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Abstract

We prove several fundamental statistical bounds for entropic OT with the squared
Euclidean cost between subgaussian probability measures in arbitrary dimension.
First, through a new sample complexity result we establish the rate of convergence
of entropic OT for empirical measures. Our analysis improves exponentially on
the bound of Genevay et al. (2019) and extends their work to unbounded measures.
Second, we establish a central limit theorem for entropic OT, based on techniques
developed by Del Barrio and Loubes (2019). Previously, such a result was only
known for finite metric spaces. As an application of our results, we develop and
analyze a new technique for estimating the entropy of a random variable corrupted
by gaussian noise.

1 Introduction

Optimal transport is an increasingly popular tool for the analysis of large data sets in high dimension,
with applications in domain adaptation (Courty et al., 2014, 2017), image recognition (Li et al.,
2013; Rubner et al., 2000; Sandler and Lindenbaum, 2011), and word embedding (Alvarez-Melis and
Jaakkola, 2018; Grave et al., 2018). Its flexibility and simplicity have made it an attractive choice for
practitioners and theorists alike, and its ubiquity as a machine learning tool continues to grow (see,
e.g., Peyré et al., 2019; Kolouri et al., 2017, for surveys).

Much of the recent interest in optimal transport has been driven by algorithmic advances, chief
among them the popularization of entropic regularization as a tool of solving large-scale OT problems
quickly (Cuturi, 2013). Not only has this proposal been shown to yield near-linear-time algorithms for
the original optimal transport problem (Altschuler et al., 2017), but it also appears to possess useful
statistical properties which make it an attractive choice for machine learning applications (Rigollet and
Weed, 2018; Genevay et al., 2017; Schiebinger et al., 2019; Montavon et al., 2016). For instance, in a
recent breakthrough work, Genevay et al. (2019) established that even though the empirical version of
standard OT suffers from the “curse of dimensionality” (see, e.g. Dudley, 1969), the empirical version
of entropic OT always converges at the parametric 1/

√
n rate for compactly supported probability

measures. This result suggests that entropic OT may be significantly more useful than unregularized
OT for inference tasks when the dimension is large. However, obtaining rigorous guarantees for
the performance of entropic OT in practice requires a more thorough understanding of its statistical
behavior.

1.1 Summary of contributions

We prove new results on the relation between the population and empirical version of the entropic
cost, that is, between S(P,Q) and S(Pn, Qn) (defined in Section 1.2, below). These results give
the first characterization of the large-sample behavior of entropic OT for unbounded probability
measures in arbitrary dimension. Specifically, we obtain: (i) New sample complexity bounds on
E|S(P,Q)−S(Pn, Qn)|: first, we improve on the results of Genevay et al. (2019) by an exponential
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factor, and then, extend these to unbounded measures (Section 2). (ii) A central limit theorem
characterizing the fluctuations S(Pn, Qn)−ES(Pn, Qn) when P and Q are subgaussian (Section 3).
Such a central limit theorem was previously only known for probability measures supported on
a finite number of points (Bigot et al., 2017; Klatt et al., 2018). We use completely different
techniques, inspired by recent work of Del Barrio and Loubes (2019), to prove our theorem for
general subgaussian distributions.

As an application of our results, we show how entropic OT can be used to shed new light on the
entropy estimation problem for random variables corrupted by subgaussian noise (Section 4). This
problem has gained recent interest in machine learning (Goldfeld et al., 2018, 2019) as a tool for
obtaining a theoretically sound understanding of the Information Bottleneck Principle in deep learning
(Tishby and Zaslavsky, 2015). We design and analyze a new estimator for this problem based on
entropic OT.

Finally, we provide simulations which give empirical validation for our theoretical claims (Section 5).

1.2 Background and preliminaries

Let P,Q ∈ P(Rd) be two probability measures and let Pn and Qn be the empirical measures from
the independent samples {Xi}i≤n ∼ Pn and {Yi}i≤n ∼ Qn. We define the squared Wasserstein
distance between P and Q (Villani, 2008) as follows:

W 2
2 (P,Q) := inf

π∈Π(P,Q)

[
∫

X×Y

1

2
‖x− y‖2 dπ(x, y)

]

, (1)

where Π(P,Q) is the set of all joint distributions with marginals equal to P and Q, respectively. We
focus on a entropy regularized version of the above cost (Cuturi, 2013; Peyré et al., 2019), defined as

Sǫ(P,Q) := inf
π∈Π(P,Q)

[
∫

X×Y

1

2
‖x− y‖2 dπ(x, y) + ǫH(π|P ⊗Q)

]

, (2)

where H(α|β) denotes the relative entropy between probability measures α and β defiend by
∫

log dα
dβ (x)dα(x) if α ≪ β and +∞ otherwise. By rescaling the measures P and Q and the

regularization parameter ǫ, it suffices to analyze the case ǫ = 1, which we denote by S(P,Q). Note
that we have considered the squared cost 1

2‖ · ‖2 in the definition of Sǫ(P,Q), since most of our
bounds heavily depend on this cost. However, more general costs c(x, y) may be considered, and
indeed some of our results (e.g. Proposition 4) are stated for more general c(x, y). We leave a full
analysis of the general case to future work.

The general theory of entropic OT (Csiszár, 1975) implies that S(P,Q) possesses a dual formulation:

S(P,Q) = sup
f∈L1(P ),g∈L1(Q)

∫

f(x) dP (x)+

∫

g(y) dQ(y)−
∫

ef(x)+g(y)− 1
2 ||x−y||2 dP (x)dQ(y)+1 ,

(3)
and that as long as P and Q have finite second moments, the supremum is attained at a pair of optimal
potentials (f, g) satisfying

∫

ef(x)+g(y)− 1
2 ||x−y||2 dQ(y) = 1 P -a.s.,

∫

ef(x)+g(y)− 1
2 ||x−y||2 dP (x) = 1 Q-a.s.

(4)
Conversely, any f ∈ L1(P ), g ∈ L1(Q) satisfying (4) are optimal potentials.

We focus throughout on subgaussian probability measures. We say that a distribution P ∈ P(Rd)

is σ2-subgaussian for σ ≥ 0 if EP e
‖X‖2

2dσ2 ≤ 2. By Jensen’s inequality, if EP e
‖X‖2

2dσ2 ≤ C for any

constant C ≥ 2, then P is Cσ2-subgaussian. Note that if P is subgaussian, then EP e
v⊤X < ∞

for all v ∈ R
d. Conversely, standard results (see, e.g., Vershynin, 2018) imply that our definition is

satisfied if EP e
u⊤X ≤ e‖u‖

2σ2/2 for all u ∈ R
d.
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2 Sample complexity for the entropic transportation cost for general

subgaussian measures

One rigorous statistical benefit of entropic OT is its sample complexity, i.e., the minimum number
of samples required for the empirical entropic OT cost S(Pn, Qn) to be an accurate estimate of
S(P,Q). As noted above, unregularized OT suffers from the curse of dimensionality: in general, the

Wasserstein distance W 2
2 (Pn, Qn) converges to W 2

2 (P,Q) no faster than n−1/d for measures in R
d.

Strikingly, Genevay et al. (2019) established that the statistical performance of the entropic OT cost
is significantly better. They show:1

Theorem 1 (Genevay et al., 2019, Theorem 3). Let P and Q be two probability measures on a
bounded domain in R

d of diameter D. Then

sup
P,Q

EP,Q|Sǫ(P,Q)− Sǫ(Pn, Qn)| ≤ KD,d

(

1 +
1

ǫ⌊d/2⌋

)

eD
2/ǫ

√
n

, (5)

where KD,d is a constant depending on D and d.

This impressive result offers powerful evidence that entropic OT converges significantly faster than its
unregularized counterpart. The drawbacks of this result are that it applies only to bounded measures,
and, perhaps more critically in applications, the rate scales exponentially in D and 1/ǫ, even in
dimension 1. Therefore, while the qualitative message of Theorem 1 is clear, it does not offer useful
quantitative bounds as soon as the measure is unbounded or lies in a set of large diameter.

Our first theorem is a significant sharpening of Theorem 1. We first state it for the case where ǫ = 1.

Theorem 2. If P and Q are σ2-subgaussian, then

EP,Q|S(P,Q)− S(Pn, Qn)| ≤ Kd(1 + σ⌈5d/2⌉+6)
1√
n
. (6)

If we denote by P ǫ and Qǫ the pushforwards of P and Q under the map x 7→ ǫ−1/2x, then it is easy
to see that

Sǫ(P,Q) = ǫS(P ǫ, Qǫ) .

We immediately obtain the following corollary.

Corollary 1. If P and Q are σ2-subgaussian, then

EP,Q|Sǫ(P,Q)− Sǫ(Pn, Qn)| ≤ Kd · ǫ
(

1 +
σ⌈5d/2⌉+6

ǫ⌈5d/4⌉+3

)

1√
n
.

If we compare Corollary 1 with Theorem 1, we note that the polynomial prefactor in Corollary 1
has higher degree than the one in Theorem 1, pointing to a potential weakness of our bound. On the
other hand, the exponential dependence on D2/ǫ has completely disappeared. Moreover, the brittle
quantity D, finite only for compactly supported measures, has been replaced by the more flexible
subgaussian variance proxy σ2.

The improvements in Theorem 2 are obtained via two different methods. First, a simple argument
allows us to remove the exponential term and bound the desired quantity by an empirical process,
as in Genevay et al. (2019). Much more challenging is the extension to measures with unbounded
support. The proof technique of Genevay et al. (2019) relies on establishing uniform bounds on the
derivatives of the optimal potentials, but this strategy cannot succeed if the support of P and Q is not
compact. We therefore employ a more careful argument based on controlling the Hölder norms of the
optimal potentials on compact sets. A chaining bound completes our proof.

In Proposition 1 below (whose proof we defer to the supplement) we show that if (f, g) is a pair of
optimal potentials for σ2-subgaussian distributions P and Q, then we may control the size of f and
its derivatives.

Proposition 1. Let P and Q be σ2-subgaussian distributions. There exist optimal dual potentials
(f, g) for P and Q such that for any multi-index α with |α| = k,

|Dα(f − 1

2
‖ · ‖2)(x)| ≤ Ck,d

{

1 + σ4 k = 0
σk(σ + σ2)k otherwise,

(7)

1We have specialized their result to the squared Euclidean cost.
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if ‖x‖ ≤
√
dσ, and

|Dα(f − 1

2
‖ · ‖2)(x)| ≤ Ck,d

{

1 + (1 + σ2)‖x‖2 k = 0

σk(
√

σ‖x‖+ σ‖x‖)k otherwise,
(8)

if ‖x‖ >
√
dσ, where Ck,d is a constant depending only on k and d.

We denote by Fσ the set of functions satisfying the bounds (7) and (8). The following proposition
shows that it suffices to control an empirical process indexed by this set.

Proposition 2. Let P , Q, and Pn be σ̃2-subgaussian distributions, for a possibly random σ̃ ∈ [0,∞).
Then

|S(Pn, Q)− S(P,Q)| ≤ 2 sup
u∈Fσ̃

|EPu− EPn
u| . (9)

Proof. We define the operator Aα,β(u, v) for the pair of probability measures (α, β) and functions
(u, v) ∈ L1(α)⊗ L1(β) as:

Aα,β(u, v) =

∫

u(x) dα(x) +

∫

v(y) dβ(y)−
∫

eu(x)+v(y)− 1
2 ||x−y||2 dα(x)dβ(y) + 1 .

Denote by (fn, gn) a pair of optimal potentials for (Pn, Q) and (f, g) for (P,Q), respectively. By
Proposition A.1 in the supplement, we can choose smooth optimal potentials (f, g) and (fn, gn) so

that the condition (4) holds for all x, y ∈ R
d. Proposition 1 shows that f, fn ∈ Fσ̃ .

Strong duality implies that S(P,Q) = AP,Q(f, g) and S(Pn, Q) = APn,Q(fn, gn). Moreover, by
the optimality of (f, g) and (fn, gn) for their respective dual problems, we obtain

AP,Q(fn, gn)−APn,Q(fn, gn) ≤ AP,Q(f, g)−APn,Q(fn, gn) ≤ AP,Q(f, g)−APn,Q(f, g) .

We conclude that

|S(P,Q)− S(Pn, Q)| = |AP,Q(f, g)−APn,Q(fn, gn)|
≤ |AP,Q(f, g)−APn,Q(f, g)|+ |AP,Q(fn, gn)−APn,Q(fn, gn)| .

It therefore suffices to bound the differences |AP,Q(f, g) − APn,Q(f, g)| and
|AP,Q(fn, gn)−APn,Q(fn, gn)|.
Upon defining h(x) :=

∫

eg(y)−
1
2 ||x−y||2dQ(y) we have

AP,Q(f, g)−APn,Q(f, g) =
(

∫

f(x)(dP (x)−dPn(x))
)

+
(

∫

ef(x)h(x)(dP (x)−dPn(x))
)

.

Since (f, g) satisfy ef(x)h(x) = 1 for all x ∈ R
d, the second term above vanishes. Therefore

|AP,Q(f, g)−APn,Q(f, g)| =
∣

∣

∣

∫

f(x)(dP (x)− dPn(x))
∣

∣

∣
≤ sup

u∈Fσ̃

∣

∣

∣

∫

u(x)(dP (x)− dPn(x))
∣

∣

∣
.

Analogously,

|AP,Q(fn, gn)−APn,Q(fn, gn)| ≤ sup
u∈Fσ̃

∣

∣

∣

∫

u(x)(dP (x)− dPn(x))
∣

∣

∣
.

This proves the claim.

Proposition 2 can be extended to apply to simultaneously varying Pn and Qn.

Corollary 2. Let P , Q, Pn, and Qn be σ̃2-subgaussian distributions, where σ̃ ∈ [0,∞) is possibly
random. Then

|S(Pn, Qn)−S(P,Q)| . sup
u∈Fσ̃

∣

∣

∣

∫

u(x)(dP (x)− dPn(x))
∣

∣

∣
+ sup

u∈Fσ̃

∣

∣

∣

∫

u(x)(dQ(x)− dQn(x))
∣

∣

∣

almost surely.
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Proof. By the triangle inequality,

|S(Pn, Qn)− S(P,Q)| ≤ |S(P,Q)− S(Pn, Q)|+ |S(Pn, Q)− S(Pn, Qn)| . (10)

Since P , Q, Pn, and Qn are all σ̃2-subgaussian, Proposition 2 can be applied to both terms.

The majority of our work goes into bounding the resulting empirical process. Let s ≥ 2. Fix a
constant Cs,d and denote by Fs the set of functions satisfying

|f(x)| ≤ Cs,d(1 + ‖x‖2) (11)

|Dαf(x)| ≤ Cs,d(1 + ‖x‖s) ∀α : |α| ≤ s . (12)

Proposition 1 establishes that if Cs,d is large enough, then 1
1+σ3s f ∈ Fs for all f ∈ Fσ .

The key result is the following covering number bound, whose proof we defer to the supplement.
Denote by N(ε,Fs, L2(Pn)) the covering number with respect to the (random) metric L2(Pn)

defined by ‖f‖L2(Pn) =
(

1
n

∑n
i=1 f(Xi)

2
)1/2

.

Proposition 3. Let s = ⌈d/2⌉+ 1. If P is σ2-subgaussian and Pn is an empirical distribution, then
there exists a random variable L depending on the sample X1, . . . , Xn satisfying EL ≤ 2 such that

logN(ε,Fs, L2(Pn)) ≤ CdL
d/2sε−d/s(1 + σ2d) ,

and
max
f∈Fs

‖f‖2L2(Pn)
≤ Cd(1 + Lσ4) .

We can now prove Theorem 2.

Proof of Theorem 2. Let σ̃ be the infimum over all τ > 0 such that P , Q, Pn, and Qn are all
τ2-subgaussian. By Lemma A.2 in the supplement, σ̃ is finite almost surely.

By Corollary 2,

EP,Q|S(P,Q)− S(Pn, Qn)| . E sup
u∈Fσ̃

∣

∣

∣

∫

u(x)(dP (x)− dPn(x))
∣

∣

∣

+ E sup
u∈Fσ̃

∣

∣

∣

∫

u(x)(dQ(x)− dQn(x))
∣

∣

∣
.

We will show how to bound the first term, and the second will follow in exactly the same way.

For any set of functions F , we write ‖P −Pn‖F = supu∈F (
∫

u(x)(dP (x)−dPn(x))). Recall that,

for s = ⌈d/2⌉+ 1, if u ∈ Fσ̃ then 1
1+σ̃3su ∈ Fs. Therefore

E‖P − Pn‖Fσ
≤ E(1 + σ̃3s)‖P − Pn‖Fs

≤ (E(1 + σ̃3s)2)1/2(E‖P − Pn‖2Fs)1/2 .

Then by Giné and Nickl (2016, Theorem 3.5.1 and Exercise 2.3.1), we have

E‖P − Pn‖2Fs .
1

n
E

(

∫

√

maxf∈Fs ‖f‖2
L2(Pn)

0

√

log 2N(τ,Fs, L2(Pn)) dτ

)2

≤ Cd
1

n
E

(

∫ Cd

√
(1+Lσ4)

0

√

1 + Ld/2sτ−d/s(1 + σ2d) dτ

)2

≤ Cd
1

n
(1 + σ2d)E

(

∫ Cd

√
(1+Lσ4)

0

Ld/4sτ−d/2s dτ

)2

≤ Cd
1

n
(1 + σ2d)E

[

(1 + Lσ4)1−d/2s
]

,

where in the last step we have used that d/2s < 1 so that τ−d/2s is integrable in a neighborhood of

the origin. Applying the bound on EL yields that this expression is bounded by Cd(1 + σ2d+4) 1n .
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Lemma A.4 in the supplement shows that Eσ̃2k ≤ Ckσ
2k for all positive integers k. Combining

these bounds yields

E‖P − Pn‖Fσ
≤ Cd(1 + σ3s)(1 + σd+2)

1√
n
,

as desired.

3 A central limit theorem for entropic OT

The results of Section 2 show that, for general subgaussian measures, the empirical quantity
S(Pn, Qn) converges to S(P,Q) in expectation at the parametric rate. However, in order to use en-
tropic OT for rigorous statistical inference tasks, much finer control over the deviations of S(Pn, Qn)
is needed, for instance in the form of asymptotic distributional limits. In this section, we accom-
plish this goal by showing a central limit theorem (CLT) for S(Pn, Qn), valid for any subgaussian
measures.

Bigot et al. (2017) and Klatt et al. (2018) have shown CLTs for entropic OT when the measures lie
in a finite metric space (or, equivalently, when P and Q are finitely supported). Apart from being
restrictive in practice, these results do not shed much light on the general situation because OT on
finite metric spaces behaves quite differently from OT on R

d.2 Very recently, distributional limits for
general measures possessing 4 + δ moments have been obtained for unregularized OT by Del Barrio
and Loubes (2019). Our proof follows their approach.

We prove the following.

Theorem 3. Let X1, . . . Xn ∼ P be an i.i.d. sequence, and denote by (f,g) the optimal potentials
in (4). If P is subgaussian, then

√
n (S(Pn, Q)− E(S(Pn, Q))

D→ N (0,VarP (f(X))) , (13)

and

lim
n→∞

nVar(S(Pn, Q)) = VarP (f(X)) . (14)

Likewise, let X1, . . . , Xn ∼ P and Y1,∼ Ym ∼ Q are two i.i.d. sequences independent of each other.
Assume P and Q are both subgaussian. Denote λ := limm,n→∞

n
m+n ∈ (0, 1).

Then
√

mn

m+ n
(S(Pn, Qm)− E(S(Pn, Qm))

D→ N (0, (1− λ)VarP (f(X1)) + λVarQ(g(Y1))) ,

(15)
and

lim
m,n→∞

mn

m+ n
Var(S(Pn, Qm)) = (1− λ)VarP (f(X)) + λVarQ(g(Y )). (16)

The proof is deeply inspired by the method developed in Del Barrio and Loubes (2019) for the
squared Wasserstein distance, and we roughly follow the same strategy.

Proof of Theorem 3. The proof, in the one-sample case, proceeds as follows:

(a) In Proposition A.2 we show that the optimal potentials for (Pn, Q) convergence to optimal
potentials for (P,Q) uniformly on compact sets.

(b) Letting Rn := S(Pn, Q)−
∫

f(x)dPn(x), we show in Proposition A.3 in the supplement,
that this uniform convergence implies that limn→∞ nVar(Rn) = 0.

(c) The above convergence indicates S(Pn, Q) can be approximated by the linear quantity
∫

f(x)dPn. Then, (13) and (14) are simply the limit statements (in distribution and L2,
respectively) applied to this linearization.

2A thorough discussion of the behavior of unregularized OT for finitely supported measures can be found in
Sommerfeld and Munk (2018) and Weed and Bach (2018).
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We omit the proof of the two-sample case as the changes to the argument (see Theorem 3.3. in
Del Barrio and Loubes (2019), for the squared Wasserstein distance) adapt in a straightforward way
to the entropic case.

4 Application to entropy estimation

In this section, we give an application of entropic OT to the problem of entropy estimation. First, in
Proposition 4 we establish a new relation between entropic OT and the differential entropy of the
convolution of two measures. Then, as a corollary of this and the previous sections results we prove
Theorem 4, stating that entropic OT provides us with a novel estimator for the differential entropy of
the (independent) sum of a subgaussian random variable and a gaussian random variable, and for
which performance guarantees are available.

Throughout this section ν denotes a translation invariant measure. Whenever P has a density p with
respect to ν, we define its ν-differential entropy as h(P ) := −

∫

p(x) log p(x)dν(x) = −H(P |ν).
The following proposition links the differential entropy of a convolution with the entropic cost.

Proposition 4. Let Φg be the measure with ν-density φg(y) = Z−1
g e−g(y) for a smooth g (Zg is the

normalizing constant), and define Q = P ∗ Φg , with P ∈ P(Rd) arbitrary. The ν-density of Q, q(y),
satisfies

q(y) =

∫

φg(y − x)dP (x) =

∫

Z−1
g e−g(y−x)dP (x).

Consider the cost function c(x, y) := g(x−y) (not necessarily quadratic). Then, the optimal entropic
transport cost and differential entropy are linked through

h(P ∗ Φg) = S(P, P ∗ Φg) + log(Zg). (17)

Proof. Define a more general entropic transportation cost involving the generic c and probability
measures α, β 3:

Sα⊗β(P,Q) := inf
π∈Π(P,Q)

[
∫

c(x, y)dπ(x, y) +H(π|α⊗ β)

]

. (18)

Observe we may re-write (18) as

Sα⊗β(P,Q) = inf
π∈Π(P,Q)

[
∫

X×Y

c(x, y)dπ(x, y) +H(π|P ⊗Q)

]

+H(P ⊗Q|α⊗ β)

= S(P,Q) +H(P ⊗Q|α⊗ β). (19)

Additionally, it can be verified an alternative representation for (18) is the following

Sα⊗β(P,Q) = inf
π∈Π(P,Q)

H

(

π

∣

∣

∣

∣

Z−1e−cα⊗ β

)

− log(Z), (20)

where Z is the number making Λ := Z−1e−cα⊗ β a bona fide probability measure.

Now, take α = P , β = ν and Q = P ∗ Φg in the above expressions. For these choices we have
Z = Zg . Indeed, by the translation invariance of ν, we have

Z =

∫∫

e−c(x,y)dP (x)dν(y) =

∫
(
∫

e−g(y−x)dν(y)

)

dP (x)

=

∫
(
∫

e−g(y)dν(y)

)

dP (x)

=

∫

ZgdP (x) = Zg.

3Notice α ⊗ β need not be probability measures for the relative entropy H(·|α ⊗ β) to make sense. In
Léonard (2014) it is argued it suffices that this product is σ-finite.
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Then, dΛ(x, y) = dP (x)φg(y − x)dν(y), and by marginalization we deduce Λ ∈ Π(P, P ∗ Φg).
Therefore, the right side of (20) equals H(Λ|Λ)− logZg = − logZg . Finally, we combine (19) and
(20) to obtain

− logZg = S(P, P ∗ Φg) +H (P ⊗ (P ∗ Φg) |P ⊗ ν) ,

and achieve the final conclusion after noting that

H(P ⊗ (P ∗ Φg) |P ⊗ ν) = H(P |P ) +H (P ∗ Φg|ν) = H (P ∗ Φg|ν) = −h(P ∗ Φg).

Now we can state the following theorem.

Theorem 4. Let P be subgaussian, and Φg = N (0, ǫId). Denote Q = P ∗ Φg the distribution

of the sum of an independent samples from P and Φg, and define the plug in estimator ĥ(Q) =
S(Pn, Qm) + logZg where Pn and Qm are independent samples from P and Q. Then,

(a) If m = n,

sup
P

EP |ĥ(Q)− h(Q)| ≤ O

(

1√
n

)

.

(b) The limit
√

mn

m+ n

(

ĥ(Q)− E(ĥ(Q)
)

D→ N (0, λVarQ(log q(Y ))) (21)

holds, where λ = limm,n→∞
n

m+n . Moreover, limm,n→∞
mn
m+n Var(ĥ(Q)) =

λVarQ(log q(Y )).

Proof. (a) is a simple re-statement of Theorem 2 in the light of Proposition 4. (b) is a re-statement of
Theorem 3, after noting in this case the optimal potentials are (f, g) = (− logZg,− log q).

The rate 1/
√
n in Theorem 4 is also achieved by a different estimator proposed by Goldfeld et al.

(2019) (see also Weed, 2018), but this estimator lacks distributional limits.

Figure 1: Top row: ES(Pn, Qn) as a function of n ∈ {1e3, 2e3, 5e3, 1e4, 1.5e4}, computed from
16, 000 repetitions for each value of n. The shading corresponds to one standard deviation of
S(Pn, Qn)− ES(Pn, Qn), assuming the asymptotics of Theorem 3 are valid. Error bars are one
sample standard deviation long on each side. Both x and y axes are in logarithmic scale. Bottom

row: histograms of
√

nn
n+n (S(Pn, Qn)− ES(Pn, Qn))) when n = 1.5e4. Ground truth (numerical

integration) is shown with black solid lines.
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5 Empirical results

We provide empirical evidence supporting and illustrating our theoretical findings. We focus on the
entropy estimation problem because there are closed form expressions for the potentials (see Theorem
4), and because it allows a comparison with the estimator studied in (Goldfeld et al., 2019) 4.

Specifically, consider X ∼ P = 1
2 (N (1d, Id) +N (−1d, Id)), the mixture of the gaussians centered

at 1d := (1, . . . , 1) and −1d. We aim to estimate the entropy of the new mixture Q = P ∗ Φg .

Figure 1, top, shows the convergence of ES(Pn, Qn) to S(P,Q). Consistent with the bound in
Theorem 2 and Corollary 1, S(Pn, Qn) is a worse estimator for S(P,Q) when d is large or the
regularization parameter is small. We also plot the predicted (shading) and actual (bars) fluctuations
of S(Pn, Qn) around its mean. Though the CLT holds only in the asymptotic limit, these experiments
reveal that the empirical fluctuations in the finite-n regime are broadly consistent with the predictions
of the CLT. Figure 1, bottom, shows that the empirical distribution of the rescaled fluctuations is an
excellent match for the predicted normal distribution.

In Figure 2 we compare the performance between entropic OT-based estimators from Theorem 4 and

ĥm.g.(Q), the one from (Goldfeld et al., 2019), where h(P ∗ Φg) is estimated as the entropy of the
mixture of gaussians Pn ∗ Φg, in turn approximated by Monte Carlo integration. We consider two

OT-based estimators, ĥind(Q) where Pn, Qn are completely independent (i.e., the one used for Figure

1), and ĥpaired(Q) where samples Qn are drawn by adding gaussian noise to Pn. Observe that our

sample complexity and CLT results are only available for ĥind(Q).

Results show a clear pattern of dominance, with Eĥpaired(Q) achieving the fastest convergence. The

main caveat is the extra memory cost: while ĥm.g.(Q) can be computed sequentially with each opera-

tion requiring O(n) memory, in the most naive implementation (used here) both ĥpaired(Q), ĥind(Q)

demand O(n2) space for storing the matrix Di,j = e−||xi−yj ||
2/2ǫ, to which the Sinkhorn algorithm

is applied. This memory requirement might be alleviated with the use of stochastic methods (Genevay
et al., 2016; Bercu and Bigot, 2018).

We leave for future work both the implementation of more scalable methods for entropic OT, and a

detailed theoretical analysis of different entropic OT-based estimators (e.g. ĥpaired(Q) v.s. ĥind(Q))
that may bring about a better understanding of their observed substantial differences. Additionally, in
future work we will explore extensions of our results beyond the subgaussian case, and provide lower
bounds as in Goldfeld et al. (2019).

Figure 2: Comparison between Eĥind(Q), Eĥpaired(Q), Eĥm.g.(Q). Details are the same as in Figure
1.
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