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We study how closely the optimal Bayes error rate can be approximately
reached using a classification algorithm that computes a classifier by mini-
mizing a convex upper bound of the classification error function. The mea-
surement of closeness is characterized by the loss function used in the estima-
tion. We show that such a classification scheme can be generally regarded as
a (nonmaximum-likelihood) conditional in-class probability estimate, and we
use this analysis to compare various convex loss functions that have appeared
in the literature. Furthermore, the theoretical insight allows us to design good
loss functions with desirable properties. Another aspect of our analysis is to
demonstrate the consistency of certain classification methods using convex
risk minimization. This study sheds light on the good performance of some
recently proposed linear classification methods including boosting and sup-
port vector machines. It also shows their limitations and suggests possible
improvements.

1. Motivation. In statistical machine learning, the goal is often to predict an
unobserved output value y based on an observed input vector x. This requires
us to estimate a functional relationship y ≈ f (x) from a set of example pairs
of (x, y). Usually the quality of the predictor f (x) can be measured by a problem
dependent loss function �(f (x), y). In machine learning analysis, one assumes that
the training data are drawn from an underlying distribution D which is not known.
Our goal is to find a predictor f (x) so that the expected loss of f given below is
as small as possible:

L(f (·)) = EX,Y �
(
f (X),Y

)
,

where we use EX,Y to denote the expectation with respect to the true underlying
distribution D.

In this paper we are mainly interested in binary-classification problems, where
y ∈ {±1}. We also consider the following prediction rule: predict y = 1 if
f (x) ≥ 0, and predict y = −1 otherwise. Note that the decision rule at f (x) = 0
is not important in our analysis. The classification error of f (·) at a point (x, y) is
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given by

I (f (x), y) =


1, if f (x)y < 0,

1, if f (x) = 0 and y = −1,

0, otherwise.

Given a set of training data (X1, Y1), . . . , (Xn,Yn), independently drawn
from D, we may consider finding f (x) in a function class C that minimizes the
empirical classification error

1

n

n∑
i=1

I
(
f (Xi), Yi

)
.(1)

This method can be regarded as a stochastic approximation to the minimization of
the true classification error

L(f (·)) = EX,Y I
(
f (X),Y

)
.(2)

However, due to the nonconvexity of the classification error function I , the
minimization of (1) is typically NP-hard. Recently a number of methods have been
proposed to alleviate this computational problem. The basic idea is to minimize
a convex upper bound of the classification error function I (p, y). For example,
AdaBoost [7] employs the exponential loss function exp(−py) [2, 3, 14, 7], and
support vector machines (SVMs) employ a loss function of the form max(1 −
py,0) [16]. In general, let φ be a one variable convex function. We may consider
the (approximate) minimization in a function class C with respect to the following
empirical risk [In this paper, we only consider an estimation scheme that is
invariant with respect to the transform (p, y) → (−p,−y) for clarity. A more
general formulation without this symmetry can be useful for problems that have
different penalties for errors made on in-class data and errors made on out-of-class
data.]:

1

n

n∑
i=1

φ
(
f (Xi)Yi

)
,(3)

which can be regarded as a stochastic approximation to the true risk

Q(f (·)) = EX,Yφ
(
f (X)Y

)
.(4)

Note that computationally we shall also require that the function class C be a
convex function class. The resulting estimation formulation then becomes a convex
optimization problem which often can be efficiently solved. However, in this paper,
we focus on the analysis of the loss function φ. Consequently, we do not need to
assume that C is a convex function class unless indicated otherwise. Furthermore,
we do not assume that the minimum of the optimization problem can be achieved
by a function in C. As a result, in our analysis we will only consider approximate
minimization over the function class C.



58 T. ZHANG

In the literature, the use of a convex upper bound of the classification error
function has mainly been regarded as a computational heuristic to avoid the
NP-hardness of minimizing the true classification error. The empirical success of
the newly proposed learning methodologies such as boosting and support vector
classification implies that these methods can yield good classifiers although they
do not attempt to minimize the true classification error.

So far, the most influential explanation of their success is the so-called “margin”
analysis. This concept has been used to explain both SVM [16] and boosting [13].
The basic idea is that using convex risk minimization one attempts to separate the
value of f (x) for in-class data and out-of-class as much as possible. However,
in a statistical estimation procedure, one typically encounters two types of error:
one introduced by the bias of the formulation, which we call approximation error,
and the other introduced by the variance of using finite sample size, which we
call estimation error. The margin idea mixes the two aspects together (although
the analysis itself emphasizes estimation error) so that it is not clear which aspect
is the main contribution to the success of these so-called margin maximization
methods. Moreover, from the margin concept, we are unable to characterize the
impact of different loss functions, and we are unable to analyze the closeness of a
classifier obtained from convex risk minimization to the optimal Bayes classifier.

The approach presented in this paper is motivated from a different point
of view given in [7], where the authors observed that one could replace the
exponential loss function φ(v) = exp(−v) in AdaBoost by the logistic regression
loss φ(v) = ln(1 + exp(−v)) to obtain a similar procedure. One justification
of using logistic regression is that logistic regression can be regarded as a
maximum likelihood estimate if the conditional in-class probability η(x) =
P (Y = 1|X = x) can be expressed as 1/(1 + exp(−f (x))) for some f (x) ∈ C.
By the well-known consistency result for the maximum-likelihood estimate for
parametric function classes (under some regularity conditions), we know that it
is possible to achieve the optimal Bayes error rate using logistic regression even
though we do not directly minimize the classification error. However, this point of
view treats logistic regression as a very special loss function which happens to be
a maximum likelihood estimate.

On the other hand, there is no practical evidence that logistic regression
shows any classification performance advantage over some other convex risk
minimization formulations such as support vector machines. It is thus natural
to ask the question whether consistency can also be achieved using other loss
functions. More importantly, we would like to analyze different convex loss
functions and characterize their classification behavior. So far these issues have
not been fully addressed in the literature.

We would like to mention that recently a number of authors have started to
investigate issues related to what we are interested in here. To our knowledge,
Breiman is the first person to consider the consistency issue for boosting type
algorithms. He showed in [4] that in the infinite sample case an arcing-style greedy
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approximation procedure using the AdaBoost exponential loss function converges
to the Bayes classifier. Although the approximation error analysis given in that
paper is closely related to the ideas presented in this paper, it is quite specialized
and does not contain more quantitative results such as Theorem 2.1 of this paper.
Breiman also conjectured the possibility of obtaining similar consistency results
for more general loss functions. This question can be answered using our analysis.
In another related work, Bühlmann and Yu investigated various theoretical issues
for the least squares formulation of boosting [5] and argued that the procedure
can be as effective as other methods. However, unlike this paper, they did not
focus on the approximation error aspect. In fact, we will see later that using
other loss functions, it is possible to improve the approximation property of the
least squares method. At about the same time of this work, Lugosi and Vayatis
studied the consistency issue for certain forms of boosting methods using ideas
similar to what we employ here [9]. However, the framework developed in their
paper is quite different from this work. In particular, they did not study certain
issues discussed here, such as the interpretation of convex risk minimization as
conditional probability estimate and the associated analysis of loss functions.
It is also possible to demonstrate the consistency of boosting-like procedures
using results of this paper. For example, see [10]. For the support vector machine
formulation, Ingo Steinwart independently obtained universal consistency in [15]
using a different approach but without convergence rate results such as those in
Section 4.

The goal of this paper is to study the impact of a convex loss function φ in
an estimation scheme that approximately minimizes (4). We show that similar to
logistic regression, schemes with other convex loss functions may also be regarded
as methods to estimate the true conditional probability η(x) = P (Y = 1|X = x)

although they use different loss-function induced distance metrics [in this respect,
the distance metric for logistic regression is the KL-divergence (relative entropy)]
to measure the closeness. Such loss-function induced distances also characterize
the closeness of the underlying function class C to a Bayes classifier. Although
an estimation scheme with a general convex function φ does not correspond to
a maximum likelihood estimate, consistency results can still be obtained in our
analysis. As concrete examples of our analysis, we are specifically interested in
the following loss functions:

• Least squares: φ(v) = (1 − v)2.
• Modified least squares: φ(v) = max(1 − v,0)2.
• SVM: φ(v) = max(1 − v,0).
• Exponential: φ(v) = exp(−v).
• Logistic regression: φ(v) = ln(1 + exp(−v)).

The above loss functions are of general interest. All of them have been used in
practical applications.
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In statistical estimation, one often encounters a trade-off between the approx-
imation error (bias) and the estimation error (variance). The approximation error
is deterministic and can roughly be characterized as the error of an approximately
best predictor produced by the estimation scheme using an infinite number of sam-
ples. The error can be introduced through the following two factors: (1) the func-
tion class used in the estimation is not powerful enough to represent the best pre-
dictor; (2) the bias inherent to the estimation method (e.g., it may be numerically
unstable, or it may produce a suboptimal predictor even if an optimal predictor is
in the function class). The estimation error is introduced from the use of a finite
number of samples that do not accurately represent the underlying distribution.

In our formulation, approximation error is determined by (4). It can be infor-
mally described as follows: If f (x) ∈ C (approximately) minimizes (4), then the
approximation error is the difference between the classification error of f (x)

and the optimal Bayes error. Clearly, the error is determined by the underlying
distribution D, the function class C and the loss function φ. In this paper we do
not restrict the underlying distribution D or the function class C. Therefore we
shall only focus on the impact of different choices of φ. This analysis allows us to
compare various loss functions under the same conditions.

The general framework for analyzing the approximation error of (4) with a
generic convex loss function φ is presented in Section 2. Specific consequences
of this analysis on loss functions that we are interested in are given in Section 3.

In Section 4, we consider the estimation error resulting from use of a finite sam-
ple size. Specifically, we show that some recently popularized kernel classification
methods are universal in the sense that they can produce predictors with classifica-
tion error that approaches the optimal Bayes error in probability for any underlying
distribution when the sample size n goes to infinity. In order to achieve this, we
need to choose a function class C so that the resulting approximation error us-
ing a convex risk minimization scheme with risk defined in (4) is zero for any
conditional probability density η(x) = P (Y = 1|X = x). Due to the tremendous
expressive power of such a function class, we cannot use C directly in a finite-
sample estimation method that minimizes the empirical risk in (3). Instead, we
consider a complexity regularization approach in a kernel method. The underlying
idea is to decompose the function class C as C = ∪Cn (C1 ⊂ C2 ⊂ · · · ⊂ C) such
that the estimation error of minimizing (4) within Cn approaches zero as n → ∞.
Universality of kernel methods can then be established by appropriately choosing
the complexity regularization parameter for each sample size.

For convenience, throughout the paper we assume that all quantities appearing
in the discussion are measurable whenever necessary.

2. Approximation error under convex risk minimization. In this section,
we study the relationship between the classification error L(f (·)) of a predictor f

and the quantity Q(f (·)) defined in (4).
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We shall rewrite (4) as

Q(f (·)) = EX

[
η(X)φ(f (X)) + (

1 − η(X)
)
φ
(−f (X)

)]
,(5)

where we use η(x) to denote the conditional probability P (Y = 1|X = x).
EX denotes the expectation over input data X. In the following, we will show
that by minimizing Q(·), we also indirectly minimize the classification error.

The classification error of a predictor f (x) can be written as

L(f (·)) = Ef (X)≥0
(
1 − η(X)

) + Ef (X)<0η(X).(6)

Note that we have used Ef (X)≥0 to denote the expectation in the region f (X) ≥ 0.
In other words, Ef (X)≥0 s(X) = EX [s(X)1(f (X) ≥ 0)], where 1(·) denotes the
set indicator function. Ef (x)<0 is similarly defined.

For convenience, we also introduce the notation:

Q(η,f ) = ηφ(f ) + (1 − η)φ(−f ),(7)

where we assume that η ∈ [0,1].
Let R

∗ denote the extended real line (R∗ = R ∪ {−∞,+∞}). We extend
a convex function g : R → R to a function g : R∗ → R

∗ by defining g(∞) =
limx→∞ g(x) and g(−∞) = limx→−∞ g(x). The extension is only for notational
convenience. It ensures that the optimal minimizer f ∗

φ (η) given below is well
defined at η = 0 or 1 for certain loss functions.

DEFINITION 2.1. We define the function f ∗
φ (η) : [0,1] → R

∗ as

f ∗
φ (η) = arg min

f ∈R∗ Q(η,f )

and

Q∗(η) = inf
f ∈R

Q(η,f ) = Q
(
η,f ∗

φ (η)
)
.

Note that f ∗
φ (η) may not be uniquely determined. In such case, we may choose

any f ∗
φ (η) that minimizes the right-hand side. By symmetry, we have Q(η,p) =

Q(1 − η,−p). This implies that if f ∗
φ (η) minimizes the right-hand side, then

−f ∗
φ (1−η) also minimizes the right-hand side. Therefore we may choose f ∗

φ such
that f ∗

φ (1 − η) = −f ∗
φ (η). In the following, we always assume that this condition

holds. In particular, it implies that f ∗
φ (0.5) = 0.

Clearly f ∗
φ (η(x)) minimizes Q(f (x)) in (5) among all measurable func-

tions f (x) by the construction of f ∗
φ . In our analysis, it is convenient to introduce

the following two quantities which are always nonnegative:

�Q(η,f ) = Q(η,f ) − Q
(
η,f ∗

φ (η)
) = Q(η,f ) − Q∗(η),

�Q(f (·)) = Q(f (·)) − Q
(
f ∗

φ (η(·))) = EX�Q
(
η(X),f (X)

)
.
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The second quantity measures the closeness of the risk of a function f (·) defined
in (5) to the optimal risk Q(f ∗

φ (η(·))).
Both f ∗

φ and Q∗ are easy to compute given a convex loss function φ. We list the
following results for formulations that we are specially interested in:

• Least squares: f ∗
φ (η) = 2η − 1; Q∗(η) = 4η(1 − η).

• Modified least squares: f ∗
φ (η) = 2η − 1; Q∗(η) = 4η(1 − η).

• SVM: f ∗
φ (η) = sign(2η − 1); Q∗(η) = 1 − |2η − 1|.

• Exponential: f ∗
φ (η) = 1

2 ln η
1−η

; Q∗(η) = 2
√

η(1 − η).
• Logistic regression: f ∗

φ (η) = ln η
1−η

; Q∗(η) = −η ln η − (1 − η) ln(1 − η).

We are now ready to provide the intuition on why it is possible to obtain a
Bayes classifier through the minimization of (4) which by itself only leads to
an upper bound of the true classification error. Observe that for all of the above
examples of φ, f ∗

φ (η) > 0 when η > 0.5. This implies if we let f (x) = f ∗
φ (η(x))

which minimizes (4), then the corresponding decision rule leads to the Bayes
classifier. Since f ∗

φ (η(x)) minimizes (4) among all measurable functions f (x), if
the function class C contains f ∗

φ (η(x)), we are able to find f (x) ∈ C that achieves
the Bayes classification error.

Although the above intuition is quite simple and clear, there are still a number
of technical issues that need to be resolved. First, f ∗

φ (η(x)) may not be the unique
minimizer of (5). This means that even if f ∗

φ (η(x)) ∈ C, it is still unclear whether
any minimizer of (5) in C leads to the Bayes classifier.

Additionally, we do not require f ∗
φ (η(x)) to be in C; and in general, we do not

require that the minimum of (5) in C can be achieved by an element in C. In this
case, it is necessary to bound the classification error of f (x) in terms of �Q(f (·)),
which is given by the following theorem.

THEOREM 2.1. Assume f ∗
φ (η) > 0 when η > 0.5. Assume there exist c > 0

and s ≥ 1 such that for all η ∈ [0,1],
|0.5 − η|s ≤ cs�Q(η,0).

Then for any measurable function f (x)

L(f (·)) ≤ L∗ + 2c�Q(f (·))1/s,

where L∗ is the optimal Bayes error L∗ = L(2η(·) − 1).

PROOF. Using (6), it is easy to verify that

L(f (·)) − L
(
2η(·) − 1

)
= Eη(X)≥0.5,f (X)<0

(
2η(X) − 1

)+ Eη(X)<0.5,f (X)≥0
(
1 − 2η(X)

)
≤ E(2η(X)−1)f (X)≤0|2η(X) − 1|
≤ 2

(
E(2η(X)−1)f (X)≤0|η(X) − 0.5|s)1/s

.

(8)
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The last inequality follows from the Jensen’s inequality. Using the assumption of
the theorem, we obtain

L(f (·)) − L
(
2η(·) − 1

) ≤ 2c
(
E(2η(X)−1)f (X)≤0�Q

(
η(X),0

))1/s
.(9)

If we can further show that (2η(x) − 1)f (x) ≤ 0 implies Q(η(x),0) ≤
Q(η(x), f (x)), then

E(2η(X)−1)f (X)≤0�Q
(
η(X),0

) ≤ EX�Q
(
η(X),f (X)

) = �Q(f (·)).
Combining this inequality with (9), we obtain the theorem. Therefore, in the
following we only need to prove the fact that (2η − 1)p ≤ 0 implies Q(η,0) ≤
Q(η,p). To see this, we consider the following three cases:

• η > 0.5: By assumption, we have f ∗
φ (η) > 0. Now (2η−1)p ≤ 0 implies p ≤ 0.

Using 0 ∈ [p,f ∗
φ (η)] and the convexity of Q(η,p) with respect to p, we obtain

Q(η,0) ≤ max(Q(η,p),Q(η,f ∗
φ (η))) = Q(η,p).

• η < 0.5: Note that we require f ∗
φ (η) = −f ∗

φ (1−η). Therefore f ∗
φ (η) < 0. Since

(2η − 1)p ≤ 0 implies that p ≥ 0, we have 0 ∈ [f ∗
φ (η),p], which implies that

Q(η,0) ≤ max(Q(η,p),Q(η,f ∗
φ (η))) = Q(η,p).

• η = 0.5: Note that f ∗
φ (η) = 0 which implies Q(η,0) ≤ Q(η,p) for all values

of p.

This completes the proof of the theorem. �

We have made no special effort to ensure that the bound in the above theorem is
as tight as possible. In many practical applications, the conditional probability η(x)

is close to 0 or 1. In this case, if the assumption of the theorem holds with s > 1,
then the assumption will also hold with s = 1 but with a larger constant c. Using
this idea, refined bounds can be easily obtained.

COROLLARY 2.1. Under the assumptions of Theorem 2.1, we have

L(f (·)) ≤ L∗ + 2c inf
δ>0

[(
E|η(X)−0.5|<δ�Q

(
η(X),f (X)

))1/s

+
(

c

δ

)s−1

�Q(f (·))
]
.

PROOF. If |η(x) − 0.5| ≥ δ, we have

|η(x) − 0.5| ≤ δ1−scs�Q(η,0).(10)

Now we can decompose (8) as

E(2η(X)−1)f (X)≤0,|η(X)−0.5|<δ|2η(X) − 1|
+ E(2η(X)−1)f (X)≤0,|η(X)−0.5|≥δ|2η(X) − 1|.
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We can bound the first term by Jensen’s inequality as in the proof of Theorem 2.1,
and the second term using (10). The rest of the proof follows the same argument
as that of Theorem 2.1. �

Theorem 2.1 implies that if we obtain φ by approximately minimizing (5) so
that �Q(f (·)) is small, then the classification error rate of f (·) is close to that
of the Bayes error rate L∗ = L(f ∗

φ (η(·))). In particular, if we can find a sequence
of predictors fk(·) ∈ C such that �Q(fk(·)) → 0, then we are able to achieve a
classification error rate arbitrarily close to that of the Bayes error rate in C by
approximately minimizing (5).

Observe that in Theorem 2.1, both �Q(η,0) and �Q(f (·)) = EX�Q(η(X),

f (X)) rely on the quantity �Q(η,f ) = Q(η,f )−Q∗(η). It is thus worthwhile to
further analyze it. In order to do so, we need the following definition of Bregman
divergence which originally appeared in [1]:

DEFINITION 2.2. For a convex function φ, we define its Bregman divergence
as

dφ(f1, f2) = φ(f2) − φ(f1) − φ′(f1)(f2 − f1).

For a concave function g, the Bregman divergence is defined as

dg(η1, η2) = d−g(η1, η2).

Note that in the above definition, φ′(f ) in general denotes a subgradient of a
convex function φ(f ) at f . A subgradient p∗ of a convex function φ(f ) at p is a
value such that φ(q) ≥ φ(p) + p∗(q − p) for all q (see [11], Section 23). Clearly,
by definition, the Bregman divergence is always nonnegative. However, in general,
a subgradient of a convex function at a point may not always exist, and even when
it exists it may not be unique. To avoid such difficulties, in this paper we only use
Bregman divergence for differentiable convex functions except in Section 4.3. In
this case, subgradient becomes derivative which is uniquely defined.

The following lemma shows that Q∗ is concave, which is useful in our later
discussion.

LEMMA 2.1. Q∗(η) is a concave function of η (η ∈ [0,1]).

PROOF. Consider 0 ≤ η1 ≤ η2 ≤ 1 and t ∈ [0,1]. Let η = tη1 + (1 − t)η2.

Q∗(η) = ηφ
(
f ∗

φ (η)
) + (1 − η)φ

(−f ∗
φ (η)

)
= t

(
η1φ

(
f ∗

φ (η)
)+ (1 − η1)φ

(−f ∗
φ (η)

))
+ (1 − t)

(
η2φ

(
f ∗

φ (η)
) + (1 − η2)φ

(−f ∗
φ (η)

))
≥ t

(
η1φ

(
f ∗

φ (η1)
)+ (1 − η1)φ

(−f ∗
φ (η1)

))
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+ (1 − t)
(
η2φ

(
f ∗

φ (η2)
)+ (1 − η2)φ

(−f ∗
φ (η2)

))
= tQ∗(η1) + (1 − t)Q∗(η2),

where the inequality above follows from the definition of f ∗
φ . �

For any convex function φ, by the definition of f ∗
φ (·), we have the first-order

condition

ηφ′(f ∗
φ (η)

)− (1 − η)φ′(−f ∗
φ (η)

) = 0,(11)

where φ′(p) denotes a subgradient of φ at p. This implies

�Q(η,p) = η
[
φ(p) − φ

(
f ∗

φ (η)
)]+ (1 − η)

[
φ(−p) − φ

(−f ∗
φ (η)

)]
= η

[
φ(p) − φ

(
f ∗

φ (η)
)− φ′(f ∗

φ (η)
)(

p − f ∗
φ (η)

)]
+ (1 − η)

[
φ(−p) − φ

(−f ∗
φ (η)

)− φ′(−f ∗
φ (η)

)(
f ∗

φ (η) − p
)]

= ηdφ

(
f ∗

φ (η),p
)+ (1 − η)dφ

(−f ∗
φ (η),−p

)
.

In the above, �Q(η,p) is expressed using the Bregman divergence of φ. We
may also express �Q(η,p) using the Bregman divergence of Q∗. Assume that
φ and f ∗

φ (η) are differentiable. We have from (11) that for all p = f ∗
φ (η̄), where

η̄ ∈ [0,1],
Q∗′

(η̄) = d

dη̄

[
η̄φ

(
f ∗

φ (η̄)
)+ (1 − η̄)φ

(−f ∗
φ (η̄)

)]
= φ

(
f ∗

φ (η̄)
)− φ

(−f ∗
φ (η̄)

)+ [
η̄φ′(f ∗

φ (η̄)
)− (1 − η̄)φ′(−f ∗

φ (η̄)
)]

f ∗
φ

′
(η̄)

= φ(p) − φ(−p).

We thus have

�Q(η,p) = ηφ(p) + (1 − η)φ(−p) − Q∗(η)

= (η − η̄)
(
φ(p) − φ(−p)

)+ η̄φ(p) + (1 − η̄)φ(−p) − Q∗(η)

= (η − η̄)Q∗′
(η̄) + Q∗(η̄) − Q∗(η)

= dQ∗(η̄, η).

We summarize the above derivations in the following theorem:

THEOREM 2.2. If φ is differentiable, then Bregman divergence dφ is uniquely
defined. We have the equality:

�Q(η,p) = ηdφ

(
f ∗

φ (η),p
)+ (1 − η)dφ

(−f ∗
φ (η),−p

)
.

If furthermore f ∗
φ is differentiable, then Q∗ is also differentiable. Assume that

p = f ∗
φ (η̄). Then

�Q(η,p) = dQ∗(η̄, η).
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The above results are useful for calculating quantities in Theorem 2.1. If we
assume that f ∗

φ is invertible, then its inverse function f ∗
φ

−1(f (x)) can be regarded
as a conditional probability estimate. From �Q(η,p) = dQ∗(η̄, η), we obtain

�Q(f (·)) = EX�Q
(
η(X),f (X)

) = EXdQ∗
(
f ∗

φ
−1

(f (X)), η(X)
)
.

It is clear that by minimizing Q(f (·)) as in (5), we are effectively minimizing the
expected distance of the conditional probability f ∗

φ
−1(f (x)) associated with f (x)

and the true conditional in-class probability η(x). The distance is specified by
the Bregman divergence of Q∗. Intuitively, we try to estimate the true in-class
conditional probability even though the underlying method may not correspond to
a maximum likelihood estimate. The conditional probability information resulting
from a convex risk minimization method is very useful in applications. It can
provide much richer information than the simple binary classification error bound
given in Theorem 2.1.

We would like to mention that different formulations can share the same
form of f ∗

φ which determines the corresponding probability model. However, the
function f ∗

φ does not fully characterize the behavior of the formulation since
the loss function induced distance �Q(η,p) in Theorem 2.2 can still behave
differently.

3. Examples of approximation error analysis. In this section, we apply the
general framework of approximation error analysis outlined in Section 2 to those
loss functions that we are specially interested in. From Theorem 2.1, we can obtain
the following generic classification error bound:

COROLLARY 3.1. Under the assumptions of Theorem 2.1, let

ε1 = inf
f (·)∈C

EX�Q
(
η(X),f (X)

)
.

Assume we find f̂ (·) that approximately minimizes (4) as

Q
(
f̂ (·)) ≤ inf

f ∈C
Q(f (·)) + ε2.

Then

EX�Q
(
η(X),f (X)

) ≤ ε1 + ε2

and

L
(
f̂ (·)) ≤ L∗ + 2c(ε1 + ε2)

1/s.

In the following, we are interested in estimating c, s and �Q(η,f ) for each
formulation.
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3.1. Least squares. We consider the case φ(v) = (1 − v)2. f ∗
φ (η) = 2η − 1.

The subgradient of φ is uniquely determined as φ′(v) = 2(v − 1). The Bregman
divergence of φ is dφ(p1,p2) = (p2 −p1)

2. We thus obtain from Theorem 2.2 that

�Q(η,p) = (2η − 1 − p)2.

Specifically, we have

|η − 0.5|2 = 0.52�Q(η,0).

This implies that we can choose c = 0.5 and s = 2 in Corollary 3.1.
Therefore by using the least squares method for the classification problem, we

attempt to minimize the expected squared difference of the predictor and the condi-
tional in-class probability η(x). This means that (f (x) + 1)/2 (truncated to [0,1])
can be regarded as an approximation to the conditional in-class probability. There-
fore least squares classification can be regarded as a nonmaximum likelihood con-
ditional density estimation method.

3.2. Modified least squares. We consider the case φ(v) = max(0,1 − v)2.
f ∗

φ (η) = 2η − 1. The subgradient of φ is uniquely determined as φ′(v) =
−2 max(0,1 − v). For p1 ∈ [−1,1], the Bregman divergence of φ is

dφ(p1,p2) = (p2 − p1)
2 − max(0,p2 − 1)2.

We thus obtain from Theorem 2.2 that

�Q(η,p) = (2η − 1 − p)2 − η max(0,p − 1)2 − (1 − η)min(0,p + 1)2.

Specifically, we have

|η − 0.5|2 ≤ 0.52�Q(η,0).

This implies that we can choose c = 0.5 and s = 2 in Corollary 3.1.
Since �Q is rather complicated, it is useful to give simplified upper and lower

bounds. Such bounds are given in the lemma below. Using the lower bound, we
can see that

EX

(
2η(X) − 1 − T (f (X))

)2 ≤ ε1 + ε2,

where T (p) truncates p to the interval [−1,1]. Since ε1 in the modified least
squares case is always smaller than the corresponding ε1 for least squares, the
approximation bound for modified least squares is always better than that of least
squares. This implies that in general the modified least squares method can perform
better than least squares for classification problems.

LEMMA 3.1. Let T (p) = min(max(p,−1),1). Then for all p and η ∈ [0,1]
we have

�Q(η,p) = (
2η − 1 − T (p)

)2 + |2η − 1 − T (p)||p − T (p)| |p| + 3

2
.
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This implies the bounds:(
2η − 1 − T (p)

)2 ≤ �Q(η,p) ≤ (
2η − 1 − T (p)

)2 + |2η − 1 − T (p)|(|p| + 1)2

2
.

PROOF. Note that

�Q(η,p) = �Q
(
η,T (p)

)+ Q(η,p) − Q
(
η,T (p)

)
= (

2η − 1 − T (p)
)2 + η

(
max(0,1 − p)2 − max

(
0,1 − T (p)

)2)
+ (1 − η)

(
max(0,1 + p)2 − max

(
0,1 + T (p)

)2)
.

We consider the following three cases:

• p ∈ [−1,1]: Since p = T (p), the lemma holds.
• p > 1: Note that T (p) = 1. We have

�Q(η,p) = (
2η − 1 − T (p)

)2 + (1 − η)
(
(1 + p)2 − (

1 + T (p)
)2)

= (
2η − 1 − T (p)

)2 + |2η − 1 − T (p)|(p − 1)
p + 3

2
.

• p < −1: Note that T (p) = −1. We have

�Q(η,p) = (
2η − 1 − T (p)

)2 + η
(
(1 − p)2 − (

1 − T (p)
)2)

= (
2η − 1 − T (p)

)2 + |2η − 1 − T (p)|(−p − 1)
−p + 3

2
.

Combining the above three cases, we obtain the lemma. �

Using the lemma, we obtain the following result:

COROLLARY 3.2. Consider φ(v) = max(0,1 − v)2. Let T (p) = min(max(p,

−1),1) and

D
(
η(·), f (·)) = EX

(
2η(X) − 1 − T (f (X))

)2
.

Let

ε1 = inf
f ∈C

[
D
(
η(·), f (·)) + 0.5D1/2(η(·), f (·))E1/2

X

(
f (X) + 1

)4]
.

Assume we find f̂ (·) that approximately minimizes (4) as

Q
(
f̂ (·)) ≤ inf

f ∈C
Q(f (·)) + ε2.

Then

EX

(
2η(X) − 1 − T (f (X))

)2 ≤ ε1 + ε2

and

L
(
f̂ (·)) ≤ L∗ + (ε1 + ε2)

1/2.
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PROOF. Using the Schwarz inequality, we obtain

D1/2(η(·), f (·))E1/2
X

(
f (X) + 1

)4 ≥ EX

[|2η(X) − 1 − T (f (X))|(|f (X)| + 1
)2]

.

Now apply Lemma 3.1. We obtain

inf
f ∈C

EX�Q
(
η(X),f (X)

) ≤ ε1.

This proves the corollary. �

If inff ∈C EX(2η(X) − 1 − T (f (X)))2EX(f (X) + 1)4 = 0, then we can
find f ∈ C by approximately minimizing (4) to obtain classifiers that have
classification error arbitrarily close to that of the Bayes error. Roughly speaking,
if η(x) can be approximated as (T (f (x)) + 1)/2 for f (x) ∈ C, then the
modified least squares method gives a good estimate of the conditional in-class
probability η(x). Note that in the case of the least squares method, we require
that η(x) be well approximated by (f (x) + 1)/2 for f (x) ∈ C in order to obtain
a good conditional in-class probability estimate. This shows that in general, the
modified least squares method is superior to the standard least squares method for
classification problems.

3.3. SVM. We consider the case φ(v) = max(0,1−v). f ∗
φ (η) = sign(2η−1).

Since the subgradient of φ at 1 is not uniquely defined, we will directly compute
�Q(f (·)) rather than use Theorem 2.2. It is easy to obtain

�Q(η,p) = η
(
φ(p) − φ

(
f ∗

φ (η)
))+ (1 − η)

(
φ(−p) − φ

(−f ∗
φ (η)

))
= η max(0,1 − p) + (1 − η)max(0,1 + p) − 1 + |2η − 1|.

This implies that

�Q(η,0) = η + (1 − η) − 1 + |2η − 1| = |2η − 1|.
We may set s = 1 and c = 0.5 in Corollary 3.1.

In order to compare the SVM loss with other losses, we need to rewrite
�Q(η,p) in a more intuitive form. In fact, it is not hard to check that

�Q(η,p) =


(p − 1)(1 − η) + (
1 − sign(2η − 1)

)|2η − 1|, p ≥ 1,

|p − sign(2η − 1)||2η − 1|, p ∈ [−1,1],
|p + 1|η + (

1 + sign(2η − 1)
)|2η − 1|, p ≤ −1.

From this formulation, we observe that in order for ε1 = EX�Q(η(X),f (X)) to
be small, the following has to be satisfied on average:

• if η(x) is close to 0.5: f (x) − T (f (x)) is small (where T (p) denotes the
truncation of p to [−1,1], which has been defined earlier);
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• otherwise:
– if |f (x)| ≤ 1: |f (x) − sign(2η(x) − 1)| is small,
– otherwise: |f (x) − sign(2η(x) − 1)||2η(x) − 1 − sign(f (x))| is small.

Roughly speaking, for η(x) not close to 0.5, we require f (x) ≈ sign(2η(x)−1)

but allow f (x) > 1 when η(x) ≈ 1 and allow f (x) < −1 when η(x) ≈ 0. The lat-
ter two conditions correspond to the margin argument which motivated SVM [16]
and has also been used to explain the effectiveness of boosting [13]. Although we
can see that it naturally comes out of the approximation error analysis, the origi-
nal concept was used to bound the estimation error with an emphasis on separable
problems. In fact, one can observe from our analysis that the margin idea is mostly
useful for problems that are nearly separable [η(x) is close to 0 or 1]. It is not very
useful if η(x)(1−η(x)) is not small since if f (x) ∈ C is close to the optimal Bayes
classifier, then f (x) must satisfy the condition f (x) ≈ sign(2η(x)− 1). Therefore
our analysis not only provides a statistical justification for the margin concept for
nearly separable problems, but also shows its limitation in the general case.

Our analysis also shows a significant disadvantage of the SVM formulation for
problems that are not nearly separable. Note that if an SVM performs well, then
it computes a predictor f̂ (x) that has a small value �Q(f̂ (·)). For a point x such
that η(x)(1 − η(x)) is not close to zero, we have f̂ (x) ≈ sign(2η(x) − 1). That
is, f̂ (x) is clustered at ±1. It gives similar values even though the corresponding
conditional in-class probability η(x) can be very different. This implies that the
predictor computed by SVM does not carry any reliable probability information.
By looking at the output f̂ (x) at any given point x, it is difficult to tell
how confident the prediction is. However, such confidence information is often
extremely valuable in practical applications. In this respect, the modified least
squares loss has a significant advantage over the standard SVM loss.

3.4. Exponential loss. We consider the case φ(v) = exp(−v). Note that
f ∗

φ (η) = 1
2 ln η

1−η
and Q∗(η) = 2

√
η(1 − η). f ∗

φ (η) is invertible,

f ∗
φ

−1
(p) = 1

1 + e−2p
.

From Theorem 2.2 and remarks thereafter, we know that 1/(1 + e−2f (x)) can be
regarded as an approximation to the true conditional probability function η(x),
and its closeness to η(x) is measured by the expected Bregman divergence
of 2

√
η(1 − η),

�Q(η,p) = dQ∗(η̄, η) = (η − η̄)(e−p − ep) + 2
√

η̄(1 − η̄) − 2
√

η(1 − η),

where η̄ = 1/(1 + e−2p). This implies that

�Q(η,0) = 1 − 2
√

η(1 − η) ≥ 2(η − 0.5)2.

Therefore we may let s = 2 and c = 2−1/2 in Corollary 3.1.
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It is useful to obtain a lower bound of �Q(η,p) which is more intuitive than
the Bregman divergence of 2

√
η(1 − η). By using a Taylor expansion, we know

that ∃η′ between η̄ and η so that

�Q(η,p) = dQ∗(η̄, η)

= −1

2
Q∗′′

(η′)(η − η̄)2

= 1

4

(
η′(1 − η′)

)−3/2
(η − η̄)2 ≥ 2

(
η − 1

1 + e−2p

)2

.

This lower bound implies that if we can find f̂ (x) ∈ C such that �Q(f̂ (·)) is
small, then the expected squared difference between the estimated conditional
probability 1/(1 + e−2f (x)) and the true conditional probability η(x) is also small.
Although this result is similar to that of (modified) least squares, for practical
problems such that η(x) is close to 0 or 1, the quantity �Q(f̂ (·)) with the
exponential loss can be significantly larger. To see this, we consider the following
scenario: 0.5 ≤ η ≤ η̄ ≤ 1 or 0.5 ≥ η ≥ η̄ ≥ 0. Under this assumption we can obtain
a lower bound of �Q(η,p) as

�Q(η,p)

= (η − η̄)
(

exp(−p) − exp(p)
)+ 2

√
η̄(1 − η̄) − 2

√
η(1 − η)

≥ |η − η̄|( exp(|p|) − 1
)

− 2
√∣∣√η̄(1 − η̄) − √

η(1 − η)
∣∣(√η̄(1 − η̄) + √

η(1 − η)
)

= |η − η̄|( exp(|p|) − 1
)− 2

√
|η̄(1 − η̄) − η(1 − η)|

≥ |η − η̄|( exp(|p|) − 1
)− 2

√|η̄ − η|.
Moreover, a similar upper bound on �Q(η,p) can be obtained without the
assumptions on η and η̄:

�Q(η,p)

= (η − η̄)
(

exp(−p) − exp(p)
)+ 2

√
η̄(1 − η̄) − 2

√
η(1 − η)

≤ |η − η̄| exp(|p|)
+ 2

√∣∣√η̄(1 − η̄) − √
η(1 − η)

∣∣(√η̄(1 − η̄) + √
η(1 − η)

)
= |η − η̄| exp(|p|) + 2

√
|η̄(1 − η̄) − η(1 − η)|

≤ |η − η̄| exp(|p|) + 2
√|η̄ − η|.

Clearly, if f (x) ∈ C has a small �Q(f (·)), then for points such that η(x) ≈ 1
[or η(x) ≈ 0], we require that 1/(1 + e−2f (x)) ≈ 1 [or 1/(1 + e−2f (x)) ≈ 0]. This
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implies that |f (x)| is large. In this case, since exp(|f (x)|) is also large, it becomes
more difficult to achieve a small value of �Q(η(x), f (x)). Additionally, using the
exponential loss, we compute a predictor such that |f (x)| is large when η(x) ≈
0,1, and |f (x)| is small elsewhere. In the limit of zero error, f (x) has to achieve
values of ±∞ if η(x) = 0,1. Such a predictor is clearly not very well behaved.
A similar problem also exists for the logistic regression loss, although to a lesser
degree.

3.5. Logistic regression. We consider the case φ(v) = ln(1 + exp(−v)). Note
that f ∗

φ (η) = ln η
1−η

and Q∗(η) = −η ln η − (1 − η) ln(1 − η). f ∗
φ (η) is invertible,

f ∗
φ

−1
(p) = 1

1 + e−p
.

The logistic transform 1/(1+e−f (x)) of f (x) can be regarded as an approximation
to the true conditional in-class probability η(x). The corresponding estimation
method can be regarded as a maximum likelihood estimate with this probability
model.

In logistic regression, Theorem 2.2 implies that the closeness of 1/(1 + e−f (x))

to η(x) is measured by the expected Bregman divergence of −η ln η − (1 −
η) ln(1 − η), which is essentially the relative entropy between η(x) and 1/(1 +
e−f (x)) (also called KL-divergence),

�Q(η,p) = η ln[η(1 + e−p)] + (1 − η) ln[(1 − η)(1 + ep)] = KL
(
η
∣∣∣∣∣∣ 1

1 + e−p

)
.

This distance measurement is not surprising since it holds for all maximum
likelihood estimation methods.

Let η̄ = f ∗
φ

−1(p) = 1/(1 + exp(−p)). One may obtain a lower bound
for KL(η||η̄) using Taylor expansion: ∃η′ between η̄ and η such that

�Q(η,p) = KL(η||η̄) = −1

2
Q∗′′

(η′)(η − η̄)2

= 1

2η′(1 − η′)
(η − η̄)2 ≥ 2(η − η̄)2.

(12)

In particular,

�Q(η,0) ≥ 2(η − 0.5)2.

Therefore we may let s = 2 and c = 2−1/2 in Corollary 2.1.
The lower bound of KL(η, η̄) in (12) implies that if we can find p̂(x) ∈ C

such that �Q(p̂(·)) is small, then the expected squared difference between
the estimated conditional probability 1/(1 + e−f (x)) and the true conditional
probability η(x) is also small. This result is similar to that of (modified) least
squares. However, logistic regression has a similar problem as the exponential loss
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when η(x) is close to 0 or close to 1: |f (x)| has to be very large in order to
approximate such a value.

In order to compare the logistic regression loss with the exponential loss used
in AdaBoost, we shall derive an upper bound on the KL-divergence in a way that
is similar to the corresponding derivation in the exponential loss case (we do not
attempt to optimize the bound),

�Q(η,p)

= (η − η̄)
(− ln η̄ + ln(1 − η̄)

)− (η̄ ln η̄ − η ln η)

− (
(1 − η̄) ln(1 − η̄) − (1 − η) ln(1 − η)

)
≤ 2

∣∣η − η̄| ln(1 + e|p|) + |(η̄ ln η̄ − η ln η)(η̄ ln η̄ + η ln η)
∣∣1/2

+ ∣∣((1 − η̄) ln(1 − η̄) − (1 − η) ln(1 − η)
)

× (
(1 − η̄) ln(1 − η̄) + (1 − η) ln(1 − η)

)∣∣1/2

≤ 2|η − η̄| ln(1 + e|p|) + 2
√

k|η̄ − η|,
where k is a constant. In the last inequality, we used the following derivation on
the second and the third terms: using Taylor’s expansion, there exists z between
x and y so that

(x ln x)2 − (y lny)2 = 2z ln z(1 + ln z)(x − y) ≤ k|x − y|,
where k = sup0<z≤1 |2z ln z(1 + ln z)|.

By comparing the upper bound of �Q(η,p) for logistic regression and the
similar upper (or lower) bound of �Q(η,p) for the exponential loss, we find that
logistic regression changes the exponential sensitivity exp(|p|) to ln(1 + exp(|p|)
which behaves linearly when |p| is large. This means that if |p| is large, then
�Q(η,p) is likely to be much smaller with the logistic regression loss. Also
note that a predictor f (x) with the exponential loss induces the same conditional
probability estimate as that of the scaled predictor 2f (x) with logistic regression
loss. This implies that the two loss functions share the same probability model
(up to a scaling factor). We conclude from our analysis that logistic regression
loss behaves better than the exponential loss for large |f (x)| which occurs when
η(x)(1 − η(x)) ≈ 0.

3.6. Remarks on different loss functions. Our analysis indicates that all loss
functions considered in this section measure the closeness of a transformation
of f (x) to the true conditional in-class probability η(x). This generalizes the
conditional maximum likelihood estimate where the closeness is measured by
the KL-divergence.

Both logistic regression and exponential losses utilize the logistic transform to
relate a predictor f (x) and the approximate conditional probability it represents.
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However, we show that logistic regression is likely to give a better estimate
when |p| is large. On the other hand, both methods have the same drawback
that |f (x)| has to be very large in order to approximate the true conditional
probability η(x) well when η(x)(1 − η(x)) ≈ 0. This problem occurs for a loss φ

such that the derivative of Q∗ at 0 or 1 is ill-defined since in this case, the Bregman
divergence dQ∗ can be ill-behaved.

In the case of logistic regression, the above phenomenon is related to a
fundamental shortcoming of the maximum likelihood estimate. That is, it is not
a robust rare-event estimator. For example, consider a coin toss experiment with
a head probability of η = 0.999. Consider two models: the first is η = 1, and the
second is η = 0.1. Clearly for most practical purposes (such as classification),
the first model is much more accurate than the second one. However, if we use the
maximum likelihood estimate with a sufficiently large number of samples, then
we will almost always choose the second model since the first model has a large
probability of giving the zero likelihood.

This problem can be easily avoided by using a convex loss φ such that the
derivative of Q∗ is well-behaved. For example, this is true for least squares,
modified least squares and SVM losses. A significant drawback of SVM is that
it approximates the binary-classification decision rule sign(2η(x) − 1), rather
than the conditional probability η(x) itself. This implies that an SVM classifier
tends to give unreliable information on the confidence of its prediction. However,
such information can be crucial for many practical applications. For example, in
principle we cannot directly apply SVMs to a multi-class classification problem
by training separate SVMs to predict each class and choose the class that is
most confidently predicted—this scheme fails at points where the conditional
probabilities for all classes are below 0.5.

We have also studied the least squares method for classification and its
modification. Both methods can provide reliable confidence information since they
directly estimate the conditional probability η(x). In both cases, the conditional
probability estimates are given by (f (x) + 1)/2 truncated to the interval [0,1].
Such an estimate is well-behaved even when η(x)(1 − η(x)) ≈ 0. This is a
significant advantage over logistic regression. We also show that in general the
modified least squares method gives a better approximation to the conditional
probability η(x) than the standard least squares method. Using a similar argument,
we may in fact obtain an even better method with the loss function:

φ(v) =


−4v, v < −1,

(v − 1)2, v ∈ [−1,1],
0, v > 1.

This new loss function, which we call modified Huber’s loss, changes the modified
least squares loss so that it penalizes misclassified points with v < −1 only lin-
early. Using this formula, we can obtain f ∗

φ (η) = 2η − 1 and Q∗(η) = 4η(1 − η).



CONSISTENCY OF CLASSIFICATION METHODS 75

The subgradient of φ is uniquely determined as φ′(v) = max(min(2(v − 1),

0),−4). For p1 ∈ [−1,1], the Bregman divergence is

dφ(p1,p2) = (p2 − p1)
2 − max(0,p2 − 1)2 − min(0,p2 + 1)2.

It is not difficult to check that

�Q(η,p) = �Q
(
η,T (p)

)+ Q(η,p) − Q
(
η,T (p)

)
= (

2η − 1 − T (p)
)2 + 2|2η − 1 − T (p)||p − T (p)|,

where T (p) = min(max(p,−1),1). Obviously this distance metric is better than
that of modified least squares in Lemma 3.1 when |p| is large. This distance
function behaves like that of SVM and logistic regression losses in that all
three are linear in |p| when |p| is large. The new formulation is more attractive
than the support vector formulation since it directly approximates the conditional
probability η(x). In addition, it is better behaved than logistic regression since it
does not require a large value of |f (x)| when η(x) is close to 0 or 1.

4. Universal approximation and consistency. Consider a function class C

and an appropriate convex loss function φ. If inff ∈C �Q(f ), the loss function
induced distance of the conditional in-class probability η(x) to C, is small, then
any f (x) ∈ C that approximately minimizes (4) achieves a classification error
close to the optimal Bayes error. In particular, if the distance is zero, then one
can find a classifier by approximately minimizing (4) with classification error rate
arbitrarily close to that of the Bayes rate.

We call a function class C universal with respect to a convex loss function φ if
any measurable conditional density function η(x) has a distance of zero to C.
Section 4.1 proves a general universal approximation theorem. Examples of
universal function classes are given in Section 4.2.

Given a function class C that is universal, we can find an approximate
Bayes classifier by approximately minimizing (4). Since statistical machine
learning requires the use of finite sample size to approximate the true underlying
distribution, we need to use an estimation method to obtain a sample dependent
predictor f̂n(·) ∈ C such that Q(f̂n(·)) converges to inff ∈C Q(f (·)) in probability.
Section 4.3 discusses a complexity regularization approach to achieve this
convergence. The results demonstrate the universality of some kernel based
classification methods such as support vector machines. However in practice,
one may also use other schemes to achieve this convergence. For example, the
framework developed in this work has been applied in [7] to demonstrate the
consistency of boosting like procedures using a different regularization scheme.

4.1. A universal approximation theorem. We only consider classification
problems in R

d . Although the analysis can be generalized to other measure spaces,
we do not consider them here for simplicity.
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DEFINITION 4.1. Let U ⊂ R
d . We denote by C(U) the Banach space of

continuous functions: U → R under the uniform-norm topology.

DEFINITION 4.2. We call a probability measure µ in R
d regular if it is defined

on the Borel sets of R
d .

Note that in the above definition we have only used a special case of regular
measures in real analysis for which Lusin’s theorem holds.

DEFINITION 4.3. We say a convex function φ : R → R has property A if:

• φ is continuous in R and Q∗ is continuous on [0,1].
• φ(p) < φ(−p) for all p > 0.
• f ∗

φ (η) ∈ (−∞,+∞) and is piecewise continuous in (0,1).

LEMMA 4.1. Assume 0 ≤ δ < 0.5. Let η ∈ [0,1] and ηδ = min(max(η, δ),

1 − δ). If φ has property A, then

Q
(
η,f ∗

φ (ηδ)
) ≤ Q∗(ηδ).

PROOF. Due to the symmetry with respect to the transformation η → 1 − η,
we only need to consider the case η > ηδ > 0.5. The condition φ(p) < φ(−p) for
all p > 0 implies that f ∗

φ (ηδ) > 0, and thus φ(f ∗
φ (ηδ)) − φ(−f ∗

φ (ηδ)) < 0. Let
pδ = f ∗

φ (ηδ). It follows that

Q(η,pδ) = ηφ(pδ) + (1 − η)φ(−pδ)

= ηδφ(pδ) + (1 − ηδ)φ(−pδ) + (η − ηδ)
(
φ(pδ) − φ(−pδ)

)
< Q∗(ηδ). �

We can now prove the following universal approximation theorem:

THEOREM 4.1. Let φ be a convex function which has property A. Consider a
function class C ⊂ C(U) defined on a Borel set U ⊂ R

d . If C is dense in C(U),
then for any regular probability measure µ of x ∈ R

d such that µ(U) = 1, and any
conditional probability P (Y = 1|X = x) = η(x) : Rd → [0,1] (measurable with
respect to µ),

inf
p∈C

�Q(f (·)) = 0,

where (X,Y ) is distributed according to (µ,η).
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PROOF. Given any ε > 0, by the continuity of Q∗ we can find δ ∈ (0,0.5)

such that

sup
|η−η′|≤δ

|Q∗(η) − Q∗(η′)| < ε.(13)

Define

ηδ(x) = min
(

max(η(x), δ),1 − δ
)
,

which is clearly measurable. Also define

Kδ = sup
δ≤η≤1−δ

|f ∗
φ (η)|, Mδ = sup

|z|≤Kδ

|φ(z)| + 1.

Using the assumptions on f ∗
φ and φ, we have Kδ,Mδ < +∞.

Since µ is regular, using Lusin’s theorem in measure theory (e.g., see [12],
page 55), we know that f ∗

φ (ηδ(x)) can be approximated by a continuous function
α′(x) ∈ C(U) such that |α′(x)| ≤ Kδ and P (f ∗

φ (ηδ(x)) = α′(x)) ≤ ε/(2Mδ). This
implies that

EXQ
(
η(X),α′(X)

) ≤ EXQ
(
η(X),f ∗

φ

(
ηδ(X)

))+ ε.

Using Lemma 4.1, and (13), we have

EXQ
(
η(X),f ∗

φ

(
ηδ(X)

)) ≤ EXQ∗(ηδ(X)
) ≤ EXQ∗(η(X)

)+ ε.

This implies that

EXQ
(
η(X),α′(X)

) ≤ EXQ∗(η(X)
) + 2ε.(14)

Since α′(x) is continuous and bounded in U , and φ is continuous, using the
assumption that C is dense in C(U), we can find pc ∈ C such that

sup
x∈U

[∣∣φ(pc(x)
)− φ

(
α′(x)

)∣∣+ ∣∣φ(−pc(x)
)− φ

(−α′(x)
)∣∣] ≤ ε.

This implies that

EXQ
(
η(X),pc(X)

) ≤ EXQ
(
η(X),α′(X)

)+ ε.

Together with (14), we obtain the theorem. �

Note that all convex functions φ considered in this paper have property A.
Therefore from Theorem 2.1, we know that as long as we choose a function class
C ∈ C(U) such that C is dense in C(U), we are able to achieve classification
error arbitrarily close to the optimal Bayes error by approximately minimizing (4)
within C.
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4.2. Universality of some function classes. We consider function classes
R

d → R consisting of linear combinations of functions of the form h(wT x + b),
where w ∈ R

d , b ∈ R, and h : R → R is a fixed continuous function,

Ch =
{

k∑
i=1

αih(wT
i x + bi) :αi ∈ R,wi ∈ R

d, bi ∈ R, k ∈ N

}
.

These types of function classes have been extensively studied in the neural
networks literature in the last ten years. For example, it is well known that
any continuous function on a compact subset of R

d can be uniformly well
approximated by a function in Ch if h is a sigmoidal function. This result means
that two-level neural networks (with sigmoidal activation function h) are universal
approximators. In this paper, we use the following general version of a neural
network universal approximation result which was proved in [8]:

THEOREM 4.2 ([8]). If h is a nonpolynomial continuous function, then Ch is
dense in C(U) for all compact subsets U of R

d .

We should mention that in the original theorem, the density result is stated
for the restriction of C(Rd) to a compact subset U of R

d . However, since any
continuous function in C(U) can be extended to a continuous function in R

d (a
special case of the Tietze extension theorem in topology), the restriction of C(Rd)

to U is equivalent to C(U).
In the following we consider kernel induced function classes. Let K be a

symmetric positive kernel. That is, K(a,b) = K(b,a), and the n × n Gram matrix
G = [K(xi, xj )]i,j=1,...,n is always positive semi-definite. We have the following
definition:

DEFINITION 4.4. Let H0 = {∑L
i=1 αiK(xi, x) :L ∈ N,αi ∈ R}. H0 is an inner

product space with norm defined as∥∥∥∥∥∑
i

αiK(xi, ·)
∥∥∥∥∥ =

(∑
i,j

αiαjK(xi, xj )

)1/2

.

Let H be the closure of H0 under the norm ‖ · ‖. Then H forms a Hilbert space,
called the reproducing kernel Hilbert space of K .

Note that if ‖∑i αiK(xi, ·)‖ = 0, then
∑

i=1 αiK(xi, x) = 0 for all x (other-
wise, the Gram matrix with xi and x will not be positive semi-definite). Therefore
the inner product in the above definition is well defined. In fact, we have the fol-
lowing bound:
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PROPOSITION 4.1. Let K be a symmetric positive kernel. ∀f (x) ∈ H and
variable x

|f (x)| ≤ ‖f (·)‖K(x,x)1/2.

Given a datum x, we can associate it with the function K(x, ·) ∈ H . It is easy to
check that for all f (·) ∈ H : f (x) = 〈f (·),K(x, ·)〉, where we use 〈·, ·〉 to denote
the inner product in H . This fact will be used in the next section. For further
information on reproducing kernel Hilbert spaces, we refer interested readers
to [17].

We now consider kernel functions of the form

Kh([x1, b1], [x2, b2]) = h(xT
1 x2 + b1b2),

where h can be expressed as a Taylor’s expansion with nonnegative coefficients. It
is well known that Kh is a positive definite kernel in this case. An easy way to see
this is by writing Kh(z1, z2) =∑

i ψi(z1)ψi(z2) using Taylor’s expansion: Kh now
acts as an inner product in the so-called feature space [ψi(z)].

We denote by Hh the corresponding reproducing kernel Hilbert space of Kh

in R
d+1. It induces a function class H̄h in R

d with f ∈ Hh → f̄ ∈ H̄h defined by
f̄ (x) = f ([x,1]). Clearly, Ch ⊂ H̄h. Without causing confusion, in the following
we also denote f̄ by f for simplicity,

f (x) = f̄ (x) = f ([x,1]).

4.3. Estimation error and consistency of kernel formulations. Consider the
estimation problem

f̂n = arg inf
f ∈Hh

[
1

n

n∑
i=1

φ
(
f̄ (Xi)Yi

)+ λn

2
‖f ‖2

]
,(15)

where λn > 0 is a small regularization parameter. (Xi, Yi) are training data drawn
from the unknown underlying distribution D. (15) can be regarded as a stochastic
approximation to the minimization of (4).

Although (15) is formulated as an infinite dimensional optimization problem, it
is well known that the computation can be performed in a finite dimensional space
(e.g., see [17, 18]). Let f ⊥ be the orthogonal projection of f onto the subspace
VX spanned by gi(x) = h(XT

i x + 1) ∈ H̄h (i = 1, . . . , n). Then by definition
f (Xi) − f ⊥(Xi) = 〈(f − f ⊥), gi〉 = 0. Since ∀f /∈ VX we have ‖f ⊥‖ < ‖f ‖,
it is easy to observe that f ⊥ always has a smaller objective value in (15) than f if
f /∈ VX. Therefore the optimal solution f̂n must lie in the finite dimensional
space VX . Since the formulation is strictly convex and the right-hand side
approaches infinity as f → ∞, it has a unique finite solution which lies in VX.
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To obtain estimation error on kernel methods, we can use the leave-one-out
analysis. Some relatively general results for kernel methods were obtained in [18].
The following bound is slightly weaker than a corresponding result in [18] but is
easier to prove.

THEOREM 4.3. Let f̂ [k] be the solution of (15) with the kth datum removed
from the training set. Then∥∥f̂n(·) − f̂ [k]

n (·)∥∥ ≤ 2

λnn

∣∣φ′(f̂n(Xk)Yk

)∣∣h(XT
k Xk + 1

)1/2
,

where φ′ denotes a subgradient of φ.

PROOF. The minimizer f̂n of (15) lies in the finite dimensional space VX

spanned by gi(x) = h(XT
i x + 1) ∈ H̄h (i = 1, . . . , n). Using the linear represen-

tation f (Xi) = 〈f,gi〉, and Theorem 23.8 in [11], we know that there exist sub-
gradients φ′(f̂n(Xi)Yi) (i = 1, . . . , n) such that the following first-order condition
holds:

1

n

n∑
i=1

φ′(〈f̂n, gi〉Yi

)
giYi + λnf̂n = 0.(16)

We also have

1

n

n−1∑
i=1

φ
(
f̂n(Xi)Yi

)+ λn

2
‖f̂n‖2

+
[

1

n

n−1∑
i=1

φ′(f̂n(Xi)Yi

)(
f̂ [n](Xi) − f̂n(Xi)

)
Yi + λn

〈
f̂n, f̂

[n] − f̂n

〉]

+ λn

2

∥∥f̂ [n] − f̂n

∥∥2

= 1

n

n−1∑
i=1

[
φ
(
f̂ [n](Xi)Yi

)− dφ

(
f̂n(Xi)Yi, f̂

[n](Xi)Yi

)]+ λn

2

∥∥f̂ [n]∥∥2

≤ 1

n

n−1∑
i=1

φ
(
f̂ [n](Xi)Yi

)+ λn

2

∥∥f̂ [n]∥∥2
,

where dφ denotes the Bregman divergence of φ. Also note that by the definition
of f̂ [n], we have

1

n

n−1∑
i=1

φ
(
f̂n(Xi)Yi

)+ λn

2

∥∥f̂n

∥∥2 ≥ 1

n

n−1∑
i=1

φ
(
f̂ [n](Xi)Yi

)+ λn

2

∥∥f̂ [n]∥∥2
.
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Therefore by comparing the above two inequalities, we obtain

λn

2

∥∥f̂n − f̂ [n]∥∥2

≤ −
[

1

n

n−1∑
i=1

φ′(f̂n(Xi)Yi

)
Yi

〈
gi, f̂

[n] − f̂n

〉+ λn

〈
f̂n, f̂

[n] − f̂n

〉]

≤
∥∥∥∥∥1

n

n−1∑
i=1

φ′(f̂n(Xi)Yi

)
giYi + λnf̂n

∥∥∥∥∥∥∥f̂ [n] − f̂n

∥∥
= 1

n

∣∣φ′(f̂n(Xn)Yn

)∣∣h(xT
n xn + 1)1/2∥∥f̂ [n] − f̂n

∥∥.
The equality follows from (16) and the fact that ‖gn‖2 = h(xT

n xn + 1). By
canceling the factor ‖f̂ [n] − f̂n‖ from the above inequality, we obtain the desired
bound with k = n. �

The above theorem can be used to derive leave-one-out estimates for different
kernel formulations in (15). In fact, a straightforward application of Theorem 4.3
and Proposition 4.1 lead to the following leave-one-out cross-validation error
bound:

n∑
k=1

φ
(
f̂ [k](Xk)Yk

)
≤

n∑
k=1

sup
|βk |≤1

φ

(
f̂n(Xk)Yk + 2βk

λnn

∣∣φ′(f̂n(Xk)Yk

)∣∣h(XT
k Xk + 1

))
.

(17)

Note that the expected leave-one-out error of any estimator f̂ is equivalent to the
expected generalization error of f̂ . By Markov’s inequality, for all ε > 0, we have

P

(
Q
(
f̂ (·)) > inf

f ∈H̄h

Q(f (·)) + ε

)
≤ 1

ε

(
EQ

(
f̂ (·)) − inf

f ∈H̄h

Q(f (·))
)
.

This implies that if we can choose λn such that

lim
n→∞ EQ

(
f̂n(·)) = inf

f ∈H̄h

Q(f (·)),

then Q(f̂n(·)) converges to inff ∈H̄h
Q(f (·)) in probability.

Therefore, to show consistency, we only need to estimate leave-one-out bounds
using Theorem 4.3 for formulations we are interested in. For simplicity, from now
on we assume that P (h(XT X + 1) ≤ M2) = 1.

We start with the following simple bound:
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COROLLARY 4.1. Under the assumptions of Theorem 4.3, and further that
φ(·) ≥ 0 and P (h(XT X + 1) ≤ M2) = 1, ∀ k the expected leave-one-out error can
be bounded as

EQ
(
f̂ [k]) ≤ inf

f ∈Hh

[
Q
(
f̄ (·))+ λn

2
‖f ‖2

]
+ 2M2�2

φ

λnn
,

where the expectation is with respect to the training samples (X1, Y1), . . . ,

(Xn,Yn), and

�φ = sup

{
|φ′(z)| : |z| ≤

√
2φ(0)

λn

M

}
.

PROOF. Note that by the definition of f̂n, we obtain

1

n

n∑
i=1

φ
(
f̂n(Xi)Yi

)+ λn

2
‖f̂n‖2 ≤ φ(0).

Therefore ‖f̂n‖ ≤ √
2φ(0)/λn. This implies that |f̂n(Xk)| ≤ √

2φ(0)/λnM for
all k. Similarly |f̂ [k](Xk)| ≤ √

2φ(0)/λnM for all k. Therefore from Taylor
expansion

φ
(
f̂ [k](Xk)Yk

)− φ
(
f̂n(Xk)Yk

) ≤ �φ

∣∣f̂ [k](Xk) − f̂n(Xk)
∣∣≤ �2

φ

2M2

λnn

for all k. Note that the second inequality follows from Theorem 4.3 and
Proposition 4.1. Summing over k, we obtain

1

n

n∑
k=1

φ
(
f̂ [k](Xk)Yk

) ≤ inf
f ∈Hh

[
1

n

n∑
k=1

φ
(
f̄ (Xk)Yk

)+ λn

2
‖f ‖2

]
+ 2M2�2

φ

λnn
.

Taking expectation with respect to the training data, we obtain the corollary. �

We list bounds of �φ for loss functions considered in this paper:

• SVM: �φ ≤ 1.
• Logistic regression: �φ ≤ 1.
• Modified Huber: �φ ≤ 4.

• Least squares: �φ ≤
√

8
λn

M + 2.

• Modified least squares: �φ ≤
√

8
λn

M + 2.

• Exponential: �φ ≤ exp(
√

2
λn

M).

Although Corollary 4.1 is useful for certain loss functions, in many cases better
bounds can be obtained from Theorem 4.3 using refined analysis (e.g., see [18]).
We will only consider the least squares loss and the modified least squares loss
here for simplicity.
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COROLLARY 4.2. Consider φ(v) = (1 − v)2 or φ(v) = max(1 − v,0)2. Then
under the assumptions of Theorem 4.3, for any k the expected leave-one-out error
can be bounded as

EQ
(
f̂ [k]

n (·)) ≤
(

1 + 4M2

λnn

)2

inf
f (·)∈Hh

[
Q
(
f̄ (·))+ λn

2
‖f (·)‖2

]
,

where P (h(XT X + 1) ≤ M2) = 1.

PROOF. In both cases we have φ(v + δ)1/2 ≤ φ(v)1/2 + (δ2)1/2. This implies
that for all βk ∈ [−1,1] (= 1, . . . , n),[

n∑
k=1

φ

(
f̂n(Xk)Yk + 2βk

λnn

∣∣φ′(f̂n(Xk)Yk

)∣∣M2
)]1/2

≤
[

n∑
k=1

φ
(
f̂n(Xk)Yk

)]1/2

+
[

n∑
k=1

(
2βk

λnn

∣∣φ′(f̂n(Xk)Yk

)∣∣M2
)2

]1/2

=
[

n∑
k=1

φ
(
f̂n(Xk)Yk

)]1/2

+
[

n∑
k=1

16β2
kM4

(λnn)2 φ
(
f̂n(Xk)Yk

)]1/2

≤
(

1 + 4M2

λnn

)
inf

f ∈Hh

[
n∑

i=1

φ
(
f̄ (Xi)Yi

)+ λnn

2
‖f ‖2

]1/2

,

where the equality follows from the fact that φ′(v)2 = 4φ(v). Now using (17) and
taking expectation with respect to the training data, we obtain the corollary. �

Using Corollary 4.2 for least squares and modified least squares, and Corol-
lary 4.1 for other formulations, we immediately obtain the following theorem:

THEOREM 4.4. Let h be an entire function with nonnegative Taylor coeffi-
cients. Assume we choose λn in (15) such that λn → 0 and λnn → ∞ with the
following loss functions φ: least squares, modified least squares, modified Hu-
ber’s loss, SVM or logistic regression; or we choose λn such that λn → 0 and
λn log2 n → ∞ with the exponential loss. Then for any distribution D with regular
input probability measure which is bounded almost everywhere in R

d , we have

lim
n→∞ EQ

(
f̂n(·)) = inf

f ∈H̄h

Q(f (·)).

Moreover, if h is not a polynomial, then

lim
n→∞ E�Q

(
f̂n(·)) = 0.

This implies that the classification error of f̂n(·) converges to the optimal Bayes
error in probability as n → ∞.
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5. Conclusion. In this paper we have studied how close the optimal Bayes
error rate can be approximately reached using a classification algorithm that
computes a classifier by minimizing a convex upper bound of the classification
error function.

We have separated approximation and estimation aspects of the problem. The
former is introduced through the bias of the formulation, which we investigated
in Section 2. In particular, we related the quantity Q(f (·)) defined in (4) to the
classification performance of f (·) measured by L(f (·)) − L∗.

In our framework, the method of minimizing (4) can be regarded as computing
an approximation of the conditional in-class probability η(x). In this regard, the
closeness of the true conditional probability η(x) and an estimated approximation
is defined by a loss-function induced distance.

We have analyzed this distance function for a number of convex loss functions.
We have shown that exponential and logistic regression losses are not well-behaved
when the conditional probability η(x) is close to 0 or 1. Although a support
vector machine does not suffer from this problem, it computes a predictor that
approximates sign(2η(x) − 1). This implies that a support vector machine does
not provide reliable confidence information (for its prediction) which can be very
useful in practice. In particular, they are not directly applicable to multi-class
classification problems. We have also shown that both least squares and modified
least squares methods can lead to reliable conditional probability estimates, and
they are well-behaved when η(x) is close to 0 or 1. In addition, the modified
least squares method gives better approximation than the standard least squares.
We also proposed a new convex loss, which we call modified Huber’s loss, to
further enhance the modified least squares formulation. In our analysis, this new
loss function achieves the best overall approximation behavior.

The analysis of loss functions introduced in this paper can also be used to
demonstrate the consistency of statistical classification methods using convex
risk minimization. In particular, we proved a universal approximation theorem in
Section 4. Using this result, we obtained universal consistency of certain kernel
based classification methods such as support vector machines.
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DISCUSSION

BY PETER L. BARTLETT, MICHAEL I. JORDAN AND JON D. MCAULIFFE

University of California, Berkeley

The authors have contributed three significant papers that provide, among other
insights, an understanding of the consistency of several “large margin” methods
for pattern classification. In two-class classification, the aim is to find a function
f :X → R that accurately predicts a binary response variable Y ∈ {±1} using
the covariate X ∈ X, in the sense that R(f ) = E�(Yf (X)), the risk of the


