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ABSTRACT
In this paper we study the statistics of the realized through-
put of elastic document transfers, accounting for the way
network bandwidth is shared dynamically between the ran-
domly varying number of concurrent flows. We first dis-
cuss the way TCP realizes statistical bandwidth sharing,
illustrating essential properties by means of packet level
simulations. Mathematical flow level models based on the
theory of stochastic networks are then proposed to explain
the observed behavior. A notable result is that first order
performance (e.g., mean throughput) is insensitive with re-
spect both to the flow size distribution and the flow arrival
process, as long as “sessions” arrive according to a Poisson
process. Perceived performance is shown to depend most
significantly on whether demand at flow level is less than or
greater than available capacity. The models provide a key
to understanding the effectiveness of techniques for conges-
tion management and service differentiation.

1. INTRODUCTION
The great majority of current Internet traffic is contained
in TCP connections generated by applications requiring the
transfer of some kind of digital document. This traffic is
elastic and network quality of service is experienced mainly
through the variable throughout achieved by the congestion
control algorithms of TCP. Since this depends on the num-
bers of connections currently sharing the links of the net-
work path, which vary as new flows begin and existing flows
end, throughput performance can only be measured in sta-
tistical terms. In this paper we investigate how throughput
performance depends on available capacity and the volume
and characteristics of offered traffic. The ultimate objective
is to derive provisioning rules and traffic controls accounting
for the way performance depends on demand and available
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capacity. In the interests of simplicity, we ignore the impact
of non-responsive flows and assume all traffic is elastic.
Characteristics of IP traffic at packet level are notoriously
complex (see [17], for example). Arguably, however, these
characteristics are less an exogenous expression of user de-
mand than a result of the closed loop control implemented
by TCP. A study of throughput performance more natu-
rally calls for a characterization of traffic at the level of the
documents whose transfer is necessary to accomplish the
underlying applications (Web page, FTP file, e-mail,...).
The present study focuses therefore on evaluating through-
put performance as a function of the arrival process and
size statistics of flows corresponding to individual document
transfers.
We coin the term “statistical bandwidth sharing” to de-
note a form of statistical multiplexing where the rate of
concurrent traffic streams is adjusted automatically to make
optimal use of available bandwidth. Such sharing is achieved
with a certain degree of fairness when all users implement
TCP. The evaluation of statistical bandwidth sharing per-
formance provides insight into the nature of congestion at
flow level and clarifies the scope for quality of service dif-
ferentiation. Understanding the relation between perfor-
mance, capacity and traffic demand is also necessary for
the development of performance-related network provision-
ing procedures.
There is relatively little work in the literature on the eval-
uation of throughput performance under statistical traffic
assumptions. Heyman et al [12] consider the performance of
a bottleneck link shared by a fixed number of homogeneous
sources alternately emitting documents and remaining in-
active during a random think-time. Their results confirm
that TCP shares link bandwidth fairly and they derive an
analytical model which accurately predicts throughput per-
formance. A notable result is that expected performance
depends only on the means of the document size and think-
time and not on their precise distributions. Berger and Ko-
gan [4] have further explored this model in an asymptotic
heavy traffic regime.
Massoulié and Roberts [25] propose a model similar to
that of Heyman where however the flow arrival process is
Poisson. They identify the underlying fluid flow model as
an M/G/1 processor sharing queue. The Poisson arrival as-
sumption is more appropriate when the considered link re-
ceives traffic from a very large population of users. Kherani
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and Kumar [21] have studied the statistical bandwidth shar-
ing performance realized by TCP and confirm that the pro-
cessor sharing model provides accurate estimates when con-
nection arrivals are Poisson. Bu and Towsley [8] incorporate
a discriminatory processor sharing model in their study of
TCP performance with finite size flows.
De Veciana et al [11] consider statistical bandwidth shar-
ing in a network setting assuming Poisson flow arrivals.
They notably highlight the potential for a form of conges-
tion collapse when demand on any link exceeds capacity. A
recent study by Fayolle et al [13] illustrates the difficulty
of evaluating statistical throughput performance on a path
containing multiple bottlenecks. Bonald and Massoulié [6]
have further explored statistical bandwidth sharing in a net-
work, notably illustrating the impact on stability of certain
service differentiation mechanisms.
The main contribution of the present paper is to show
that previous results, derived using simplified traffic mod-
els, are in fact valid under very general and realistic assump-
tions. The latter consist in supposing flows are grouped in
user “sessions” whose starting times constitute a Poisson
process. Session structure, including the number of flows,
their size and any correlation in successive flow and think-
time statistics, can be perfectly general. To prove this we
apply theorems from the theory of stochastic networks not
hitherto employed in the study of bandwidth sharing perfor-
mance. While the mathematics necessary to demonstrate
the generality of the derived performance results is quite so-
phisticated, it should be emphasized that the results them-
selves have a simple expression and provide clear insights
into the nature of congestion and its impact on quality of
service. We also provide an interpretation of these results
in terms of bandwidth provisioning criteria and examine
the important issue of performance under overload.
We begin by summarizing known characteristics of IP
traffic at packet, flow and session levels. Detailed packet
level simulations are then used to demonstrate how the slow
start and congestion avoidance algorithms of TCP realize
bandwidth sharing on a single bottleneck link. We then
recall results for analytical fluid flow models derived un-
der the assumption of Poisson arrivals and demonstate that
these accurately predict the simulation results. It is in the
following section that we apply results from the theory of
stochastic networks to show how these models can be ex-
tended to account for very general and realistic flow arrival
processes. Application of these models to deduce end-to-
end performance is then discussed. Finally, we consider
statistical bandwidth sharing on an overloaded link, eval-
uating the broad impact of user impatience and reattempt
behavior on realized flow throughput and link goodput.

2. TRAFFIC CHARACTERISTICS
In this section we recall the known statistical characteris-
tics of elastic traffic. Following a discussion on stationarity
we present traffic characteristics in terms of packets, flows
and sessions, respectively.

2.1 A stationary process
Traffic on network links averaged over a period of 5 to 10
minutes typically exhibit systematic variations as depicted

in Figure 1. Intensity variations follow a certain daily pat-
tern with a clearly identifiable busy period. During this
period which can last several hours traffic intensity mea-
sured in bits/sec is approximately constant.
In the following sections we model traffic as a stationary
stochastic process. This means we assume that traffic inten-
sity remains constant for an indefinite period allowing the
estimation of performance criteria as expected values. This
is a classical approximation for which the main justifica-
tion is the “eyeball” constancy of busy period traffic levels.
We expect average performance measures derived under the
stationarity assumption to be good approximations for the
performance actually realized during a particular busy pe-
riod.
Traffic intensity may be interpreted as the product of a
packet arrival rate and the average packet size or in terms
of higher level entities such as flows or sessions, as discussed
below. The stationarity assumption applies equally to the
arrival process of packets, flows and sessions.

Figure 1: Weekly and daily utilization of a 155
Mbit/s link (both directions)

2.2 Packet level characteristics
It is now well known that Internet traffic at packet level
is extremely variable over a wide range of time scales. This
variability is manifested by asymptotic self-similarity and
multi-fractal behavior at time scales smaller than that of
the round trip time. A plausible expanation for self-similarity
is the heavy-tailed nature of the size distribution of trans-
ferred documents while multifractal behavior appears to be
a manifestation of the burstiness induced by TCP conges-
tion control [17, 16].
The complexity of the packet arrival process is such that
it proves very difficult to derive a packet level traffic char-
acterization which is useful for performance modeling. We
note further that most performance measures of interest for
elastic traffic invoke higher level entities like the flow or the
session such that it is more important to be able to describe
traffic in these terms.
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2.3 Flow level characteristics
A flow in the Internet is a loosely defined object repre-
senting a stream of packets having some criteria in com-
mon (IP addresses, port numbers,...). We use the term
somewhat more restrictively to represent the packets cor-
responding to the transfer of a particular document. The
document in question might be a Web page, an in-line ob-
ject, a data file or an MP3 track. The defining feature is
that the flow is manifested by a more or less continuous
stream of packets using a considered network link or path.
The flow may be realized by several overlapping TCP con-
nections pertaining to the same document or by one period
of activity of a sporadically used long-term TCP connec-
tion. It is characterized by its starting time and its size in
bits. It may additionally be qualified by parameters such
as the round trip time (RTT) or other external factors af-
fecting the bandwidth it obtains on a shared link.
Measurements of the size of documents such as Web pages
and FTP files show that their distribution has a heavy tail
[10, 28]. The precise distribution clearly depends on the
type of document considered. A reasonable fit to the form
of the heavy tail is provided by the Pareto distribution:

Pr[size ≤ x] = 1− k

xβ
, for x ≥ k, (1)

with 1 < β ≤ 2, this distribution having a finite mean and
infinite variance. The distribution has the property that a
majority of flows are very small while most of the traffic
in bytes is contained in large flows. We adopt the familiar
shorthand of referring to very short flows as “mice” and to
very long flows as “elephants”.
In many cases flows are generated within sessions. The
flow arrival process thus tends to be bursty and has indeed
been shown to be self-similar in certain cases [28, 15], a
plausible explanation being that the number of flows per
session has a heavy-tailed distribution. It may nevertheless
be appropriate in certain circumstances to suppose flows
arrive according to a Poisson process. This would be the
case, for example, when flows correspond to a large number
of independent sessions and the spacing of flows within a
session is large compared to the average inter-flow interval.

2.4 Poisson session arrivals
As for flows, it is not immediately obvious how one can
unambiguously define a session. Sometimes the session can
be identified with an ISP modem call [16] or an FTP ses-
sion [28]. Some authors have arbitrarily defined a session
by partitioning a set of flows according to the inter-flow
interval: a new session is assumed to start when this inter-
val exceeds a certain threshold [27]. In all cases it is noted
that session arrivals in any period where the traffic inten-
sity is approximately constant are accurately modeled by a
Poisson process. This observation is not surprising since a
Poisson process is known to result from the superposition
of a large number of independent user processes each of low
relative intensity.
For present purposes, we consider a session to be com-
posed of a set of flows whose statistical properties (arrival
time, size,...) are independent of those of flows of any other
session. We also assume that users generate sessions in-
dependently. If traffic intensity is constant and no single

user contributes an excessive amount of traffic, the latter
independence assumption will naturally lead to a station-
ary Poisson session arrival process whenever the number of
users is large. The structure of a session is highly complex
and varies depending on the underlying applications (Web,
e-mail, FTP, etc.). Generically, it is composed of a succes-
sion of flows separated by an interval of inactivity which we
call “think-time”.
In the next two sections we evaluate statistical bandwidth
sharing on an isolated link assuming Poisson flow arrivals.
This assumption simplifies analysis and provides useful in-
sight. In the following section it is shown that most re-
sults derived for Poisson flow arrivals are also true with the
weaker assumption of Poisson session arrivals.

3. BANDWIDTH SHARING REALIZED BY
TCP

To gain insight into the way TCP realizes bandwidth
sharing in statistical traffic, we have conducted a number
of simulation experiments using the ns2 simulator 1. These
simulations illustrate the impact of packet level dynamics
on the performance of bandwidth sharing at flow level, each
flow being here assimilated to a TCP connection.

3.1 Simulation model
The simulated model is very simple consisting of just one
bottleneck link handling packets from a certain number of
TCP connections delivered to the link via a droptail buffer
with a capacity of 50 packets. All packets are 1000 bytes
long and the connections have a maximum receive window
of 40 packets.
Statistical traffic variations result from an assumed Pois-
son connection arrival process and a Pareto size distribution
(1) with parameters β = 1.5 and k = 15 packets. We have
confirmed by other non-reported experiments that the ex-
clusion of very small flows (less than 15 packets) does not
affect the accuracy of reported results.

3.2 Slow start and the response time of “mice”
The response time of very small flows is constrained by
TCP slow start. Even if the flow were alone on the link
its throughput could not increase faster than allowed by a
doubling of the congestion window every RTT. Assume the
RTT is fixed and equal to rtt and that the transmission
time of one packet is tr. Denote by P the bandwidth-delay
product rtt/tr and by W the advertised receive window.
Assume packets are acknowledged individually and that
none are lost.
Let R(n) be the time necessary to transfer and acknowl-
edge n packets. R(n) first increases geometrically until ei-
ther the receive window is attained or the link is saturated
and then increases at constant rate. Consideration of the
schedule of packet emissions yields the following relations
for R(n). For n < n� = 2�log2 min{W,P}�+1,

R(n) = (�log2 n�+ 1)rtt+ (n− 2�log2 n�)tr. (2)

1http://www.isi.edu/nsnam/ns/
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For n ≥ n�,

R(n) =

{
R(n−W ) + rtt, if W < P
R(n− 1) + tr, if W ≥ P

(3)

The throughput n/R(n) thus increases like n/ log2 n be-
fore flattening off and tending to the limit min{W/rtt, 1/tr}
as n→ ∞.

3.3 Congestion avoidance and the throughput
of “elephants”

The response time of very large flows, or elephants, de-
pends more on TCP congestion avoidance than on the ini-
tial slow start phase. As long as the packet loss rate p is
not too high and the receive window is not limiting, the
throughput B achieved by a permanent flow is given by the
approximate relation:

B(p) ≈ K

rtt
√
p

(4)

where K is a constant that depends on second-order statis-
tics of the loss process (K =

√
3/2 for periodic losses); see

[1] and cited references.
When several permanent TCP connections use the same
bottleneck link, the effect of congestion avoidance is to
share the link bandwidth between them. Assuming all flows
experience the same loss probability p, relation (4) suggests
that bandwidth is shared in inverse proportion to RTT. We
have verified this by an ns simulation of 20 connections shar-
ing a link of 10 Mbit/s, 10 with an RTT of 50 ms and 10
with an RTT of 100 ms, together with 1 Mbit/s of on-off
UDP traffic (included to attenuate undesirable synchroniza-
tion effects due to the artificial homogeneity of simulated
connections). Results in Table 1 confirm that on average
the connections indeed share bandwidth in proportion to
RTT and that there is no wasted bandwidth. For these
results we have discarded the initial slow start phase be-
fore calculating the average throughput over a simulated
duration of 1 minute.

RTT Throughput of TCP flows Total
(ms) (Kbit/s) (Mbit/s)
50 646 570 578 605 577 629 642 592 535 667 6.04

100 273 277 376 352 248 320 311 306 252 288 3.00

Table 1: Bandwidth sharing of a 10 Mbit/s link
with persistent UDP and TCP flows

It is possible to invert (4) to derive a relation p(B). In
other words, if B is known then we can deduce the packet
loss rate p. Now, if we assume that TCP is efficient in using
all the link capacity C and that each connection receives a
share inversely proportional to its RTT, we can deduce the
packet loss rate (p = (

∑
K/Crtti)

2). This observation
is significant in that it suggests that it is not necessary to
take account of the complex packet arrival process discussed
in Section 2. The loss rate and the multifractal scaling
behavior both result from the way the congestion avoidance
algorithm shares link bandwidth.

3.4 Statistical bandwidth sharing
Consider now the impact of random fluctuations in the
number of TCP connections. In the rest of the section,
all figures are bubble diagrams with each bubble depicting
the realized throughput of a flow as a function of its size.
The size given on the x-axis is also represented by the cross-
section of the bubbles in order to reflect the relative weights
of mice and elephants.

Non-limiting receive window, same RTT
Figure 2 presents results for a 1 Mbit/s link shared by users
all having the same RTT. The curved envelope appearing in
the top left hand corner is due to the rate limiting effect of
slow start as described in Section 3.2. The figure shows that
flow throughput for mice tends to be highly variable while
that for elephants is more stable. Note that the dispersion
of realized throughputs is roughly symmetrical about a size
invariant mean of around 500 Kbit/s.

Figure 2: Throughput of TCP transfers (1 Mbit/s
link, demand of 500 Kbit/s)

Limiting receive window, same RTT
Figure 3 corresponds to traffic on a link of 10 Mbit/s. In
this case, flow throughput is limited mainly by slow start
and the size of the receive window. An assumed RTT of 100
ms (40 ms maximum queuing delay + 60 ms fixed delay)
with the 40-packet receive window would give a maximum
bandwidth of 3.2 Mbit/s for a very long connection. Real-
ized throughput is mainly limited by the envelope (2) and
(3) which is not strictly defined, however, due to the fact
that RTT is not constant.

Limiting receive window, different RTT
Figure 4 relates to a 10 Mbit/s link shared by two classes
of connections distinguished by their maximum RTT: 50
ms and 100 ms, respectively. Each class contributes a de-
mand of 4 Mbit/s. The darker bubbles correspond to the
longer RTT connections which, as expected, achieve lower
throughput. This discrimination is due both to the differ-
ent slow start envelopes (2) and (3) and to the different
shares obtained in congestion avoidance according to (4).
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Figure 3: Throughput of TCP transfers (10 Mbit/s
link, demand of 5 Mbit/s)

Figure 4: Throughput of TCP transfers with differ-
ent RTT (10 Mbit/s link, demand of 8 Mbit/s)

The throughput of elephants of both types converges to a
value somewhat less than 2 Mbit/s.
Prior to discussing the significance of these results with
respect to statistical bandwidth performance achieved in a
network, we present in the next two sections a number of
mathematical models which help to explain the observed
behavior.

4. MODELING STATISTICAL BANDWIDTH
SHARING

Consider an isolated link of capacity C and assume flows
arrive as a Poisson arrival process of rate λ with a size
drawn independently from a common distribution of mean
σ. Flows are modeled as a fluid whose rate adjusts instantly
in response to changes in the number of flows in progress.

4.1 Fair sharing bottleneck
If all flows have the same RTT, TCP tends to share band-
width equally among the flows in progress, at least for the

larger flows. We assume here that fair sharing is realized
immediately for all flows whatever their size. Let π(n) be
the probability n flows are in progress at an arbitrary in-
stant and let R(s) be the expected response time of a flow
of size s. Let ρ = λσ/C denote the link load and assume
ρ < 1.
With Poisson flow arrivals, the number of flows in progress
behaves like the number of customers in an M/G/1 proces-
sor sharing queue [22] and we have immediately the well
known results:

π(n) = ρn(1− ρ), (5)

R(s) =
s

C(1− ρ) . (6)

Note that R(s)/s is the mean of the inverse of the through-
put received by flows of size s. Thus γ(s) = s/R(s) is
the harmonic mean throughput of flows of size s. For the
present system γ(s) is constant and equal to C(1− ρ). The
latter expression thus also represents the ratio expected size
to expected response time, a measure of overall throughput
performance 2.
It may be verified from the results of Figure 2 that γ(s)
provides a good approximation for the mean throughput
achieved by TCP, C(1− ρ) in this case being precisely 500
Kbit/s. While the mean value constitutes a useful esti-
mate for the throughput of long flows, the distribution for
shorter flows is more widely dispersed. This is not surpris-
ing since the throughput of mice is essentially determined
by the (highly variable) number of flows present at their
arrival. On the other hand, the throughput of elephants,
which use all the capacity not used by other, shorter flows,
is approximately equal to the residual capacity C(1− ρ).
Figure 5 presents results comparable to those of Figure
2 derived from a simulation of the considered fluid system.
Comparison of the figures confirms that the fluid model
yields approximately the same behavior as TCP induced
statistical sharing with the notable exception of the impact
of slow start on the throughput of short flows.
The above formulas are insensitive to the nature of the
flow size distribution. This is a highly significant result
since it shows that first order bandwidth sharing perfor-
mance is largely independent of this traffic characteristic.

4.2 Fair sharing with limited rate
The maximum throughput of flows on a network link is
frequently limited by external constraints such as the user’s
modem speed, server capacity, bandwidth on other network
links or the TCP receive window size, as illustrated in Fig-
ure 3. Assume all users have a common maximum rate limit
r < C. This bandwidth sharing model can be recognized as
a generalization of the processor sharing queue considered
by Cohen in [9]. Corresponding results derived therein for
π(n) and R(s) are as follows:

π(n) = (1− ρ)f(ρ)×
{

m!
n!
( ρC

r
)n−m, for n < m,

ρn−m, for n ≥ m,
(7)

R(s) = s

(
1

r
+

f(ρ)

C(1− ρ) (1− (
C

r
−m)(1− ρ))

)
(8)

2For a discussion of alternative measures of throughput per-
formance see [21].
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Figure 5: Throughput of flows (1 Mbit/s fair shar-
ing link, 500 Kbit/s demand)

where m denotes the integer part of C/r and

f(ρ) =
(Cρ

r
)m/m!

(1− ρ)∑m−1
k=0 (

Cρ
r
)k/k! + (Cρ

r
)m/m!

is the probability the link is saturated.
Again, the mean throughput γ(s) = s/R(s) does not de-
pend on the flow size s. Figure 6 shows how γ depends on
ρ with a rate limit r = C/10. It is clear from the figure
that throughput on a high capacity link for which r  C
is equal to r except when the offered load ρ is very close to
1. We have the approximation: γ ≈ min(r, C(1− ρ)).
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Figure 6: Expected normalized throughput against
offered load in case of fair sharing

The above results are again insensitive to the flow size dis-
tribution. Unfortunately, this convenient property is lost if
we wish to account for the fact that the rate limit is gener-
ally different for every flow and can vary during the trans-
fer, or that bandwidth sharing is not perfectly fair. It is
likely, however, that (8) still provides a good approxima-
tion for the expected response time, at least for elephants.

This may be verified on the simulation results of Figure 4,
for instance. The rate limit imposed by the receive win-
dow W/rtt is equal to 6.4 Mbit/s if rtt = 50 ms and 3.2
Mbit/s if rtt = 100 ms. Corresponding mean throughputs
derived from (8) for each rate limit are 1.9 Mbit/s and 1.6
Mbit/s, respectively. These values correspond reasonably
well to the throughput of elephants as shown in the figure.

4.3 Unequal sharing
In practice, bottleneck bandwidth is not shared perfectly
fairly. One reason is the impact of different round trip
times (see Fig. 4). Another is the fact that some flows may
be transported by more than one TCP connection (e.g.,
with HTTP 1.0). To fully explore the implications of un-
equal sharing is beyond present scope. We note simply that
evaluations using simulation and a discriminatory processor
sharing model [14] reveal the following (see [6, 29]):

• discrimination in realized throughput is significant mainly
at loads close to saturation;

• size dependent throughput γ(s) is roughly the same
for all s except for the very largest documents whose
throughput tends to C(1− ρ);

• throughput performance is roughly insensitive with
respect to the document size distribution;

• naturally, the access rate r plays a significant equal-
izing role when r  C.

These observations suggest that the broad conclusions we
draw from idealized equal sharing models are likely to be
true also under more realistic assumptions of discriminatory
sharing.

Figure 7: Throughput of flows (1 Mbit/s unequal
sharing link, 500 Kbit/s demand, 10:1 bias)

Figure 7 illustrates the imprecise discrimination realized
when flows of two classes of equal intensity share a bot-
tleneck link with 50% load: class 1 flows receive 10 times
the rate of concurrent class 2 flows. Despite this clear bias,
the throughput performance realized by the two classes is
quite close. The mean throughput predicted by the model
of [14] is 690 Kbit/s for class 1 and 390 Kbit/s for class 2
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[6]. Statistical variations obscur this difference, particularly
for mice.

4.4 A transparent backbone link
We finally consider the case where the link capacity C
is very large compared to the external rate limits and such
that it is virtually transparent. By this we mean the prob-
ability of the sum of external rate limits of all flows in
progress exceeding link capacity C is negligibly small. This
assumption is reasonable for the large, moderately loaded
links of major backbone providers.
The number of flows in progress is now unconstrained
by the considered link which appears as an M/G/∞ queue.
Flow duration is thus an independent random variable. Let
θ be the mean duration and ν the mean number of flows in
progress. By Little’s law we have: ν = λθ. The number of
flows in progress has the Poisson distribution:

π(n) =
νn

n!
e−ν , for n = 0, 1, .... (9)

Formula (9) is true for any flow duration distribution and
thus for an arbitrary flow size distribution and rate limit.

5. ACCOUNTING FOR THE REAL FLOW
ARRIVAL PROCESS

In this section we show that most of the analytical results
derived above for Poisson flow arrivals also apply under
much more realistic traffic assumptions. Our models apply
to a fair sharing bottleneck link, with or without a common
rate limit, or a transparent backbone link, as introduced in
the previous section.

5.1 A stochastic network
The succession of document transfers and think-times
constituting a session may be represented as a customer
visiting two stations in a stochastic network of the kind
considered notably by Kelly [19]3 (see Figure 8). The first
and last station to be visited is the link, and successive
visits to the link are separated by a visit to a think-time
station. Outside arrivals are Poisson and every customer
eventually leaves the network.

time
think 

link

Poisson 
  session arrivals end of session 

 flows 

Figure 8: Flow arrivals modelled as a stochastic
network

An essential characteristic of a customer in a stochastic
network is its “class”. This is a versatile attribute which
3Broadly equivalent results can be derived using the alter-
native formalisms of [2] or [9].

allows us to distinguish different kinds of customer as well
as the number of times the customer has previously visited
the current station. In the present context we use the class
to specify just the distribution of the customer’s current
service requirement and, either the fact that it leaves the
network when it finishes that service, or the class it will
acquire at the next station to be visited. In general, the
customer changes class when it changes station.
Recall that the considered bottleneck or transparent back-
bone links have the property that, if customer arrivals are
Poisson, the distribution of the number of customers present
is insensitive to the form of the distribution of service re-
quirements. The station representing the think-time also
has this insensitivity property. In the terminology intro-
duced by Kelly, all network stations are “symmetric queues”
[19, Chapter 3].
The latter property coupled with the assumed class mech-
anism and Poisson customer arrivals from outside allows us
to deduce that Theorems 3.7 and 3.10 in [19] apply to the
considered network. Among other results, these theorems
state that the distribution of the number of customers at
each station is distributed as if all customer arrivals, in-
cluding repeated visits, constitute a Poisson process. The
implication for statistical bandwidth sharing performance is
that as long as session arrivals are Poisson, the distribution
of the number of flows in progress is given by (5), (7) or (9)
for any flow arrival process which can be represented by the
assumed class mechanism. This mechanism is sufficiently
versatile to reproduce most of the observed characteristics
of IP traffic at flow level, as explained below.

5.2 A general ¤ow arrival process
The set of classes is typically very large and may, in gen-
eral, be countably infinite. It is natural, for example, to use
distinct classes to represent different types of session (Web,
FTP, e-mail,...). To distinguish successive flows within a
session it is further necessary to attribute a new distinct
class for each visit to a given station.
The class mechanism can be used to account for a par-
ticular distribution of the number of flows per session. Let
λ be the overall arrival intensity of a particular type of ses-
sion and denote by p(i), for i ≥ 1, the probability a session
contains i flows. We define a distinct class cij , for i ≥ 1 and
j < i, for the jth flow of an i-flow session. Sessions of class
ci1 arrive according to a Poisson process of intensity λp(i)
and mutate through classes ci2, ci3, ..., cii before leaving the
system. The distribution p(i) clearly impacts the nature of
the flow arrival process. It may be shown in particular that
if the distribution p(i) is heavy-tailed then the overall flow
arrival process will be self-similar [7].
The flow size distribution can change depending on its
position in the session. Imagine searching through a series
of Web sites, generating small flows at each click, before
downloading a possibly voluminous document as the last
flow of the session. The flows corresponding to classes cii
(the last visit to the link station) for such sessions would
have a correspondingly larger mean size.
Dependence between successive flow sizes and think-times
can be introduced by further subdividing the number of
distinct session types. Assume for example that the size
of the first flow of a given type of session is drawn from a
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certain distribution and that the ensuing think-time is posi-
tively correlated with this flow size (a user spends more time
looking at a complex Web page, say). This dependence can
be accounted for by distinguishing initial customer classes
according to the size of the first flow with distinct distribu-
tions for the subsequent think-time.
It is not suggested that in practice one would wish to
distinguish so many different classes and sub-classes. The
beauty of the stochastic network result is that the distribu-
tion of the number of flows in progress (of any class) does
not depend on the underlying session structure but only
on the overall mean traffic intensity. The notion of class
is simply a device allowing us to verify this invariance by
applying the above mentioned theorems due to Kelly.

5.3 Expected response time
We have so far only mentioned the insensitivity of the
distribution of the number of flows in progress. The same
property holds for the bottleneck response time results pre-
sented in the previous section.
By Theorem 3.10 in [19], the probability a given customer
in a fair sharing station is of class c is equal to ac/a where
ac is the demand (arrival rate × mean size) due to class c
and a is the overall demand (a = ρC). Suppose now that
class c identifies customers with service requirement s (i.e.,
flows of size s)4 and that their arrival intensity is λc so
that ac = λcs. The expected number of class c customers
present is E[nc] = ac/a × E[n] where E[n] = ∑

n nπ(n) is
the expected total number of customers present in the link
station. Applying Little’s formula, the expected response
time is E[nc]/λc. It may readily be verified by evaluating
this expression with π(n) given by (5) and (7) that we in-
deed have expressions (6) and (8) for the expected transfer
time on a bottleneck link with and without rate limitation,
respectively.

5.4 Finite user population
The Poisson session arrival assumption is appropriate
when the considered link can be used by a very large num-
ber of users. In an access network or LAN it may be more
approriate to account for the finite size of the user popu-
lation. This is the assumption in the studies of statistical
bandwidth sharing by Heyman et al [12] and Berger and
Kogan [4]. The stochastic network approach allows us to
generalize their results to account for more realistic traffic
assumptions.
It is necessary to assume the succession of document
transfers and think-times corresponding to the activity of
a given user constitutes a stationary process. Let σ be the
mean document size and τ the mean think-time. Assume
we have N users, all with the same σ and τ . In the case
of a bottleneck link without rate limitation, the probability
π(n) that n flows are in progress is given by:

π(n) = G(N)
σnτN−n

(N − n)! (10)

where G(N) is a normalization constant. Similar results
are available for the other types of link considered above.
4We suppose for the sake of simplicity that demand from
flows of size s is non-zero.

It is also possible to generalize (10) to account for different
types of user and to mix finite user populations of a certain
type with Poisson arrivals of other sessions of other types.
The only condition is that the flows of all types are treated
equitably.
Theorem 3.12 in [19] for closed stochastic networks shows
that these relations hold true under very general assump-
tions regarding the structure of user activity: sessions of
different types, general distribution for the number of flows
per session, dependencies between successive flow sizes and
think-times,... It is further possible to demonstrate that the
expected response time is again proportional to the docu-
ment size.

5.5 Extensions and generalizations
It is possible to generalize the model in certain directions,
by including limits on the number of flows or sessions in
progress, for example. Of course, as in the case of a link
with Poisson flow arrivals, any modification which removes
the “symmetry” of the assumed sharing policy (unequal
shares, different rate limits,...) immediately destroys the
analytical insensitivity property. It is likely, however, that
an approximate insensitivity will be retained as in the case
of Poisson flow arrivals.

6. END-TO-END PERFORMANCE
It is important, notably when designing provisioning pro-
cedures, to understand how statistical bandwidth sharing
on all the links of a network path combines to determine
end-to-end performance.

6.1 Notions of fairness
First consider the different possibilities for sharing band-
width in a network when the number of connections is fixed.
We represent the network as a set of links L with link l hav-
ing capacity Cl. A route corresponds to a particular subset
of links. Assume we have xr permanent flows on route r
and let Br denote the bandwidth allocated to each of these
flows. The Br must satisfy the capacity constraints:∑

r�l

xrBr ≤ Cl, for l ∈ L. (11)

The issue of what constitutes a fair bandwidth allocation
has been discussed in a number of recent papers [20, 26, 24].
A significant range of fairness notions can be expressed as
the solution to the following optimization problem [26]:

Maximize
∑

r

wrxr
B1−α

r

1− α , subject to constraints (11),
(12)

where α �= 1 is a positive constant and the wr are weights.
This may be considered as a utility maximization problem
with particular interpretations for the utility of individual
allocations. Classical max-min fairness [5] arises in the limit
α → ∞ with weights wr ≡ 1, while weighted proportional
fairness as discussed in [20] occurs as α→ 1. As α decreases
from ∞ towards 0, the different allocations give relatively
less bandwidth to resource intensive long routes.
It is of considerable interest to understand what kind
of allocation is achieved by the congestion avoidance al-
gorithm of TCP. Let pl be the packet loss rate on link l.
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Assuming the pl are small and the receive window does not
limit throughput, expression (4) gives:

Br ≈ K

rttr

√∑
l∈r pl

(13)

Using the fact that pl > 0 implies
∑

r�l xrBr = Cl, it may
readily be verified by applying the Kuhn-Tucker theorem
that the allocation satisfying (13) is the unique solution to
optimization problem (12) with α = 2 and wr = 1/rtt2

r

(see [30] for further discussion on the type of bandwidth
sharing realized by TCP).

6.2 Statistical bandwidth sharing
Assume now that flows on route r arrive at rate λr and
have mean size σr. Let ρl =

∑
r�l λrσr/Cl denote the load

offered to link l. We assume bandwidth is instantaneously
allocated to solve (12) as the xr change. A first question of
interest is that of stability. Not surprisingly, as shown in [6],
the number of flows on each route remains finite provided
the usual traffic condition ρl < 1 for l ∈ L is satisfied 5.

Figure 9: A 3-link linear network

It proves difficult to extend the performance results es-
tablished for an isolated link to the case of a general net-
work. A notable exception is the homogeneous linear net-
work depicted in Figure 9 consisting of L links of capacity
C shared by one end-to-end test route and L single hop
routes. It was shown in [25] that it is possible to calculate
the distribution of the number of flows in progress when
the flow arrival process is Poisson and the bandwidth allo-
cation realizes proportional fairness. The reasoning applied
in Section 5 allows us to affirm that these results are also
true with an assumption of Poisson session arrivals and gen-
eral session structure. The mean throughput γ(s) of flows
of size s on the test route is independent of s. Denoting by
ρr the offered load on this route, we find [6]:

γ =
C(1− ρr)

1 +
∑L

l=1

ρl − ρr

1− ρl

. (14)

Simulations of networks sharing bandwidth according to
different notions of fairness suggest the impact on statistical
performance is slight for α ≥ 1 (i.e., ranging from propor-
tional to max-min fairness). This is illustrated by the re-
sults in Figure 10 pertaining to a 3-link linear network with
the same load on every route. The slight difference disap-
pears almost completely when flows are also constrained
by a maximum rate limit, as shown in the figure for a limit
of r = C/10. The assumption of equal link loading may

5An alternative proof for the case of max-min fairness is
given in [11]

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
xp

ec
te

d 
th

ro
ug

pu
t

Offered load per link

Without rate limit
With rate limit

Figure 10: Expected normalized throughput on the
test route against offered load for max-min fairness
(top) and proportional fairness (bottom)

be considered to constitute a worst case for testing the hy-
pothesis that the fairness notion does not significantly affect
performance. Most network paths will have a clearly iden-
tifiable bottleneck whose bandwidth is shared identically
with any choice of α in (12). As in the case of an isolated
bottleneck, end-to-end throughput is generally well approx-
imated by the expression γ ≈ min(r,minl∈r Cl(1− ρl)).

6.3 Network provisioning
An important conclusion to be drawn from the previ-
ous results is that performance is generally satisfactory in
a classical best effort network as long as link load is not
too close to 100%. While the bandwidth achieved by small
flows may vary widely due to random traffic fluctuations, as
seen in the simulation results in Section 3, the throughput
of a long flow is generally only loosely constrained by the
expected available capacity Cl(1 − ρl). By ensuring that
this is appreciably greater than the limit imposed by the
users’ access network, a backbone link can be made virtu-
ally transparent.
On the other hand, it would be vain for a provider to
make more precise guarantees with respect to throughput
performance. Even when the mean throughput is con-
trolled, performance of individual flows varies widely due
to random fluctuations in the number of concurrent flows,
as illustrated in the simulation results of Sections 3 and
4. In normal load conditions, this statistical effect is at
least as significant as the deterministic discrimination due
to different sharing weights (see Figure 7).

7. PERFORMANCE IN OVERLOAD
While providers generally aim to avoid congestion by ad-
equate provisioning, it is clear that overload can occur on
certain links. This may be due to planning errors, out-
ages, traffic surges or deliberate underprovisioning of costly
transoceanic routes or strategic peering links. We propose
some simple preliminary models for an overloaded link ac-
counting for user impatience and reattempt behavior.
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7.1 Flow level congestion
Flows of mean size σ arrive at a link of capacity C at
mean rate λ. When ρ > 1, the number of flows in progress
tends to increase and their throughput tends to zero since
the arrival rate λ is greater than the average rate of flow
completion. This behavior is illustrated in Figure 11 which
shows results from an ns simulation of a 10 Mbit/s link un-
der 20% overload. The link is empty at time zero and flow
sizes have a Pareto distribution. The dots represent the
throughput realized by flows at the instant of their comple-
tion.

Figure 11: Bandwidth sharing performance during
transient overload

It is interesting to note that the rate of increase in the
number of flows actually depends significantly on the form
of the size distribution [18]. The rate of increase is smaller
as the proportion of mice is greater. The latter manage to
complete although their throughput continues to decrese,
while the response time of elephants tends rapidly to infin-
ity. Thus, the heavy-tailed nature of flow sizes here may be
said to have a positive impact on performance, albeit at the
cost of an unfortunate discrimination against elephants.
Note that the degree of congestion on a network link may
not be easy to detect simply by observing the packet arrival
process. The packet arrival rate is controlled by TCP, ide-
ally to a value close to the service rate, even though the
number of contributing flows may be increasing rapidly.
Elastic traffic congestion is manifested essentially at flow
level rather than at packet level.

7.2 Impatience
In a real network, if demand exceeds capacity, the number
of flows in progress does not increase indefinitely. As per-
flow throughput decreases some flows or sessions will be
interrupted, due either to user impatience or to aborts by
TCP or higher layer protocols. In the following we use the
term impatience for all causes of premature abandon.
We are unaware of any published statistics on user im-
patience. The phenomenon is clearly very difficult to ob-
serve in practice, notably because all flow aborts are not in
reaction to excessive response time and because most im-
patience is manifested by the interruption of a session and
may not be detectable as an abnormal event. However, to

gain some insight into the phenomenon we propose below
a simple hypothetical model.
We suppose a flow of size s will be interrupted if and
when its response time exceeds a patience duration δ(s). It
seems natural to assume that δ is an increasing but concave
function of s since users have a response time expectation
which increases with the flow size but need proportionally
more throughput. We have observed in simulations that
such impatience causes the number of flows in progress on
a large capacity link to stabilize and vary slightly about a
certain mean value. To simplify we assume here that the
number is exactly constant so that each flow receives the
same bandwidth share θ. A flow of size s is then completed
if and only if s ≤ θδ(s).
It follows from the concavity of δ that there exists a crit-
ical flow size s� satisfying s� = θδ(s�) such that any flow
of size smaller than s� is completed while all the others are
aborted. We can determine θ by arguing that, since the
link is always saturated, we must have:

C = λ

∫ ∞

0

min(s, θδ(s))dF (s) (15)

where F (s) is the flow size distribution. The following sim-
ple closed formula may be derived from (15) in the partic-
ular case of Pareto distributed flow sizes (1) and constant
patience duration, δ(s) = δ:

θ =
k

δ

(
ρ

β(ρ− 1)
) 1

β−1

. (16)

It is further possible in this case to derive the link goodput

U = λ
∫ s�

0
sdF (s)/C, i.e., the fraction of link capacity used

by flows that are effectively completed:

U = 1− (β − 1)(ρ− 1) (17)

Note that link goodput may be equal to zero, meaning all
flows are interrupted, in the extreme situation where the
overload exceeds 1/(β − 1)× 100%.
This model provides some useful insights into the impact
of congestion. The results for constant patience are quali-
tatively representative of evaluations performed with differ-
ent patience functions δ(s). Both realized throughput and
link goodput deteriorate with increasing load, but are oth-
erwise independent of link capacity. Realized throughput
also decreases as users become more patient while goodput
stays the same. On the other hand, confirming the positive
impact of a heavy-tailed size distribution noted in Section
7.1, both throughput and goodput improve as β decreases
from 2 to 1. This is explained by the fact that impatience
discriminates against elephants and interrupts these large
flows after only a small fraction of their data has been tran-
ferred.

analysis ns simulation
patience throughput goodput throughput goodput
10 s 23.8 Kbit/s 55% 18.5 Kbit/s 55%
20 s 11.9 Kbit/s 55% 9.9 Kbit/s 51%

Table 2: Per-flow throughput and link goodput dur-
ing sustained overload
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Table 2 compares evaluations of (16) and (17) with the re-
sults of ns simulations under the same impatience assump-
tions for a 1 Mbit/s link under 90% overload.

7.3 Reattempts
Aborted flows are not generally abandoned immediately
as users will frequently make a repeat attempt. The impact
of this behavior is to exacerbate the loss of goodput due to
impatience as it is likely that the reattempts will also be
interrupted. Consider the following simple model.
User behavior is modeled by a size dependent patience
duration as introduced in the previous section. If a user
aborts it reattempts with fixed probability p. Reasoning as
above, in place of equation (15), the maximum completed
flow size s� now satisfies:

C = λ

∫ s�

0

s.dF (s) +
λ

1− p
∫ ∞

s�

θδ(s)dF (s). (18)

Figure 12 plots goodput U against p in the case of a 20%
overload assuming constant patience duration and a Pareto
size distribution.
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Figure 12: Impact of reattempts on link goodput

The figure shows that the loss of goodput can be consid-
erable. While the model is overly simple, it does illustrate
the negative impact user behavior can have in case of over-
load. Network efficiency would gain from a more proactive
reaction to congestion.

7.4 Admission control
An alternative to allowing an overloaded link to stabilize
through impatience is to perform admission control [23].
If flows arriving when the bandwidth they would achieve
is less than an acceptable threshold were rejected imme-
diately, there would be no cause for impatience. The ad-
vantage is that goodput is maintained close to 100% and
is unaffected by reattempts. On the other hand, admission
control would tend to increase the proportion of uncom-
pleted flows since it applies equally to both mice and ele-
phants. Since elephants may well be more important than
mice, this is not necessarily a disadvantage. Indeed, one
advantage of admission control is that it can be applied
selectively with different admission thresholds applying to
different classes of traffic (see [3]).

8. CONCLUSIONS
To evaluate the throughput performance of elastic trans-
fers it is necessary to account for the dynamic nature of
traffic. Traffic variations are most naturally modeled in
terms of flows and sessions rather than packets whose com-
plex arrival process is largely determined by the closed-loop
control of TCP connections. We have demonstrated that
fluid flow statistical bandwidth sharing models can accu-
rately predict the results of ns packet-level simulations.
Using results from the theory of stochastic networks we
have shown, in a number of ideally fair bandwidth sharing
scenarios, that the distribution of the number of flows in
progress and the expected flow throughput have very simple
expressions which are valid under a wide range of realistic
traffic assumptions. These expressions depend essentially
only on expected demand and are independent of such char-
acteristics as the heavy-tailed flow size distribution or the
self-similar flow arrival process. Further evaluations nott
reported here lead us to believe that the broad conclusions
derived under an assumption of ideal fair sharing remain
true under moderate discrimination due to different RTT,
for instance.
The expected flow throughput achieved on a link of ca-
pacity C bits/s with utilization ρ is roughly equal to the
minimum of the residual capacity C(1 − ρ) and any rate
limit arising from external causes such as the bandwidth
available on other links, the user’s modem speed or the
size of the advertised TCP receive window. It follows that
performance is generally satisfactory as long as demand is
somewhat less than capacity (in which case demand is equal
to the measured load Cρ). This justifies the usual provision-
ing procedures based on limiting utilization in the busiest
period while suggesting currently used limits of 60%, say,
may be overly conservative.
The stochastic network models are unstable when de-
mand exceeds capacity (the number of flows in progress
would grow indefinitely). In practice, when overload oc-
curs, network utilization is necessarily stabilized through
user impatience and other reasons for aborting a session
or a flow. Since an incomplete user transaction generally
implies bandwidth wastage, impatience leads to goodput
which may be appreciably less than capacity. According
to a simple model of user behavior, overload also brings
discrimination against larger flows which are less likely to
sustain the resulting low throughput.
We suggest that the key to quality of service is to apply
adequate provisioning procedures coupled with traffic rout-
ing strategies designed to avoid demand overload. There
appears little scope for service differentiation beyond the
two broad categories of “good enough” and “too bad”.
Rather than relying on impatience to stabilize an over-
loaded link leading to quality which is too bad, it would
be preferable to perform admission control at flow or ses-
sion level, maintaining sufficient throughput for admitted
flows and avoiding bandwidth wastage on incomplete trans-
actions.
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[24] L. Massoulié and J.W. Roberts. Bandwidth sharing:
objectives and algorithms. In Proceedings of IEEE
INFOCOM’99, 1999.
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