
1176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Statistical Blockade: Very Fast Statistical Simulation
and Modeling of Rare Circuit Events and Its

Application to Memory Design
Amith Singhee, Member, IEEE, and Rob A. Rutenbar, Fellow, IEEE

Abstract—Circuit reliability under random parametric varia-
tion is an area of growing concern. For highly replicated circuits,
e.g., static random access memories (SRAMs), a rare statistical
event for one circuit may induce a not-so-rare system failure.
Existing techniques perform poorly when tasked to generate both
efficient sampling and sound statistics for these rare events. Sta-
tistical blockade is a novel Monte Carlo technique that allows
us to efficiently filter—to block—unwanted samples that are in-
sufficiently rare in the tail distributions we seek. The method
synthesizes ideas from data mining and extreme value theory and,
for the challenging application of SRAM yield analysis, shows
speedups of 10–100 times over standard Monte Carlo.

Index Terms—Design automation, extreme values, memories,
Monte Carlo methods, simulation, statistics, yield estimation.

I. INTRODUCTION

C IRCUIT RELIABILITY under statistical process varia-
tion is an area of growing concern, as transistors scale

deeply into the nanoscale regime. Designs that add excess
safety margin or rely on simplistic assumptions about “worst
case” corners no longer suffice. Worse, for critical circuits
such as static random access memories (SRAMs) and flip-flops,
replicated across ten thousand to ten million instances on a large
design, we have the new problem that statistically rare events
are magnified by the sheer number of these elements. In such
scenarios, an exceedingly rare event for one circuit may induce
a not-so-rare failure for the entire system.

Consider the case of a 1-Mb SRAM array, which has one mil-
lion “identical” instances of an SRAM cell. These instances are
designed to be identical, but due to manufacturing variations,
they usually differ. Suppose we desire a chip yield of 99%,
i.e., no more that one chip per 100 should fail. This chip yield
requirement translates to a cell failure probability requirement:

Manuscript received August 7, 2008; revised December 9, 2008. Current
version published July 17, 2009. This work was supported in part by the
Semiconductor Research Corporation (SRC) and in part by C2S2, the Focus
Center for Circuit and System Solutions, which is one of the five research
centers funded under the Focus Center Research Program, which is an SRC
program. This paper was recommended by Associate Editor C. V. Kashyap.

A. Singhee is with IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598 USA (e-mail: asinghe@us.ibm.com).

R. A. Rutenbar is with the Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University, Pittsburgh, PA 15213 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2020721

no more than 10.05 cells per billion should fail. In other
words, the required cell yield is approximately 99.999999%.
This failure probability is the same as for a 5.6 σ point on the
standard normal distribution. If we want to estimate the yield of
such an SRAM cell in the design phase, a standard Monte Carlo
approach would require at least 100 million SPICE simulations
on average to obtain just one failing sample point. Even then,
the estimate of the yield or failure probability will be suspected
because of the lack of statistical confidence, the estimate being
computed using only one failing example. Such a large number
of simulations are utterly intractable. This example clearly illus-
trates the widespread problem with designing robust memories
in the presence of process variations: We need to simulate rare
or extreme events and estimate the statistics of these rare events.
The problem of simulating and modeling rare events stands for
any circuit that has a large number of identical replications on
the same chip, as in DRAM arrays and nonvolatile memories.
We term such circuits as high-replication circuits (HRCs).

Note that systematic variations (e.g., proximity-based litho-
graphic effects) can be well accounted for in SRAM cells,
because they are typically small in size: The ubiquitous 6T
SRAM cell contains only six transistors. What really cause
significant variation then are the random interdevice variation
sources, such as random dopant fluctuation (RDF) [1] and
random poly-Si crystal orientation [1]. Furthermore, the impact
of variations is roughly inversely proportional to the square root
of the transistor area [2], and the transistors in SRAM cells tend
to be of minimum size. Hence, SRAM cells are particularly
susceptible to these random variations, increasing the need for
an efficient yield estimation technique for these cells.

Memory designers have typically side stepped the problem of
yield estimation by using multiple process and environmental
corners with large safety margins. This approach, of course, is
unreliable since it does not account for the actual statistics of
the SRAM cell performance metrics. Worse, it usually results
in significant overdesign, which translates to a waste of chip
area and power. Monte Carlo simulation would be the ideal
technique for reliably estimating the yield, but as we saw, it
can be prohibitively expensive for HRCs.

One avenue of attack is to abandon Monte Carlo. Several
analytical and semianalytical approaches have been suggested
to model the behavior of SRAM cells [3]–[5] and digital circuits
[6] in the presence of process variations. All suffer from ap-
proximations that are necessary to make the problem tractable
or apply to a specific performance metric. Mukhopadhyay et al.

0278-0070/$25.00 © 2009 IEEE

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

SINGHEE AND RUTENBAR: STATISTICAL BLOCKADE: SIMULATION AND MODELING OF RARE CIRCUIT EVENTS 1177

[4] and Mahmoodi et al. [6] assume a linear relationship
between the statistical variables and the performance metrics
[e.g., static noise margin (SNM)] and assume that the statistical
process parameters are normally distributed. These assumptions
result in a normal distribution assumption for the performance
metric too, which can suffer from gross errors, particularly
while modeling rare events: We shall see examples in the
result section. When the distribution varies significantly from
Gaussian, Mukhopadhyay et al. [4] choose an F -distribution
in an ad hoc manner. Bhavnagarwala et al. [3] present a
complex analytical model limited to a specific long-channel
transistor model (the transregional model) and further limited
to only SNM analysis for the 6T SRAM cell. Calhoun and
Chandrakasan [5] offer a more sophisticated model, but again,
it models only the SNM for subthreshold SRAM cells under
assumptions of independence and identical distribution of the
upper and lower SNMs, which may not always be valid. All
these methods are specific to either one circuit, one device
model, or one performance metric.

A more general approach is the most probable point (MPP)
method [7], also known as the worst case distance method in
the electronic design automation community. This is a two-step
technique: 1) Estimate the most likely failure point (the MPP) in
the statistical variable space using an optimization formulation
and 2) estimate the failure region boundary with a predefined
function form passing through this MPP. The failure region,
estimated by this boundary, can then be integrated over the
probability distributions of the variables to obtain the failure
probability. Although it is more flexible than the previously de-
scribed methods, the MPP method suffers from some practical
shortcomings. First, an efficient implementation would require
gradient and, possibly, curvature information, which are often
not easily available. Second, the accuracy is limited by the error
in the MPP search and the fit of the predefined function form
to the actual failure boundary. If the boundary approximation is
bad, there will be an unavoidable error in the yield computation.
Lastly, the optimizer may suffer from undesirable convergence
issues when applied to objectives computed from nonlinear
circuit simulation.

A different avenue of attack is to modify the Monte Carlo
strategy. Hocevar et al. [8] show how importance sampling can
be used to predict failure probabilities. Recently, Kanj et al. [9]
applied an efficient formulation of these ideas for modeling rare
failure events of single 6T SRAM cells, based on the concept of
mixture importance sampling (MixIS) from [10]. The approach
uses real SPICE simulations with no approximating equations.
However, the method only estimates the failure (exceedance)
probability of a single threshold value of the performance
metric. A rerun is needed to obtain probability estimates for
another failure threshold: No complete model of the tail of
the distribution is computed. The shape of the tail can provide
further insight to the designer about the sensitivity of the
yield to the performance threshold. Knowledge of the tail also
allows a desirable yield-centric design flow: The designer can
answer questions like “What is the minimum SRAM cell supply
voltage needed for a yield level of at least 6 σ?” This allows the
design flow to target a yield level rather than a performance
specification. MixIS also combines all performance metrics to

compute a failure probability, given fixed thresholds. Hence,
there is no way to obtain separate probability estimates for each
metric, other than a separate run per metric.

In this paper, we develop a novel, general, and efficient
Monte Carlo method that addresses both of the problems previ-
ously mentioned: very fast generation of 1) rare event samples
and 2) sound models of the rare event (distribution tail) statistics
for any performance metric. It imposes almost no a priori
limitations on the statistics of the statistical parameters or on the
device models or performance metrics. The method is concep-
tually simple and employs ideas from two rather nontraditional
sources: extreme value theory (EVT) and machine learning.

To obtain both samples and statistics for rare events, we need
to generate and evaluate an intractable number of Monte Carlo
samples. Generating each sample is neither challenging nor
expensive: We are merely creating the parameters for a circuit.
Evaluating the sample is expensive, because we simulate it.
What if we could quickly filter these samples and block those
that are unlikely to fall in the low-probability tails we seek?
Many samples could be generated, but very few are simulated.
We show how to exploit ideas from machine learning [11] to
build classifier structures, from a small set of Monte Carlo train-
ing samples, to create the necessary blocking filter. Given these
samples, we show how to use the rigorous mathematics of EVT
[12] (the theory of the limiting behavior of sampled maxima
and minima) to build sound models of these tail distributions.
It is this essential “blocking” activity of the filter that gives the
technique its name: statistical blockade. An initial version of
this paper was presented in [13]. An expanded version of this
material is to appear in [14].

Techniques from the world of machine learning have be-
gun to make their way into the circuit computer-aided design
community, e.g., [15]. However, this is not the case for EVT,
which offers a deep and useful set of tools for these problems.
EVT [12] is a branch of probability that studies and optimally
quantifies the statistics of, as the name suggests, extreme or rare
events. It has found wide statistical application in fields such as
hydrology [16], insurance [17], and finance [17] among several
others: Wherever there is a need to estimate the probability
of rare events. One of the most consequential applications,
and, indeed, one of the driving forces for the development of
the theory of extremal statistics, was the Dutch dike project
following the disastrous North Sea flood of 1953 that claimed
over 1800 human lives. One aspect of the postflood response
was to determine appropriate heights for the sea dikes in the
Netherlands, such that the probability of a flood in a year is
reduced to some very small amount (e.g., 10−4). Our problem
of estimating extreme values of the SRAM SNM, using a lim-
ited number of Monte Carlo samples, is similar in flavor to the
dike height problem (if not in impact on the human condition).
Hence, we can employ the same technical tools from EVT for
our problem. However, the circuit yield estimation problem is
more “extreme” in the sense of the failure probabilities to be
estimated: often 10−8 to 10−9 or smaller. We shall show how
to filter an intractable set of Monte Carlo samples down to a
practical set of simulation points and use EVT to obtain sound
statistics for the tail distributions that govern the statistics of
these filtered samples.

Oscar
Highlight

1178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

The remainder of this paper is organized as follows. As
background, we begin in Section II by developing the math-
ematical relations that link the yield of a complete memory
array to the yield of one constituent memory cell; this allows us
to proceed in subsequent sections with a cell-level analysis of
memory yield. In Section III, we define the rare event statistics
problem and review relevant results from EVT. We highlight the
applicable limit theorems for the distributions of rare events and
then show how we can use these results for statistical inference
from data. Section IV introduces our novel framework for fast
sampling of rare events and for modeling their statistics and
discusses some practical implementation issues. We present ex-
perimental results demonstrating the effectiveness of statistical
blockade on relevant circuit test cases in Section V. Finally,
Section VI offers concluding remarks.

II. MEMORY ARRAY YIELD AND CELL YIELD

Memory yield requirements are usually specified for the
entire array. For example, the designer may be comfortable
with an array failure probability of one in a thousand, i.e.,
Pf,arr < 10−3. However, how does this translate to a yield
requirement for each atomic bit-level memory cell? What is
the maximum cell failure probability Pf,cell allowed to satisfy
this array failure probability requirement? In this section, we
answer this question, given that most high-replication cells are
memory cells (e.g., SRAM cells). The answer is essential for
any practical statistical yield analysis of memories.

A. Computing Cell Yield From Array Yield

Let us talk in terms of the failure probability rather than the
yield to avoid the use of confusing negatives in our discussion.
Note that the relation between yield and failure probability (Pf)
is simply

Y ield = 1 − Pf . (1)

Hence, they are equivalent. Pf,arr, which is the array failure
probability, is the probability of one or more cells failing in any
one array. Hence, if we manufacture ten arrays, and six of them
have a total of eight faulty cells, our array failure probability is
(approximately) 6/10 and not 8/10. Another equivalent way to
define Pf,arr is the probability of the worst cell in an array being
faulty. Hence, if we are measuring some performance metric
y (e.g., SNM), we are really interested in the statistics of the
worst value of y from among N values, where N is the number
of cells in our array. Let us define this worst value as MN , and
let us assume that, by worst, we mean the maximum, i.e., large
values of y are bad. If, for some case, small values of y are bad,
then we can use the maximum of −y as the worst value. Hence

MN = max(Y1, Y2, . . . , YN) (2)

where Y1, . . . , YN are the measured performance metric values
for the N cells in an array. Also suppose that the failure
threshold for y is yf , i.e., any cell with y > yf is defined as
failing. Then, Pf,arr can be written as

Pf,arr = P (MN > yf) = 1 − P (MN ≤ yf). (3)

Now, P (MN ≤ yf) is the probability of the worst case cell
passing, or, equivalently, all cells in the array passing1

P (MN ≤yf)=P (Y1≤yf , . . . , YN ≤yf)=[P (Y ≤yf)]N . (4)

Since cell failure probability is

Pf,cell = P (Y > yf) (5)

we can combine (3)–(5) to obtain

Pf,arr = 1 − (1 − Pf,cell)N (6)

Pf,cell = 1 − (1 − Pf,arr)
1
N . (7)

B. Incorporating Redundancy

One common approach to improve fault tolerance in memo-
ries is to have redundant columns in the array, which are used
to replace defective columns in the chip: See, for example, [19].
In the simplest case, if there is one redundant column, the chip
can tolerate one failing cell. The presence of redundant bits, of
course, changes the statistics of the array failure probability in
relation to the cell failure probability. We will now develop a
simple model to allow the computation of process-induced cell
failure probability Pf,cell, given the maximum tolerable array
failure probability Pf,arr, in the presence of redundancy in the
array.

Let there be r redundant bits in an array. For the case of
column redundancy, this would mean that we have r redundant
columns. If each column has nc cells, then we can tolerate up
to rnc faulty cells, depending on their spatial configuration.
However, the probability of having two or more faulty cells
in the same column can be shown to be negligibly small,
given the fact that cell failure probability is extremely low in
practice, and column sizes are reducing as we move to advanced
technologies. Hence, we consider only the case where all faulty
cells are in different columns. This reasonable approximation
helps keep tedious mathematics away, without losing the core
insights of the derivations. In this case, the array would operate
without faults with up to r faulty cells in it, and the array failure
probability is the probability of having more than r faulty cells
in it. If the probability of having k faulty cells in an array is
Pf,k, then we can write the array failure probability Pf,chip as

Pf,arr = 1 −
r∑

k=0

Pf,k (8)

where

Pf,k = NCkP k
f,cell(1 − Pf,cell)N−k. (9)

Using these relations, we can relate array failure probability
with cell failure probability in the presence of redundancy.

1Here, we have assumed that failure of a cell is independent of the failure
of other cells in the array. This is reasonable because of the following reasons:
1) Parametric SRAM cell failure is induced primarily due to local mismatch
induced asymmetry; 2) local mismatch tends to be dominated by random
dopant fluctuation [18]; and 3) random dopant fluctuation is independent from
device to device. However, similar relations between array and cell failure
probabilities incorporating correlation may easily be used in the proposed
statistical blockade framework.

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

SINGHEE AND RUTENBAR: STATISTICAL BLOCKADE: SIMULATION AND MODELING OF RARE CIRCUIT EVENTS 1179

However, (9) is inconvenient because, for large N (one million
or more), the NCk term can be inconveniently large, and the
P k

f,cell term can be inconveniently small for floating point
arithmetic. A more convenient relation is given by the popular
Poisson yield model.

C. Poisson Yield Model

Let us define λ as the expected number of faulty cells in every
N cells we manufacture

λ = Pf,cellN. (10)

Then, we can write (9) as

Pf,k =
N !

(N − k)!Nk
×

(
1 − λ

N

)N

×
(

1 − λ

N

)−k

× λk

k!
.

(11)

Note that the array size N is very large compared to all rele-
vant values of k and λ. For large values of N , we can approxi-
mate the first three product terms in this equation, to obtain

Pf,k ≈ 1 × e−λ × 1 × λk

k!
=

λke−λ

k!
. (12)

Hence, Pf,k closely follows the well-known Poisson distribu-
tion for large N . Now, we can write the array failure probability
of (8) as

Pf,arr ≈ 1 −
r∑

k=0

(Pf,cellN)ke−Pf,cellN

k!
. (13)

Hence, given a specification for array yield, we can compute
the required cell yield with this equation. Conversely, for a
given cell design, if we can estimate the cell yield, then we
can compute the corresponding array yield. In the rest of this
paper, we develop a general, yet efficient, method to estimate
the failure statistics of any given cell design.

III. EVT: MODELING RARE EVENT STATISTICS

EVT provides us with the mathematical tools to build models
of the tails of distributions. It is the theory of the limiting behav-
ior of sampled maxima and minima of distributions and can be
thought of roughly as playing the same role for the extrema of
distributions as the celebrated central limit theorem [17] plays
for the means of distributions. We review the essential elements
of EVT in this section. For clarity, we again use SRAM circuit
behaviors as our guiding examples.

A. Problem

Suppose we want to model the rare event statistics of the
write time of an SRAM cell. Fig. 1 shows an example of
the distribution of the write time. We see that it is skewed
to the right with a heavy right tail. A typical approach is to
run a Monte Carlo with a small sample size (e.g., 1000) and
fit a standard analytical distribution to the data, for example,
a normal or lognormal distribution. Such an approach can be
accurate for fitting the “body” of the distribution but will be
grossly inaccurate in the tail of the distribution: The skewness

Fig. 1. Possible skewed distribution for some SRAM metric (e.g., write time).

of the actual distribution or the heaviness of its tail will be
difficult to match. As a result, any prediction of the statistics
of rare events, lying far in the tail, will be very inaccurate.

Let F denote the cumulative distribution function (CDF) of
the write time y, and let us define a tail threshold t to mark the
beginning of the tail (e.g., the ninety-ninth percentile). Let z be
the excess over the threshold t. We can write the conditional
CDF of the tail as

Ft(z) = P (Y −t ≤ z|Y >t) =
F (z+t)−F (t)

1 − F (t)
(14)

and the overall CDF as

F (z + t) = (1 − F (t)) Ft(z) + F (t). (15)

If we know F (t) and can estimate the conditional CDF of
the tail Ft(z) accurately, we can accurately estimate rare event
statistics. For example, the yield for some extreme threshold
yf > t is given as

F (yf) = (1 − F (t)) Ft(yf − t) + F (t) (16)

and the corresponding failure probability F̄ (yf) = 1 − F (yf)
is given as

F̄ (yf) = (1 − F (t)) (1 − Ft(yf − t)) . (17)

F (t) can be accurately estimated using a few thousand
simulations, since t is not too far out in the tail. Then, the
problem here is to efficiently estimate the conditional tail CDF
Ft as a simple analytical form, which can then be used to
compute statistical metrics such as (16) and (17) for rare events.
Of course, here, we assume that any threshold yf of interest will
be far into the tail, such that yf � t. This is easily satisfied for
any real HRC scenario, for example, our 1-Mb cache example
from Section I. We also assume that the extreme values of
interest lie only in the upper tail of the distribution. This is
without any loss of generality, because any lower tail can be
converted to the upper tail by replacing y = −y. This same
approach of fitting a generalized Pareto distribution (GPD) to
the exceedances over some threshold has been developed and
widely applied by hydrologists under the name of the peaks
over threshold method [17]. In their case though, the data are
from historical record and not synthetically generated. We now
look at some results from EVT, which are directly applicable to
the problem of estimating the tail CDF.

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

1180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

B. EVT: Modeling Tail Distributions

An important distribution in the theory of extreme values if
the GPD, which has the following CDF:

Gξ,β(z) =

{
1 −

(
1 − ξ z

β

)1/ξ

, ξ �= 0; z ∈ D(ξ, β)

1 − e−z/β , ξ = 0; z ≥ 0
(18)

where

D(ξ, β) =
{

[0,∞), ξ ≤ 0
[0, β/ξ], ξ > 0.

It is defined by two parameters: ξ and β.
We exploit the following seminal result in this work.
Theorem 1 (Balkema and de Haan [20] and Pickands [21]):

For every ξ ∈ R, F ∈ MDA(Hξ) if and only if

lim
t→∞

sup
z≥0

∣∣Ft(z) − Gξ,β(t)(z)
∣∣ = 0 (19)

for some positive function β(t), if and only if F is in the max-
imum domain of attraction (MDA) of the generalized extreme
value (GEV) distribution: F ∈ MDA(Hξ). Here, Gξ,β(z) is
the GPD.

In other words, if any distribution F satisfies the given
condition (F ∈ MDA(Hξ), its conditional tail distribution Ft

converges to a GPD as we move further out in the tail. Examples
of GPDs are shown in Fig. 2. We see that, for β = 1, the values
of ξ ≤ 1/2 produce distributions that resemble to commonly
seen distribution tails and that the GPD can also match finite
support tails, as for ξ ≥ 1/2 in Fig. 2(a). Let us look at the
condition in Theorem 1 in more detail.

The GEV is a one-parameter distribution, and its CDF is as
follows:

Hξ(y) =
{

e−(1−ξy)1/ξ
, ξ �= 0

e−e−y
, ξ = 0,

where 1 − ξy > 0. (20)

It combines three simpler distributions into one unified form.
These distributions are

Φα(y) =
{

0, y ≤ 0
e−y−α

, y > 0,
α > 0 (Fréchet) (21)

Ψα(y) =
{

e−(−y)α
, y ≤ 0

1, y > 0,
α > 0 (Weibull) (22)

Λ(y) = e−e−y

, y ∈ R (Gumbel). (23)

They are obtained from the GEV as follows.
1) ξ = −α−1 < 0 gives the Fréchet CDF Φα.
2) ξ = α−1 > 0 gives the Weibull CDF Ψα.
3) ξ = 0 gives the Gumbell CDF Λα.
Let us now look at what the “MDA” means. Suppose that

Y1, Y2, . . . is a sequence of independent identically distrib-
uted random variables from the CDF F . For any sample
{Y1, Y2, . . . , YN} of size N , define the sample maximum as

MN = max(Y1, Y2, . . . YN), N ≥ 2. (24)

From (4), we know that

P (MN ≤ y) = FN (y). (25)

Fig. 2. Probability density function for a GPD with β = 1. We get long
unbounded tails for ξ ≤ 0. (a) ξ ≥ 1/2. (b) ξ < 1/2.

Suppose that there exist normalizing constants aN , bN , and
some nondegenerate CDF H , such that

P

(
MN − bN

aN
≤ y

)
=FN (aNy + bN)

→H(y) as N → ∞, y ∈ R. (26)

Then, we say that F lies in the MDA of H or F ∈
MDA(H). In other words, the maxima of N i.i.d. random
variables with CDF F , when properly normalized, converge in
distribution to a random variable with the distribution H .

Fisher and Tippett [22] showed the following.
Theorem 2 (Fisher–Tippett [22]):

F ∈ MDA(H) ⇒ H is of type Hξ

where Hξ is the GEV defined in (20).
Hence, if any distribution F lies in MDA(H), then H

must be the GEV Hξ, for some ξ. The conditions for which
F ∈ MDA(H) for some nondegenerate H are quite general
and known well: see [17]. For example, we list some common
distributions belonging to MDA(Hξ), in Table I. Hence, for a
very large class of distributions, Theorem 1 holds true.

This is an extremely useful result: It implies that, if we can
generate enough points in the tail of a distribution (y ≥ t), in
most practical cases, we can fit the simple analytical GPD to the
data and make predictions further out in the tail. This approach
would be independent of the circuit or the performance metric

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

SINGHEE AND RUTENBAR: STATISTICAL BLOCKADE: SIMULATION AND MODELING OF RARE CIRCUIT EVENTS 1181

TABLE I
SOME COMMON DISTRIBUTIONS LYING IN MDA (Hξ). FOR A LONGER

LIST, SEE [17]

being considered. This result also suggests that most prior
ad hoc fitting strategies are at best suboptimal and, at worst,
simply wrong. Of course, two important questions remain as
follows: 1) How do we efficiently generate a large number of
points in the tail (y ≥ t)? and 2) how do we fit the GPD to the
generated tail points?

We address the latter question first, in the next section.

C. Estimating the Tail: Fitting the GPD to Data

For now, let us suppose that we can generate a reasonably
large number of points in the tail of our performance distri-
bution. For this, we might theoretically use standard Monte
Carlo simulation with an extremely large sample size or, more
practically, the statistical blockade sampling method proposed
in Section IV. Let this data be Z = (Z1, . . . , Zn), where each
Zi is the exceedance over the tail threshold t(Zi > 0 ∀i). All
Zi are i.i.d. random variables with common CDF Ft. Then, we
have the problem of estimating the optimal GPD parameters ξ
and β from this tail data, so as to best fit the conditional tail
CDF Ft. There are several options, e.g., as follows:

1) probability-weighted moment (PWM) matching;
2) maximum likelihood estimation (MLE);
3) moment matching.
For a comparison of these methods, see [23]. All three

methods can be completely automated. Manual methods based
on graphical exploration of the data are also possible but are not
of interest to us here: See [17] for a review.

PWMs are linear combinations of and, hence, equivalent
to L-moments [24]. L-moments are derived from the order
statistics of the data sample and have been seen to give more
accurate estimates than standard moments in many cases. For
many distributions where the standard moments are nonlinear
functions of the distribution parameters, the estimated standard
moments may show large errors. L-moments/PWMs being
linear functions of the order statistics tend to behave much
better in these cases. One example where this has been seen
to be true is the Wakeby distribution of which the generalized
Pareto is a special case. The L-moments are also more robust
to the presence of outliers and less subject to bias in the

approximation. For detailed expositions on the L-moments and
PWMs, see, for example, [24], [25], and [26]. Based on an
extensive simulation study, Hosking and Wallis [23] suggest
that estimates from the PWM method often have lower bias than
those from moment matching and MLE for sample sizes up to
500. Although MLE performs the desired task of finding the
most likely solution, the MLE search is shown to suffer from
some convergence problems when ξ is estimated close to 1/2.
Because of these reasons, we choose PWM matching for the
purpose of this paper.

The PWMs [27] of a continuous random variable Y with
CDF K are generalizations of the standard probability moments
[23] and are defined as

Mp,r,s = E [Y pKr(Y) (1 − K(Y))s] . (27)

The standard pth moment is given by Mp,0,0. For the GPD
(K = Gξ,β), we have a convenient relationship between M1,0,s

and (ξ, β), given by

ms = M1,0,s =
β

(1 + s)(1 + s + ξ)
, ξ > 0. (28)

Then, we can write

β =
2m0m1

m0 − 2m1
ξ =

m0

m0 − 2m1
− 2. (29)

We estimate these PWMs and, hence, the GPD parameters
from the data sample, as

m̂s =
1
n

N∑
i=1

(1 − qi)sYi,n (30)

where

Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n (31)

is the ordered sample, and

qi =
i + γ

n + δ
(32)

with γ = −0.35 and δ = 0, as suggested in [23]. The estimates
(ξ̂, β̂) converge to the exact values as n → ∞ and are asymptot-
ically normally distributed with covariance given by [23], (33)
see at the bottom of the page.

Although this is only an asymptotic relation, and not what we
would observe with realistic sample sizes, it does capture the
general error behavior. As would be expected, the estimation
error decreases with the tail sample size (n). The accuracy
can be arbitrarily improved by increasing n. This gives us a
convenient knob for tuning the accuracy by employing more or
less computational resource.

We note here that traditional methods like Gaussian fitting or
asymptotic probability extraction [28] try to match the moments

Σξ̂,β̂ → n−1

(1 + 2ξ)(3 + 2ξ)
×

[
(1 + ξ)(2 + ξ)2(1 + ξ + 2ξ2) β(2 + ξ)(2 + 6ξ + 7ξ2 + 2ξ3)
β(2 + ξ)(2 + 6ξ + 7ξ2 + 2ξ3) β2(7 + 18ξ + 11ξ2 + 2ξ3)

]
(33)

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

1182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Fig. 3. Tail and body regions in the statistical parameter space. The dashed
line is the exact tail region boundary for tail threshold t. The solid line is the
relaxed boundary modeled by the classifier for a classification threshold tc < t.

of the overall CDF F . However, here, we are surgically looking
at the tail of F and matching the (weighted) moments of the
tail CDF Ft. The EVT results of Section III-B allow us to
maximally remove the effect of the body of F in estimating
the tail. Previous methods are usually unable to achieve this
surgical separation of the body and tail in the fitting process.

Once we have estimated a GPD model of the conditional
CDF above a threshold t, we can estimate the failure probability
for any value yf by substituting the GPD in (17) as

P (Y > yf) ≈ (1 − F (t)) (1 − Gξ,β(yf − t)) . (34)

The next section addresses the important remaining question:
How do we efficiently generate a large number of points in the
tail (y ≥ t)?

IV. STATISTICAL BLOCKADE

Let any circuit performance metric or, simply, output y be
computed as

y = fsim(x). (35)

Here, x is a point in the statistical parameter (e.g., Vt and tox)
space or, simply, the input space, and fsim includes expensive
SPICE simulation. We assume that y has some probability
distribution F , with an extended tail. Suppose we define a
large tail threshold t for y, and then, from the developments in
Section III-B, we know that we can approximate the conditional
tail CDF Ft by a GPD Gξ,β . Section III-C shows how we can
estimate the GPD parameters (ξ, β) using data drawn from the
tail distribution. We now introduce our efficient tail sampling
strategy that will generate the tail points for fitting this GPD.

Corresponding to the tail of output distribution F , we expect
a “tail region” in the input space: Any statistical parameter val-
ues drawn from this tail region will give an output value y > t.
Fig. 3 shows an example of such a tail region for two inputs. The
rest of the input space is called the “body” region, correspond-
ing to the body of the output distribution F . In Fig. 3, these
two regions are separated by a dashed line. The key idea behind
the proposed sampling technique is to identify the tail region
and simulate only those Monte Carlo points that are likely to
lie in this tail region. Here, we exploit the common fact that
generating the random values for a Monte Carlo sample point is
very cheap compared to actually simulating the point as in (35).
Hence, if we generate points as in standard Monte Carlo, but
block—not simulate—those points that are unlikely to fall in

the tail region, we can drastically cut down the total time spent.
This reduction in time spent is drastic because we are trying to
simulate only the rare events, which, by definition, constitute a
very small percentage of the total Monte Carlo sample size. The
algorithm derives its name from this blocking activity.

We use a classifier to distinguish between the tail and body
regions and to block out the body points. A classifier [11] is an
indicator function that takes as input any point in the input space
(the statistical parameter space) and predicts the membership
of this point in one of multiple classes (the “body” or “tail”
classes). In the context of Fig. 3, it essentially builds a model
of the boundary between the tail and body regions. Using this
model of the boundary, it can label points from the Monte Carlo
sample set as either “tail” or “body.” Only the “tail” points are
then simulated. We also refer to this classifier as the blockade
filter and its blocking activity as blockade filtering.

To build this model of the tail region boundary, the classifier
can be trained with a small (e.g., 1000 points) training set
of simulated Monte Carlo sample points. The specific type of
classifier that we have used for our implementation of statis-
tical blockade is called support vector machine (SVM) [11],
[29]. The time taken for classifier training and classification is
negligible compared to the total simulation time. Apart from
this practical consideration, there is no restriction on the type
of classifier that can be used. Classification is a rich and active
field of research in the data mining community, and there
are many options for choosing a classifier [11]. SVMs are a
particularly popular well-researched classification strategy, and
optimized software implementations are readily available, for
example, SVMlight [30] and WEKA [31].

It is difficult, if not impossible, to build an exact model of
the boundary in general. Misclassifications, at least on points
unseen during training, are unavoidable. Hence, we relax the
accuracy requirement to allow for classification error. This is
done by building the classification boundary at a classification
threshold tc that is less than the tail threshold t. Since we have
assumed that only the upper (or right) tail is relevant, the tail
region corresponding to t will be a subset of the tail region
corresponding to tc, if tc < t. This will help to ensure that,
even if the classifier is imperfect, it is unlikely that it will
misclassify points in the true tail region (defined by t). The
relaxed boundary corresponding to such a tc is shown as solid
line in Fig. 3.

A. Statistical Blockade Algorithm

The statistical blockade algorithm is shown as Algorithm 1.
The thresholds t = ptth percentile and tc = pcth percentile are
estimated from the small initial Monte Carlo run, which also
gives the n0 training points for the classifier. Typical values
for these constants are shown in Algorithm 1.2 The function
MonteCarlo(n) generates n points in the statistical parameter
space, which are stored in the n × s matrix X, where s is the

2These typical values have been determined empirically to provide a good
tradeoff between classifier accuracy, simulation time, and tail model fit. Dif-
ferent implementations of the statistical blockade framework (different sample
sizes and different classification schemes) may require an adjustment to these
values.

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

SINGHEE AND RUTENBAR: STATISTICAL BLOCKADE: SIMULATION AND MODELING OF RARE CIRCUIT EVENTS 1183

Fig. 4. Efficient tail (rare event) sampling method of statistical blockade.

input dimensionality. Each row of X is a point in s dimensions.
y is a vector of output values computed from simulations.
The function BuildClassifier(X,y, tc) trains and returns
a classifier using the training set (X,y) and classification
threshold tc. The function Filter(C,X) blocks the points in
X classified as “body” by the classifier C and returns only
the points classified as “tail.” FitGPD(ytail − t) computes the
parameters (ξ, β) for the best GPD approximation Gξ,β to the
conditional CDF of the exceedances of the tail points in ytail

over t. We can then use this GPD model to compute statistical
metrics for rare events, for example, the failure probability for
some threshold yf , as in (34). This sampling procedure is also
shown in Fig. 4.

Algorithm 1 The statistical blockade algorithm for effi-
ciently sampling rare events and estimating their probability
distribution.

Require: training sample size n0 (e.g., 1 000); total sample
size n; percentages pt (e.g., 99%), pc (e.g., 97%)

1:X = MonteCarlo(n0)
2:y = fsim(X)
3:t = Percentile(y, pt)
4:tc = Percentile(y, pc)
5:C = BuildClassifier(X,y, tc) / / C is a classifier
6:y = fsim (Filter(C, MonteCarlo(n)))
7:ytail = {yi ∈ y : yi > t}
8:(ξ, β) = FitGPD(ytail − t)

Two technical details of note are the issues of choosing and
unbiasing the classifier. The algorithm places no restrictions
on the choice of classifier. However, we make some practical
observations here that are relevant for the choice of classifier.
HRCs naturally tend to be small relatively simple circuits. It is
highly unlikely that a complex large circuit will be replicated
thousands to millions of times on the same chip. This level of
replication often naturally coincides with simple functionality.
As a result, we often do not expect to see drastically nonlinear
boundaries for the tail regions of these circuits nor do we
expect to see very complex topologies of the tail regions. These
considerations, along with the safety margin awarded by a

classification threshold tc less than t, led us to use linear SVMs.
Indeed, linear SVMs suffer minimally from the undesirable
overfitting issues and the complex parameter selection prob-
lems of nonlinear kernel-based SVMs. As we shall demonstrate
with experiments in Section V, this choice does result in an ef-
fective implementation of statistical blockade. For cases where
a strongly nonlinear boundary exists, a linear classifier may not
suffice, and more sophisticated classification techniques may
be required [11]. The statistical blockade framework, however,
should not need any fundamental change.

An important technical point to note about the classifier
construction is as follows. The training set will typically have
many more body points than tail points. Hence, even if all
or most of the tail points are misclassified, the training error
will be low as long as most of the body points are correctly
classified. This will result in a classifier that is biased to allow
more misclassifications of points in the tail region. However,
we need to minimize misclassification of tail points to avoid
distorting the statistics of the simulated tail points. Hence, we
need to reverse bias the classification error. Using the technique
proposed in [32], we penalize the misclassifications of tail
points more than the misclassifications of body points. Let γt

and γb be possibly different penalty factors for the “tail” and
“body” classes: Misclassifications of any training points in the
tail (body) region are penalized by a factor of γt (γb). If, as in
[32], we choose

γt

γb
=

Number of “body" points
Number of “tail" points

we can obtain an unbiased classifier.

V. EXPERIMENTAL RESULTS

We now apply the statistical blockade method to the follow-
ing three test cases:

1) a 6T SRAM cell;
2) a complete 64-b SRAM column with write driver;
3) a master–slave flip-flop (MSFF) with the scan chain

component.

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

1184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

The initial training sample used to construct each blockade
filter is from a standard Monte Carlo run of n0 = 1000 points.
The filter is an SVM classifier built using the ninety-seventh
percentile of each relevant performance metric as the classifi-
cation threshold tc. The tail threshold is defined as the ninety-
ninth percentile.

In all cases, the rare event statistic we compute is the failure
probability F̄ (yf) for any failure threshold yf , using the GPD
fit to the tail defined by the tail threshold t. We represent this
failure probability as the equivalent quantile yσ on the standard
normal distribution

yσ = Φ−1
(
1 − F̄ (yf)

)
= Φ−1 (F (yf)) (36)

where Φ is the standard normal CDF. For example, a failure
probability of F̄ = 0.00135 implies a cumulative probability
of F = 1 − F̄ = 0.99865. The equivalent point on a standard
normal, having the same cumulative probability, is yσ = 3. In
other words, any yf with a failure probability of 0.00135 is a
“3σ” point.

We can compute F̄ (yf), and hence yσ , in three different ways
as follows.

1) Empirically. Run a large Monte Carlo simulation where
all points are fully simulated, i.e., with no use of blockade
filtering or EVT. For example, we use a sample size of
nMC (e.g., one million), giving us nMC values yi, i =
1, . . . , nMC. Then, we can empirically compute F̄ (yf) as

F̄ (yf) ≈ |{yi : yi > yf}|
nMC

. (37)

Of course, for any yf > max({y1, . . . , ynMC}), we
will get the same estimate of zero failure probability, and
yσ = ∞, since there are no points beyond this yf to give
us any information about such rare events. Hence, the
prediction power of the empirical method is limited by
the Monte Carlo sample size.

2) Using the GPD model, with no blockade filtering. We
can run a full Monte Carlo simulation with no filtering,
as in the empirical estimation case, but then fit a GPD
to the points in the tail defined by the tail threshold t.
These are the points {yi : yi > t}. Using this GPD Gξ,β

in (34), we can compute the failure probability. F (t)
can be estimated empirically with good accuracy. The
GPD model extends the prediction power beyond the
maximum yi value in the Monte Carlo sample set.

3) Using statistical blockade. Here, we use the complete
statistical blockade flow, where only candidate tail points
identified by the blockade filter are simulated, and a GPD
tail model is estimated from the actual tail points y > t.
Here, too, we use (34), but the points used to estimate
(ξ, β) are obtained from blockade filtering. Furthermore,
we use a Monte Carlo sample size that is much smaller
than for method 2), to test statistical blockade in a practi-
cal setting, where we want to use as small a sample size
as possible.

For all the test cases, we compare the predictions of yσ from
these three methods. Method 2) gives the most accurate esti-

Fig. 5. A six-transistor SRAM cell with write driver and column mux.

mates, since it uses a large number of points and no filtering. In
some cases, we also show estimates computed using a Gaussian
distribution fit to highlight the error in such an approach. Of
course, a Gaussian may not be the choice if the distribution
form is known, but here, we assume that we do not know the
type of the distribution F . The Gaussian is chosen as a popular
representative for a variety of distributions that may be chosen
ad hoc in such cases. Let us now look at the test circuits in more
detail, along with the results we obtain.

A. 6T SRAM Cell

The first test case is a standard 6T SRAM cell with bit lines
connected to a column multiplexor and a nonrestoring write
driver, shown in Fig. 5. We use the Cadence 90-nm Generic
PDK library, with independent normally distributed threshold
voltage (Vt) variation per transistor and a global gate oxide
thickness (tox) variation, which is also normally distributed.
The Vt standard deviation is (about 18% of nominal Vt)

σVt
=

5 mV√
WL

(38)

where W and L are the transistor width and length in mi-
crometers. The standard deviation for tox is taken as 2% of the
nominal value. This gives us a total of nine statistical parame-
ters. The metric being measured is the write time τw: the time
between the word line going high and the nondriven cell node
(node 2) transitioning. Here, “going high” and “transitioning”
imply crossing 50% of the full voltage change. For methods
1) and 2), we use nMC = 1 million Monte Carlo points. For
statistical blockade [method 3)], 100 000 Monte Carlo points
are filtered through the classifier, generating 4379 tail candi-
dates. On simulating these 4379 points, 978 true tail points
(τw > t) were obtained, which were then used to compute a
GPD model for the tail conditional CDF. Table II shows a
comparison of the yσ values estimated by the three different
methods. We can see a close match between the predictions
by the accurate method 2) and statistical blockade, method 3).
Note that the GPD model for each method does not change
across the rows of the columns. Fig. 6 shows the conditional tail
CDFs computed from the empirical method and from statistical
blockade, showing a good match.

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

SINGHEE AND RUTENBAR: STATISTICAL BLOCKADE: SIMULATION AND MODELING OF RARE CIRCUIT EVENTS 1185

TABLE II
PREDICTION OF FAILURE PROBABILITY AS yσ BY METHODS 1), 2), AND

3), FOR A 6T SRAM CELL. THE NUMBER OF SIMULATIONS FOR

STATISTICAL BLOCKADE INCLUDES THE 1000 TRAINING SAMPLES. THE

WRITE TIME VALUES ARE SHOWN IN “FAN-OUT OF 4” UNITS

Fig. 6. Comparison of GPD tail model from statistical blockade (5379 simu-
lations) and the empirical tail CDF (one million simulations) for the write time
of the 6T SRAM cell.

Some observations highlighting the efficiency of statistical
blockade can be made immediately as follows.

1) The empirical method fails beyond 2.6 FO4, correspond-
ing to about 1 ppm circuit failure probability, because
there are no points generated by the Monte Carlo run so
far out in the tail.

2) Fitting a GPD model to the tail points [method 2)] allows
us to make predictions far out in the tail, even though we
have no points that far out.

3) Using blockade filtering, coupled with the GPD tail
model, we can drastically reduce the number of simula-
tions (from one million to 5379) with very small change
to the tail model.

B. 64-b SRAM Column

The next test case is a 64-b SRAM column, with a nonrestor-
ing write driver and a column multiplexor, shown in Fig. 7.
Only one cell is being accessed, while all the other word
lines are turned off. Random threshold variations on all 402
transistors (including the write driver and column mux) are
considered, along with a global gate oxide variation. The device
and variation models are the same 90-nm technology as for the
6T SRAM cell. In scaled technologies, leakage current is no
longer negligible [33]. Hence, process variations on transistors
that are meant to be inaccessible (or off) can also impact the
overall behavior of a circuit. This test case allows us to see the

Fig. 7. A 64-bit SRAM column with write driver and column multiplexor.

impact of variations in the leakage current passing through the
63 off cells, along with variations in the write driver. Since the
BSIM3v3 models [34] are used, the gate leakage is not well
modeled, but the drain leakage is.

Once again, we measure the write time, in this case, from
the word line wl0 to node 2, for falling node 2. The number
of statistical parameters is 403. Building a reliable classifier
with only n0 = 1000 points in 403 dimensional space is nearly
impossible. However, we can reduce the dimensionality by
choosing only those dimensions (statistical parameters) that
have a significant impact on the write time. We use Spearman’s
rank correlation coefficient ρS (39) between each statistical
parameter and the circuit performance metric to quantitatively
estimate the strength of their relationship. Spearman’s rank
correlation [35] between two variables x and y, given the
sample set {xj , yj}n

j=1, is given by

ρS(x, y) =

∑n
j=1(Pj − P̄)(Qj − Q̄)√∑n

j=1(Pj − P̄)2
√∑n

j=1(Qj − Q̄)2
(39)

where Pj and Qj are the ranks of xj and yj in the sample set,
as shown by the example in Table III. To compute the rank of,
for example, xj , we sort all the x values in increasing order and
take the position of xj in this sorted list as its rank. P̄ and Q̄
denote the means of the ranks. Hence, ρS is just Pearson’s linear
correlation on the ranks. However, this measure of correlation
does not assume linearity like the latter and hence gives more
relevant estimates of the sensitivities. For classification, only
parameters with |ρS | > 0.1 are used, reducing the dimension-
ality to only 11. Note that we have used the same 1000-point

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

1186 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

TABLE III
EXAMPLE ILLUSTRATING THE CONCEPT OF RANKS FOR SPEARMAN’S

RANK CORRELATION. THE RANK OF A VALUE IS ITS POSITION IN A

SORTED LIST OF ITS CLASS, FOR EXAMPLE, 0.76 IS THIRD IN THE

LIST OF x VALUES SORTED IN INCREASING ORDER

Fig. 8. Results for the SRAM column test circuit. (a) Magnitudes of rank
correlation between the statistical parameters and the write time of the SRAM
column. Only a few parameters have a strong relationship with the write
time. (b) GPD model of SRAM column write time from statistical blockade
(6314 simulations) compared with the empirical conditional CDF (100 000
simulations).

sample for both ranking and classifier training. Fig. 8(a) shows
the sorted magnitudes of the 403 rank correlation values: We
can see that only a handful of the statistical parameters have
significant correlation with the write time. The transistors (the
threshold voltages) chosen by this method are as follows:

1) the pull-down and output transistors in the active write-
driver AND gate;

2) the bit line pull-down transistors;
3) all transistors in the active 6T cell, except for Mp2 (since

node 2 is being pulled down in this case).

This selection coincides with a designer’s intuition of the
devices that would have the most impact on the write time.

yσ is computed for increasing failure thresholds, using all
three methods. We use nMC = 100 000 simulated Monte Carlo
points for methods 1) and 2). For statistical blockade, method
3), we filter these 100 000 points through the classifier in
reduced dimensions, giving 5314 candidate tail points. On

TABLE IV
PREDICTION OF FAILURE PROBABILITY AS yσ BY METHODS 1), 2), AND 3)

AND BY GAUSSIAN APPROXIMATION, FOR THE SRAM COLUMN. THE

NUMBER OF SIMULATIONS FOR STATISTICAL BLOCKADE INCLUDES THE

1000 TRAINING SAMPLES. THE WRITE TIME VALUES ARE SHOWN IN

“FAN-OUT OF 4” UNITS

simulation, we finally obtain 1077 true tail points. Table IV
compares the predictions by these three methods. We can see
the close match between the accurate method 2) and statisti-
cal blockade, even though the total number of simulations is
reduced from 100 000 to 6314. The empirical method, once
again, falls short of our needs, running out of data beyond τw =
2.9 FO4. Fig. 8(b) graphically shows the agreement between
the conditional tail models extracted empirically and using
statistical blockade.

We further reduce the Monte Carlo sample size for statistical
blockade, to see if the simulation cost can be further reduced
while maintaining accuracy. We use statistical blockade on only
20 000 Monte Carlo points, giving 1046 filtered candidate tail
points and 218 true tail points. However, the predictions (col-
umn 5) show large errors compared to our reference, method
2). This suggests that a tail sample of only 218 is not sufficient
to obtain a reliable model. We also use a Gaussian fit to 20 000
simulated Monte Carlo points for estimating yσ. It is clear from
the table that, in this case, a Gaussian fit underestimates the
failure probability, with the error increasing as we move to rarer
events.

Comparing the statistics for the SRAM column in Table IV
with the statistics for the SRAM cell in Table II, we can see that
the distribution of write time has a larger spread for the SRAM
column than for the SRAM cell. For example, the 4.8 σ point
for the SRAM cell is 2.7 FO4, while for the SRAM column,
it is 3.2 FO4. The reason for this increased spread is that the
variations in the leakage current of the entire column contribute
significantly to the variation of the performance of any single
cell. This shows that, in general, simulating variations in a
single circuit, without modeling variations in its environment
circuitry, can lead to large errors in the estimated statistics.

C. MSFF With Scan Chain

The last test case is a commonly seen MSFF with scan chain
shown in Fig. 9. Flip-flops are ubiquitous in digital circuits and
can be highly replicated in large chips. The circuit has been
implemented using the 45-nm CMOS predictive technology
models of [36]. The variations considered are RDF for all tran-
sistors and one global gate oxide thickness (tox) variation. The
RDF is modeled as normally distributed independent threshold
voltage (Vt) variation, with

σVt
=

13.5Vt0√
WL

(40)

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

SINGHEE AND RUTENBAR: STATISTICAL BLOCKADE: SIMULATION AND MODELING OF RARE CIRCUIT EVENTS 1187

Fig. 9. Master–slave flip-flop with the scan chain component.

where W and L are the transistor width and length in nanome-
ters, and Vt0 is the nominal threshold voltage. This results in
about 30% standard deviation for a minimum-sized transistor.
This is large for current CMOS technologies, but we want to
make sure that statistical blockade is powerful enough for future
technologies too, where larger variations will be inevitable.
The standard deviation for tox is taken as 2% of the nominal
value, since tox is typically better controlled than RDF. The
number of statistical parameters is 31, and the metric we are
measuring is the clock-output delay τcq. The flip-flop has a
peculiarity in its rare event behavior. For large deviations in the
statistical parameters, the flip-flop reaches metastable behavior,
and using standard circuit simulators, we fail to see the flip-flop
output converges to a stable low/high value. This leads to an
undefined clock-output delay for some Monte Carlo points. We
reject any such points without replacement in this experiment.
Although these rejected points are also rare events, they distort
the smoothness of the tail that is required to apply the EVT limit
theorem, if not rejected. This still allows us to test the speed
and tail modeling efficiency of statistical blockade, since we
use the same rejection method across all estimation methods.
In practice, the fraction of such undefined delay events can be
estimated from the simulated points in statistical blockade and
added to the failure probability estimated using the GPD model,
to give the overall failure probability.

For methods 1) and 2), we simulate nMC = 500 000 Monte
Carlo points. For statistical blockade [method 3)], we filter
100 000 Monte Carlo points to obtain 7785 candidate tail points
which, on simulating, yield 692 tail points. Note that, here,
we have ignored any tail points for which the flip-flop output
did not converge to a stable low/high value. Fig. 10(b) shows
the conditional tail CDFs from the empirical and statistical
blockade models. We also compare predictions from these
methods with those from a Gaussian fit to 20 000 simulated
Monte Carlo points. Fig. 10(a) shows a histogram of the delay
values obtained from the 500 000-point Monte Carlo run. The
extreme skewness and the heavy tail of the histogram suggest
that a Gaussian fit would be grossly inaccurate.

Table V shows the estimates of yσ computed by these four
methods: We can clearly see the gross errors in the Gaussian
estimates. The GPD fits do, however, capture the heavy tail of
the distribution. To see this, compare Table V with the results
for the SRAM cell in Table II. A 20% increase in the SRAM

Fig. 10. Results for the MSFF test circuit. (a) Histogram of clock-output delay
of the MSFF, showing a long heavy tail and high skewness. (b) GPD model of
MSFF delay from statistical blockade (8785 simulations) compared with the
empirical conditional CDF (500 000 simulations).

write time, from 2.5 FO4 to 3 FO4, results in an increase of
2.424 in yσ , while a similar percentage increase in the MSFF
delay, from 50 FO4 to 60 FO4, increases yσ by only 0.136, even
though the increases are from similar probability levels (3.886 σ
for the SRAM cell and 3.854 σ for the MSFF).

In summary of these results, we see that statistical blockade
provides an efficient way of sampling rare events and modeling
their statistics. We see large improvements in fitting accuracy
over simple Gaussian fits, on using our GPD model. Further-
more, we also see large speedups over simple Monte Carlo,
ranging from roughly one to two orders of magnitude.

VI. CONVERGENCE BEHAVIOR OF THE TAIL MODEL

The GPD tail model can be used to make predictions re-
garding rare events that are farther out in the tail than any
of the data we used to compute the GPD model. Indeed,
this is the compelling reason for adopting the GPD model.
However, from (33), we expect the statistical confidence in
the estimates to decrease as we predict farther out in the tail.
We can estimate the confidence interval in the following way.
Replace the unknown exact values of (ξ, β) in (33) with the
estimated (ξ̂, β̂) to obtain an estimate of the covariance matrix
Σξ̂,β̂ . Then, sample the GPD parameters from the joint normal

with this covariance matrix and the mean vector (ξ̂, β̂), to
compute different estimates of some quantile (e.g., the 5 σ
point). Compute a confidence interval from this set of quantile
estimates.

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

Oscar
Highlight

1188 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

TABLE V
PREDICTION OF FAILURE PROBABILITY AS yσ BY METHODS 1), 2), AND 3) AND BY GAUSSIAN APPROXIMATION, FOR THE MSFF. THE NUMBER OF

SIMULATIONS FOR STATISTICAL BLOCKADE INCLUDES THE 1000 TRAINING SAMPLES. THE DELAY VALUES ARE SHOWN IN “FAN-OUT OF 4” UNITS

Fig. 11. Ninety-five percent confidence intervals as a percentage of the
estimate.

Let yi(m) be the ith estimate of the mσ point, and let
y97.5%(m) and y2.5%(m) be the 97.5% and 2.5% percentile
points, respectively. A 95% confidence interval is then

κ95%(m) = y97.5%(m) − y2.5%(m). (41)

We express this interval as a percentage of the y(m) esti-
mated using (ξ̂, β̂)

κ′
95%(m) =

κ95%(m)
y(m)

× 100. (42)

Fig. 11 shows the κ′
95%(m) against m for the case of the

SRAM cell write time (y = τw). Ten thousand GPD parameter
pairs were sampled for computing these interval estimates.
The tail model was estimated using 1000 points, and the tail
threshold t is at 2.326 σ (ninety-ninth percentile). We see that,
to keep the error within ±5% with a confidence of 95%, we
should not be predicting farther than 5.3 σ. At 6 σ, the error is
±8%. Hence, the predictions from the tail model can be trusted
only up to some distance from the tail threshold. This distance is
determined by the number of points used to fit the GDP model.
Hence, if we use a higher tail threshold t to fit more extreme
tail regions, we would also need to ensure that the number of
tail points is not reduced.

A practical implementation of statistical blockade may re-
quire a criterion for stopping further sample generation. Al-
though an exact theory of the exact dependence of accuracy
on the sample size remains elusive, (33) and (42) provide
reasonable approximations. One possible stopping criterion can

then be a maximum threshold on the estimated confidence
interval (e.g., κ′

95% < 5%): Keep generating more samples until
this threshold is reached. Similar estimators for the confidence
intervals of the GPD parameters are available in the existing
literature for other fitting methods like MLE and moment
matching [23].

VII. CONCLUSION

Statistical blockade is a novel, efficient, and flexible frame-
work for the following: 1) generating samples in the tails of
distributions of circuit performance metrics and 2) deriving
sound statistical models of these tails. This enables us to make
predictions of failure probabilities given thresholds far out in
the tails. This capability has become critical for reliable and
efficient design of HRCs, such as SRAMs, as transistor sizes
move deeply into the nanometer regime. Our methods offer
both significantly higher accuracy than standard Monte Carlo
and speedups of one to two orders of magnitude across a range
of realistic circuit test cases and variations. Our future work will
focus on extending the range of the tail estimates to extremely
rare events with good confidence.

REFERENCES

[1] M. Hane, T. Ikezawa, and T. Ezaki, “Atomistic 3D process/device simu-
lation considering gate line-edge roughness and poly-Si random crystal
orientation effects,” in IEDM Tech. Dig., 2003, pp. 9.5.1–9.5.4.

[2] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching
properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5,
pp. 1433–1440, Oct. 1989.

[3] A. J. Bhavnagarwala, X. Tang, and J. D. Meindl, “The impact of intrinsic
device fluctuations on CMOS SRAM cell stability,” IEEE J. Solid-State
Circuits, vol. 36, no. 4, pp. 658–665, Apr. 2001.

[4] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Statistical design and
optimization of SRAM cell for yield enhancement,” in Proc. IEEE/ACM
Int. Conf. CAD, 2004, pp. 10–13.

[5] B. H. Calhoun and A. Chandrakasan, “Analyzing static noise margin for
sub-threshold SRAM in 65 nm CMOS,” in Proc. Eur. Solid State Circuits
Conf., 2005, pp. 363–366.

[6] H. Mahmoodi, S. Mukhopadhyay, and K. Roy, “Estimation of delay vari-
ations due to random-dopant fluctuations in nanoscale CMOS circuits,”
IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1787–1796, Sep. 2005.

[7] X. Du and W. Chen, “A most probable point based method for efficient
uncertainty analysis,” J. Design Manuf. Autom., vol. 4, no. 1, pp. 47–66,
Oct. 2001.

[8] D. Hocevar, M. Lightner, and T. Trick, “A study of variance reduction
techniques for estimating circuit yields,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. CAD-2, no. 3, pp. 180–192, Jul. 1983.

[9] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and its
application to the analysis of SRAM designs in the presence of rare event
failures,” in Proc. IEEE/ACM Des. Autom. Conf., 2006, pp. 69–72.

[10] T. C. Hesterberg, “Advances in importance sampling,” Ph.D. dissertation,
Dept. Statist., Stanford Univ., Stanford, CA, 1988.

Oscar
Highlight

Oscar
Highlight

SINGHEE AND RUTENBAR: STATISTICAL BLOCKADE: SIMULATION AND MODELING OF RARE CIRCUIT EVENTS 1189

[11] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction. New York:
Springer-Verlag, 2001.

[12] S. I. Resnick, Extreme Values, Regular Variation and Point Processes.
New York: Springer-Verlag, 1987.

[13] A. Singhee and R. A. Rutenbar, “Statistical blockade: A novel method for
very fast Monte Carlo simulation of rare circuit events, and its applica-
tion,” in Proc. Des. Autom. Test Eur., 2007, pp. 1–6.

[14] Embedded Memories in Nanoscale VLSIs, K. Zhang, Ed. New York:
Springer-Verlag, 2009.

[15] H. Liu, A. Singhee, R. A. Rutenbar, and L. R. Carley, “Remembrance
of circuits past: Macromodeling by data mining in large analog design
spaces,” in Proc. Des. Autom. Conf., 2002, pp. 437–442.

[16] L. de Haan, “Fighting the arch-enemy with mathematics,” Stat. Neerl.,
vol. 44, no. 2, pp. 45–68, Jun. 1990.

[17] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Ex-
tremal Events for Insurance and Finance, 4th ed. Berlin, Germany:
Springer-Verlag, 2003.

[18] K. Agarwal, F. Liu, C. McDowell, S. Nassif, K. Nowka, M. Palmer,
D. Acharyya, and J. Plusquellic, “A test structure for characterizing local
device mismatches,” in Symp. VLSI Circuits Dig. Tech. Papers, 2006,
pp. 67–68.

[19] B. Joshi, R. K. Anand, C. Berg, J. Cruz-Rios, A. Krishnamurthi,
N. Nettleton, S. Nguyen, J. Reaves, J. Reed, A. Rogers, S. Rusu,
C. Tucker, C. Wang, M. Wong, D. Yee, and J.-H. Chang, “A BiCMOS
50 MHz cache controller for a superscalar microprocessor,” in Int. Solid
State Circuits Conf., 1992, pp. 110–111.

[20] A. A. Balkema and L. de Haan, “Residual life time at great age,” Ann.
Probab., vol. 2, no. 5, pp. 792–804, 1974.

[21] J. Pickands, III, “Statistical inference using extreme order statistics,” Ann.
Stat., vol. 3, no. 1, pp. 119–131, 1975.

[22] R. A. Fisher and L. H. C. Tippett, “Limiting forms of the frequency
distribution of the largest or smallest member of a sample,” Math. Proc.
Camb. Philos. Soc., vol. 24, no. 2, pp. 180–190, Apr. 1928.

[23] J. R. M. Hosking and J. R. Wallis, “Parameter and quantile estimation
for the generalized Pareto distribution,” Technometrics, vol. 29, no. 3,
pp. 339–349, Aug. 1987.

[24] J. R. M. Hosking, “L-moments: Analysis and estimation of distributions
using linear combinations of order statistics,” J. R. Stat. Soc. Ser. B
(Methodological), vol. 52, pp. 105–124, 1990.

[25] J. M. Landwehr and N. C. Matalas, “Estimation of parameters and quan-
tiles of Wakeby distributions 1,” Water Resour. Res., vol. 15, no. 6,
pp. 1361–1372, Dec. 1979.

[26] J. M. Landwehr and N. C. Matalas, “Estimation of parameters and quan-
tiles of Wakeby distributions 2,” Water Resour. Res., vol. 15, no. 6,
pp. 1373–1379, Dec. 1979.

[27] J. R. M. Hosking, “The theory of probability weighted moments,” IBM
Res. Division, Yorktown Heights, NY, Research Report RC12210, 1986.

[28] X. Li, J. Le, P. Gopalakrishnan, and L. T. Pileggi, “Asymptotic probability
extraction for non-normal distributions of circuit performance,” in IEEE
Int. Conf. Comput. Aided Des., 2004, pp. 2–9.

[29] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 121–167,
Jun. 1998.

[30] T. Joachims, “Making large-scale SVM learning practical,” in Advances
in Kernel Methods—Support Vector Learning, B. Schölkopf, C. Burges,
and A. Smola, Eds. Cambridge, MA: MIT Press, 1999.

[31] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. San Francisco, CA: Morgan Kaufmann,
2005.

[32] K. Morik, P. Brockhausen, and T. Joachims, “Combining statistical learn-
ing with a knowledge-based approach—A case study in intensive care
monitoring,” in Proc. 16th Int. Conf. Mach. Learn., 1999, pp. 268–277.

[33] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester, “Statistical analysis of
subthreshold leakage current for VLSI circuits,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 12, no. 2, pp. 131–139, Feb. 2004.

[34] W. Liu, X. Jin, J. Chen, M.-C. Jeng, Z. Liu, Y. Cheng, K. Chen,
M. Chan, K. Hui, J. Huang, R. Tu, P. Ko, and C. Hu, “Bsim 3v3.2
MOSFET model users’ manual,” Univ. California, Berkeley, CA, Tech.
Rep. No. UCB/ERL M98/51, 1988.

[35] W. H. Press, B. P. Flannery, A. A. Teukolsky, and W. T. Vetterling, Numer-
ical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 1992.

[36] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45 nm early design exploration,” IEEE Trans. Electron Devices,
vol. 53, no. 11, pp. 2816–2823, Nov. 2006.

Amith Singhee (S’06–M’09) received the B.Tech.
(with honors) in electrical engineering from the
Indian Institute of Technology (IIT), Kharagpur,
India, in 2000 and the M.S. and Ph.D. degrees in
electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, in 2002 and 2007,
respectively.

He is a Research Staff Member with IBM
T. J. Watson Research Center, Yorktown Heights,
NY, with current interests in statistical simulation,
process variation modeling, and general design for

manufacturability. He was with Neolinear and, subsequently, Cadence Design
Systems, from 2002 to 2004.

Dr. Singhee is a recipient of several awards, including the European Design
Automation Association Outstanding Dissertation Award; the A. G. Milnes
Award for his Ph.D. dissertation; the Silver Medal at IIT; the best paper award
at the Design Automation Conference in 2002 and the Design, Automation
and Test in Europe (DATE) in 2007; and the best student paper award at the
International Conference on Very Large Scale Integration Design in 2008. His
paper was published in the book “The Most Influential Papers of 10 Years
DATE,” and he received the Inventor Recognition Award from the Global
Research Consortium in 2008.

Rob A. Rutenbar (S’77–M’84–SM’90–F’98) re-
ceived the Ph.D. degree from the University of
Michigan, Ann Arbor, in 1984.

He is with Carnegie Mellon University, Pittsburgh,
PA, where he currently holds the Stephen Jatras
(E’47) Chair in the Department of Electrical and
Computer Engineering. He has worked on tools for
custom circuit synthesis and optimization for over
20 years. In 1998, while he was on leave from
Carnegie Mellon University, he cofounded Neolinear
Inc. to commercialize the first practical synthesis

tools for analog designs. He served as Neolinear’s Chief Scientist until its
acquisition by Cadence in 2004. He is the Founding Director of the U.S.
National Focus Center Research Program Focus Research Center for Circuit
and System Solutions, which is a consortium of roughly 20 U.S. univer-
sities and over 50 faculty funded by the U.S. semiconductor industry and
U.S. government to address future circuit challenges. He has published over
150 papers in his career, and his work has been featured in venues ranging from
EETimes to the Economist magazine.

Dr. Rutenbar has won many awards over his career. He received a Presidential
Young Investigator Award from the National Science Foundation in 1987.
He has won several Best Paper Awards, e.g., Design Automation Conference
(DAC)’87, DAC’02, Design, Automation and Test in Europe 2007, and Very
Large Scale Integration 2008. He was the 2001 winner of the Semiconductor
Research Corporation Aristotle Award for excellence in education and the 2007
winner of the IEEE Circuits and Systems Industrial Pioneer Award for his work
in making analog synthesis as a commercial technology. He received the 2002
University of Michigan Alumni Merit Award for Electrical Engineering. He is
a member of the Association for Computing Machinery and Eta Kappa Nu.

