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Abstract
The ability to test for statistical causality in linear and nonlinear contexts, in stationary 
or non-stationary settings, and to identify whether statistical causality influences trend of 
volatility forms a particularly important class of problems to explore in multi-modal and 
multivariate processes. In this paper, we develop novel testing frameworks for statistical 
causality in general classes of multivariate nonlinear time series models. Our framework 
accommodates flexible features where causality may be present in either: trend, volatility 
or both structural components of the general multivariate Markov processes under study. 
In addition, we accommodate the added possibilities of flexible structural features such 
as long memory and persistence in the multivariate processes when applying our semi-
parametric approach to causality detection. We design a calibration procedure and formal 
testing procedure to detect these relationships through classes of Gaussian process models. 
We provide a generic framework which can be applied to a wide range of problems, includ-
ing partially observed generalised diffusions or general multivariate linear or nonlinear 
time series models. We demonstrate several illustrative examples of features that are easily 
testable under our framework to study the properties of the inference procedure developed 
including the power of the test, sensitivity and robustness. We then illustrate our method on 
an interesting real data example from commodity modelling.
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1 Introduction

There are multiple notions of causality present in the statistics, econometrics and machine 
learning literature. We will consider one of these which is widely known as the class of 
causal concepts termed “statistical causality”. We therefore, do not enter into any addi-
tional debate about merits of or frameworks for other notions of causality that may be com-
mon in areas of structured learning. Quoting Wiener (1956) “For two simultaneously meas-
ured signals, if we can predict the first signal better by using the past information from the 
second one than by using the information without it, then we call the second signal causal 
to the first one.” The general concept of statistical causality is based on comparing two pre-
dictive models, and this will be the case regardless of the type of predictive models used.

We seek to define a class of causality tests which is very general, and in principle agnos-
tic to the class of underlying process that generates the time series being studied. We will 
achieve this via a class of semi-parametric models that we will utilise to model structural 
hypotheses regarding how causality may have manifested in the observed vector valued 
processes. To characterise testing of such relationships for the specific class of models we 
will develop, we will be able to explicitly evaluate a test statistics for a hypothesis test in 
which the asymptotic distribution is known in closed form, and under conditions discussed 
it can be shown to be the uniformly most powerful test. To achieve this we will introduce 
the class of representations we develop to characterise the observed vector valued time 
series according to Gaussian process models. These models are flexible in that they will 
efficiently allow us to test very general linear and nonlinear causality structures in the trend 
or volatility dynamics of the observed time series.

Throughout, we will consider without loss of generality, three multivariate time series 
denoted generically by �t ∈ ℝp,�t ∈ ℝp� and �t ∈ ℝp̄ , which will be treated as column 
vectors. Our goal is to develop a framework in order to be able to assess conjectures regard-
ing temporal relationships between these two multivariate processes �t,�t , in the presence 
of side information �t , such that we can apply formal inference procedures to determine the 
strength of evidence for or against such conjectures. We aim to achieve this in as general 
a manner as possible in order to accommodate differing forms of these relationships such 
as linear and nonlinear as well as stationary or non-stationary relationships. The approach 
we adopt will not require specific assumptions on the mechanism or model that generated 
these two series, which is important to understand. We form a distinction between the mod-
els used to postulate and test for the presence or absence of relationships between pro-
cesses in a statistical causal manner and the knowledge of the true model or data generating 
processes. We will propose a framework which is applicable to testing very flexible and 
general relationships of causality whilst still potentially being misspecified with respect to 
the true data generating mechanism. As such, we note that we do not seek to perfectly rep-
resent the true underlying data generating processes, we simply seek to determine plausible 
relationships and existence of different causality relationships. This can be seen as a more 
general result than trying to model exactly the true underlying processes of the time series, 
as our approach can be used for rapid screening of multiple hypotheses about causality 
prior to a more detailed model development procedure.

To facilitate such generality, we set up the testing framework based on a model of the 
time series causal relationships captured by Gaussian process. Note, here we are not assum-
ing the data is necessarily truly generated by a Gaussian process, but rather that the rela-
tionships of causality may be adequately reflected by such processes. This therefore only 
assumes a smooth variation of the causal relationships between the partially observed time 
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series represented by data {�t} , {�t} , {�t} . One particularly advantageous feature of work-
ing with Gaussian process representations of the causal relationships that are conjectured 
to be expressed by the time series is that we are able to derive and efficiently calculate rel-
evant test statistics to perform inference of relevance to detection of causality structures in 
both linear and nonlinear classes.

1.1  Perspectives on Causal Analysis

The concept of statistical causality central to this paper is only one of numerous concepts 
of causality that have been proposed. For centuries, causality was studied by philosophers, 
until the advancements in science generated a need to express this concept in mathematical 
terms. As a consequence, there turns out to be a wide array of possible mathematical ways 
to express the concepts inherent in causality. In this section we would like to pay special 
attention to the General Theory of Causation by Pearl, and explain how Granger’s statisti-
cal causality and Pearl’s theory of causation cater to different needs.

Granger made certain assumptions, that he has called axioms Granger (1980), which are 
still central to statistical causality:

A1 Time ordering: states that the cause happens prior to the effect;
A2 No redundant information: states that the cause contains unique information about 
the effect – it is not related via a deterministic function.
A3 Consistency: says that the existence and direction of the causal relationship remain 
constant in time.

We note that Granger has also pointed out the contentious nature of this third axiom 
“[...] generally accepted, even though it is not necessarily true”, which he saw as central to 
the applicability of the concept of causality.

However, it is important to understand that causal theory as developed by Pearl (2000, 
2010) does not recognise these axioms. Instead Pearl postulated that causal analysis should 
allow inferring probabilities under static conditions, as well as how they change under 
dynamic conditions, by answering three types of questions:

Q1 Policy evaluation: What is the effect of potential intervention?
Q2 Probabilities of counterfactuals: Can an event be identified as responsible for another 
event?
Q3 Mediation: Can causal effect be assessed as direct or indirect?

Furthermore, Pearl clearly distinguished between associational and causal concepts: “An 
associational concept is any relationship that can be defined in terms of a joint distribu-
tion of observed variables, and a causal concept is any relationship that cannot be defined 
from the distribution alone” Pearl (2010). Following that criterion, causality in the sense 
of Granger – which here and in literature is referred to as either “statistical causality”, or 
“Granger causality” – is an associational concept that is conditional and probabilistic in 
nature. According to Pearl, given adequately large sample and precise measurements, one 
can in principle test associational assumptions, but not causal assumptions, which require 
experimental control. The last one is of crucial importance to understanding the differences 
in the applicability of those two concepts. Statistical causality has been developed for, and 
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is often used in studying time series, and in that context no experimental control is avail-
able in an observational context rather than a designed experimental context.

We conclude this part by referring the reader to the literature that offers tools for recon-
ciling statistical causality with Pearl’s General Theory of Causation. Eichler (2001) pro-
posed using Granger causality graphs, and Eichler and Didelez (2007) introduced inter-
ventions to the Granger causal framework in a way that is similar to Pearl’s approach, and 
thus offer tools for reconciling statistical causality with Pearl’s General Theory of Causa-
tion. White et al. (2011) demonstrated how Pearl’s Causal Model and Granger causality are 
linked when expressed in terms of extension of Pearl’s Causal Model with settable systems.

1.2  Contributions

In this section we briefly outline the novelty of the proposed statistical causality framework 
developed and contrast the contributions to related references Amblard et al. (2012a, b). In 
Amblard et al. (2012a) they propose the use of Gaussian Process (GP) models for univari-
ate time series studies and use the data evidence obtained from the models to design a test 
for causality. However, these works do not explore the complete flexibility of these classes 
of models, where one can generalise readily to multivarite time series settings, also add 
side information, and they do not explore the range of causal structures that includes linear 
or nonlinear structures in the trend or covariance, as well as the estimation optimisation 
procedure, and model calibration aspects that we generalise in this manuscript. Further-
more, no sensitivity studies or analysis of the effect of model misspecifications is under-
taken in the aforementioned works. Despite formulating test statistic as a difference in 
marginal loglikelihoods, Amblard et al. (2012a) do not exploit the properties of likelihood 
ratio type tests (LRT or GLRT). Therefore, in this manuscript we build upon these interest-
ing papers and we genearlise the class of models significantly as they have not formulated 
the required nested structures that are achieved in this manuscript to facilitate more direct 
hypothesis testing frameworks through the LRT and GLRT, where we may take advantage 
of well known properties of the resulting test statistics asymptotic distribution under the 
null.

We would also like to point out that in our research we found the “kernelised Geweke’s 
measure” of Amblard et  al. (2012a) to be a nonlinear generalisation of Granger causal-
ity with many good properties, but with several shortcomings that we were able to suc-
cessfully address by the use of GPs (notably: the difficulty of hyperparameter estimation, 
model calibration, lack of interpretability of model parameters). However the authors of 
Amblard et al. (2012a) have progressed from what we see as more general model (GP) to 
a less general model (kernelised ridge regression), which they saw as more practical for 
modelling instantaneous causality Amblard et  al. (2012b). In our manuscript we do not 
address instantaneous causality (instantaneous coupling), but our framework can incorpo-
rate it, just like it can model causality between multivariate time series.

The multivariate causal testing framework developed in this manuscript allows one to 
incorporate aspects of causality, linear and nonlinear, in the mean and the covariance. 
In line with the very general definition of non-causality, models of statistical causal-
ity typically test for the equivalence of two conditional distributions. One can then dif-
ferentiate approaches based on what further assumptions are made on the models. For 
instance, linear regression methods focus on recognising dependence in trend, under 
strict model assumptions, while nonlinear generalisations relax these model assump-
tions. These models do not, however, allow for causality in covariance, or any other 
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nonlinear structures. The framework developed in this manuscript can accomodate these 
valuable extensions to allow direct straightforward testing of causality in the covariance 
in linear and nonlinear settings.

Secondly, analysing causal structure with Gaussian processes hasn’t been done in the 
likelihood ratio framework, we suppose due to the complication in formulating a nested 
testing model structure. In this manuscript we propose a way to construct model nesting 
that allows for application of the likelihood ratio test (LRT) and Generalised Likeli-
hood Ratio Test (GLRT). This model nesting is constructed to be applicable for assess-
ing causality in the mean, or covariance, or both, and is achieved through Automatic 
Relevance Determination (ARD) construction of the kernel. The development of nested 
models is important, as the standard asymptotic distribution of the LRT test statistic 
under the null being �2 does not hold for non-nested hypotheses. Thus, we emphasise 
that the novelty does not lie in the development of the asymptotic behaviour of the test, 
which is standard, but in constructing a framework that allows to apply that test in this 
general and flexible statistical causality framework we propose. Furthermore, with our 
GP model formulations the test statistic can be written in a closed form, can be com-
puted point-wise, and is efficient to compute.

There are numerous advantages of using GPs, beginning with: ease of optimisation and 
interpretability of hyperparameters, flexibility, richness of covariance functions, allowing 
for various model structures. Using a likelihood ratio type test with a GP is a very natural 
choice, as estimating GP model parameters is often done on the basis of maximising likeli-
hood, and therefore this estimation can be incorporated into the compound version of the 
likelihood ratio test (Generalised Likelihood Ratio Test, GLRT). From Gaussian variables, 
GPs inherited the property of being fully specified by the mean and the covariance, and 
so testing for model equivalence inherently means testing for equivalence of the mean and 
covariance functions. But many popular kernels do not have the ARD property, and using 
them for a likelihood ratio test settings gives no easy way to account for causal structures in 
covariance. Consequently, it is using GLRT with an ARD-GP that gives a uniformly most 
powerful test with an unparalleled flexibility: known asymptotic distribution under the null, 
explicit evaluation and in a closed form, and usefulness also for misspecified models.

Thirdly, we demonstrate the ability to detect and identify causal structures in the 
mean and covariance, even in the presence of different types of model misspecifications. 
We undertake careful study of sensitivity and robustness of these testing frameworks to 
various features that one would encounter, like: sample size, parameter misspecification 
and structural misspecification. It is important as these studies demonstrate that one can 
reliably apply these tests in a general framework, even if the model is misspecified in 
those ways, and still have confidence that the inference procedure can detect these types 
of causality in mean and covariance incorporated in this framework reliably.

2  Concepts in Statistical Causality

It is important to understand the context of our proposed framework in light of the spe-
cific formulations that have been proposed before when studying the concept of statisti-
cal causality. We, therefore, briefly outline previous approaches to consider this testing 
framework for statistical causality and importantly the required assumptions.
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2.1  Granger Causality

In this section, we present the original formulation of the hypothesis tests and test statistics 
for Granger causality, as well as a few of their later extended formulations that form the 
basis for considering concepts of statistical causality.

The first testable form of statistical causality proposed by Granger (1963) was developed 
in the context of linear forms of vector autoregressive models. For time series 

{
�t

}
,
{
�t

}
 

and 
{
�t

}
 lets assume we consider two alternative model formulations for 

{
�t

}
:

with l ∈ ℕ being the maximum number of lagged observations and �Y ,t, �′Y ,t denoting noise 
(later EX

t
,EY

t
 will denote residuals). In this setting, we introduce Granger’s definition:

Definition 1 Granger (1963) Causality of the process Y by the process X is defined when: 
Var(E�

Y ,t
) < Var(EY ,t) , and denoted as: X → Y . There is no causality, if Var(E�

Y ,t
) = Var(EY ,t) , 

and this is denoted as: X ↛ Y.

Typically the hypotheses will be given by one of the following sets of null hypothesis 
of Granger non-causality and alternative hypothesis of lack of Granger non-causality1. The 
version 1 of the hypothesis of non-causality is consistent with the Definition 1:

In the specific case of the linear regression models from the Eqs. 1 and 2, we can also 
use the version 2 of the hypothesis of non-causality (which implies version 1):

Granger proposed to test the null hypothesis from Eq.  3  using a test statistic called 
strength of causality and denoted LSC

X→Y
 , defined as the ratio of the two variances of pre-

diction errors:

The strength of causality underlines the relationship between Granger causality and 
model specification tests for linear regression.

Since this instrumental work there have been numerous developments and extensions pro-
posed. For instance Geweke (1982) proposed measure of linear feedback, with the same 
model assumptions and equivalent to strength of causality (Eq. 5), and defined as:

(1)Model A: �t =

l∑
j=1

A22,j�t−j +

l∑
j=1

A23,j�t−j + �Y ,t,

(2)Model B: �t =

l∑
j=1

A21,j�t−j +

l∑
j=1

A�
22,j

�t−j +

l∑
j=1

A�
23,j

�t−j + ��
Y ,t
,

(3)
version 1 H0 ∶ Var(E�

Y ,t
) = Var(EY ,t),

H1 ∶ Var(E�
Y ,t
) < Var(EY ,t).

(4)
version 2 H0 ∶ ∀j ∈ {1, .., l} A21,j = 0,

H1 ∶ ∃j ∈ {1, .., l} A21,j ≠ 0.

(5)LSC
X→Y

= 1 −
Var(E�

Y ,t
)

Var(EY ,t)
, where 0 ≤ LSC

X→Y
≤ 1.

1 We never test for existence of causality, but only accept or reject the hypothesis of lack of causality.
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which will be �2
p
 distributed under the null hypothesis of lack of causality.

Kernelised version of the Geweke’s measure of linear feedback has been proposed in 
Amblard et al. (2012b) with the aim to make it a nonlinear method. This kernelised ver-
sion of the measure of linear feedback has the same form as in the Eq. 6, but arises from 
a different model: kernel ridge regression, with the best predictor in the reproducing 
kernel Hilbert space (RKHS) generated by the associated kernel.

In the kernel ridge regression the solution is no longer represented in terms of opti-
mised coefficients A⋅⋅,j from Eqs. 1 and 2, the so called primal solution which we will 
denote as � . Instead, the dual solution �krr are such coefficients, that allow the solution 
to be represented in terms of inner product of the covariates (independent variables). 
Below, we introduce notation that will allow convenient matrix operations, and that will 
be used throughout also in the later sections:

For Model A, we have ℚt ∶=
[
�t,�t

]
,ℚ ∶=

[
�−l,�−m

]
 , and if these two need to be 

distinguished, we will add subscript referring to the model: ℚB,t,ℚA,t . Here the matrix ℚ 
represents all available covariate data, and the matrix ℚℚT ∶ T × T  is a Gramm matrix 
of the covariates data – it is in such a form that admits application of the kernel trick by 
“substituting” it with a Gramm matrix which we will denote �ℚ . The Gramm matrix 
�ℚ , also called kernel matrix or covariance matrix, can be defined element-wise as 
Mercer kernel function evaluations: 

{
�ℚ

}
i,j
= k(�i−l∶i−1,�j−l∶j−1) . The Mercer kernel 

function k(⋅, ⋅) ∈ M(X) is a real, symmetric and semi-positive definite kernel function, 
defined on the domain X × X  . Then, the optimal weights, fitted values and mean square 
of prediction error will for kernel ridge regression be as follows:

When kernel ridge regression is applied to model A, or model B, all of the steps 
above are applied, but with different definition of Qt , and therefore different values of 
the covariance matrix �ℚ . Denoting the fitted values as �̂A

1∶T
 and �̂B

1∶T
 , we obtain the 

mean square errors of kernel ridge regression prediction of the two models: 
Var

(
�̂A

1∶T
− �1∶T

)
 and Var

(
�̂B

1∶T
− �1∶T

)
 , which are used in the test statistic in a similar 

manner to the strength of causality from Eq. 5, and to the test statistic from Eq. 6. Thus 

(6)LMLF
X→Y

= ln

(
∣ Var(EY ,t) ∣

∣ Var(E�
Y ,t
) ∣

)
,

�t ∈ ℝp� , p� × 1 column vector

�1∶T ∶=
[
�1,�2, ...,�T

]T
, T × p�

�−l
t

∶=
[
�T

t−l+1
,�T

t−l+2
, ...,�T

t

]
, 1 × (lp�)

�−l ∶= �−l
1∶T

=
[
�1−l+1∶T−l+1,�1−l+2∶T−l+2, ...,�1∶T

]
, T × (lp�)

ℚt ∶=
[
�T

t
,�T

t
,�T

t

]
for model B, 1 × (p + p� + p̄)

ℚ ∶=
[
�−k,�−l,�−m

]
for model B, T × (kp + lp� + mp̄)

optimal weights: �krr =
(
�ℚ + 𝜆�T−1

)−1
�1∶T

fitted values: �̂1∶T = �ℚ�
krr

MSE: Var
(
�̂1∶T − �1∶T

)
=

1

T − 1

(
�ℚ�

krr − �1∶T

)T(
�ℚ�

krr − �1∶T

)
.

2593Methodology and Computing in Applied Probability (2022) 24:2587–2632



1 3

the test statistic based on the kernelised ridge regression, that Amblard et  al. (2012b) 
proposed is formulated as follows:

The hypotheses are:

See Amblard et al. (2012b); Zaremba and Aste (2014). We also refer to Lungarella et al. 
(2007) for other generalisations of Granger causality.

2.2  Transfer entropy

A third set of hypothesis has been subsequently introduced, which also relies on concepts 
of conditional independence, see Granger (1980); Eichler (2001); Amblard et al. (2012b):

The hypotheses in Eq.  8  were a starting point for a wide range of other tests, many 
of which would no longer assume the linear form of the models in the Eqs. 1 and 2, see 
Schreiber (2000); Lungarella et al. (2007); Chen (2006). One of the more important papers 
here is the one by Schreiber (2000) who introduced the information theoretic approach to 
modelling causality by proposing transfer entropy, which is now one of the most popular 
nonlinear statistical causality measures. Transfer entropy is defined as a difference of two 
conditional entropies:

where

is the differential (continuous) entropy and

is the conditional entropy.
The asymptotic properties of transfer entropy are analysed less often. However Barnett 

and Bossomaier (2012) prove that for ergodic processes, the transfer entropy is a log-
likelihood ratio, asymptotically distributed according to the �2 distribution under the null 
hypothesis of lack of causality, and having asymptotic non-central �2 distribution for the 
alternative hypothesis. The rate of convergence of the test statistics asymptotic distribu-
tion can however be problematic in practice, requiring very large sample sizes for valid 

(7)Lkrr
X→Y

= ln

Var
(
�̂A

1∶T
− �1∶T

)

Var
(
�̂B

1∶T
− �1∶T

) .

H0 ∶L
krr
X→Y

= 0, no causality from {X} to {Y}

H1 ∶L
krr
X→Y

> 0, causality from {X} to {Y}

(8)
version 3 H0 ∶ p(�t ∣ �

−k
t−1

,�−l
t−1

,�−m
t−1

) = p(�t ∣ �
−l
t−1

,�−m
t−1

), ∀t ∈ ℤ

H1 ∶ p(�t ∣ �
−k
t−1

,�−l
t−1

,�−m
t−1

) ≠ p(�t ∣ �
−l
t−1

,�−m
t−1

), ∀t ∈ ℤ.

LTE
X→Y

= H(�t ∣ �
−l
t−1

) − H(�t ∣ �
−k
t−1

,�−l
t−1

),

H(�) = −
∫

p(�) ln p(�)d�

H(� ∣ �) =
∫ ∫

p(�, �) ln
p(�)

p(�, �)
d�d�
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application of the test according to the asymptotic distribution (please refer to the experi-
mental results, Sect. 5.6).

In general, the null hypothesis from Eq. 8 is not equivalent to neither that from Eq. 3 nor 
from Eq. 4. For the linear model from Eqs. 1 and 2, and with the assumptions of �Y ,t, �′Y ,t 
having the same distributions, the null hypothesis from Eq. 4 implies the null hypothesis 
from Eq. 8. Furthermore, under the normality assumptions, the test statistic LTE

X→Y
 is equiv-

alent to both LSC
X→Y

 and LMLF
X→Y

 , see Barnett and Bossomaier (2012).

3  Semi‑Parametric Nonlinear Causal Process Representations

We begin by defining Gaussian Processes, as this will serve as our base class of stochastic 
processes that we adopt to characterise different examples of causality model structures. 
The vector valued time series 

{
�t

}
 is described by a Gaussian Process model, which is 

denoted as GP and defined as follows:

Definition 2 (Gaussian Process (GP)) Denote by f (�) ∶ X ↦ ℝ a stochastic process para-
metrised by {�} ∈ X  , where X ⊆ ℝp. Then, the random function f (�) is a Gaussian pro-
cess if all its finite dimensional distributions are Gaussian, where for any N ∈ ℕ , the ran-
dom vector 

(
f
(
�1
)
, f
(
�2
)
,… , f

(
�N

))
 is jointly normally distributed, see Rasmussen and 

Williams (2006).

We can therefore interpret a GP as formally defined by the following class of random 
functions:

At each point the mean of the function is �(⋅;��), parametrised by �� , and the depend-
ence between any two points is given by the covariance function, also called Mercer kernel: 
k
(
⋅, ⋅;�k

)
∶ M(X) , parametrised by �k , see detailed discussion in Rasmussen and Williams 

(2006). We will later use notation � = �� ∪ �k , and will refer to � as hyperparameters of the 
GP random function f.

We then model the time series 
{
�t

}
 causal relationships as realisations2 from a GP f (⋅) 

with additive Gaussian noise �t.

with the following generic definition of the mean function 𝜇t ∶ ℝkp+lp�+mp̄
→ ℝ and the 

covariance function kt,s ∶ ℝkp+lp�+mp̄ ×ℝkp+lp�+mp̄
→ ℝ:

f ∶= { f (⋅) ∶ X ↦ ℝ, s.t. f (⋅) ∼ GP
(
�
(
⋅;��

)
, k
(
⋅, ⋅;�k

))
, with

�
(
⋅;��

)
∶= 𝔼

[
f (⋅)

]
∶ X ↦ ℝ,

k
(
⋅, ⋅;�k

)
∶= 𝔼

[(
f (⋅) − �

(
⋅;��

))(
f (⋅) − �

(
⋅;��

))]
∶ X × X ↦ ℝ+

}
.

�t = f (�−k
t−1

,�−l
t−1

,�−m
t−1

) + �t, f (⋅) ∼ GP
(
�t, kt,s;�

)
, �t

i.i.d.
∼ N(0, �2),

2 For multivariate model one can use multiple output GP: please refer to Cressie (1993) for literature about 
“cokriging”, to Boyle and Frean (2005); Alvarez and Lawrence (2011) for multiple output GP processes 
modelled as convolutions of the same underlying white noise process.
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It will be useful to make the following notational definitions for the mean vector, and 
correlation matrix, respectively:

and SPDT is the manifold of symmetric positive definite matrices of size T × T .

3.1  Covariance Functions and Automatic Relevance Determination for Causality

As is standard in GP modelling, we will represent the covariance functions with functions 
that are known as kernels, and we will focus on the class of Mercer kernels M(X).

Definition 3 (Semi-positive definite kernel) A function k ∶ X × X → ℝ is called a semi-
positive definite  kernel  kernel (positive definite)  if and only if it is symmetric, that is, 
∀�, �� ∈ X, k(�, ��) = k(��, �) and semi-positive definite, that is

There are several important properties of kernels, see Scholkopf and Smola (2001). A cen-
tered GP is uniquely determined by its covariance function (semi-positive definite kernel). 
Conversely, any semi-positive definite kernel determines a covariance function and a unique 
centered GP, see Hein and Bousquet (2004). Moreover, there exists a bijection between the 
set of all real-valued semi-positive kernels on some space X  and the set of all centered GPs 
defined on X  . Kernels can also be seen as inner products, see Schoelkopf et al. (2004).

An important concept that will be broadly used in the context of kernel classes is the 
concept of Automatic Relevance Determination (ARD). It has been initially introduced 
by MacKay (1994), as a Bayesian model where input relevance can be introduced and con-
trolled with parameters; see also Neal (1996). This has later become popular in a wider 
context of feature selection and sparse learning in Bayesian models, see Qi et al. (2004). 
We use the same concept, but for a purpose of ensuring we have nested models for infer-
ence hypothesis design (see Sect. 4.1.3), and it will be crucial when applying the General-
ised Likelihood Ratio Test.

In the ARD model, each input variable has an associated hyperparameter whose 
value can scale the effect of that input. In the Bayesian approach, this is achieved by set-
ting a separate Gaussian prior for each of the inputs. In our (frequentist) case we treat 
each dimension as a separate input and define our mean and covariance functions in 
such a manner that the effect of each of the univariate inputs can be separately changed 
through zeroing of the hyperparameter associated with the given marginal input compo-
nent. In particular, by setting specific values of the hyperparameters we can practically 
eliminate some of the univariate variables from the mean/covariance. This construc-
tion has several important advantages: it allows for marginal causality testing as well 
as developing a class of nested model structures, critical to determining the statistical 

�t ∶= �t

([
�−k

t−1
,�−l

t−1
,�−m

t−1

])
,

kt,s ∶= kt,s
([
�−k

t−1
,�−l

t−1
,�−m

t−1

]
,
[
�−k

s−1
,�−l

s−1
,�−m

s−1

])
,

� ∶=
�
�1,… ,�T

�T
, � ∶=

⎡
⎢⎢⎣

k1,1 ⋯ k1,T
⋮ ⋱ ⋮

kT ,1 ⋯ kT ,T

⎤
⎥⎥⎦
,� ∈ SPDT ,

∀�1, ..., �N ∈ X ∀c1, ..., cN ∈ ℝ

N∑
i=1

N∑
j=1

cicjk(�i, �j) ⩾ 0.
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significance of causality relationships under consideration. In the table below (Table  1) 
are two examples of popular kernels and their ARD versions. Rasmussen and Williams in 
their MATLAB toolbox provide an ARD version of the squared exponential kernel with 
diag

([
l−2
1
, ..., l−2

n

])
 , our version from the Table 1 allows to choose li = 0 which removes the 

effect of the i-th dimension of input on the kernel. As a result, the covariance for lower 
dimensional space can be expressed as a covariance with a higher dimensional space 
kSE
t,s
(
[
�t−1,�t−1

]
,
[
�s−1,�s−1

]
) = kSE

t,s
(
[
�t−1,�t−1,�t−1

]
,
[
�s−1,�s−1,�s−1

]
;l1 = 0).

Given a set of input points 
{
�i|i = 1, ..., n

}
 we can compute the Gram (covariance) matrix 

� whose entries are Kij = k(�i, �j).

4  Characterising Causality Hypotheses With Gaussian Process Models

When performing inferential tests for statistical causality one will typically compare two 
alternative model hypotheses. We have already seen in the Sect. 1, that such hypotheses can 
be formulated in multiple ways, see Eqs. 3, 4 and 8. In defining the non-causality tests, we 
start from the more general forms of the hypotheses outlined in Eq. 8.

Table 1  Summary of several popular kernel functions. We are using the following notation:  p1 ≤ p  is the 
dimension of vectors �u, �v , and �T

u,[1∶p1]
=
[
xu,1, ..., xu,p1

]
 , A is a constant positive definite matrix, a, c are a 

constants, l is a lengthscale parameter, and 
[
l1, ..., lp

]
 is a vector of lengthscale parameters, d = ||�

u
−�

v
|| rep-

resents a distance, e.g. an Euclidean distance, � =
[||xu,1 − xv,1||, ..., ||xu,p − xv,p||

]
 , and k1(⋅), k2(⋅) are sta-

tionary kernels

covariance 
function

expressionk(�u, �v) = stationarity hyparameter domains

constant (noise) diag(�2
1
, ..., �2

p
)��u�v

+ �2
i
∈ ℝ+  

linear �T
u
�v   -

linear ARD �T
u
A�v  - A ∈ PSDp 

polynomial �2
f

(
a + �T

u
�v
)c - �2

f
∈ ℝ+, a ∈ ℝ,

c ∈ ℕ ∪ 0  
squared 

exponential
�2
f
exp

(
−

(�u−�v)
T(�u−�v)

2l2

)
+ �2

f
∈ ℝ+, l ∈ ℝ+

squared 
exponential 
ARD

�2
f
exp

(
−

1

2
� diag

([
l2
1
, ..., l2

p

])
�T

)
+ �2

f
∈ ℝ+, li ∈ ℝ+ ∪ 0  

Matern �2
f

Γ(�)2�−1

�√
2�

d

l

��

K�

�√
2�

d

l

� + �2

f
∈ ℝ+, � ∈ ℝ,

l ∈ ℝ+  

Matern ARD �2
f

Γ(�)2�−1

�√
2��

�
l1, ..., lp

�T��

K�

�√
2��

�
l1, ..., lp

�T� + �2

f
∈ ℝ+, � ∈ ℝ+,

li ∈ ℝ+ ∪ 0  

periodic �2
f
exp

�
−2

∑
i=1∶p

sin(�(�v,i−�u,i)∕a)

l2
i

�
+ �2

f
∈ ℝ+, li ∈ ℝ+  

separable 
nonstationary

k1

(
�u,[1∶p1], �v,[1∶p1]

)
k2

(
�u,[p1+1∶p], �v,[p1+1∶p]

)
- p1 ≤ p 
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The two causal model structures are generically represented as multi-dimensional 
Gaussian process time series models observed in additive Gaussian noise and denoted 
by Model A and Model B in the Eqs. 9 and 10 respectively:

with the following forms of mean functions 𝜇A ∶ ℝlp�+mp̄
→ ℝ , 𝜇B ∶ ℝkp+lp�+mp̄

→ ℝ and 
covariance functions kA ∶ ℝlp�+mp̄ ×ℝlp�+mp̄

→ ℝ , kB ∶ ℝkp+lp�+mp̄ ×ℝkp+lp�+mp̄
→ ℝ:

We assume the mean and covariance functions, �A, kA and respectively �B, kB , have 
similar functional forms and only differ in dimensionality and hyperparameters.

Having defined these two models we may now state the form of the hypotheses for test-
ing for non-causality (lack of causality) in nonlinear times series. The test that allows com-
paring two models from the Eqs. 9 and 10 is fundamentally a test comparing two distribu-
tions – the conditional distribution of the time series {�t} conditioned on inputs from either 
of the two models. As it was already mentioned, we never actually confirm the statistical 
causality, but rather reject lack of causality (test for non-causality).

Under such a test, the null hypothesis is that there is no causal relationship from time 
series {�t} to {�t} , and including the past of {�t} does not improve the prediction of 
{�t} . Given the model formulations, this means equality of conditional distribution of 
� , conditioning on either set of explanatory variables (analogously to Eq. 8):

The distributions above can be obtained in closed form only in the case of additive 
Gaussian noise, or in cases where there is no assumed additive noise in Model A or 
model B.

Since a GP is also specified by its sufficient mean and covariance functions, testing for 
equality of distributions will be equivalent to testing for equality of the mean functions and 
the covariance functions. Hence, the convenient feature of the causality testing framework 
developed from the GP framework we propose is that these general distributional state-
ments about population quantities in the null and alternative hypotheses are equivalent to 
the following population statements on mean and covariance functions.

(9)
Model A: �t = fA(�

−l
t−1

,�−m
t−1

) + �A
t
, fA(⋅) ∼ GP

(
�A,t, kA,t,s;�A,MA

)

�A
t

i.i.d.
∼ N(0, �2

A
�p�×p� )

(10)
Model B: �t = fB(�

−k
t−1

,�−l
t−1

,�−m
t−1

) + �B
t
, fB(⋅) ∼ GP

(
�B,t, kB,t,s;�B,MB

)

�B
t

i.i.d.
∼ N(0, �2

B
�p�×p� )

�A,t ∶= �A

([
�−l

t−1
,�−m

t−1

])
,

kA,t,s ∶= kA
([
�−l

t−1
,�−m

t−1

]
,
[
�−l

s−1
,�−m

s−1

])
,

�B,t ∶= �B

([
�−k

t−1
,�−l

t−1
,�−m

t−1

])
,

kB,t,s ∶= kB
([
�−k

t−1
,�−l

t−1
,�−m

t−1

]
,
[
�−k

s−1
,�−l

s−1
,�−m

s−1

])
.

(11)H0 ∶ p(� ∣ �−k,�−l,�−m;�B,MB) = p(� ∣ �−l,�−m;�A,MA)

(12)H1 ∶ p(� ∣ �−k,�−l,�−m;�B,MB) ≠ p(� ∣ �−l,�−m;�A,MA).
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where M represents the class of all Mercer kernels.
If the classes of mean and covariance functions are restricted so that the Model A is 

nested in the Model B (defined in the Subsect. 4.1.3), then the above hypotheses can be 
tested with the Generalised Likelihood Ratio Test.

4.1  Generalised Likelihood Ratio Test

The GLRT is a composite hypothesis test that can be used in the case of nested hypothesis 
if the parameters are unknown and need to be estimated. Below we describe the test, using 
notation from Garthwaite et al. (2002). The GLRT gives us asymptotic distribution of the 
test statistics, but it requires that the hypotheses are nested – which can be expressed in 
terms of restriction on mean and covariance formulations.

4.1.1  Theory for Generalised Likelihood Ratio Test

Let �1,�2, ...,�N be a random sample of size N from a distribution with pdf p(�;�) , 
and suppose that we wish to test: H0 ∶ � ∈ � vs H1 ∶ � ∈ Ω − � . Then define a random 
variable:

where L(�;�) = p(�;�) is the likelihood function. For some constant A, we can use a test 
with critical region Λ ≤ A.

If we define q as the difference in dimensionality of H0 and H0 ∪ H1 , then we have that 
under the null, the asymptotic distribution of the test statistic is distributed according to:

We would like to emphasise that the GLRT test compares the likelihoods of param-
eters either belonging to the whole parameter space Ω , or to its subset � ∈ Ω (Eq. 13). 
This nesting of parameter spaces will be the basis for defining nested hypotheses in Defi-
nition (4).

4.1.2  Generalised Likelihood Ratio Test for Testing Causality

Let us refer to the null hypothesis of non-causality as it was formed in the Eq. 11. The like-
lihood ratio test can be rewritten in terms of a difference of two marginal log-likelihoods 

H0 ∶ ∃k(., .) ∈ M
(
ℝlp�+mp̄ ×ℝlp�+mp̄

)
,𝜇 ∶ ℝlp�+mp̄

→ ℝ, ∀t, s ∈ {l + 1, ...,T}

kB
([
�−k

t−1
,�−l

t−1
,�−m

t−1

]
,
[
�−k

s−1
,�−l

s−1
,�−m

s−1

])
≡ k

([
�−l

t−1
,�−m

t−1

]
,
[
�−l

s−1
,�−m

s−1

])

𝜇B

([
�−k

t−1
,�−l

t−1
,�−m

t−1

])
≡ 𝜇

([
�−l

t−1
,�−m

t−1

])

H1 ∶ ¬∃k(., .) ∈ M
(
ℝlp�+mp̄ ×ℝlp�+mp̄

)
,𝜇 ∈∶ ℝlp�+mp̄

→ ℝ∀t, s ∈ {l + 1, ...,T}

kB
([
�−k

t−1
,�−l

t−1
,�−m

t−1

]
,
[
�−k

s−1
,�−l

s−1
,�−m

s−1

])
≡ k

([
�−l

t−1
,�−m

t−1

]
,
[
�−l

s−1
,�−m

s−1

])

𝜇B

([
�−k

t−1
,�−l

t−1
,�−m

t−1

])
≡ 𝜇

([
�−l

t−1
,�−m

t−1

])
,

(13)Λ =
{
max
�∈�

L(�;�)∕max
�∈Ω

L(�;�)
}
,

− 2 lnΛ ∼ �2
q
, for N → ∞.
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ln p(� ∣ �−k,�−l,�−m;�B,MB) = ln p(� ∣ �−l,�−m;�A,MA) , and it leads to the definition 
of a causality test statistic LX→Y∣Z , first proposed by Amblard et al. (2012a):

In this paper we assume additive Gaussian errors, which allows us to calculate the mar-
ginal likelihoods analytically. For the calculations please refer to the Appendix 1. The 
resulting distributions are:

If we use the hat notation for MLE estimators of the hyperparameters of the mean and 
covariance functions, then the test statistic is given by:

In the Eq. 15 we present a general form of the test statistic for multivariate time series, 
and in the special case of a univariate time series � this simplifies to a form from the 
Eq.  16. Distinguishing between the two definitions can also be seen as a distinction 
between joint causality and marginal causality.

Under certain regularity conditions, with the assumptions of conditional independence 
of �t ∣ �

−k
t−1

,�−l
t−1

,�−m
t−1 for all t, and with the assumption that models A and B are nested 

(see 4.1.3) we can treat LX→Y∣Z as a GLRT and use the asymptotic results:

where q is the difference in dimensionality between the parameter space for �A
 and �B

.

4.1.3  Nested Models

An essential concept in our testing procedures is that of nested models. Its importance 
arises from the fact that the Generalised Likelihood Ratio Test (GLRT) on nested hypoth-
eses has known asymptotic distribution.

(14)

LX→Y∣Z = max
�B

ln p(� ∣ �−k,�−l,�−m;�B,MB) −max
�A

ln p(� ∣ �−l,�−m;�A,MA).

p(� ∣ �−l,�−m;�A,MA) = N(�;�A,�A + �A)

p(� ∣ �−k,�−l,�−m;�B,MB) = N(�;�B,�B + �B).

(15)

L̂X→Y∣Z = −
(
Vec(�) − Vec(�̂B)

)T(
⊕T

t=1
�̂ℚB,t

+ �̂�2
B
�Tp�×Tp�

)−1(
Vec(�) − Vec(�̂B)

)

+
(
Vec(�) − Vec(�̂A)

)T(
⊕T

t=1
�̂ℚA,t

+ �̂�2
A
�Tp�×Tp�

)−1(
Vec(�) − Vec(�̂A)

)

− ln
|||⊕

T
t=1

�̂ℚB,t
+ �̂�2

B
�Tp�×Tp�

||| + ln
|||⊕

T
t=1

�̂ℚA,t
+ �̂�2

A
�Tp�×Tp�

|||.

(16)
L̂X→Y∣Z = −(� − �̂B)

T
(
�̂B + �̂�2

B
�
)−1

(� − �̂B) − ln
|||�̂B + �̂�2

B
�
|||

+(� − �̂A)
T
(
�̂A + �̂�2

A
�
)−1

(� − �̂A) + ln
|||�̂A + �̂�2

A
�
|||.

H0 ∶ 2L̂X→Y∣Z ∼ 𝜒2
q

as T → ∞,
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Definition 4 Nested models. Two models: MA
 parametrised by �A

 and MB parametrised 
by �B are said to be nested if it is possible to derive one from another by means of paramet-
ric restriction, see Clarke (2000)

Intuitively, we could say that model A is nested in model B if the input space of model 
A is embedded in input space of model B, but the Definition 4 is formulated in terms of 
embedding of the model parameter spaces, rather than embedding of the input spaces. For-
mulating our Gaussian Process models A and B in such a way that they are nested accord-
ing to the above definition is not always possible. This is because for the above definition 
of nested models we require the mean and covariance function to have parameters that 
correspond to the dimensionality of the input space, or that correspond to the inclusion or 
not of the input X.

In practice, when we talk about nested models we consider mean and kernel functions 
allowing the nested model representation. The simplest example of how the mean and ker-
nel functions can allow nested models are for linear mean and kernel functions. Define 
�t(

[
Xt−1, Yt−1, Zt−1

]
) = a1Xt−1 + a2Yt−1 + a3Zt−1 , which under restriction a1 = 0 will become 

equivalent to a mean �t(
[
Yt−1, Zt−1

]
) = a2Yt−1 + a3Zt−1 , defined on the parameter space [

Yt−1, Zt−1
]
 . Analogously, for the linear kernel:

restriction A1,1,A1,2,A1,3,A2,1,A2,2,A2,3,A3,1 = 0 will make this kernel equivalent to a lin-
ear kernel defined on 

[
Yt−1, Zt−1

]
 with parameters A2,2,A2,3,A3,2,A3,3.

A popular kernel function that does not allow nested models is squared exponential 
kernel:

 which, however, can be extended to a representation under an ARD structure, which does 
have a form that allows for nested models (see Subsect. 3.1 and the Table 1), if the divi-
sion by a scalar lengthscale parameter 2l2 is replaced by a multiplication by the following 
matrix of lengthscale parameters: diag

([
l2
X
, l2
Y
, l2
Z

])
.

If the nested model representation is not practical, then GLRT test should not be 
used. There are several approaches for non-nested models: modified (centered) log-
likelihood ratio procedure – Cox procedure, “comprehensive model approach”, 
“encompassing procedure”, Vuong closeness test: likelihood-ratio-based test for model 
selection using the Kullback-Leibler information criterion. We refer the reader to the 
following papers (and references therein): Vuong (1989); MacKinnon (1983); Pesaran 
and Weeks (2001); and Wilson (2015).

kt,s(
�
Xt−1, Yt−1, Zt−1

�
,
�
Xs−1, Ys−1, Zs−1

�
) =

⎡⎢⎢⎣

Xt−1

Yt−1
Zt−1

⎤⎥⎥⎦

⎡⎢⎢⎣

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎤⎥⎥⎦
�
Xs−1, Ys−1, Zs−1

�

k
([
Xt−1, Yt−1, Zt−1

]
,

[
Xs−1, Ys−1, Zs−1

])

= �2

f
exp

(
−

([
Xt−1, Yt−1, Zt−1

]
−
[
Xs−1, Ys−1, Zs−1

])
T
([
Xt−1, Yt−1, Zt−1

]
−
[
Xs−1, Ys−1, Zs−1

])
2l2

)
,
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5  Synthetic Data Experiments to Assess Proposed Causality Testing 
Framework

In this section, we seek to study the behaviour of our proposed methodology for GP 
testing of statistical causality relationships. In order to motivate the causality studies 
in this paper, we consider three illustrative nonlinear time series models. They will 
serve as references that we will apply our causality testing framework to, throughout 
the synthetic studies undertaken in the results analysis for testing power, sensitivity, and 
robustness of our proposed causality testing framework.

In particular the classes of model we have chosen as illustrations of data generating 
processes for the time series that will form inputs to our testing framework characterise 
a range of general model structures which allow for assessment of linear and nonlinear 
causality structures in the trend or the volatility or both components of the resulting 
data generating models.

Example Time Series Model Class 1: Structural Trend Based Causality Consider an autore-
gressive nonlinear model class comprised of structures incorporating time series with lin-
ear and nonlinear polynomial causality in the trend, with Gaussian noise.

The examples that we will use will assume q = 2 , which means that in the mean this 
time series will have a nonlinear causality in the direction Y → Z , aside from the linear 
causality X → Y .

We will express the model from the Eq. 17 in the form of three GPs, as in the Eq. 18. 
When generating the data, as Eq.  20 show, we will use Matern covariance functions 
with degrees of freedom � = 1.5 , we will also extend the model to allow causal relation-
ship in covariance – relationships, that were not existing in the time series formulations 
from Eq. 17.

A formulation of the time series from the Eq.  17 explicitly as GPs can be done 
according to the following conditional distributions:

where the mean functions are linear:

and covariance functions incorporate the noise which was already defined as a GP:

(17)

Xt = aXXt−1 + �X �X ∼ N
(
0, �2

Z

)
,

Yt = aYYt−1 + bYXt−1 + �Y �Y ∼ N
(
0, �2

Y

)
,

Zt = aZZt−1 + bZY
q

t−1
+ �Z �Z ∼ N

(
0, �2

Z

)
,

(18)

Xt = fX(Xt−1) fX ∼ GP
(
�X,t, kX,t,t�

)

Yt = fY ([Yt−1,Xt−1]) fY ∼ GP
(
�Y ,t, kY ,t,t�

)

Zt = fZ([Zt−1, Yt−1]) fZ ∼ GP
(
�Z,t, kZ,t,t�

)

(19)

�X,t = �X,t(Xt−1) = aXXt−1 no causality

�Y ,t = �Y ,t([Yt−1,Xt−1]) = aYYt−1 + bYXt−1 linear causality

�Z,t = �Z,t([Zt−1, Yt−1]) = aZZt−1 + bZY
2
t−1

nonlinear causality
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Note that the main causality structure has been encoded in the mean functions, but 
the way the covariance functions are formulated allows some causality in the covariance 
in the directions X → Y  and Y → Z.

Example Time Series Model Class 2: Structural Causality Incorporated in Volatility The sec-
ond causality structure has similar autoregressive and causal components to the Structure  
1, but the error terms depend on past values of the other time series (so no autoregression 
in the covariance) via nonlinear functions fy, fz:

where

The formulation above is general and the noise terms �y, �z can depend explicitly on 
time via the functions gy(t) and gz(t) . We use cy, cz, dy, dz, p, q to denote constants. For 
this time series to be expressed in terms of GP we will have exactly the same general GP 
structure as for the time series 1 in the Eq. 18, and exactly the same mean functions – the 
Eq. 19. To construct the kernels that will match the covariance structure, we use the prop-
erties that summations and multiplications of kernels yield new kernels, for example as 
follows:

where: kts2g,p,r,c,d([Wt,Vt], [Wt� ,Vt� ]) = (g + cW
p

t + dV
q

t )
2(g + cW

p

t�
+ dV

q

t�
)2 is a kernel with 

the functions gy(t), gz(t) simplified to a constant g. The notation [Wt,Vt] should be under-
stood as either [Xt−1, Zt−1] or [Xt−1, Yt−1]

.

Example Time Series Model Class 3: Causality Features in Presence of Long Memory The 
third data structure is a long memory process: ARFIMA(p,d,q), for d ∈ [0, 0.5) , with cau-
sality structure encoded in the form of external regressors:

(20)

kX,t,t� = kX,t,t� (Xt−1,Xt�−1) = kMatern
la,�f

(Xt−1,Xt�−1) + �2
n
�t,t�

kY ,t,t� = kY ,t,t� ([Yt−1,Xt−1], [Yt�−1,Xt�−1]) = kMatern
la,lb,�f

([Yt−1,Xt−1], [Yt�−1,Xt�−1]) + �2
n
�t,t�

kZ,t,t� = kZ,t,t� ([Zt−1, Yt−1], [Zt�−1, Yt�−1]) = kMatern
la,lb,�f

([Zt−1, Yt−1], [Zt�−1, Yt�−1]) + �2
n
�t,t�

(21)

Xt = aXXt−1 + �x

Yt = aYYt−1 + bYXt−1 + �∗
y
;

Zt = aZZt−1 + bZY
q

t−1
+ �∗

z
;

(22)
�∗
y
= fy

(
Xt−1, Zt−1

)
�y =

(
gy(t) + cyX

p

t−1
+ dyZ

r
t−1

)2
�y

�∗
z
= fz

(
Xt−1, Yt−1

)
�z =

(
gz(t) + czX

p

t−1
+ dzY

r
t−1

)2
�z

(23)

kX,t,t� ([Xt−1, Yt−1, Zt−1], [Xt�−1, Yt�−1, Zt�−1]) = �2
n
�t,t�

kY ,t,t� ([Xt−1, Yt−1, Zt−1], [Xt�−1, Yt�−1, Zt�−1]) = kts2
g,p,r,cY ,dY

([Xt−1, Zt−1], [Xt�−1, Zt�−1])�
2
n
�t,t�

kZ,t,t� ([Xt−1, Yt−1, Zt−1], [Xt�−1, Yt�−1, Zt�−1]) = kts2
g,p,r,cZ ,dZ

([Xt−1, Yt−1], [Xt�−1, Yt�−1])�
2
n
�t,t�

(24)Xt − aXXt−1 = �x,t
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where B is a backshift operator, the autoregressive coefficients for the time series Yt, Zt 
include external regressors, the moving average coefficient according to characteristic 
polynomial: Θ(B) = 1 − �1B − ... − �qB

q , and the long memory operator has linear process 
series expansion given for d ∈ (0, 0.5) as follows:

In this example, there is no natural way to trivially develop a GP representation, how-
ever, it does not preclude fitting a misspecified model in order to screen for causality struc-
tures that may be present. We can fit such a model to partial observations of this reference 
example. This poses an interesting example to study the effect of model misspecification 
on the ability to detect linear and nonlinear causality structures.

5.1  Synthetic Data Experiments

In this section, we provide results for a series of tests of performance focusing on three key 
attributes of the proposed causality inference framework: power, sensitivity to parameters 
and robustness to model misspecification or parameter estimation errors. We perform these 
analyses for each of the three case study models introduced. We begin with sensitivity and 
misspecification tests, which we follow with experiments on the power of the test for sim-
ple and compound tests.

The sensitivity analysis shows how the test reacts to varying the parameter values used 
to generate the time series data in Example model 1, Eqs. 18–20. Here, we know the exact 
model so that a simple test is performed, where we assess its power over the parameter 
space.

The model misspecification tests show how the test reacts to discrepancy between the 
parameter values used to generate the time series data and the parameters used in the test 
statistic. This is a structured form of compound test analysis, since in practical settings in 
general the parameters will be estimated from data and then used in a compound testing 
procedure, in which the test statistics is a function of the estimated parameters.

We begin with two simple illustrative examples showing how the values of the test sta-
tistics from Eq. 14 change for different data samples, and what values of the �2 cdf they 
obtain. Throughout, we will perform analysis relative to the level of significance for the test 
of 10%. The Fig.  1 illustrates a compound test with optimised parameters – showing the 
values of test statistics LX→Y vs LY→X and the 1-p values, or the evaluations of the distribu-
tion �2

2
(2LX→Y ) vs �2

2
(2LY→X) . The data has been generated from causality structure 1 with 

strong causal effect X → Y , with each of the 50 data replicate time series samples being of 
length 500 sample points.

The interpretation of the Fig. 1 is the following. From the left plot we can see that the 
test statistics LX→Y has values which are separated from and considerably larger than the 
test statistics LY→X . This by itself is an indication that the causal effect X → Y  should be 
stronger than Y → X . From the plot of cdf evaluations we observe that all of the values 

(25)(Yt − aYYt−1 − bYXt−1)(1 − B)d = ΘY (B)�y,t

(26)(Zt − aZZt−1 − bZY
q

t−1
)(1 − B)d = ΘZ(B)�z,t,

(1 − B)−d =

∞∑
k=0

Γ(k + d)

Γ(k + 1)Γ(d)
Bk.

2604 Methodology and Computing in Applied Probability (2022) 24:2587–2632



1 3

of LX→Y are in the tail (with cdf values of exactly 1) and therefore the null hypothesis is 
strongly rejected at any confidence level, for each of the trials. This means that the estima-
tor of the power of the test, i.e. the probability of rejecting the null hypothesis if it is not 
true, is very close to 1 for a very large range of confidence levels, certainly between 0.01% 
and 10%

This indicates that, as expected, the test performs very well in detecting the correct 
direction of causality – in this case Y → X.

5.2  Model Sensitivity Analysis

It is important to ensure that, on one hand, the tests behave in a stable way when the param-
eters change – at least in some non-extreme region – and, on the other hand, that the tests 
are not heavily penalising misspecifications.

This test is performed for the first data structure, Eqs.  18–20. We use the following 
settings: Matern kernel, additive noise with variance of �2

n
= 0.01 , grid of 21 different 

parameter values for each variation of the true model parameters assessed. For each experi-
ment we consider 100 trials and the length of the simulated time series varies over range 
20, 50, 100, 200, 500, 1000. We report rejection or lack of rejection of the test with the 
significance of � = 0.1 . The starting point is the parameter set: aX = aY = aZ = 0.3 and 
bY = bZ = 0.7 (parameters of, respectively, autoregression and causality in the mean, as per 
Eq. 19), la = lb = e−1, �f = e−3, �n = 0.1 (covariance parameters: autoregression, causality, 
multiplicative scaling, noise covariance, Eq. 20). Parameters are changed one at a time, and 
a new set of data is generated for each set of parameters.

We do not report results of the sensitivity test for the directions without causality: 
Y → X or Z → X , as the test statistics in those cases will always be zero. When changing 
parameters in both models at the same time, we no longer use the true parameters, but we 
still compare models that are equivalent.

In the direction with causality X → Y  we see that the behaviour of the test is very stable, 
with the changes in the frequency of rejection/non-rejection (here presented as estimated 
power of the test) influenced mostly by the sample size. The power of the test is the prob-
ability P(H0 rejected|H1 true) , which in our case is estimated as 0.01 ⋅

∑100

i
F(2LXi→Yi

) , 
where we have 100 trials, F denotes the cdf of �2

2 and 0.9 is 1 - confidence level.

Fig. 1  Test statistics and corresponding cumulative density function evaluations. Causality structure 1, true 
parameters: aX = aY = aZ = 0.3, bY = bZ = 0.7, q = 2, la = lb = e−6, �f = e−10, �n = 0.01 . The horizontal 
axis represents 50 separate trials, each with a time series of length 500
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When compared to the X → Y  direction, the results for Y → Z are less uniform, as 
shown in Table 2. The Table 2 demonstrates the power of the test for minimum and 
maximum of the parameter range, which is enough to portray the behaviour of the 
test for all parameters except �f  for the Y → Z direction, for which local minimum can 
be seen in the Fig.  2. Based on the Table  2, and corresponding Fig.  2, we can also 
observe that the results for Y → Z are more sensitive to the change in parameters than 
the results for X → Y  , in particular the causal coefficient bZ.

5.3  Model Misspecification Analysis

For the misclassification test we have chosen different starting settings for the covari-
ance function la = lb = e−3, �f = e1 , which result in higher covariance, and much more 
pronounced effects of misclassification of covariance function parameters. Starting 
from the base set of parameters we alter one parameter at a time when calculating the 
test statistic; however, we use data generated for the base parameters: so that altered 
parameter is misspecified. It has to be emphasised that in the misspecification test a 
parameter will be altered for model A or model B, but not both.

Results of misclassification in the mean, which we do not report, are straightforward 
to understand and interpret. The power of the test depends mostly on the size of the 

Table 2  How power of the test changes with length of the time series (n) and changes of single parameters. 
Default parameters: aX = aY = aZ = 0.3, bY = bZ = 0.7, q = 2, la = lb = e−1, �f = e−3, �n = 0.1. , one of the 
mean or covariance parameters changes ±50% in simulation and model as well. We look at time series of 
length n = 20, 50, 100, 200, 500, 1000 . The parameter values correspond to the values in Fig. 2

Throughout these tests the 50% change in the parameters relates to the model parameters; The actual 
decrease/increase for covariance parameters is much bigger than for the mean, because the former is 
inputed to the algorithm as a logarithm

XY bY aY aX lb la �f �Y
n

�X
n

uniform? + + + + + +- – –

min, max min, max min, max min, max min, max min, max min, max min, max

n = 20 0.45, 0.98 0.84, 0.84 0.83, 0.88 0.84, 0.84 0.84, 0.84 0.80, 0.84 1.00, 0.09 0.40, 1.00
n = 50 0.76, 1.00 0.98, 0.98 0.97, 1.00 0.98, 0.98 0.98, 0.98 0.97, 0.92 1.00, 0.46 0.80, 1.00
n = 100 0.92, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 0.96 1.00, 0.70 0.91, 1.00
n = 200 0.99, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 0.87 0.99, 1.00
n = 500 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 0.99 1.00, 1.00
n = 1000 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00

YZ bZ aZ aY lb la �f �Z
n

�Y
n

uniform? – +- + + + – – –

min, max min, max min, max max, min max, min max, min max, min max, min

n = 20 0.02, 0.87 0.55, 0.22 0.33, 0.39 0.35, 0.35 0.35, 0.35 0.38, 0.63 0.35, 0.38 0.30, 0.96
n = 50 0.02, 1.00 0.72, 0.40 0.53, 0.61 0.55, 0.55 0.56, 0.56 0.79, 0.80 0.26, 0.77 0.50, 0.98
n = 100 0.05, 1.00 0.87, 0.52 0.69, 0.79 0.70, 0.71 0.71, 0.72 0.99, 0.85 0.21, 0.97 0.64, 1.00
n = 200 0.13, 1.00 0.98, 0.70 0.81, 0.93 0.86, 0.87 0.85, 0.89 1.00, 0.98 0.25, 1.00 0.77, 1.00
n = 500 0.31, 1.00 1.00, 0.90 0.94, 0.99 0.98, 0.98 0.97, 0.99 1.00, 1.00 0.80, 1.00 0.85, 1.00
n = 1000 0.50, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.97, 1.00
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sample and, to a smaller degree, on the deviation from the true mean. For the direction 
where causality exists, the power of the test changes almost uniformly with the mis-
classification of the mean parameter. This is in line with observations that we will see 
repeatedly – that the power of the test is more robust to any parameter changes in the 
presence of causality in the mean.

Results of misclassification in the covariance, Figs. 3 and 4, are not so straightfor-
ward to understand and interpret. In particular, the performance of the tests seems to 
be more sensitive to the misclassification of the strength of the observation noise – this 
is not observed when parameters of the covariance (mainly �f  ) are smaller.

Fig. 2  Causality structure 1, direction Y → Z original parameters: aX = aY = aZ = 0.3, bY = bZ = 0.7,

q = 2, la = lb = e−1, �f = e−3, �n = 0.1. Heatmaps show power of the test (hypothesis of no-causality 
rejected for cdf above 0.9) for different lengths of the time series and for one of the mean or covariance 
parameters changing + − 50% in simulation and model as well

Fig. 3  Power of the test of the hypothesis of non-causality in the direction X → Y  changes with the sample 
size and misspecification of a single hyperparameter (here – covariance parameters)
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5.4  Power of the Hypothesis Tests: Simple Tests

Summary of the Section: Analysing power of the test (1-rate of type II error) is a popular 
technique of assessing the quality of a test or a testing procedure. It is expected that the 
power of the test will increase with increasing sample size, and showing that this is indeed 
the case for our testing procedure will be the focus of this and the following sections. We 
start by analysing the results of simple tests, where exact parameters are used, and there is 
no effect of parameter misspecification. Strictly speaking, the simple test can be performed 
only for the first two data structures, as the third has been defined as an econometric model 

Fig. 4  How 1-rejection rate of the hypothesis of non-causality in the direction Y → X changes with the sam-
ple size and misspecification of a single hyperparameter (here – covariance parameters)

Fig. 5  Examples of parameter combinations for which the ROC curve shows different behaviour with 
longer sample (time series). True parameters: aX = 0.3, bY = 0.7 in all 3 charts, the kernel parameters 
respectively: (left) la = e−3, lb = e−1, �2

f
= e−10 , (right) la = e−3, lb = e−1, �2

f
= e−2
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with no GP representation. However, for the third data structure, we perform a few tests 
with chosen parameters – to show the reaction of the test to certain properties of the data.

Example Time Series Model Structure 1 When using the exact parameters, as in a simple  
test, typically the behaviour for the Model 1 (Eqs. 19 and 20) is as expected: the power of 
the test increases with the sample size, and even in case of short time series the classifica-
tion rule works well. This typical behaviour is illustrated in the left chart of Fig. 5 and in 
the left chart of Fig. 6. Figure 5 shows evolution of receiver operating characteristic (ROC) 
curves with increasing sample length, for two sets of parameters. When performing simple 
test, for most of the parameters, the ROC curves will show that positives and negatives are 
almost always properly classified, even for short time series – as seen in the example in 
the left chart of Fig. 5. This example represents testing of model 1 with true parameters: 
aX = 0.3, bY = 0.7 for mean function, and la = e−3, lb = e−1, �2

f
= e−10 as the kernel param-

eters. The corresponding distributions of 1-power of the test can be seen on the left chart 
of the Fig. 6, in the form of boxplots. These distributions have medians at 1 for samples of 
length from 50 up, and no outliers for samples of length 500 and 1000.

The notable exceptions observed are as detailed below. Firstly, we show an example 
for which a higher rate of misclassification is seen, albeit it still decreases with the size of 
the sample. The right chart in the Fig. 5, has larger value of �2

f
= e−2 ≃ 0.1353 , but with 

other mean and kernel hyperparameters remaining the same. The middle chart of the Fig. 6 
shows that in this case, even for the sample of length 500 we still can observe some outliers 
with 1-power of the test at 0.

The right chart of the Fig.  6 shows an extreme case, where the power of the test 
degrades with length of the time series to a random coin flip on the hypothesis, although it 
improves if we consider exceptionally long samples of 5000 data points. We can see that 
the medians of the distributions of 1-power of the test drops from 1 to 0 for samples of 
length 100–1000, and gets back to 1 for sample of length 5000. The kernel hyperparam-
eters in this case are equal: la = e−1, lb = e−3, �2

f
= e−2 . This means signal variance at the 

same level as the less extreme case, but bigger autoregressive hyperparameter and smaller 
causal hyperparameter in the covariance function. Those parameter values, where increas-
ing the sample size temporarily causes decrease of power of the test, can correspond to the 
dark areas from the Figs. 3 and 4.

Fig. 6  Examples of parameter combinations that lead to different evolution of the test statistics distribu-
tion. True parameters: aX = 0.3, bY = 0.7 in all 3 charts, the kernel parameters respectively: (left) 
la = e−3, lb = e−1, �2

f
= e−10 , (middle) la = e−3, lb = e−1, �2

f
= e−2 and (right) la = e−1, lb = e−3, �2

f
= e−2 . 

The right plot show an extreme case of performance decreasing with sample size for the typical range of 
sizes, hence the addition of results for data f length 5000
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The parameters that cause such behaviour is primarily the signal variance �
2
f  , and to a 

smaller extent la – the coefficient of autoregression in covariance function. The hyperparam-
eter �2

f  increases the value of the covariance proportionately, while la - inversely and less than 
proportionately. Higher values of the covariance function mean higher volatility clustering, 
an effect which could compete with causality, but that could be less visible in short time 
series. We will not elaborate on this point here, but additional dependence structure can com-
plicate the explanation of causality structure. Therefore longer time series appears necessary 
to correctly recognise causality in this case. The Fig. 7 shows the effect of length of a time 
series on the value of the test statistics LX→Y

 for a particular combination of parameters. A 
single data set of length 5000 has been simulated and subsequently tests statistics have been 
calculated on the first 100, 200, 300, ...5000 data points. The chosen data set has a general 
trend of test statistics increasing for longer data lengths (as for all other data sets generated 
with the same parameters) but it shows to major dips of test statistics temporarily worsening.

The causal effect in the covariance function is difficult to observe. This is because on 
one hand, it seems to have a much subtler effect than the causality in mean, but also because 
it is entwined with other effects that can be observed for different parameter combina-
tions. Figure 8 shows that for following parameters bY = 0, aY = 0, la = e, lb = e, �2

f
= e4 

the causality in covariance is unambiguously observed already for sample size of 50. As 
a reminder, according to the Eq. 19, bY = 0 means no causality in the mean and aY = 0 
means no autoregression in the mean.

Fig. 7  Evolution of LX→Y when (overlapping) data of different length is used. True parameters: aX = 0.3, bY
= 0.7, la = e−3, lb = e−3, �2

f
= e−2

Fig. 8  Test statistics and the distribution evaluation: no causality in mean ( bY = 0 ), no autocorrelation in 
mean ( aY = 0 ), very large covariance parameters la = e, lb = e, �2

f
= e4 . The right subplot does not explic-

itly show distribution evaluations for sample sizes from 50 to 500, because they are all equal 1 (just like for 
sample size 1000)
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Example Time Series Model Structure 2 The results for testing of model 2, Eqs. 21–23, are 
just commented on here, since in the simple testing framework they do not show anything 
unexpected. In particular, the power of the test does increase with increasing length of the 
time series. Arguably, there is much less opportunity for problematic behaviour. This is 
firstly because the range of parameters which are available for the Example structure 2 is 
much narrower than for the Example structure 1 (i.e. parameters for which the series does 
not explode to infinity). Secondly, we assumed cov(�Yt , �Yt� ) = 0 , but if we did not we could 
have had again the problem with volatility clustering masquerading as causality.

Example Time Series Model Structure 3 We do, however, report a few observations on the 
testing of model 3. Firstly, model 3 does not have a GP representation, so when reporting  
on the results of the “simple test” in this case we do not perform a test with “true” param-
eters, but a test with fixed, rather than optimised, parameters. These observations become 
particularly interesting when compared with the results of the compound test for the data 
generated from the model 3. The main property of interest in the model 3 is the long mem-
ory, and this is what we concentrate on here. When analysing results for the data gener-
ated from model 3 (simple or compound test), on one hand, we expect that existence of 
the long memory will make recognition of causality more difficult, but on the other hand, 
we would like to see that causality can still be reasonably detected. Figure 9 shows how 
the power of the test is affected by increasing the long memory (values of the parameter 
d = 0.1 vs d = 0.45 ), and how this effect can be increased by changing other parameters 
(the degree of moving average from MA(1) to MA(4), noise covariance from �2 = 0.1 to 
�2 = 10 , strength of linear causality from bY = 0.7 to bY = 0.2 ). It is worth emphasizing 
that decreasing strength of causality has the biggest influence, and is the only factor that 
affects the power of the test for long time series (length = 1000).

5.5  Power of the Hypothesis Tests: Compound Tests

Summary of the Section Compound tests are two stage tests where both the likelihood as well as 
the model parameters are estimated. Robust estimation of parameters while possibly costly, is one 
of the most important pillars of robust testing with compound tests. In this section we want to draw 
attention of the reader to a few important phenomena: firstly, that the framework is much better 

Fig. 9  The effect of the rate of decay of autocorrelation on the power of the test in model 3 varies strongly 
with different parameters
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in picking up causality than accepting the lack of causality; and secondly, that even with strong 
model misspecification – which we will see for the model 3 – it is possible to identify causality.

One of the biggest factors influencing quality of the compound test is the efficiency of  
the optimisation algorithm. The objective function obtained from maximisation of the 
likelihood for parameter estimation produces generally a non-convex optimisation prob-
lem, which means that existence of local optima is likely. Using multiple starting points is 
highly recommended, but can potentially make the calculations very time consuming (our 
implementation involves a random grid of starting points). Using GPs with the assump-
tions we made in this paper (mainly: additive Gaussian noise) offers the advantage of being 
able to calculate the likelihood analytically. However, it is still possible that the data set 
can be so large, that this calculation will be prohibitively expensive. A popular approach 
in the literature is to decrease the dimensionality of the input data, see Snelson and  
Ghahramani (2007), or strive for efficient implementation, see Rasmussen and Williams 
(2006). An interesting and little known approach is to choose covariance function that pro-
motes sparsity of the covariance matrix, as proposed by Melkumyan and Ramos (2009). 
Ensuring an approach is applicable to time series potentially adds a level of complication.

Example Time Series Model Structure 1 An observation that arguably holds for all data –  
not only the Model Structure 1 – is that when causality does exist in the data, the distribu-
tion of the test statistics estimator is much narrower than when there is no causality. An 
example is shown in the Fig. 10: the first plot shows that the causal signal can be picked 
up even for the shortest data, and the distribution of the tests statistics converges to value 1 
already for length 100. When causality is not present (subplots 2 to 4) even for the longest 
used samples the distributions of test statistics are wide with median at zero, but 75th per-
centile often reaching close to 1.

Example Time Series Model Structure 2 The results of testing of model 2 show some very inter-
esting behaviours. When fitting the model, we introduced model misspecification, because  
we allowed the structures to be the same for both directions. The first misspecification is in 
using polynomial means of second degree for Y → Z ∣ X as well as Z → Y ∣ X . The second 
misspecification is in using the same volatility structure for both X → Y ∣ Z and Y → X ∣ Z . 
As a result the estimated parameters in mean are often correctly estimated to be near zero, but 
the parameters in variance are strongly misspecified. The results still have reasonable power 

Fig. 10  Boxplots showing how the sample size affects distributions of the test statistics, in the case of exist-
ing causal effect (first subplot X → Y  and bY = 0.7 ) and in the case where causal effect disappears due to 
causal coefficient equal to zero (second subplot X → Y  and bY = 0 ), construction (third subplot Y → X ) or 
both (fourth subplot)
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of the test: the existence of causality is always correctly identified, however, in some cases 
the results could be interpreted as spurious causality. Also, like with model 1, there are cases 
where we seem to be spotting the causal effect in the covariance function when there is no cau-
sality in the mean, shown in the Fig. 11.

At the same time, we see that spurious causality signals are detected for the oppo-
site direction: Y → X ∣ Z . Figure  12 shows how in the presence of causality X → Y ∣ Z 
( bY = 0.7 ), the opposite direction also starts displaying causality with growing sample 
size. Explaining spurious causality is often complicated. In this case, we want to empha-
sise the following observations. First of all, the value of the test statistics is much bigger 
for the side where true causality exists, and a much smaller sample is needed to start indi-
cating that causality with high confidence. Secondly, we run a misspecified model for the 
Y → X ∣ Z direction (the misspecification is in the covariance function, with the multiplica-
tive parameter �f  having to equal zero to achieve properly specified function consisting of 
the multiplicative noise only), and even with multiple starting points, the optimised param-
eters are not as close to the true parameters as would be desired.

Fig. 11  Model 2, X → Y ∣ Z . Changes in recognition of causality with increasing sample size: differ-
ent parameter settings. The top row shows the parameter settings where causal effect in covariance can 
be expected ( cY ≠ 0 ), while the bottom row shows cases where causality in covariance is not expected 
( cY = 0 ). In all the cases there was no causality in the mean ( bY = 0)

Fig. 12  Model 2, Y → X ∣ Z . Changes in recognition of causality with increasing sample size: different 
parameter settings. No true causality in the direction Y → X ∣ Z , but there was causality in the opposite 
direction ( bY = 0.7 ). The parameter that affects recognition of spurious causality is the additive parameter 
g, whose higher absolute values tend to increase covariance
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Example Time Series Model Structure 3 The results for the third data set exhibit a similar 
trend in the aspect that when a strong causal signal is present, it is correctly recognised. In 
case of lack of causality, or with very weak causal component, the distribution of the test 
statistics can be wide, but no spurious causality is detected. The data generated from model 
3 has a long memory component, controlled by the parameter d ∈ [0, 0.5) , and one of the 
most interesting aspects is understanding the effect of long memory.

First of all, with the standard parameters, long memory hardly influences recogni-
tion of causality. Here, standard parameters are: strong causal component present 
( bY = 0.7, bZ = 0.7 ), and the noise variance is not substantial ( �2

n
= 0.01).

Figure 13 shows the distribution of test statistics when long memory is not present 
( d = 0 ), and when the effect of long memory is strong ( d = 0.45 ), for different data 
lengths. The effect of changing parameters on the data generated from the model 3, in 
particular of changing the memory parameter d, is not significant. This seems unex-
pected at first, compared to the results of the simple test.

The explanation, however, lies in how the parameter estimation works, illustrated 
in the Fig.  14. The model is strongly misspecified and several properties of the data 

Fig. 13  Long memory barely affects the distribution of test statistics. This figure shows the distribution for 
the test statistics for X → Y  for increasing length of the time series, first with no long memory d = 0 , then 
with strong long memory d = 0.45

Fig. 14  How estimation of the autoregressive aY parameter “compensates” long memory or moving average 
effects. This figure shows the estimates of âY for different values of d,MA, �2

Y
 and for different experiments, 

all of length 1000. It can be seen that the estimates strongly increase with increasing d and MA, and that this 
pattern appears for all values of the noise variance
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are not well described by the model. Let us remember, though, that the long memory 
component has an infinite sum moving average representation, and the moving average 
model has an autoregressive representation. So the primary effect of increasing mov-
ing average part and the long memory part is the increase of parameters responsible for 
autoregression.

5.6  Comparison to Other Models

This section is provided to substantiate some of the claims we make about how our meth-
ods compare to existing methods. We provide three case studies, two of them compare our 
method to benchmark methods for causality: Granger causality and transfer entropy. The 
third case study compares our method to using generalised likelihood ratio test on a well 
specified econometric model (ARFIMA, example time series model class 3, Eqs. 24–26). 
What we show in our experiments is that our model achieves good results for all types of 
data, but in all cases, except for applying linear Granger causality test to linear causality, 
our method has superior asymptotic properties, as it reaches good power of the test for 
small samples.

Please note that in these case studies we concentrate on the ability to detect causality, 
and not on the time complexity of the algorithm.

Case Study 1: Granger Causality  Granger causality can be seen as the original, but also 
the simplest method of assessing statistical causality. For Gaussian noise and linear causal 
relationship, Granger causality is arguably the best method, given that the test statistics 
have known asymptotic distributions, and estimators have excellent numerical properties. 
What is more, Granger causality can perform well for a range of data that departs from the 
model assumptions.

In this, and in the next case study, we will use four data sets, designed to show the effect 
of the departure from the assumption of data with linear dependence, stationary distribu-
tions, and Gaussian noise (as introduced earlier in the Eq. 17), replicated below with slight 
modifications:

The data model from Eq. 27 exhibits two causal relationships. The causal relationship 
X → Y  is – if we assume Gaussian white noise – of the type that Granger causality has 
been designed to model: linear, stationary, with Gaussian distributions. We will call this 
a base case (set one), and we will consider three other cases, each presenting a departure 
from one of those three properties. The causal relationship Y → Z is not linear, and it forms 
the set 2. We will also consider what happens to the ability to detect relationship X → Y  , if 
we changed Gaussian noise to t-student noise (set 3), and if we changed stationary to non-
stationary marginal distributions (set 4; in this case we use polynomial covariance, please 
refer to the Table 1). These four set and their properties are summarised in the Table 3.

We present the results for the Granger causality method, using the GCCA tool-
box. The test statistic used in the toolbox is the measure of linear feedback introduced 
by Geweke (1982), as in the Eq.  6. The corresponding test used for testing the null 

(27)

Xt = aXXt−1 + �X ,

Yt = aYYt−1 + bYXt−1 + �Y ,

Zt = aZZt−1 + bZY
2
t−1

+ �Z , �X , �Y , �Z ∼ i.i.d white noise,
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hypothesis of lack of causality is the F-test. The results are presented graphically in the 
Figs. 15 and 16.

The results of using Granger causality can be summarised by two main observations. 
Firstly, for strong linear causality relationship, the linear Granger causality test is very 
robust and practical even if we do not observe Gaussian noise or stationary covariance. 
Secondly, for nonlinear causality, the linear Granger causality method behaves no better 
than a random guess, regardless of the data size. How does that compare to our method? 
The Fig. 16 shows that for strong, linear causality, our method is not as robust as lin-
ear Granger causality, and requires a bigger sample. However, our method can success-
fully detect nonlinear causality. For the data with t-distributed noise, we present results 
for the test statistic calculated by assuming the correctly specified model, and using an 
approximate method3.

Case Study 2: Transfer Entropy We have used the same data structures as described in the 
Eqs. 27 together with the Table 3. The results are graphically shown in the Fig. 17.

Transfer entropy is a popular method used as a nonlinear extension of the linear Granger 
causality (for Gaussian distributions these two methods are equivalent). It is able to con-
sider wider range of data types and relationships, however it is much more difficult to esti-
mate. Compared to our method, transfer entropy requires much larger data samples, and 
at the same time it is not able to deal with model structures like long memory, non-sta-
tionarity, etc. Comparing Figs.  15  and 17 shows inferior performance of transfer entropy 
to our method in each of the four cases, and inferior to (linear) Granger causality in three 
cases. Transfer entropy is better than Granger causality in recognising nonlinear causality, 

Table 3  Data used for Case Study 1 and 2. Causal relationship number 1 is the base case: linear, with sta-
tionary marginal distributions and Gaussian noise. The three other causal relationships show three types of 
departure from the base case

set nr. 1 2 3 4

direction X → Y Y → Z X → Y    X → Y  
linearity linear nonlinear (square) linear linear
noise Gaussian Gaussian t-student, 5 df Gaussian
stationarity stationary stationary stationary non-stationary

Fig. 15  ROC curves for the data sets 1-4 from the table, calculated with (linear) Granger causality, tested 
with the GCCA toolbox

3 Assuming a misspecified model with Gaussian likelihood, and then using the exact method to optimise 
parameters brings comparable results in this case.
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however, only for the sample of size 500 is transfer entropy performing recognisably better 
than a random choice.

What is not shown in the results, but for the sake of fairness needs to be mentioned, is the 
fact that transfer entropy is much faster than our method, with the current implementation.

Case Study 3: ARFIMA Model  The data that was used for this example has been generated 
according to an ARFIMA (1,d,1) model with external regressors, Eqs. 24–26, can be repre-
sented in a form emphasising the autoregressive part (this is possible because we restricted 
the choice of d to (0, 0.5)):

Xt = aXXt−1 + �X

Yt = aYYt−1 + bYXt−1 + �∗
y,t
, �∗

Y ,t
= (1 − B)−dΘY (B)�Y ,t

Zt = aZZt−1 + bZY
q

t−1
+ �∗

z,t
, �∗

Z,t
= (1 − B)−dΘZ(B)�Z,t.

Fig. 16  ROC curves for the data sets 1-4 from the table, tested with our method

Fig. 17  ROC curves for the data sets 1-4 from the table, calculated with transfer entropy based on the bin-
ning algorithm

Table 4  Nine sets of parameters 
for the ARFIMA model, that 
were used in our analysis, in the 
Case Study 3

Set nr aY bY MA d

1 0 0 0 0 pure noise
2 0.3 0 0 0 ARFIMA(1,0,0)
3 0.3 0.7 0 0 ARFIMA(1,0,0) and causality
4 0 0 0.9 0 ARFIMA(0,0,1)
5 0 0 0 0.49 ARFIMA(0,d,0)
6 0.3 0.7 0 0.25 ARFIMA(1,d,0) and causality
7 0.3 0.7 0.9 0 ARFIMA(1,0,1) and causality
8 0.3 0.7 0.9 0.25 ARFIMA(1,d,1) and causality
9 0.3 0.7 0.9 0.49 ARFIMA(1,d,1) and causality
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We estimate data using modified MATLAB code ARFIMA-SIM by Fatichi (2009). 
For fitting the ARFIMA with external regressors we use the rugarch R library. We present 
results for nine parameter settings, which are listed in the Table 4 .

We present the results of using our causality method to estimate causality in Fig. 18, while 
the results of using a fully specified likelihood of the ARFIMA model are shown in the Fig. 19.

Our method is operating on the GP model representation, which is clearly misspeci-
fied. However, that does not prevent our model from detecting causality even for the 
smallest samples of length 20. That is not the case for using the well specified ARFIMA 
model and estimated likelihood – in this case a very large sample is needed for the 
estimation to even converge – data of length 1000 is required for the calculation of the 
results for all 9 data sets.

6  Real Data Experiments

In this section we apply the testing procedures to analyse commodity futures data.
In our analysis we use the following data: 1 and 36 month expiry oil futures con-

tracts, obtained from futures curves built on the basis of West Texas Intermediate (WTI) 
Crude oil futures prices traded on the New York Mercantile Exchange, as described by 
Ames et al. (2016). The effect of the currency level, captured by the US Dollar Index 
DXY, is constructed as an index of USD relative to EUR, JPY, GBP, CAD, SEK, CHF. 
Thirdly, we also use a widely considered proxy for convenience yield based on a com-
ponent related to transportation expense, given by the cost of freighting and short term 

Fig. 18  Distributions of test statistic for GPC method, shown for three lengths of the time series, and for 9 
data sets

Fig. 19  Distributions of test statistic for the AFRIMA likelihood method, shown for two lengths of the time 
series, and for 9 data sets
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storage, measured by the Baltic Dry Index (BDI), see Ames et al. (2016). There is a sto-
chastic functional relationship between commodity futures contracts of different maturi-
ties (term structure) based on: spot price, convenience yield, interest rate, and dollar 
value. Convenience yield is very hard to model, but can be captured to some extent by 
BDI, and the interest rate can be proxied by the time value of money expressed by the 
futures contracts. Hence the choice of both long and short dated futures contracts for 
our analysis. The Fig.  20 shows the four covariates from 17th Jan 1990 to 23rd Dec 
2015. For literature studying classical relationships between these data, we refer to: 
Ames et al. (2016), Bakshi et al. (2010) and Dempster et al. (2012).

6.1  Interpreting Causal Relationships

The study performed here uses causality testing to demonstrate the risk factors that 
investors should consider in their decision process. It also shows how speculators in cur-
rency markets and futures markets have a propensity to respond to information observed 
at different lags and the time it takes them to re-adjust the expectations for futures mar-
ket hedging or speculation in light of this information.

Figures  21, 22, 23, 24  present the changing significance of causal relationships 
between the dates 17th Jan 1990 to 23rd Dec 2015. The four pairs that we look at, and 
the abbreviations that we will use are as follows: 1 month oil futures (1m WTI) and 
freighting/ storage index (BDI), 36 months oil futures (36m WTI) and freighting/ stor-
age index, 1 month oil futures and dollar index (DXY), 36 months oil futures and dollar 
index. We are presenting causal reactions at two lags: one week, which can be seen as 
nearly instantaneous, and eight weeks. Figures 21–24 show charts smoothed with cubic 
spline smoothing, which makes it easier to observe the main trends, in particular in the 
case of lags of 8 weeks.

Markets learn from the news and facilitate them into the price, according to the efficient 
market hypothesis4, to which we subscribe (Fama (1970); Fama and French (1988); Campbell 

Fig. 20  1 and 36 month oil futures (WTI), Baltic Dry Index (BDI), Dollar index (DXY), all standardised

4 Efficient market can be defined as “ [a market that] (...) do not allow investors to earn above-average 
returns without accepting above-average risks. (...) Markets can be efficient in this sense even if they some-
times make errors in valuation”, Malkiel (2003). Market efficiency, as it is understood nowadays, is the 
belief that new information is reflected in price quickly and accurately, but not necessarily instantaneously. 
See Malkiel (2003) and sources therein.
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and Shiller (1988); Campbell et al. (1997); Malkiel (2003)). We want to learn which variables 
have effect on price formation, and at what time horizon. We also want to relate to the fact 
that the three different classes of investments (oil futures, currencies, physicals) have different 
investor profiles, and thus we expect a difference in the type and speed of reaction. The last 
question that interests us, is whether the results confirm the intuition that regimes affect the 
direction and significance of causal influence.

Fig. 21  Evolution of the causal influence: 1-pvalues of the test statistic for 1 months WTI and BDI, with 1 
lags (top subplot) and 8 lags (middle subplot), rolling window of 104 weeks and cubic spline smoothing. 
Bottom subplot presents prices of 1 month oil futures contracts and historical values of BDI index

Fig. 22  Evolution of the causal influence: 1-pvalues of the test statistic for 36 months WTI and BDI, with 
1 lags (top subplot) and 8 lags (middle subplot), rolling window of 104 weeks and cubic spline smoothing. 
Bottom subplot presents prices of 1 month oil futures contracts and historical values of BDI index
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The interplay between WTI oil futures and the cost of freighting (BDI) Market partici-
pants investing in freighting are likely to be interested in the ownership of the physical 
asset, therefore BDI can be used as a proxy for convenience yield. It is expected that the 
WTI oil futures will not have instantaneous effect on the BDI, which is confirmed by our 
analysis showing that the causal direction from WTI to BDI is generally not statistically 
significant at 1 lag (Figs. 21 and 22, top subplots).

The effect to which the WTI futures incorporate the BDI movements varies across 
maturities. Short contracts have not been reacting to BDI changes in 1 week, with the 
exception of 2008/2009, which was a reaction to crisis. Similar response can be seen for 
longer maturities, however for longer maturities we observe the BDI→36m WTI to be sig-
nificant through late nineties.

At 8 lags, we observe that the causal effects are significant in both directions, majority 
of the time. This can be seen as markets being able to absorb the information and adjust 
the expectation. For the times when this relationship breaks, investors use other sources, to 
inform their long term perception of risk and expectations: for example as a result of the 
2008 crisis investors across many markets were decreasing their exposure to risk. In late 
nineties, as well as in 2014, we can observe a divergence of reactions of BDI to short and 
long term oil futures at 8 week lags: this could be seen as investors using outside informa-
tion to decide on their long term expectations: for example about advancement in method-
ology or legislation pertaining renewable energy.

Fig. 23  Evolution of the causal influence: 1-pvalues of the test statistic for 1 months WTI and DXY, with 
1 lags (top subplot) and 8 lags (middle subplot), rolling window of 104 weeks and cubic spline smoothing. 
Bottom subplot presents prices of 1 month oil futures contracts and historical values of dollar index
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The interplay between WTI oil futures and the dollar index (DXY) The dollar index is a 
weighted geometric mean of the dollar’s value relative to a basket of foreign currencies: 
Euro (EUR) 57.6% weight, Japanese yen (JPY) 13.6% weight, Pound sterling (GBP) 11.9% 
weight, Canadian dollar (CAD) 9.1% weight, Swedish krona (SEK) 4.2% weight, Swiss 
franc (CHF) 3.6% weight. The Canadian dollar is considered a commodity currency, while 
the Japanese yen is particularly sensitive to changes in oil prices due to Japan importing 
almost all of its oil. Therefore market expectations towards dollar index will incorporate to 
a large degree the expectations that arise from the oil market.

Following the results from the Fig. 24, there is evidence to suggest that DXY drives 
longer dated futures more strongly. At the same time, when comparing top charts from 
Figs. 22 and 24, we notice similarity in causal pattern between DXY → 36m WTI and 
BDI → 36m WTI, in particular during the nineties. This could suggest another direct 
or indirect factor, common for the two causal direction, for example general attitude to 
risk.

We look at Markov Switching Model, to analyse if DXY and BDI will have similar pat-
terns of states for volatility, when explained with VIX. We use the following models:

(28)Dt = �1,St + �2Vt + �D
t

�D
t
∼ N(0, �2

D,St
),

Fig. 24  Evolution of the causal influence: 1-pvalues of the test statistic for 36 months WTI and DXY, with 
1 lags (top subplot) and 8 lags (middle subplot), rolling window of 104 weeks and cubic spline smoothing. 
Bottom subplot presents prices of 1 month oil futures contracts and historical values of dollar index
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where: St and S′
t
 , which we assume to only take values 1 and 2, are the states at time t for 

DXY and BDI respectively, �2
D,St

, �2
B,S′t

 are the variances of the innovation at state St, S′t , 
�1,St , �1,S′t are the mean coefficients at state St, S′t , and �D

t
, �B

t
 are innovations.

Figure  25 presents the conditional standard deviation of error term for regime 
switching models from Eq. 28 and 29, scaled for clarity to [0, 1] , and superimposed on 
the power of the tests of BDI → 36m WTI and DXY → 36m WTI, for 1 lag. First of all, 
for BDI it is the decreased conditional volatility that coincides with higher evidence of 
causality, while for DXY it is the increased volatility. However the persistence of high 
evidence for causality from 1996 to 2002 for both DXY → 36m WTI and BDI → 36m 
WTI, coincides with the persistence of one state for conditional standard deviation of 
respective covariates over that period of time. This suggests that the perception of mar-
ket risk as seen via VIX is a common driving factor for during the nineties, a factor 
which can supersede other dependencies.

6.2  Influence of the Absolute Value of the Oil Prices On the Causal Structure

During the times when world oil prices are seen as high, it is more reasonable to expect 
investments in oil infrastructure as well as storage and transport. Therefore, we would 
expect that the absolute level of the oil price affects the behaviour (direction, strength, 
persistence) of causality. To test this, we compare the causal structure, as well as the fit-
ted models, during the period of low prices: 17.01.1990 – 11.08.1999 (bellow $40), and 
period of high prices: 26.05.2004 – 11.03.2009 (above $90). We will be interested in 
the relative difference between the fitted mean values, as well as the relative difference 
between hyperparameters (coefficients of the mean): autoregressive and causal. For that 
we will be using two sample mean test. Please note, that while we are particularly inter-
ested in the change of regime in the fitted models, we also check the regime change of 
the causal test statistics – this is because we were earlier making a point of being able to 
detect causality even in misspecified models!

(29)Bt = �1,S�t
+ �2Vt + �B

t
�B
t
∼ N(0, �2

B,S�t
),

Fig. 25  Conditional standard deviation of error of the regime switching model explaining DXY or BDI 
with constant and VIX, scaled to [0, 1] , compared to the 1-pvalue of the BDI → 36m WTI and DXY → 36m 
WTI, for 1 lag
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Lets assume that for each of the pairs: 1 m WTI and BDI, 36 m WTI and BDI, 1 m WTI 
and DXY, 36 m WTI and DXY, we take Xt to denote one of the time series from the pair, and 
Yt - the other:

with the usual notation. We denote MX
t
 and MY

t
 as time series of values of the mean func-

tions fitted by the models used for causality testing on rolling windows. Figure 26 shows 
the two segments of the fitted means: segment corresponding to prices below $40 and 
above $90, and in the Fig. 27 these have been additionally filtered according to the sig-
nificance of the causal hypothesis. The mean function estimations are calculated on mov-
ing windows, with one mean function estimation equal to a mean of fitted values for the 
respective window.

For each of the pairs, we performed a two means test:

We have run the popular student-t distribution two means test, as well as a two means test 
using sieve bootstrap to correct for serial dependence. The results are unanimously reject-
ing the hypotheses of equal means.

Xt = fX([Xt−1, Yt−1]) fX ∼ GP
(
�X,t, kX,t,t�

)

Yt = fY ([Yt−1,Xt−1]) fY ∼ GP
(
�Y ,t, kY ,t,t�

)
,

H0 ∶ mean(MX
01.90−08.99

) = mean(MY
05.04−03.09

)

H1 ∶ mean(MX
01.90−08.99

) ≠ mean(MY
05.04−03.09

)

Fig. 26  Mean function estimations for each of the pairs of time series. The two colours represent the two 
different segments: 17.01.1990 – 11.08.1999 (oil prices bellow $40), and period of high prices: 26.05.2004 
– 11.03.2009 (oil prices above $90)
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6.3  Contrasting the Granger Causality With Our Framework in the Real Data

As we have already seen on the synthetic examples, Sect. 5.6 using linear regression / 
Granger causality has a comparably high, or higher power of the test (and ROC ratio) 
for data with linear causal structure, but it can perform no better than a random classi-
fier when nonlinear causality is present. Below, we introduce a new set of experiments 
to analyse what happens if linear regression is applied to the real data. We build on the 
results for the commodity futures data, but for the purpose of clarity and compactness 
focus our attention on the causal relationships between the 1 month future contracts (1m 
WTI), and Baltic Dry Index (BDI). To ensure comparability, we are use the same setting 

Fig. 27  Mean function estimations for each of the pairs of time series, shown only for the time points for 
which the hypothesis of lack of 8 week lag causality has been rejected at the level of � = 5% . The two col-
ours represent the two different segments: 17.01.1990 – 11.08.1999 (oil prices bellow $40), and period of 
high prices: 26.05.2004 – 11.03.2009 (oil prices above $90)

Fig. 28  Evolution of the causal influence tested with the linear regression (GCCA toolbox): 1-pvalues of 
the test statistic for 1 months WTI and BDI, with 1 lags (top subplot) and 8 lags (bottom subplot), rolling 
window of 104 weeks and cubic spline smoothing
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as introduced in the Sect. 6.1: weekly data, lags 1 and 8, window length of 104, Matern 
covariance with 3 degrees of freedom, and the code we use for Granger causality is 
based on the GCCA toolbox Geweke (1982).

The results of the causality with linear regression are presented in the Fig. 28, which 
we contrast with the results for our framework in Fig. 29. These two approaches paint 
considerably different pictures for the causal relationships between the two time series. 
Fundamentally, at lag 1, the linear regression framework shows high confidence for the 
causality (precisely, for rejections of the hypothesis of lack of causality), which con-
trasts with GP framework rejecting lack of causality for very few data windows. We 
conjecture, that linear regression model is overconfident due to not being able to recog-
nise nonlinear effects, in particular to remove excess serial correlation that would sub-
sequently invalidate the assumptions of the hypothesis test resulting in excess kurtosis 
in the test statistic distribution and overly confident decision outcomes as a result. This 
is confirmed when analysing residuals of the linear regression fits. We demonstrate that 
for three specific point in time to show three scenarios where either one, or both of 
the directions show a high confidence for the linear model, that we observe with our 
framework.

Figure 30 presents a series Quantile-Quantile (QQ) plots of empirical residual quan-
tiles versus normal quantiles of the residuals for the linear regression models for testing 
causality, and relate to the three dates marked on the evolution of causal influence in 
Fig.  29. Linear regression for the window ending on 24th January 1998 (first row in 
Fig. 30), strongly suggests a causal direction from 1 month futures contract to the Bal-
tic Dry Index for 1 lag, a relationship which our framework strongly rejects. But when 
we look at the residuals of the linear model, we see evidence of serial correlation and 
skewness, and this is arguably stronger than for the opposite direction for which linear 
regression model does not support the existence of causality. For window ending on 
1st May 2002, linear regression results with residuals that exhibit very strong leptokur-
tic tails in both directions – and again our framework does not support the hypothesis 
of lack of causality here. Finally for the window ending on 21st January 2009 linear 
regression again does not sufficiently account for serial correlation, but in this case our 
framework rejects the hypothesis of lack of causality for the direction of BDI to 1 month 
WTI.

Fig. 29  Evolution of the causal influence tested with the framework based on GPs: 1-pvalues of the test sta-
tistic for 1 months WTI and BDI, with 1 lags (top subplot) and 8 lags (bottom subplot), rolling window of 
104 weeks and cubic spline smoothing

2626 Methodology and Computing in Applied Probability (2022) 24:2587–2632



1 3

Our conjecture of serial correlation in residuals leading to overconfidence of the 
linear model is supported by results that correct for such serial correlation. Figure 31 
presents the result of testing for causality with a GP framework that a) incorporates 
linear trend from linear regression, and b) does not incorporate causal structure in the 
covariance, while the GP framework from Fig. 32 incorporates a) linear trend from the 
linear regression, b) allows for causality in covariance. Correcting for serial correlation 
removes some of the overconfidence of the linear regression model, which is then fur-
ther reduced by also correcting for potential dependence in the covariance.

We conclude that while using linear regression models for testing causality can have 
higher power, this could be misleading, as the model could be overconfident due to 
incorrect statistical assumptions. Using GPs can not only help with these specific struc-
tural properties that we mentioned: serial correlation and causality in covariance, but it 
goes even further, by allowing to test for causality under a range of model assumptions 
without penalising model misspecification.

Fig. 30  QQ plots of the residuals for the linear regression models for testing causality, for data windows 
ending on: data windows ending on 24th January 1998, 1st May 2002, and 21st January 2009 (rows). Each 
of the four columns of qq plots represent a combination of lag and direction of the causality

Fig. 31  Evolution of the causal influence tested with the framework based on GPs with trend from linear 
regression and no causality in covariance: 1-pvalues of the test statistic for 1 months WTI and BDI, with 
1 lags (top subplot) and 8 lags (bottom subplot), rolling window of 104 weeks and cubic spline smoothing
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6.4  Real Data Experiment Conclusions

We summarise the results of the real data experiment, by revisiting our questions and 
remarks from the Sect.  6.1. Firstly, we conclude that 8 weeks is generally enough for 
each of the markets to price in associated causal impacts in both oil futures markets and 
currency markets, which supports the literature that relates to efficient market hypothesis. 
We conclude that the different classes of investments affect the type and speed of reac-
tion. We also observe, that the direction and significance of causal influence is affected by 
regimes, as shown on the example of the period of low prices: 17.01.1990 – 11.08.1999 
(bellow $40), and period of high prices: 26.05.2004 – 11.03.2009 (above $90).

Our analysis involved only three investment classes, and therefore is in no way suf-
ficient to understand all important risk factors. We do however point out, that useful 
information can be obtained from analysing similarity of causal effects of two different 
factors. Such similarity can suggest that both factors are affected by a common factor 
(market volatility in our case). Increasing similarity of causal dependence can be under-
stood in terms of systemic risk, see Billio et al. (2012).

7  Conclusion

We demonstrated that our proposed testing frameworks for statistical causality in general 
classes of multivariate nonlinear time series models are statistically efficient in detect-
ing a wide range of different causality structures in complex multivariate nonlinear time 
series structures. It accommodates flexible features where causality may be present in 
either: trend, volatility or both structural components of the multivariate time series 
considered.

The analysis of the power of the hypothesis tests shows that the framework not only 
behaves as expected but also has properties that make it practical. An important result 
in this paper is obtaining a test statistic with known asymptotic distribution, but what 
is even more important is that we do not need a very large sample to be able to use that 
result in practice. For simple tests – ones that use exact hyperparameters, and compound 
tests – where the hyperparameters are estimated, we look at popular tools for assessing 
the quality of a testing procedure: test statistic distribution, power of the test and the ROC 

Fig. 32  Evolution of the causal influence tested with the framework based on GPs with trend from linear 
regression and allowing for causality in covariance: 1-pvalues of the test statistic for 1 months WTI and 
BDI, with 1 lags (top subplot) and 8 lags (bottom subplot), rolling window of 104 weeks and cubic spline 
smoothing
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curves. Furthermore, we compare our approach to Granger causality and transfer entropy 
– typical benchmarks for testing causality, and we conclude that our approach is practical 
in all cases, but offers superior performance especially for time series with long memory. 
Finally, we offer an example of real data application to analysing risk factors that inves-
tors should consider when building a portfolio of oil futures, currencies and physicals.

Additional Material

Calculating Marginal Likelihood

In the Eq. 14 we defined the causality metrics LX→Y∣Z
 as a logarithm of a likelihood ratio 

we have:

The two log-likelihood terms can be obtained in an analogous way, so lets show 
it for the model B. The Eq.  10 was defining �t as �t = fB(�

−k
t−1

,�−l
t−1

,�−m
t−1

) + �B
t
 with 

�B
t
∼ N(0, �2

B
) . If we denote � as vector of all Yt’s, use �B and �B and �B then we get the 

following distributions:

Which are combined to calculate the marginal likelihood:

and that gives (for example by brute force and completing the squares) the following mar-
ginal likelihood:

The marginal log-likelihood (or log marginal likelihood) is therefore equal:

What we need for the causality metrics in the Eq. 14 is the maximum marginal log-
likelihood, which we can neatly achieve from Rasmussen and Williams (2006) as:

LX→Y∣Z = max
�B

ln p(� ∣ �−k,�−l,�−m;�B,MB) −max
�A

ln p(� ∣ �−l,�−m;�A,MA)

p(� ∣ �−k,�−l,�−m, fB(⋅)) = N(�;fB(�
−k,�−l,�−m),�B)

p(fB(⋅) ∣ �
−k,�−l,�−m) = N(fB(�

−k,�−l,�−m);�B,�B)

p(� ∣ �−k,�−l,�−m) =
∫

p(� ∣ �−k,�−l,�−m, fB(⋅))p(fB(⋅) ∣ �
−k,�−l,�−m)dfB(⋅)

p(� ∣ �−k,�−l,�−m;�B,MB) = N(�;�B,�B + �B)

ln p(� ∣ �−k,�−l,�−m) = −
1

2
(� − �B)

T(�B + �B)−1(� − �B) −
1

2
ln ∣ �B + �B ∣ −

N

2
ln 2�.

�

��B
j

ln p(� ∣ �−k,�−l,�−m;�B, ) =

1

2
(� − �B)

T(�B + �B)−1
�(�B + �B)

��B
j

(�B + �B)−1(� − �B) −
1

2
tr((�B + �B)−1

�(�B + �B)

��B
j

)

=
1

2

((
��T − (�B + �B)−1

)�(�B + �B)

��B
j

)
, where � = (�B + �B)−1(� − �B).
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Receiver Operating Characteristic (ROC)

Receiver operating characteristic (ROC) curves are commonly used in classification 
models to quantify the accuracy with which a model can discriminate between two 
classes. If we called one class as containing positive cases and the other – negative 
cases, then if the model correctly classifies, it will produce ”true positive” and ”true 
negative” labels, and if it incorrectly classifies, it will produce ”false positive” and 
”false negative” cases.

The ROC curve plots True Positive Rate (TPR or Sensitivity) versus False Positive Rate 
(FPR or 1- Specificity), for a range of thresholds T:

In the case of continuous variables, as we have been dealing with, the classification rule 
is based on the test statistics being above / below a threshold, or it is cumulative distribu-
tion being above / below appropriate threshold. Recall the Sect. 4.1.2 and the asymptotic 
result for the distribution of the test statistics 2L̂X→Y∣Z ∼ 𝜒2

2k . We were mentioning that the 
intuition is that large values of the causality “metrics” LX→Y∣Z coincide with causality, while 
lower – with lack of causality. So our classification rule could be to reject the hypothesis 
H0 of no causality if LX→Y∣Z > 0.5T ⇔ 2LX→Y∣Z > T  and accordingly F𝜒2

q
(2LX→Y∣Z) > 1 − 𝛼 

for some related significance value of �.
Then let f0 be a cdf of �2

q , while f1 be a cdf of non-central �
2
q . Then:

The coordinates of the ROC curve are (FPR(T), TPR(T)), which leads to parametrisation:

See Zou et al. (2007); Hillis and Metz (2012).

Data Availability The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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