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Abstract. Korovkin-type approximation theory usually deals with convergence analysis for sequences
of positive operators. This approximation theorem was extended to more general space of sequences via
different way such as statistical convergence, summation processes. In this work, we introduce a new
type of statistical product summability, that is, statistical (C, 1) (E, 1) summability and further apply our
new product summability method to prove Korovkin type theorem. Furthermore, we present a rate of
convergence which is uniform in Korovkin type theorem by statistical (C, 1) (E, 1) summability.

1. Introduction and Preliminaries

Let CM [a, b] denotes the space of all continuous functions on [a, b] and bounded by the number M.Also,
B [a, b] is the space of all bounded functions with the norm

∥∥∥ f
∥∥∥
∞

= supa≤x≤b

∣∣∣ f (x)
∣∣∣ . If the sequence of positive

linear operators An : CM [a, b]→ B [a, b] satisfy the three conditions

lim
n→∞
‖An (1, x) − 1‖∞ = 0,

lim
n→∞
‖An (t, x) − x‖∞ = 0,

lim
n→∞

∥∥∥∥An

(
t2, x

)
− x2

∥∥∥∥
∞

= 0,

then for any function f ∈ CM [a, b] , we have

lim
n→∞

∥∥∥An
(

f , x
)
− f (x)

∥∥∥
∞

= 0.

This theorem is known as Korovkin theorem [9] and has an important role in approximation theory.
Korovkin theorem and its generalizations in weighted spaces were extended to more wide space of

sequences by using convergence methods and summation process. For more details, we refer to readers
[6, 11] and references therein.

The concept of statistical convergence for sequences of real numbers was introduced by Fast [5] and
Steinhaus [28] independently in 1951 as:

2010 Mathematics Subject Classification. 41A10, 41A25, 41A36, 40A30, 40G15
Keywords. Korovkin theorem; Positive linear operators; Statistical convergence.
Received: 08 March 2014; Accepted: 03 July 2014
Communicated by Hari M. Srivastava
Email addresses: tunceracar@ymail.com (Tuncer Acar), mohiuddine@gmail.com (S.A. Mohiuddine)



T. Acar, S. A. Mohiuddine / Filomat 30:2 (2016), 387–393 388

Let N be the set of positive integers, K ⊆ N and Kn =
{
j : j 5 n and j ∈ K

}
. Then the natural density

of K is defined by δ (K) := limn→∞
|Kn |

n if the limit exists, where |Kn| denotes the cardinality of the set Kn.

So, a sequence x =
(
x j

)
is said to be statistical convergent to the number L if for every ε > 0, the set{

j : j ∈N and
∣∣∣x j − L

∣∣∣ = ε} has natural density zero, that is, if, for each ε > 0, we have

lim
n→∞

1
n

∣∣∣∣{ j : j 5 n and
∣∣∣x j − L

∣∣∣ = ε}∣∣∣∣ = 0.

Since the statistical convergence is more general than the classical convergence, that is a sequence can be
convergent in statistical mean even if it isn’t convergent in classical mean, it has became an active area of
research. Several researchers have studied in this direction, we refer some of the papers in this area as
[10], [17], [18], [12], [21], [26] etc. On the other hand, a sequence x = (xk) is said to be (C, 1) summable
to s if sn = 1

n+1

∑n
k=0 xk → s as n → ∞. In the paper [19], Moricz introduced statistical summability (C, 1)

considering two concepts, statistical convergence and (C, 1) summability. That is, if the sequence sn is
statistical convergent to the number L, then x = (xk) is said to be statistical (C, 1) summable to L and this
process is stronger than statistical convergence under some assumptions. Very recently, Mohiuddine et
al. [13] and [14] obtained Korovkin type approximation theorem by using the test functions 1, e−x, e−2x and
1, sin x, cos x, respectively, through statistical summability (C, 1). Among the others we can mention some
of the papers on the applications of statistical convergence to approximation theorems as; approximation
theorems by generalized statistical convergence in [2], statistical summability of the generalized de la Vallée
Poussin mean in [3, 20], generalized statistical convergence in [4], weighted statistical convergence in [22],
weighted A-statistical convergence in [16], A-statistical approximation in [23], statistical approximation
results for Kantorovich-type operators in [24], generalized equi-statistical convergence in [27], statistical
approximation for function of two variables in [1, 15], etc.

2. Korovkin Approximation Theorem Through Statistical Summability (C, 1) (E, 1)

Let us recall [8] that a sequence x = (xk) is said to be (E, 1) summable to s if sk = 1
2k

∑k
r=0

(k
r
)
xr → s as

k → ∞. The (C, 1) transform of the (E, 1) transform E1
n defines the (C, 1) (E, 1) transform of the sequence

(xk) , i.e., the product summability (C, 1) (E, 1) is obtained by superimposing (C, 1) summability on (E, 1)
summability. Thus, if

(C,E)n
1 =

1
n + 1

n∑
k=0

E1
k =

1
n + 1

n∑
k=0

1
2k

k∑
r=0

(
k
r

)
xr → s, as n→∞,

then the (xk) is said to be summable (C, 1) (E, 1) to the definite number s.
Firstly, we introduce a new type of statistical product summability with the help of (C, 1) and (E, 1)

summability as follows:

Definition 2.1. For a sequence x = (xk), let us write tn = 1
n+1

∑n
k=0

1
2k

∑k
r=0

(k
r
)
xr. If the sequence (tn) is statistically

convergence to any finite number L, i.e. st − limn→∞ tn = L, then x = (xk) is statistically summable (C, 1) (E, 1) and
we write that L = (CE)1 (st) − lim x.

In the following example, we show that the statistical summability (C, 1) (E, 1) is more powerful than the
individual method statistical summability (C, 1) and so our new method mean (product mean) gives better
approximation than the individual one.

Example 2.2. Let a sequence x = (xn) be defined by xn = (−3)n, n ∈ N. Then, a sequence (xn) is not statistical
summable (C, 1) but statistical summable (C, 1) (E, 1) since

1
n + 1

n∑
k=0

(−3)k =
3
4 (−3)n + 1

4

n + 1
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and

1
n + 1

n∑
k=0

1
2k

k∑
r=0

(
k
r

)
(−3)k =

1
n + 1

n∑
k=0

(−1)k =
1
2 (−1)n + 1

2

n + 1
,

respectively. Indeed, (xn) is neither convergent nor statistically convergent.

On the other hand, let C [a, b] be the space of all real-valued continuous functions f on [a, b] and A be a
linear operator which maps C [a, b] into itself. We say that A is positive if, for every non-negative f ∈ C [a, b],
we have A

(
f ; x

)
≥ 0 (x ∈ [a, b]). We know that C [a, b] is a Banach space with the norm given by∥∥∥ f

∥∥∥
∞

:= sup
x∈[a,b]

∣∣∣ f (x)
∣∣∣ .

Now, we are ready to prove Korovkin type approximation theorem with the help of statistical summable
(C, 1) (E, 1).

Theorem 2.3. Let {Ar} be a sequence of positive linear operators from C [a, b] into C [a, b]. Then for all f ∈ C [a, b]
bounded on the whole real line

(CE)1 (st) − lim
r→∞

∥∥∥Ar
(

f ; x
)
− f (x)

∥∥∥
∞

= 0, (1)

if and only if

(CE)1 (st) − lim
r→∞
‖Ar (1; x) − 1‖∞ = 0, (2)

(CE)1 (st) − lim
r→∞
‖Ar (t; x) − x‖∞ = 0, (3)

(CE)1 (st) − lim
r→∞

∥∥∥∥Ar

(
t2; x

)
− x2

∥∥∥∥
∞

= 0. (4)

Proof. Since each of 1, t, t2 belongs to C [a, b] , conditions (2)-(4) follow immediately from (1). In order
to complete the proof of assertion (1) of Theorem 2.3, we assume that the conditions (2)-(4) hold true. Let
f ∈ C [a, b] and x ∈ [a, b] be fixed. Since f ∈ C [a, b] and f is bounded on the whole real line, we have∣∣∣ f (x)

∣∣∣ ≤M, −∞ < x < ∞,

and therefore∣∣∣ f (t) − f (x)
∣∣∣ ≤ 2M, −∞ < x, t < ∞. (5)

Also, by the continuity of f , for every ε > 0, there exists a number δ > 0 such that |t − x| < δ, we get∣∣∣ f (t) − f (x)
∣∣∣ < ε. (6)

Combining the inequalities (5) and (6) and putting ψ (t) = (t − x)2 , we get∣∣∣ f (t) − f (x)
∣∣∣ ≤ ε +

2M
δ2 ψ, ∀ |t − x| < δ

which means

−ε −
2M
δ2 ψ ≤ f (t) − f (x) ≤ ε +

2M
δ2 ψ.

Since the operators are positive, we can write

Ar (1, x)
(
−ε −

2M
δ2 ψ

)
≤ Ar (1, x)

(
f (t) − f (x)

)
≤ Ar (1, x)

(
ε +

2M
δ2 ψ

)
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and by the linearity of Ar, we have

−εAr (1, x) −
2M
δ2 Ar

(
ψ, x

)
≤ Ar

(
f , x

)
− f (x) Ar (1, x) ≤ εAr (1, x) +

2M
δ2 Ar

(
ψ, x

)
. (7)

On the other hand,

Ar
(

f , x
)
− f (x) = Ar

(
f , x

)
− f (x) Ar (1, x) + f (x) [Ar (1, x) − 1] . (8)

If we consider inequality (7) and equality (8), we have

Ar
(

f , x
)
− f (x) < εAr (1, x) +

2M
δ2 Ar

(
ψ, x

)
+ f (x) [Ar (1, x) − 1] . (9)

Let us estimate Ar
(
ψ, x

)
,

Ar
(
ψ, x

)
= Ar

(
(t − x)2 , x

)
=

[
Ar

(
t2, x

)
− x2

]
− 2x [Ar (t, x) − x] + x2 [Ar (1, x) − 1] .

Using this equality in (9), we obtain

Ar
(

f , x
)
− f (x) < ε [Ar (1, x) − 1] + ε + f (x) [Ar (1, x) − 1]

2M
δ2

{[
Ar

(
t2, x

)
− x2

]
− 2x [Ar (t, x) − x] + x2 [Ar (1, x) − 1]

}
.

Since ε is arbitrary, we have∥∥∥Ar
(

f ; x
)
− f (x)

∥∥∥
∞
≤

(
ε +

2Mb2

δ2 + M
)
‖Ar (1, x) − 1‖∞

+
4Mb
δ2 ‖Ar (t, x) − x‖∞ +

2M
δ2

∥∥∥∥Ar

(
t2, x

)
− x2

∥∥∥∥
∞

≤ K
{
‖Ar (1, x) − 1‖∞ + ‖Ar (t, x) − x‖∞ +

∥∥∥∥Ar

(
t2, x

)
− x2

∥∥∥∥
∞

}
, (10)

where K = max
{
ε + 2Mb2

δ2 + M, 4Mb
δ2 ,

2M
δ2

}
.

Finally, replacing Ar (.; x) by Lm (., x) = 1
m+1

∑m
k=0

1
2k

∑k
r=0

(k
r
)
Ar (.; x) in both sides of (10), and for ε′ > 0,

write

D =
{
m ≤N : ‖Lm (1; x) − 1‖∞ + ‖Lm (t; x) − x‖∞ +

∥∥∥∥Lm

(
t2; x

)
− x2

∥∥∥∥
∞

≥
ε′

K

}
,

D1 =
{
m ≤N : ‖Lm (1; x) − 1‖∞ ≥

ε′

3K

}
,

D2 =
{
m ≤N : ‖Lm (t; x) − x‖∞ ≥

ε′

3K

}
,

D3 =
{
m ≤N :

∥∥∥∥Lm

(
t2; x

)
− x2

∥∥∥∥
∞

≥
ε′

3K

}
.

Then, D ⊂ D1 ∪D2 ∪D3 and so δ (D) ≤ δ (D1) + δ (D2) + δ (D3). Therefore, using conditions (2)-(4), we get

(CE)1 (st) − lim
n→∞

∥∥∥An
(

f ; x
)
− f (x)

∥∥∥
∞

= 0,

which completes the proof.

We remark that our Theorem 1 is stronger than that of classical Korovkin approximation theorem as
well as Theorem 1 of Gadjiev and Orhan [7]. For this claim, we consider the following example:
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Example 2.4. Considering the sequence of Bernstein operators

Bn
(

f , x
)

=

n∑
k=0

f
(

k
n

) (
n
k

)
xk (1 − x)n−k , x ∈ [0, 1] ,

and using the sequence (xn) as mentioned in the beginning of Section 2, we define the sequence of linear operators as
Kn : C [0, 1]→ C [0, 1] with

Kn
(

f , x
)

= (1 + |xn|) Bn
(

f , x
)
.

Since Bn (1, x) = 1, Bn (t, x) = x and Bn

(
t2, x

)
= x2 + x(1−x)

n , the sequence Kn satisfies the conditions (2)-(4). Hence
we have

(CE)1 (st) − lim
n→∞

∥∥∥Kn
(

f ; x
)
− f (x)

∥∥∥
∞

= 0.

Since Bn
(

f , 0
)

= f (0) , Kn
(

f , 0
)

= (1 + |xn|) f (0) . Hence∥∥∥Kn
(

f ; x
)
− f (x)

∥∥∥
∞
≥

∣∣∣Kn
(

f , 0
)
− f (0)

∣∣∣ = |xn|
∣∣∣ f (0)

∣∣∣ ,
which means that (Kn) does not satisfy the classical Korovkin theorem as well as Theorem 1 of Gadjiev and Orhan [7],
since lim supn→∞ |xn| does not exist.

3. Order of Statistical Summability (C, 1) (E, 1) of (An)

In this section, rate of statistical summability (C, 1) (E, 1) of a sequence of positive linear operators defined
on C [a, b] is presented. For this purpose, we give following definition.

Definition 3.1. Let (αn) be a positive non-increasing sequence. Then, the sequence x = (xk) is said to be statistical
summable (C, 1) (E, 1) to the number L with the rate o (αn) if for every ε > 0,

lim
n→∞

1
αn
|{m ≤ n : |tm − L| ≥ ε}| = 0

and we write xk − L = (C,E)1 (st) − o (αn) .

By this definition, we immediately have:

Lemma 3.2. Let (αn) and
(
βn

)
be two positive non-increasing sequences. Let x = (xk) and y =

(
yk

)
be two sequences

such that xk − L1 = (C,E)1 (st) − o (αn) and yk − L2 = (C,E)1 (st) − o
(
βn

)
. Then,

(i) s (xk − L1) = (C,E)1 (st) − o (αn), for any scalar s,

(ii) (xk − L1) ±
(
yk − L2

)
= (C,E)1 (st) − o

(
γn

)
(iii) (xk − L1) .

(
yk − L2

)
= (C,E)1 (st) − o

(
αnβn

)
,

where γn = max
{
αn, βn

}
.

Also, we recall the notion of modulus of continuity. The usual modulus of continuity of f ∈ C [a, b] is
given as

ω
(

f , δ
)

= sup
|x−y|<δ

∣∣∣ f (x) − f
(
y
)∣∣∣

and has the property

∣∣∣ f (x) − f
(
y
)∣∣∣ ≤ ω (

f , δ
) 

∣∣∣x − y
∣∣∣

δ
+ 1

 . (11)

Now, we present following result.
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Theorem 3.3. Let {Ar} be a sequence of positive linear operators from C [a, b] into C [a, b] . Suppose that

(a) ‖Ar (1, x) − 1‖∞ = (C,E)1 (st) − o (αn)

(b) ω
(

f , δr
)

= (C,E)1 (st) − o
(
βn

)
, where δr (x) =

√
Ar

(
φ2, x

)
, φ (x) =

(
y − x

)
.

Then, for all f ∈ C [a, b] , we have∥∥∥Ar
(

f , x
)
− f

∥∥∥
∞

= (C,E)1 (st) − o
(
γn

)
,

where γn = max
{
αn, βn

}
.

Proof. Let f ∈ C [a, b] and x ∈ [a, b] . If we consider the equality (8) and inequality (11), we can write∣∣∣Ar
(

f , x
)
− f (x)

∣∣∣ ≤ Ar

(∣∣∣ f (t) − f (x)
∣∣∣ , x) +

∣∣∣ f (x)
∣∣∣ |Ar (1, x) − 1|

≤ Ar


∣∣∣x − y

∣∣∣
δ

+ 1, x

ω (
f , δ

)
+

∣∣∣ f (x)
∣∣∣ |Ar (1, x) − 1|

≤ Ar

1 +

(
x − y

)2

δ2 , x

ω (
f , δ

)
+

∣∣∣ f (x)
∣∣∣ |Ar (1, x) − 1|

≤

(
Ar (1, x) +

1
δ2 Ar

(
φ2, x

))
ω

(
f , δ

)
+

∣∣∣ f (x)
∣∣∣ |Ar (1, x) − 1|

≤ ω
(

f , δ
)
|Ar (1, x) − 1| +

∣∣∣ f (x)
∣∣∣ |Ar (1, x) − 1| + ω

(
f , δ

)
+ω

(
f , δ

) 1
δ2 Ar

(
φ2, x

)
,

and if we choose δ = δr =
√

Ar

(
φ2, x

)
, we get∥∥∥Ar

(
f , x

)
− f (x)

∥∥∥
∞
≤

∥∥∥ f
∥∥∥
∞
‖Ar (1, x) − 1‖∞ + 2ω

(
f , δr

)
+ ω

(
f , δr

)
‖Ar (1, x) − 1‖∞

≤ K
{
‖Ar (1, x) − 1‖∞ + ω

(
f , δr

)
+ ω

(
f , δr

)
‖Ar (1, x) − 1‖∞

}
,

where K = max
{∥∥∥ f

∥∥∥
∞
, 2

}
. Now, replacing Ar (.; x) by Ln (., x) = 1

n+1

∑n
k=0

1
2k

∑k
r=0

(k
r
)
Ar (., x) , we get∥∥∥Ln

(
f , x

)
− f (x)

∥∥∥
∞
≤ K

{
‖Ln (1, x) − 1‖∞ + ω

(
f , δr

)
+ ω

(
f , δr

)
‖Ar (1, x) − 1‖∞

}
.

Using the Definition 3.1 and the conditions (a) and (b), we get the desired result.
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