shift is largely determined by

the magnetic moment of the f = mf = 1 ground state of the

rubidium atom (μmag = 0.7 MHz/G). The resulting densities

of states as a function of magnetic field are listed in Table IV;

for s-wave collisions as depicted in Fig. 5, it amounts to five

resonances per Gauss, which still should be experimentally

resolvable.

These resonances will naturally wash out with increasing

temperature. In Fig. 5 we compare the s-wave elastic rate

constant for three different temperatures, namely, 1 μK,

10 μK, and 100 μK. As expected, a higher temperature
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gradually smoothes the sharp resonance peaks found for 1 μK.

Moreover, the few resonances found for s-wave scattering as

a function of collision energy, Fig. 4, have now turned into a

dense spectrum of resonances due to the large Zeeman shift

of the rubidium atom. Since sub-μK temperatures are easily

reached in ultracold alkali-metal experiments, we predict that

individual resonances ought to be observable.

We remark that in principle Fig. 5 shows also Fano-

Feshbach resonances that occur within the ro-vibrational

ground state (i.e., without the need of a highly resonant

short-range part). However, within the magnetic field range

shown in Fig. 5, there are only a few such resonances: The

difference between the last and last but one vibrational level

of Rb + KRb is on the order of 100 mK. The atomic Zeeman

shift is 33.5 μK/G, that is, within 100 G it is unlikely to find

two different vibrational states of the same channel.

B. Onset of Ericson fluctuations

Resolving individual scattering resonances requires that

their mean width Ŵ̄ be less than their mean separation d = 1/ρ.

However, as more open channels become available, the widths

should increase, and when Ŵ̄ > d the scattering should be

in the Ericson regime. For ultracold collisions, adding more

open channels is as simple as preparing the molecules in a

higher-energy hyperfine state. In this section we therefore

explore resonance widths as a function of the number No of

open channels.

In the limit where the mean resonance width exceeds

the mean level spacing, one might expect the spectrum to

become increasingly smooth and featureless. Ericson showed

that surprisingly this is not so [29,30]. Rather, there remains

structure that can be probed via the two-point correlation

function F (�B) (here written in terms of magnetic field

strength),

F (�B) = 〈σ el(B + �B)σ el(B)〉 − 〈σ el(B)〉2, (27)

where the brackets denote the average over B. In the Ericson

regime, this function is predicted to be Lorentzian [29],

F (�B) ∝
1

1 + (�B/Ŵ)2
. (28)

Since in this section we are only concerned with magnetic-

field-dependent cross sections, Ŵ has units of magnetic field

in our case; it easily converts to energy via E = −μmagB,

though. Similarly, we also consider the DOS to be expressed

in the magnetic field domain, as in Table IV.

In nuclear physics, where the number of asymptotic chan-

nels Na ≫ 1, the correlations predicted by Eriscon have been

nicely demonstrated [31]. Ultracold atom-molecule collisions

as in the present work, on the other hand, are an ideal candidate

to investigate the onset of Ericson fluctuations for only a few

asymptotic channels. They possess a large enough DOS for the

statistical arguments to be valid and—most importantly—the

number of relevant asymptotic channels can be very precisely

set by choosing the initial hyperfine states of the colliding

particles. Unlike the treatment in nuclear physics where all

asymptotic channels are considered open (i.e., No = Na), in

ultracold collisions only No of them remain open at infinite

separation of the particles and provide a finite outbound flux
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FIG. 6. (Color online) (a) Onset of Ericson fluctuations in

ultracold Rb + KRb s-wave collisions at a collision energy of 100 nK.

Shown is the mean resonance width (dots and solid line) of elastic

cross sections as a function of the number of open channels. See

text for further details. (Insets) Exemplary elastic cross sections for

No = 2 and No = 9 open channels, respectively. (b) Atomic Zeeman

shift of the scattering channels. The molecular nuclear spin gives rise

to an additional magnetic field dependence which splits each atomic

line into a number of sublevels; on the given scale, these sublevels

are not visible. The channel indices equal the number of open

channels No.

as R → ∞. Therefore, in the context of ultracold collisions,

we are concerned with No rather than Na . Moreover, by

setting the short-range coupling parameter R(0)
a = 1, we might

expect the collision complex to decay with the RRKM rate

Ŵ = ŴRRKM = No/2πh̄ρ [cf. Eq. (18)], where ρ is density of

states per magnetic field interval.

In Fig. 6 we show the mean widths of resonances as

a function of the number of open channels. The value of

the width is extracted from our scattering data as follows.

We consider magnetic-field-dependent elastic s-wave cross

sections for Rb + KRb collisions at a fixed collision energy of

100 nK over the range 0 < B < 100 G. The number of open
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channels No is set by varying the incoming channel from the

absolute ground state of the system (f = mf = 1, MK = −4,

MRb = 3/2) to the highest possible spin state within the

ro-vibrational ground state (f = mf = 2, MK = −2, MRb =
−3/2). We restrict ourselves to the conserved total magnetic

quantum number M = −3/2 that contains the absolute ground

state, which yields in total 31 possible spin states. After

generating a model short-range resonance spectrum Eμ and

width matrix Wμa , we compute the magnetic-field-dependent

elastic cross section for each of the No channels. The mean

width of the resonances encountered in these cross sections

is extracted via their two-point correlation function Eq. (27)

by fitting to the form Eq. (28). This procedure we repeat

for 300 randomly sampled short-range resonance spectra

and width matrices, for each No. To accommodate for the

different DOS seen by different hyperfine states, we employ

ρ = |mf |ρ(mf = 1). A caveat is that, for states with mf = 0,

there is a very weak dependence of the incident threshold on

magnetic field. In this case, only few resonances are seen in the

magnetic field range 0 < B < 100 G, and we cannot extract a

width. Thus, in Fig. 6 no data points are shown for No =5–8

and 21–24.

Figure 6 presents the results of this simulation, showing

the width extracted from Eq. (28) as a function of the number

of open channels. The dots represent the mean value from

300 trials, while the shaded region indicates the 1-σ scatter

among the trials. The widths are scaled by 2πρ such that the

RRKM width Eq. (1) is equal to the number of open channels

[i.e., it results in a unit slope as a function of No (dashed line)].

The width observed in Fig. 6 is unquestionably an increasing

function of No, but grows at a different rate for No � 4 and

for No � 9.

Focusing on No � 4 in Fig. 6, our data shows a slope

significantly smaller than the RRKM value. This can be

explained as follows. Assuming that Eq. (1) is applicable,

resonances begin to overlap when No > 2π . Hence, for No �

4 we are in the regime of isolated resonances where Ŵ is

determined by individual widths and not by the collective

behavior of many overlapping resonances. Nevertheless, we

still find a linear behavior, Ŵ = γNo, whose slope γ is

determined by the Wigner threshold laws.

The widths of nonoverlapping resonances can in principle

be extracted from the short-range K matrix Ksr. More

precisely, Eq. (14) yields a mean resonance width in the

absence of threshold effects of Ŵ̄ = 2/πρ, which is defined

at Rm assuming that particles can freely propagate beyond

this point. Threshold effects, which narrow this width, are

accounted for within our MQDT treatment. For a single open

channel, and while neglecting the potential resonant influence

of closed asymptotic channels, the MQDT transformation (9)

turns into a simple algebraic equation. Employing further the

zero energy limits η → 0 and G → (−1)L+1 [43], the elastic

cross section reads

σ el =
4π

k2

A(k,L)2

[

1 + (−1)L+1K−1
sr

]2 + A(k,L)2
. (29)

For an isolated resonance in the short-range K matrix, Ksr =
−(Ŵ̄/2)/(E − Eres), Eq. (29) yields a Lorentzian shaped

resonance in the elastic cross section with a width of

Ŵ(No = 1) = γ = A(k,L) × Ŵ̄ =
2A(k,L)

πρ
. (30)

The low energy behavior of the MQDT parameter A(k,L) is

known analytically [43,68],

A(k,L)1/2 =
R

L+1/2

vdW Ŵ
(

3
4

− L
2

)

√
π2L−1/2(2L + 1)!!

kL+1/2, (31)

RvdW being the van der Waals length RvdW = (2mrC6/h̄
2)1/4.

For the parameters of Fig. 6 (s-wave, E = 100 nK), we thus

find 2πρ × γ = 0.18. This line is shown as a dotted line in

Fig. 6 for No � 4; it agrees quite well with our numerical

result. Hence, even in the limiting case of isolated resonances,

No < 2π , we find that the RRKM assumption is true: The

decay rate and therefore the width of the resonances scales

with the inverse of the DOS and is proportional to the

number of available outgoing channels. We remark that in

the nonoverlapping regime the two-point correlation function

Eq. (27) is not strictly Lorentzian, and fitting to Eq. (28) is

an approximate approach that introduces uncertainties up to

10%. We continue to use a Lorentzian fit simply for its ease of

application.

For No � 9, the resonances nominally overlap since Ŵ̄/d =
No/2π > 1 in the RRKM formula. If this indeed places us in

the Ericson regime, then the width Ŵ extracted from Eq. (28)

should scale according to 2πρŴ = No, i.e., should form a line

of unit slope in Fig. 6. And indeed this is true, apart from an

offset, as seen in the figure (dotted line for No � 9). The source

of this offset originates in the Wigner-Dyson distribution of

level spacings. Qualitatively, the Wigner-Dyson distribution

discourages levels from being close together. The onset of

overlapping resonances is therefore deferred until higher No.

More quantitatively, it can be understood by employing a

simple model. Instead of the actual cross section, we calculate

the width Ŵout of the correlation function of a model spectrum

that consists of identical Lorentzian resonances of width Ŵin

at different magnetic field values,

σ mod(B) =
∑

μ

1

π

Ŵin/2

(B − Bμ)2 + (Ŵin/2)2
, (32)

whose locations Bμ are distributed according to Eq. (15). We

used the same DOS as in Fig. 6. The result is shown in Fig. 7

(orange dashed line) as a function of the input width Ŵin of

the Lorentzians. For a single resonance, our procedure yields

Ŵout = Ŵin. For nonoverlapping resonances, Ŵin ≪ 1/ρ, this

can be seen in Fig. 7 as well. As the resonances start to overlap,

however, Ŵout starts to deviate from its linear behavior by

showing a smaller width than the input. For a strong overlap,

the linear behavior is recovered again, but now with a constant

offset from unity. This is the same qualitative behavior seen

in Fig. 6. By contrast, if we repeat the model calculation but

now for normally distributed resonances instead of Wigner-

Dyson (solid green line in Fig. 7), the result changes quite

drastically: The width calculated from the correlation function

reproduces the input width. Hence, we attribute the offset of

the calculated widths to the particular statistical properties of

the Wigner-Dyson distributed resonances.
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FIG. 7. (Color online) Influence of the Wigner-Dyson distribution

on the correlation function Eq. (27). Shown is the calculated width

Ŵout of the correlation function as a function of the input width

Ŵin for the Lorentzian model spectrum Eq. (32). (Orange dotted

line) Resonances are distributed according to the Wigner-Dyson

distribution Eq. (15). (Green solid line) The same resonances are

normally distributed. The shaded areas indicate the standard deviation

for the given sample of 30 individual runs.

We remark that the observation of an autocorrelation

function with a Lorentzian shape is a necessary but not a

sufficient condition for the existence of Ericson fluctuations.

As shown, for example, in the case of helium photoionization,

one finds a Lorentzian shape of the autocorrelation function

[69,70]. Looking at the microscopic processes in more detail,

however, this cross section is actually dominated by only a

few, well-defined resonances not in the Ericson regime. The

large number of remaining resonances, that would promote

the DOS into the Ericson regime, are of too small intensity

to contribute to the cross section. In our case, on the other

hand, there is no hierarchy in the intensities and all resonances

contribute similarly, which makes the autocorrelation function

again a good indicator for Ericson fluctuations.

IV. CONNECTION WITH EXPERIMENTS

Our present model of highly resonant scattering makes

various assumptions and is by no means meant as a quantitative

description. As a qualitative guide, however, it does predict

various trends from one molecule to another, and from

one internal hyperfine state to another. In this section we

summarize what might be gleaned from experimental data

as they become available.

A. Density of states

The first and most obvious measurement would be that

of the density of states itself. This is most easily measured,

presumably, by the magnetic field variation of a cross section,

as in Fig. 5. Even in the highly resonant case of Rb + KRb that

we explored in detail, we still anticipate s-wave resonances

spaced an average of ∼ 0.1 Gauss apart, along with perhaps

a smattering of higher-partial wave resonances at sufficiently

low temperature. In fact, Eq. (30) tells us that for one open

channel p-wave resonances at E = 100 nK only possess a

mean width of Ŵ̄ = 4 × 10−7 G, which is below typical exper-

imental resolution. For s-wave resonances, on the other hand,

the required resolution seems experimentally reasonable. For

molecules in their ground hyperfine state, the most likely

observable would be loss due to three-body processes near

each resonance. In this case, one should consider the effect

on observables due to the width of the three-body process, a

task we have not attempted here. Otherwise, measurements of

two-body loss versus field for molecules in their first excited

state would supply a reasonable observable.

Our estimates of the DOS of various collision partners

rely heavily on the assumption that the entire phase space

allowed by conservation of energy and angular momentum is

in fact explored by the collision complex. We have argued

above that the DOS is surprisingly weakly dependent on the

maximum number of vibrational or rotational states populated

(see Table I). Nevertheless, our estimates of both the DOS and

the lifetime of the complex are almost certainly upper limits.

There exists, however, already one experiment that constrains

the DOS, namely, collisions of Rb with ground-hyperfine

state KRb at sub-μK temperatures [66]. To infer a DOS

from this experiment, we assume that there is a universal

Rb + KRb collision rate given by the quantum threshold

model of Ref. [71], K
QT
Rb+KRb = π (2h̄2C6/m3

r,Rb+KRb)1/4. Since

Rb + KRb collisions are stable against reactive losses, the

overall loss rate is given by the above collision rate times

the probability that, during the complex lifetime τ , another

Rb atom hits the complex and destroys it (the Lindemann

mechanism) [22]. This probability is τ times the Rb + KRb2

rate K
QT
Rb+KRb2

= π (2h̄2C6/m3
r,Rb+KRb2

)1/4. As a result, the loss

rate is a quadratic function of the Rb density n(Rb),

Ŵ(KRb) = τ n(Rb)2K
QT
Rb+KRbK

QT
Rb+KRb2

(33)

≈ τ n(Rb)2 × 1021 cm6/s2. (34)

The JILA experiment on KRb emphatically did not measure a

quadratic dependence on the loss rate on n(Rb). Nevertheless,

we can extract an order of magnitude estimate. From Ref. [66]

we infer for a Rb density of n(Rb) ≈ 0.6 × 1012 cm−3 a decay

rate of Ŵ(KRb) ≈ 20 s−1. This sets a rough upper limit to the

complex’s lifetime of τ ≈ 10 ms. What does this mean for the

density of states? Suppose the lifetime τ is set by the RRKM

expression Eq. (1), assuming only one possible exit channel

since both the atom and the molecule are in their ground states.

The upper limit on the density of states is then ρ ≈ 103/μK.

This is a very high density of states, much larger than the

≈ 1/μK we estimate for this case. Hence, the experiment at

least does not contradict our thinking, though it is by no means

a measurement of DOS.

B. Resonance widths

Within the statistical picture we have outlined, there are

patterns in the resonance widths as well as in their distribution.
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A main result, which we believe to be quite general, is the one

in Fig. 6. Namely, the width Ŵ deduced from the two-body

correlation function of a spectrum grows linearly as a function

of the number No of open hyperfine channels. The rate of
growth is, however, different for No < 2π and No > 2π . In

the former case, dŴ/dNo is small and is governed by the

Wigner threshold law. In this case the widths of the individual

resonances may be difficult to extract; observed widths of very

narrow resonances are typically set by the temperature, not the

intrinsic magnetic-field width of the resonance.

Vice versa, in the limit No > 2π , the resonances are not

individually resolved anyway. Here the spectrum becomes

a varying background of Ericson fluctuations, characterized

by the width Ŵ of the two-point correlation function, as in

Eqs. (27) and (28). Determining this Ŵ is presumably an easier

task, experimentally, than locating and measuring the widths

of individual narrow resonances. In such a case, the simplest

version of our model predicts that the DOS can be extracted

from the slope of Ŵ versus the number of open channels, via

dŴ/dNo = (2πρ)−1.

In cases where Ŵ and the DOS ρ are both measured

independently, more information can be determined about

the microscopic scattering system. Then, as in Fig. 6, the

dimensionless quantity 2πρŴ can be directly evaluated as a

function of No. Our basic model predicts that this relation

will be linear with unit slope, but shifted so as to intercept

the No axis at some positive value. This shift is, as we have

argued, a consequence of the Wigner-Dyson statistics of level

spacings. If, on the other hand, the empirical plot of 2πρŴ

versus No intercepts the origin, the resonances are more likely

normally distributed (see Fig. 7). Such data would therefore

provide evidence that the underlying classical dynamics of the

collision complex is not chaotic.

Furthermore, the experimentally determined 2πρŴ versus

No may not have unit slope, but may grow more slowly,

perhaps even nonlinearly. This would indicate that the widths

are narrower than in the “maximal coupling” limit we have

assumed, in which the coupling parameter R(0)
a = 1 for all

asymptotic channels. Determining realistic values of coupling

constants R(0)
a (or equivalently, transmission probabilities Ta)

would further constrain models of how the ro-vibrational

ground state couples to the resonant complex, in ways that

remain to be explored.

C. Likelihood of changing spins

Estimates of the spin-changing probability P are arguably

the weakest point of our discussion above. Here again,

experiments should shed light on the true situation. For

example, if molecules are prepared in their second-lowest

hyperfine state, one could simply directly measure the rate

at which molecules are produced in the lowest state. When the

probability P is of order unity (or higher, in our estimates)

the spin-changing rate constant should be on the order of the

universal rate constant KQT, as described above. However,

when P ≪ 1, as we estimate for Na + LiNa or K + LiK, then

the spin-changing rate is likely smaller by a factor of P . Even

an approximate determination of P in this way would be a

strong and useful constraint on the time scales that govern the

spin-changing dynamics.

The argument for whether or not the spin changes depends

on the DOS. Thus we can also infer useful information from

a direct measurement of the DOS itself. Within our order-of-

magnitude estimates we expect the density of ro-vibrational

states to be nearly universal (i.e., to be something like 0.1

s-wave resonances per characteristic van der Waals energy

EvdW). For heavier molecules with P ∼ 1, we expect the

density of states to be augmented by the number of spin states,

as in Eq. (25). Thus, for example, if the DOS were measured

directly for both K + LiK (where spin does not change) and for

Rb + KRb (where spin can change), both expressed in units of

resonances per EvdW, then their ratio would be

ρ(Rb + KRb)

ρ(K + LiK)
≈ Nnuc(Rb + KRb) = 31. (35)

On the other hand, if it turns out that the spin cannot change

in Rb + KRb either, this ratio is closer to unity. If instead

both collisions freely allow spins to change, then the ratio

would be closer to Nnuc(Rb + KRb)/Nnuc(K + LiK) ≈ 3.4.

Checking this kind of scaling would provide information for

either verifying or refuting our assumptions about whether and

how the spin can change.

V. CONCLUSIONS AND OUTLOOK

In the present work we have formulated a theory for

cold and ultracold atom-molecule collisions that incorporates

the ro-vibrational Fano-Feshbach resonances in a statistical

manner while treating the long-range physics exactly within

MQDT. We provided estimates for the densities of states en-

countered for all nonreactive collisions involving alkali-metal

atoms and heteronuclear alkali-metal dimers. The question

if, during the collision, the hyperfine states of the collision

partners are allowed to change is answered by means of

a semiclassical approach that estimates the lifetime of the

collision complex. As it turns out, we expect all systems

except the very lightest ones to allow for such transitions.

This has a great influence on the scattering process itself since

more resonances are accessible, pushing the cross sections

at ultracold temperatures over the limit from showing few

to many resonances. Exemplary elastic cross sections as a

function of the collision energy are provided for K + LiK

(no hyperfine change) and for Rb + KRb (change in hyperfine

sublevels allowed). For the latter, also thermalized rates as a

function of magnetic field strength for fixed temperature are

shown. Since we assume that the short-range physics—and

therefore also the ro-vibrational resonances—is independent

of external fields, the density of states becomes a function of

magnetic field that is probed by a rate corresponding to the

atomic magnetic moment. This translates the density of states

from just a few within the Wigner threshold limit to many per

Gauss.

One of the intriguing aspects of the considered ultracold

collisions is that the initial states can be very well controlled.

This allows one to tune the number of open channels very

precisely and opens the opportunity to probe the onset of

Ericson fluctuations. The latter are well known in nuclear

physics where one encounters usually a large number of (open)

asymptotic channels. Here, we showed that the scaling law

predicted by Ericson should be nicely observable in ultracold
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atom-molecule collisions. Moreover, by limiting the number of

open channels to a small number, one can switch between being

in the Ericson regime and the regime of isolated resonances.

The Ericson fluctuations only depend on the density of

states and the number of open channels. Since the latter

are fixed by the choice of the initial state, a measurement

of the Ericson fluctuations should in principle allow for

an experimental determination of the density of states—an

intriguing possibility which is the subject of future investiga-

tions. Furthermore, in the present work only elastic processes

are investigated. The extension to inelastic or chemically

reactive ones is straightforward and promises further insights

in the physics of highly resonant scattering.
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J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Phys. Rev.

Lett. 101, 133004 (2008).

[40] K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi,

P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, Phys. Rev.

Lett. 105, 203001 (2010).

[41] J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart,

J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, Nat. Phys. 6, 265
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