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Statistical bias and variance for the regularized inverse problem:
application to space-based atmospheric CO2 retrievals

Abstract
Remote sensing of the atmosphere is typically achieved through measurements that are high-resolution
radiance spectra. In this article, our goal is to characterize the first-moment and second-moment properties of
the errors obtained when solving the regularized inverse problem associated with space-based atmospheric
CO2 retrievals, specifically for the dry air mole fraction of CO2 in a column of the atmosphere. The problem
of estimating (or retrieving) state variables is usually ill posed, leading to a solution based on regularization
that is often called Optimal Estimation (OE). The difference between the estimated state and the true state is
defined to be the retrieval error; error analysis for OE uses a linear approximation to the forward model,
resulting in a calculation where the first moment of the retrieval error (the bias) is identically zero. This is
inherently unrealistic and not seen in real or simulated retrievals. Nonzero bias is expected since the forward
model of radiative transfer is strongly nonlinear in the atmospheric state. In this article, we extend and
improve OE's error analysis based on a first-order, multivariate Taylor series expansion, by inducing the
second-order terms in the expansion. Specifically, we approximate the bias through the second derivative of
the forward model, which results in a formula involving the Hessian array. We propose a stable estimate of it,
from which we obtain a second-order expression for the bias and the mean square prediction error of the
retrieval.
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Abstract Remote sensing of the atmosphere is typically achieved through measurements that
are high-resolution radiance spectra. In this article, our goal is to characterize the first-moment and
second-moment properties of the errors obtained when solving the regularized inverse problem associated
with space-based atmospheric CO2 retrievals, specifically for the dry air mole fraction of CO2 in a column
of the atmosphere. The problem of estimating (or retrieving) state variables is usually ill posed, leading
to a solution based on regularization that is often called Optimal Estimation (OE). The difference between
the estimated state and the true state is defined to be the retrieval error; error analysis for OE uses a linear
approximation to the forward model, resulting in a calculation where the first moment of the retrieval error
(the bias) is identically zero. This is inherently unrealistic and not seen in real or simulated retrievals. Nonzero
bias is expected since the forward model of radiative transfer is strongly nonlinear in the atmospheric state.
In this article, we extend and improve OE’s error analysis based on a first-order, multivariate Taylor series
expansion, by inducing the second-order terms in the expansion. Specifically, we approximate the bias
through the second derivative of the forward model, which results in a formula involving the Hessian array.
We propose a stable estimate of it, from which we obtain a second-order expression for the bias and the
mean square prediction error of the retrieval.

1. Introduction

Remote sensing of the atmosphere by satellites is typically achieved through a combination of physics and
statistics. The physics is captured through a forward function, yet every retrieval is recognized to have error
associated with it. This article presents a statistical approach to estimating the mean and variance of the
retrieval error (the retrieved state vector minus the true state vector) from radiances that are connected to the
state through a forward function that is modeled using a simpler forward model. Our goal here is retrieval of
atmospheric CO2, and we work within the framework of Rodgers [2000], using a nonlinear forward model and
Bayesian inverse methods; this has sometimes been called Optimal Estimation (OE).

The error analysis given by Rodgers [2000] is a first-order analysis that proceeds as if the forward model is
linear, and it always gives the result that the mean of the retrieval is equal to the prior mean. Assuming this
model is correct, the bias (i.e., the mean of the retrieval error) is zero. However, because the forward model is
nonlinear, in reality there is a nonzero bias that we henceforth call nonlinearity bias.

In this article, we develop expressions that quantify the nonlinear contributions to atmospheric CO2 retrieval
errors; they are based on capturing nonlinearity through the Hessian array, which is the second derivative of
the forward model. Its stable estimation is critical, and a key contribution of this article is to present a weighted
estimate that preserves symmetry properties of the Hessian array. Our results apply to any retrieval obtained
by solving an inverse problem through regularization, and hence they are applicable to the many remote
sensing retrievals that are based on a radiative transfer function.

In the context of remote sensing of atmospheric CO2, there have been a number of articles discussing OE
of the state based on instruments such as the Greenhouse Gases Observing Satellite (GOSAT) and OCO-2
[see, e.g., Böesch et al., 2006; Connor et al., 2008; Kuze et al., 2009; Bréon and Ciais, 2010; Böesch et al., 2011;
Crisp et al., 2012; O’Dell et al., 2012; Cressie and Wang, 2013]. In this article, we develop statistical methodol-

RESEARCH ARTICLE
10.1002/2015JD024353

Key Points:
• The retrieval of XCO2 is a nonlinear

ill-posed inverse problem with
nonzero bias

• First-moment and second-moment
statistical properties of atmospheric
CO2 retrievals from satellite
remote sensing instruments
are approximated

• The approximations are assessed in
a realistic simulation experiment and
found to perform well

Correspondence to:
N. Cressie,
ncressie@uow.edu.au

Citation:
Cressie N., R. Wang, M. Smyth,
and C. E. Miller (2016), Statistical
bias and variance for the reg ularized
inverse problem: Application
to space-based atmospheric
CO2 retrievals, J. Geophys.
Res. Atmos., 121, 5526–5537,
doi:10.1002/2015JD024353.

Received 15 OCT 2015

Accepted 13 APR 2016

Accepted article online 3 MAY 2016

Published online 27 MAY 2016

©2016. American Geophysical Union.
All Rights Reserved.

CRESSIE ET AL. STATISTICAL PROPERTIES OF CO2 RETRIEVALS 5526

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://dx.doi.org/10.1002/2015JD024353


Journal of Geophysical Research: Atmospheres 10.1002/2015JD024353

ogy for a second-order error analysis that recognizes nonlinearity of the forward model connecting the state
of the atmosphere with high-resolution radiance spectra measured by the remote sensing instruments on
board GOSAT and OCO-2 [e.g., Crisp et al., 2014]. The full multivariate distribution could be obtained through
a Markov chain Monte Carlo (MCMC) algorithm, but the computing time per retrieval for models of this com-
plexity takes on the order of a day for 250,000 iterations (running a single MCMC chain per CPU on a Jet
Propulsion Laboratory (JPL) 64 bit Linux cluster at approximately 2.8 GHz (J. Hobbs, personal communication,
2016)). Algorithms of this type are presented clearly in Tamminen and Kyrola [2001] and Tamminen [2004],
albeit for different instrumental and atmospheric configurations.

In section 2, we present details of the experiment we conducted to look at the properties of the retrieval
error, including bias due to nonlinearity of the forward model. Section 3 briefly reviews OE and its error
analysis. Section 4 presents our statistical methodology that recognizes and estimates bias due to the inherent
nonlinearity of the forward model. This is done through a second-order, multivariate Taylor series expan-
sion resulting in the Hessian array; using the approach of statistical estimating equations, a stable estimate
of the Hessian array is derived. In section 5, we present the results of the experiment described in section 2.
Discussion and conclusions are presented in section 6.

2. Synthetic OCO-2 Data: A Controlled Experiment

This section describes an experiment we conducted to determine the influence of nonlinearity on the mean
and variance of the retrieval error. More details are given in section 5, where the results of the experiment
are presented. The experiment involves simulations from a known nonlinear forward model, where the true
atmospheric state is known (but not used in the retrieval).

Radiances are simulated that are typical of those seen by GOSAT, with an ACOS forward model [Crisp et al.,
2012] that emulates retrievals from OCO-2: The atmospheric state is first simulated; then the nonlinear
forward model is applied (here version B5.0 of the ACOS/OCO-2 forward model); and finally, measurement
error is added to yield synthetic high-resolution radiance spectra. Critically, because in the experiment the
state is known, the retrieval error can be obtained exactly. From a large number of such simulations, the distri-
bution of the retrieval error can be obtained. In this article, our goal is to obtain estimates of the dry air mole
fraction of CO2 in a column (XCO2), which is the key quantity used in flux inversion, along with its uncertainty
quantification.

Repeating this under different scenarios, most notably location/season (varying albedo, aerosol optical depth,
and vertical distributions), “aerosols,” and “clear sky,” generates scenario-specific distributions for the retrieval
errors. Recall that within the experiment, the mean of the retrieval error is simply the bias due to nonlinearity
of the forward model; that bias must be zero if the forward model is linear and the modeling assumptions
given above hold.

Based on a pilot study to determine the important geophysical factors to consider, the presence/absence of
aerosols emerged as the one that was most sensitive to nonlinearity bias. Hence, we chose 18 GOSAT loca-
tions over Australia during different seasons in order to generate a variety of atmospheres (see Figure 1), and
we simulated with aerosols present or not. The mean of the state (i.e., the prior mean) was obtained from
climatology, as is done for OCO-2 retrievals [Crisp et al., 2014], and the prior covariances were chosen so
that physically meaningful atmospheres were generated by the simulation. Using a multivariate Gaussian
distribution, we simulated 700 random atmospheric states for each scenario (i.e., for each given location/
season and each given presence/absence of aerosols). Relative Monte Carlo accuracy to the first decimal place
is achieved with this number of simulations.

For each simulated state, a radiance vector was simulated, again by generating from version B5.0 of
ACOS/OCO-2’s full-physics forward model [Crisp et al., 2014] and random noise was added to capture errors
due to measurement by the instrument on board the satellite. The end result was that for each scenario, 700
synthetic radiance vectors were available for analysis.

For each radiance vector, the next step in the experiment was to retrieve the atmospheric state, particularly
the column-averaged dry air mole fraction (XCO2) in parts per million (ppm). To exercise strong control on the
experiment, we use exactly the same forward model, measurement-error covariance, prior mean, and prior
covariance for the retrieval as were used in the simulations. The robustness of the retrievals and the associated
error analysis to misspecifications of these components is not addressed here; our goal is to work within the
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Figure 1. Map showing the 18 locations at which retrievals were performed during different seasons. At each location,
700 atmospheres and radiances were simulated using climatology, a full-physics forward model, and known
measurement-error characteristics.

assumptions of OE in order to isolate the effect due to nonlinearity of the forward model. That is, we avoid
confounding errors due to model misspecification with errors due to nonlinearity.

Consequently, for each of the 700 radiance vectors, there is an estimated state vector obtained from the level
2 algorithm, B5.0. Although not used in the retrieval, we also have available the respective true state vectors,
from which we can trivially construct, by subtraction, 700 retrieval error vectors (= estimated state vector-true
state vector). In practice, the true state vector is never known, and one must use statistical methodology to
obtain properties (e.g., first and second moments, or all moments through MCMC) of the retrieval error distri-
bution. Hence, the distribution of retrieval error for each scenario, obtained from the simulation, represents
the gold standard against which all error analyses, linear and nonlinear, can be compared.

In the next section, we establish the necessary notation to discuss the state space model and the retrieval
algorithm obtained from it. Finding the first-moment and second-moment statistical properties of the
retrieval error of the multivariate state is the focus of this article; section 5 gives the results obtained from the
controlled experiment described above.

3. Radiative Transfer Function and Optimal Estimation

In this section, we describe briefly the statistical model given in Rodgers [2000], and we summarize the specific
implementation used for the ACOS/OCO-2 retrievals. The first part of the statistical model is based on the
physics of radiative transfer that links measured radiances to the physical state of a column of the atmosphere
sampled by the light path. It is here that the measurement uncertainty is accounted for, and in the terminology
of state space estimation, the first part is called the measurement equation.

The second part of the statistical model recognizes that the atmospheric state vector (e.g., CO2 volume mixing
ratios at different pressure levels, surface pressure, aerosols, albedo, and so forth) is not completely certain,
and its uncertainty is described by a statistical distribution with a given mean vector and a given covari-
ance matrix. In the terminology of OE, these are called the prior mean vector and the prior covariance matrix,
respectively. In the terminology of state space estimation, these are called the mean and covariance of the
state, respectively, and the second part is called the state equation; see, for example, Shumway and Stoffer
[2006], for a description of state space modeling and estimation. Finally, the measurement equation and the
state equation are used in Bayes Theorem to obtain the posterior distribution, upon which the ACOS/OCO-2
retrieval is based.
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3.1. State Space Model
As explained above, the statistical model for retrieving the atmospheric state (x) from measured radiances (y)
is divided into two parts. The measurement equation, which includes the (typically nonlinear) forward model
F(x), is

y = F(x) + 𝜺 . (1)

In (1), 𝜺 is an n𝜀-dimensional error vector that captures both measurement error in the radiances y and
specification error incurred by approximating the physics of radiative transfer through a generally nonlinear
“working function” (or forward model) F(). For the remote sensing application considered in section 5,
n
𝜺
=2040. Assume that 𝜺∼Dist(0, S𝜀), where S𝜀≡ cov(𝜺) is a given n𝜀×n𝜀 covariance matrix of measurement

errors and Dist(𝝁,𝚺) denotes a generic multivariate distribution with mean vector 𝝁 and covariance matrix
𝚺; there may be other parameters that determine the distribution, but our interest centers on the first two.
For example, Dist is often chosen to be the multivariate Gaussian (Gau) distribution. Cressie and Wang [2013]
consider the general case where E(𝜺) ≠ 0, and they show how the data y can be corrected to account for a
nonzero mean. Hence, we can assume without loss of generality that E(𝜺)=0.

The state x is an n𝛼-dimensional vector (typically, n𝛼≪ n𝜀), and it is not known exactly; the state equation
(called the prior model, in the terminology of OE) expresses this uncertainty through

x = x𝛼 + 𝜶 , (2)

where x𝛼 is a known prior mean specification of the state, 𝜶 is an error vector, and all vectors in (2) are
n𝛼-dimensional. It is assumed that 𝜶∼Dist(0, S𝛼), where S𝛼≡cov(𝜶) is a given n𝛼 × n𝛼 covariance matrix, and
note that Dist for 𝜶 may be different from that for 𝜺 in (1). For the remote sensing application considered in
section 5, n𝛼 = 50.

We note that there remain parameters in the forward model and variance-covariance parameters in (1) and
(2) that need to be specified or estimated. A fully Bayesian approach would put prior/hyperprior distributions
on them; in this article, we assume that parameters of the measurement and state equations are completely
known, as does Rodgers [2000] and subsequent articles on OE.

The inverse problem is to infer the state x from data y; this results in the estimated state x̂, which in remote
sensing is typically used to compute geophysical parameters of the atmosphere (e.g., XCO2). The ACOS/OCO-2
algorithm uses Twomey-Tikhonov regularization [Tikhonov, 1963; Twomey, 1963] to solve the problem; see
section 3.2.

Let {x(p)∶ 0≤p≤Psu} denote the CO2 volume mixing ratios (VMRs) for every pressure level p from the surface
pressure Psu to the top of the atmosphere. Then, for predetermined pressure levels, 0≤p1 <p2 < · · ·<pnP

≤Psu,
we define the nP-dimensional subvector,

xP ≡

⎡⎢⎢⎣
x(p1)
⋮

x(pnP
)

⎤⎥⎥⎦ . (3)

We then partition the full state vector x into two (or possibly more) components as

x ≡

[
xP

xQ

]
, (4)

where xP is that part of the state vector pertaining to the CO2 profile and xQ represents all non-CO2 state vector
elements, including the surface pressure, surface albedo, profiles of H2O, temperature, and aerosols. Using
obvious notation, we see that the dimension of xQ is nQ =n𝛼 − nP . Hence, we can partition the prior mean as

x𝛼 ≡

[
xP,𝛼

xQ,𝛼

]
, (5)
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and the prior covariance matrix as

S𝛼 ≡

[
SPP,𝛼 SPQ,𝛼

S′
PQ,𝛼 SQQ,𝛼

]
. (6)

As will be seen in section 5, it is useful to have the definitions (3)–(6), in order to extract statistical properties
of estimated CO2 values from the statistical properties (given in section 4) of the full state vector x.

3.2. The Retrieval
Rodgers [2000] proposes an OE (often called a Bayesian) solution to the retrieval problem, which we summarize
below. The maximum a posteriori estimator is defined to be the state (or set of states, if it is not unique) x̂ such
that the posterior distribution evaluated at x̂ satisfies

P(x̂|y) ≥ P(x|y), (7)

for all possible states x, where P(x|y) denotes the posterior distribution of the state x given the data y. That is,
the state x̂ in (7) is the posterior mode.

If the random vectors in both (1) and (2) are Gaussian then, up to an additive constant,−2logP(x|y) is equal to

(y − F(x))′S−1
𝜀
(y − F(x)) + (x − x𝛼)′S−1

𝛼
(x − x𝛼), (8)

and finding the posterior mode is equivalent to minimizing (8) with respect to x. If the random vectors 𝜺 in (1)
and 𝜶 in (2) are more generically distributed according to Dist, the criterion (8) can still be used, since it solves
the general problem of regularization formulated independently by Tikhonov [1963] and Twomey [1963].

Define the Jacobian,

K(x) ≡ 𝜕F(x)
𝜕x

, (9)

which is a matrix of order n𝜀 × n𝛼 . Minimizing expression (8) implies that x satisfies

− K(x)′S−1
𝜀
(y − F(x)) + S−1

𝛼
(x − x𝛼) = 0 , (10)

which consists of n𝛼 equations in n𝛼 unknowns. The Gauss-Newton iteration scheme to solve (10) results in

x(𝓁+1) = x(𝓁) + {S−1
𝛼

+ (K(𝓁))′S−1
𝜀

K(𝓁)}−1[(K(𝓁))′S−1
𝜀
(y − F(x(𝓁))) − S−1

𝛼
(x(𝓁) − x𝛼)], (11)

where K(𝓁) ≡ K(x(𝓁)) and 𝓁=1, 2,… . Equation (11) is iterated for increasing 𝓁=1, 2,… , until convergence,
resulting in the estimated state vector, x̂. Now (11) can be unstable, so the OCO-2 algorithm uses a
Levenberg-Marquardt approach [Levenberg, 1944; Marquardt, 1963] to solve (10).

By way of introduction to the next section, we would like to point out that the Jacobian matrix, K(x), is a
first-order quantity, obtained from a first-order, multivariate Taylor series expansion; it is the first derivative of
the forward model, F(x), and it captures the locally linear behavior of F. However, if the Taylor series expansion
is extended to second order, the second derivative of F(x), which is called the Hessian array {Hijk(x)}, is needed
to obtain a second-order approximation of the bias of the retrieval. Since the Hessian array is the second
derivative of the n𝜀-dimensional vector F(x), it is defined for i=1,… , n𝜀, j=1,… , n𝛼 , and k=1,… , n𝛼 . For the
remote sensing application considered in section 5, the number of entries in the Hessian array is 2040×50×50.

4. Bias and Mean Squared Prediction Error

In general, the forward model is nonlinear, and a statistical error analysis of the optimally estimated state x̂
should recognize the consequences of this. In this section, the delta method [e.g., Meyer, 1975, chap 10] is used
to obtain approximations for the bias vector, E(x̂ − x), and the mean square prediction error (MSPE) matrix,
E{(x̂− x)(x̂− x)′}. Nonlinearity in the forward model leads to nonzero bias of x̂, which the OE error analysis of
Rodgers [2000] neglects by assuming that it is zero.
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The converged solution to (11) (or the Levenberg-Marquardt version of this) satisfies

x̂ = x𝛼 + G(x̂){(y − F(x̂)) + K(x̂)(x̂ − x𝛼)}
= x𝛼 + G(x̂)(F(x) − F(x̂)) + A(x̂)(x̂ − x𝛼) + G(x̂)𝜺 ,

(12)

where

G(x) ≡ {S−1
𝛼

+ K(x)′S−1
𝜀

K(x)}−1K(x)′S−1
𝜀

and

A(x) ≡ G(x)K(x).

The quantities G(x) and A(x) are called the gain matrix and the averaging-kernel matrix, respectively, and in
general, they are functions of the true state x.

4.1. MSPE Matrix
Cressie and Wang [2013] use the delta method in the multivariate setting to show that to second order

cov(x̂) ≃ c̃ov(x̂) ≡ A(x𝛼)S𝛼A(x𝛼)′ + G(x𝛼)S𝜀G(x𝛼)′ , (13)

cov(x̂, x) ≃ c̃ov(x̂, x) ≡ A(x𝛼)S𝛼 ,

and

cov(x̂, 𝜺) ≃ c̃ov(x̂, 𝜺) ≡ G(x𝛼)S𝜀 .

When the forward model F() is linear, A(x𝛼) and G(x𝛼) do not depend on x𝛼 , and “≃” becomes “=” in the three
relations above.

The delta method in statistics involves a Taylor series expansion, usually in a univariate setting, but here for
a vector. We give the expansion of the retrieval x̂ about the prior mean x𝛼 , although our results are true for
the expansion about any fixed vector x0. If the prior mean x𝛼 is believed to be less reliable due to insufficient
knowledge of the statistical structure of the true state, a better choice for the Taylor series expansion might
be a starting vector of the iteration that solves (10). (We note that expanding the Taylor series about the
retrieved vector x̂ confounds the variability due to nonlinearity with the variability due to the retrieval. It also
raises more questions than it resolves, since if there is doubt about x𝛼 being a good prior mean, there is a
consequent bias in x̂, as well as the nonlinearity bias established by our research. Many implementations of
OE, in fact, expand about x̂ [see O’Dell et al., 2012]).

To second order, the MSPE matrix can be approximated as follows: E
{
(x̂ − x)(x̂ − x)′

}
≃M̃SPE(x𝛼), where

M̃SPE(x𝛼) ≡ (A(x𝛼) − I)S𝛼(A(x𝛼) − I)′ + G(x𝛼)S𝜀G(x𝛼)′ , (14)

which is derived in Cressie and Wang [2013]. Once again, when the forward model F() is linear, A(x𝛼) and G(x𝛼)
do not depend on x𝛼 , “≃” becomes “=,” and the MSPE matrix is exactly equal to (14). Using standard matrix
algebra, it is straightforward to show that (14) is equivalent to

(K(x)′S−1
𝜀

K(x) + S−1
𝛼
)−1 ≡ Ŝ,

which OCO-2 calls the error covariance matrix [O’Dell et al., 2012; Crisp et al., 2014]. Strictly speaking, Ŝ should
be called the mean square prediction error matrix; it is easy to see that Ŝ is the error covariance matrix only
when the bias vector is zero.

4.2. Bias Vector
Because of the nonlinearity of the forward model, x̂ will be a biased estimate of the state vector x. That is,
the retrieval error, x̂ − x, will have a distribution that is offset from 0. To obtain the bias, E(x̂ − x), one can
again use the delta method by expanding the mean of x̂ around its prior mean x𝛼 and keeping terms of
the expansion up to second order. Then, to second order, the bias vector can be approximated as follows:
E(x̂ − x) ≃ b̃ias(x𝛼), where
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b̃ias(x𝛼) ≡(1∕2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
vec

(
𝜕A(x𝛼)1st row

𝜕x𝛼

))′

(
vec

(
𝜕A(x𝛼)2nd row

𝜕x𝛼

))′

⋮(
vec

(
𝜕A(x𝛼)n𝛼 th row

𝜕x𝛼

))′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⋅ vec

(
M̃SPE(x𝛼) + 2S𝛼A(x𝛼)′

)

− (1∕2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
vec

(
𝜕G(x𝛼)1st row

𝜕x𝛼

))′

(
vec

(
𝜕G(x𝛼)2nd row

𝜕x𝛼

))′

⋮(
vec

(
𝜕G(x𝛼)n𝛼 th row

𝜕x𝛼

))′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⋅ vec

(
K(x𝛼) ⋅ M̃SPE(x𝛼) − 2S𝜀G(x𝛼)′

)
,

(15)

which is derived in Cressie and Wang [2013]. In (15), the “vec” operator is defined as follows: For any m × n
matrix B≡ (B1, · · · ,Bm) with n-dimensional columns B1, · · · ,Bm, vec(B) is defined as the mn-dimensional
vector, vec(B)≡ (B′

1, · · · ,B′
m)

′. We call b̃ias(x𝛼), defined by (15), the nonlinearity bias. Notice from (15) that
this depends only on the parameters of the state space model; since the bias is the statistical expectation of
the retrieval error, it does not depend on the data.

A consequence of the forward model F(x) being nonlinear is that K(x), G(x), and A(x) depend on the true
state x, and hence, their derivatives with respect to x are generally nonzero. When the forward model is linear,
K, G, and A are constant, and hence, E(x̂ − x)=0= b̃ias(x𝛼). In the next section, we see that a nonzero value
for expression (15) is directly attributable to the Hessian array, which recall is the second derivative of the
forward model.

4.3. The Hessian
In the bias formula (15), the partial derivatives,

𝜕G(x)
𝜕xk

and
𝜕A(x)
𝜕xk

, are functions of the derivatives of the

Jacobian,

{
𝜕K(x)
𝜕xk

∶ k = 1, · · · , n𝛼

}
; see the expressions just below (12). Specifically,

𝜕G(x)
𝜕xk

= −
{

S−1
𝛼

+ K(x)′S−1
𝜀

K(x)
}−1

[
𝜕K(x)′

𝜕xk
S−1
𝜀

K(x) + K(x)′S−1
𝜀

𝜕K(x)
𝜕xk

]
×
{

S−1
𝛼

+ K(x)′S−1
𝜀

K(x)
}−1

K(x)′S−1
𝜀

+
{

S−1
𝛼

+ K(x)′S−1
𝜀

K(x)
}−1 𝜕K(x)′

𝜕xk
S−1
𝜀

,

(16)

and
𝜕A(x)
𝜕xk

= 𝜕G(x)
𝜕xk

K(x) + G(x)𝜕K(x)
𝜕xk

. (17)

Thus, calculation of the partial derivatives of the Jacobian,
{

𝜕K(x)
𝜕xk

∶ k = 1,… , n𝛼

}
, is needed for calculating

the nonlinearity bias given by (15). Notice that because K(x) is an n𝜀 × n𝛼 matrix, the array just above has
n𝜀 × n𝛼 × n𝛼 elements.

Now, since the Jacobian is itself a first derivative, any element in the array can be written as

Hijk(x) ≡
𝜕2Fi(x)
𝜕xj𝜕xk

; i = 1,… , n𝜀 , j = 1,… , n𝛼 , k = 1,… , n𝛼 . (18)

We call {Hijk(x)} the Hessian array; the subscript i ranges over n𝜀 elements, which for the OCO-2 instrument
come from three spectral bands (Oxygen A band, Weak CO2 band, and Strong CO2 band); the subscripts j and
k each range over n𝛼 elements.

Figure 2 illustrates the structure of the Hessian array.
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Figure 2. The form of the n𝜀 × n𝛼 × n𝛼 Hessian array. For
the OCO-2 algorithm, the index i ranges over the Oxygen A
(OA) band, the Weak CO2 (WC) band, and the Strong CO2
(SC) band. For the retrievals in section 5, n𝜀 × n𝛼 × n𝛼 =
2040 × 50 × 50; then the Hessian array has 5,100,000 entries.

An important property of the Hessian array (18)
is that it is symmetric in j and k. Thus, any esti-
mate of it should preserve this property, namely,
Hijk(x) = Hikj(x). We achieve this below by using
the approach of statistical estimating equations.

The Hessian element Hijk() can be estimated by
taking a numerical derivative of the Jacobian,
where the Jacobian is evaluated analytically: Let
Kij(x) denote the (i, j)th element of the n𝜀×n𝛼

Jacobian matrix K(x) and define

H̃ijk(x) ≡
Kij(x + Δkek) − Kij(x)

Δk
, (19)

for i = 1,… , n𝜀 and j, k = 1,… , n𝛼 . In the expres-
sion (19), ek is the vector with 1 as the kth element
and 0 everywhere else, and Δk > 0 is a small incre-
ment. In general, symmetry of the estimate (19)
does not hold; that is, H̃ijk() ≠ H̃ikj().

The following approach to estimating {Hijk(x)}
uses statistical estimating equations, and it will
guarantee symmetry in j and k: There are two esti-
mating equations for Hijk(x) that follow from (19),
namely,

ΔkHijk(x) = Kij(x + Δkek) − Kij(x) ,

and

ΔjHijk(x) = Kik(x + Δjej) − Kik(x) .

Upon adding these two equations, we obtain

(Δk + Δj)Hijk(x) = Kij(x + Δkek) − Kij(x) + Kik(x + Δjej) − Kik(x) ,

which yields the estimate

Ĥijk(x) ≡ H̃ijk(x)
(

Δk

Δj + Δk

)
+ H̃ikj(x)

( Δj

Δj + Δk

)
, (20)

for i = 1,… , n𝜀 and j, k = 1,… , n𝛼 . Notice that the Hessian estimate (20) is a weighted combination of the
asymmetric estimates given by (19), and it is easy to see that Ĥijk(x) ≡ Ĥikj(x), which is the required symmetry
property in j and k.

Now {Ĥijk(x)} given by (20) is an estimate of

{
𝜕K(x)
𝜕xk

∶ k = 1,… , n𝛼

}
which, from the formulas given at the

beginning of this subsection, can then be used to obtain estimates of
𝜕G(x)
𝜕xk

in (16) and
𝜕A(x)
𝜕xk

in (17). Finally,

then, the nonlinearity bias can be calculated from (15).

5. Properties of the Retrieval Error of XCO2

Section 2 describes an experiment we conducted to determine the influence of nonlinearity on the first two
moments of the retrieval error. Our experiment exercises “strong control.” This means that the functional
form of the model and every parameter used to simulate forward from state mean x𝛼 , to obtain true state
x based on state covariance matrix S𝛼 , and to finally obtain radiances y based on forward model F(x) and
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measurement-error covariance matrix S𝜀, are exactly the same when using the Levenberg-Marquardt algo-
rithm to obtain the retrieval x̂. In this simulation experiment, states and measurements are realistic, and
uncertainties are uniquely due to the ill-posed nature of retrieval and not due to using a misspecified forward
function in the Levenberg-Marquardt algorithm.

Although x is known in the experiment, it is not used in the retrieval; its role is to allow us to determine the
true retrieval error, x̂ − x. If the simulation is repeated L times, where L is large, then in obvious notation,

{x̂(l) − x(l) ∶ l = 1,… , L} (21)

gives the distribution of the true retrieval error. We use L = 700 below, for which relative Monte Carlo accuracy
to the first decimal place is achieved.

Since the forward model F(x) is nonlinear, the statistical distribution of x̂ − x is not Gaussian, although its
first two moments remain important for inference. It is here where an MCMC approach would be a useful
research tool, since the full posterior distribution is obtained. However, the excessive time taken to run the
MCMC algorithm for a single retrieval (on the order of a day of CPU time; see section 1) means it is unlikely to
become an operational tool.

The methodology proposed in this article is computationally efficient enough to be made operational on
selected retrievals (e.g., when aerosols are present or for selected retrieval modes). The first moment expresses
the bias of the retrieval,

bias ≡ E(x̂ − x). (22)

Inference on x from the estimate x̂ is based on the second central moment,

cov ≡ cov(x̂ − x). (23)

Notice that OCO-2’s retrieval algorithm produces instead the second noncentral moment,

MSPE ≡ E
(
(x̂ − x)(x̂ − x)′

)
, (24)

which is appropriate when bias=0. In general,

cov = MSPE − (bias)(bias)′ ,

and so cov can be recovered from the moments (22) and (24). In what follows in the experiment, we shall use
(22) and (24) to summarize the results; these are sometimes called figures of merit [Cressie and Burden, 2015].

Apart from choosing 18 different location/seasons to generate a variety of atmospheric states, the two factors
that we controlled for were the presence/absence of aerosols in the forward model (and hence in the retrieval),
and the presence/absence of the nonlinearity bias correction. The “response” of the experiment centered on
the first two moments of XCO2, the column-averaged CO2 dry air mole function. The state variable XCO2 is
obtained by an appropriately weighted combination of the np =20 VMRs of CO2 at the 20 pressure levels given
in ACOS/OCO-2’s forward model [Crisp et al., 2014].

In what follows in this section, we write x ≡ true XCO2 value at a given sounding, which in practice is an
unknown scalar. Correspondingly, we write x̂(y)≡ estimated XCO2 value, featuring the radiances y measured
at the given sounding. The theory of OE assumes that x is a random variable, and from the theory of statistical
estimation, x̂(y) is also a random variable with strong statistical dependence on x. Then the retrieval error for
estimating XCO2 is

x̂(y) − x ,

which is a random variable whose distribution is ultimately determined by the joint distribution of x and y.

Recall that there are j = 1,… , 18 diverse location/seasons and l = 1,… , 700 simulations for each location/
season, which we write as

{x̂(y(l)j ) − x(l)j ∶ l = 1,… , 700} ; j = 1,… , 18.
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Figure 3. In the presence of aerosols, model-based biases are compared to the true bias. (a) For ACOS/OCO-2’s error
analysis, which is based on a linear approximation, b̂ias = 0; see (28). (b) For the nonlinear error analysis based on the
delta method given in section 4, b̃ias is given by (27). The horizontal axes in both plots show the true biases obtained
from the first moment of the estimation error; see (25).

At the j=1,… , 18 location/seasons (section 2), we define the bias

biasj ≡

700∑
l=1

(x̂(y(l)j ) − x(l)j )∕700, (25)

and the root-mean-square prediction error,

rmspej ≡

{
700∑
l=1

(x̂(y(l)j ) − x(l)j )2∕700

}1∕2

. (26)

These are the true biases and root-mean-square predictor errors, which we can compute at the 18 loca-
tion/seasons chosen for this experiment.

As was made clear in section 4, for the full state vector there is a first-order result based on a linearization of
the forward model, and there is a second-order result based on the delta method that gives (13) and (15). For
XCO2, the nonlinear approximations to the bias and MSPE are easily obtained as follows: First, XCO2= w′x and
X̂CO2= w′x̂ for known weight vector w. Then, using obvious notation, the second-order result is

b̃ias(XCO2) = w′b̃ias(x𝛼) ; M̃SPE(XCO2) = w′M̃SPE(x𝛼)w. (27)

From O’Dell et al. [2012] and Crisp et al. [2012], the ACOS/OCO-2 algorithm uses

b̂ias(XCO2) = 0 ; M̂SPE(XCO2) = w′M̃SPE(x̂)w = w′Ŝw , (28)

which is a result of a linear approximation to the forward model. That is, in ACOS/OCO-2’s error analysis, a zero
bias is obtained, and the MSPE matrix is evaluated at the retrieved state x̂.

For each of the j = 1,… , 18 location/seasons, we can make a comparison of the true bias, namely, biasj ,
with b̂iasj (=0) from OE given by (28), and b̃iasj (≡ b̃ias(XCO2j)) from (27). We can also make a comparison of
the true root-mean-square prediction error, namely, rmspej , with r̂mspej (≡{average over 700 simulations of
M̂SPE(XCO2j)}1∕2) from OE given by (28). Finally, we can make a comparison of rmspej with
r̃mspej (≡{M̃SPE(XCO2j)}1∕2) from (27). These comparisons are made through x-y plots, each of which contains
18 x-y pairs corresponding to the 18 location/seasons.

In Figures 3 and 4, we show only the results for the aerosols case. The clear-sky case (i.e., absence of aerosols)
turns out to be less interesting because the nonlinearities in the forward model are much less pronounced.
Aerosols confound the retrieval of XCO2 in a strongly nonlinear manner [O’Dell et al., 2012], so it is appropriate
that our comparisons focus on this case.
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Figure 4. In the presence of aerosols, model-based root-mean-square prediction errors, r̂mspe, are given for
ACOS/OCO-2’s error analysis; (a) r̂mspe is obtained from averaging (28) over all 700 simulations and then taking the
square root. The model-based root-mean-square prediction errors, r̃mspe, are given for the nonlinear error analysis
based on the delta method; (b) r̃mspe is the same for all simulations and is obtained from (27). The horizontal axes in
both plots show the true root-mean-square prediction errors obtained from (26).

By comparing Figure 3a with Figure 3b, one can see the benefit of accounting for the nonlinearity bias when
the forward model has strong nonlinearities. Statistical theory indicates that there will be very little difference
in the root-mean-square prediction errors, and this is confirmed when comparing Figures 4a and 4b.

In our experiment, we have chosen a realistic set of atmospheres with aerosols, and we have found that the
true nonlinearity bias given by (25) is no more extreme than ±0.2 ppm. Similar experiments conducted on
an earlier version of the ACOS/OCO-2 algorithm (B2.8) showed much more serious biases, on the order of
±1 ppm and sometimes worse. The forward model that was behind the earlier versions was not effectively
capturing the radiative transfer with more state elements (as many as 112) that were highly correlated. As a
consequence, the inverse problem was more ill posed, and the retrieval error was more biased. Based on the
approach we have taken to assessing retrieval error, we have been able to quantify an improvement in the
ACOS/OCO-2 algorithm from B2.8 to B5.0.

6. Discussion and Conclusions

The OE approach to obtaining retrievals in remote sensing incorporates physical knowledge, applied
mathematics, and statistics. It is akin to the well-known approach in the signal-processing literature called
state space estimation, where both the estimated state and the true state are random, and the error analysis
goes beyond a linear approximation [e.g., Shumway and Stoffer, 2006, chap 6]. In this article, we have shown
how statistical theory (posterior analysis, delta method, and estimating equations) can be used to yield an
uncertainty quantification (namely, the first two moments) of the retrieval error, by recognizing the nonlin-
earity of the forward model and all sources of randomness. The first two moments of the retrieval error are
fundamental quantities used for CO2 flux inversions from remote sensing data.

The nonlinearity in the forward model results in a nonlinearity bias that is estimated using a weighted estimate
of the Hessian array; this approximation improves as the signal-to-noise ratio increases [Cressie and Wang,
2013]. Using the ACOS/OCO-2 algorithm B5.0, XCO2 retrievals in a controlled experiment (section 2) exhibit
absolute nonlinearity biases up to 0.2 ppm when aerosols are present (section 5). For clear-sky retrievals,
biases are effectively zero.

Of course, there are other sources of bias, some known for physical reasons and some described by regres-
sion relationships. Validation of the XCO2 product is based on data from the Total Carbon Column Observing
Network (TCCON) [e.g., Wunch et al., 2011]. In fact, a TCCON “ground truth” datum is also an estimate of
XCO2 derived from a different nonlinear forward model, and it has its own nonlinearity bias. Our results in
section 5 indicate that under controlled conditions the nonlinearity bias of XCO2 retrievals is within the limits
of the error characteristics of TCCON. In actual retrievals, bias can arise from a number of components; our
results indicate that the nonlinearity component by itself would not be seen by an appropriate comparison
to TCCON data.
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The specification of a prior distribution (usually in the form of a prior mean vector and a prior covariance
matrix) for the unknown state is required for OE. The robustness of the estimates and of the associated error
analysis to misspecification of the prior has not been addressed in this article. Our goal has been to work
within the assumptions of OE to obtain XCO2 estimates and their uncertainty quantification that accounts for
the nonlinearity in the forward model.
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