
Vol. 28 no. 21 2012, pages 2711–2718
BIOINFORMATICS REVIEW doi:10.1093/bioinformatics/bts535

Sequence analysis Advance Access publication August 31, 2012

Statistical challenges associated with detecting copy number

variations with next-generation sequencing
Shu Mei Teo1,2,3, Yudi Pawitan3, Chee Seng Ku3, Kee Seng Chia1,2 and Agus Salim1,*
1Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, 2NUS Graduate School
for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 and 3Department of
Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: Analysing next-generation sequencing (NGS) data for

copy number variations (CNVs) detection is a relatively new and chal-

lenging field, with no accepted standard protocols or quality control

measures so far. There are by now several algorithms developed for

each of the four broad methods for CNV detection using NGS, namely

the depth of coverage (DOC), read-pair, split-read and

assembly-based methods. However, because of the complexity of

the genome and the short read lengths from NGS technology, there

are still many challenges associated with the analysis of NGS data for

CNVs, no matter which method or algorithm is used.

Results: In this review, we describe and discuss areas of potential

biases in CNV detection for each of the four methods. In particular, we

focus on issues pertaining to (i) mappability, (ii) GC-content bias, (iii)

quality control measures of reads and (iv) difficulty in identifying dupli-

cations. To gain insights to some of the issues discussed, we also

download real data from the 1000 Genomes Project and analyse its

DOC data. We show examples of how reads in repeated regions can

affect CNV detection, demonstrate current GC-correction algorithms,

investigate sensitivity of DOC algorithm before and after quality control

of reads and discuss reasons for which duplications are harder to

detect than deletions.
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1 INTRODUCTION

Copy number variations (CNVs) are an important and abundant

source of variation in the human genome, encompassing a
greater proportion of the genome, as compared with single-

nucleotide polymorphisms (SNPs); an estimated 1.2% of a

single genome differs from the reference human genome when
considering CNVs, as compared with 0.1% by SNPs (Pang et al.,

2010). In the past several years, SNP arrays and array compara-
tive hybridization (aCGH) are commonly used for detection of

CNVs, albeit with relatively low resolution, especially in terms of
breakpoint determination. Sanger sequencing of paired reads,

often seen as the gold standard for CNV detection, is able to

detect CNVs with higher accuracy and resolution, to detect

balanced rearrangements such as inversions and translocations

and to detect CNVs in regions where probe density of other

platforms, such as SNP arrays, is low. However, the technique

is not feasible for a large number of genomes because of time and

budget constraints. Next-generation sequencing (NGS) or also

known as high-throughput sequencing attempts to combine the

benefits of array technology and sequencing. The biggest advan-

tage of NGS over traditional Sanger sequencing is the ability to

sequence millions of reads in a single run at a comparatively

inexpensive cost (Metzker, 2010). However, because of the com-

plexity of the genome and the short read lengths (usually

35–400bp) from NGS technology, there are still many challenges

associated with the analysis of NGS data for CNVs, no matter

which method or algorithm is used.

The growing popularity and success of NGS are evident from

large-scale projects such as the 1000 Genomes Project (http://

www.1000genomes.org/), which aims to sequence at least 1000

individuals from different populations around the world to con-

struct a detailed map of genetic variations in the human genome

(The 1000 Genomes Project Consortium, 2010). Thus far, in its

pilot phase, the project has identified �15 million SNPs, 1 mil-

lion short indels and420 000 structural variations (SVs), most of

which were previously unreported (�61% of deletions and 89%

of duplications are novel). The average SV size detected by the

study was 8kb, approximately four times smaller than a recent

SV detection study using tiling CGH array (Conrad et al., 2010).

SVs include dosage-altering variants such as CNVs (usually

defined as deletions and insertions larger than 1kb) and shorter

indels, as well as dosage-neutral variants such as inversions and

translocations.
Nevertheless, current analytical methodologies to analyse

NGS data for CNVs are not yet mature, and there are no

well-established pipelines/protocols/quality control measures.

Broadly, there are four methods for CNV detection using NGS

data, namely (i) depth of coverage [DOC, or also known as

read-depth (RD) methods], (ii) paired-end mapping (PEM, or

also known as read-pair methods), (iii) split-read- (SR) and (iv)

assembly-based (AS) methods (Alkan et al., 2011). The different

methods are usually complementary to one another, as the

underlying concepts excel at detecting certain types of variants,

and a large proportion of discovered variants remain unique to a

particular approach (Alkan et al., 2011). For example, in the

1000 Genomes Project CNV analysis, the group applied various

variations of the four methods, with a total of 36 call sets with*To whom correspondence should be addressed.
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vastly varying degrees of false discovery rates (FDR510–89%),
as well as notable differences in terms of genomic regions ascer-

tained, CNV size range and breakpoint precision among the dif-

ferent methods (Mills et al., 2011). This review article highlights
and investigates the challenges encountered when analysing NGS

data for CNVs. In particular, we focus on issues pertaining to (i)

mappability, (ii) GC-content bias, (iii) quality control measures
of reads and (iv) difficulty in identifying duplications. As the

characteristics of CNVs in germline and tumour cells are differ-

ent, we caution that this review focuses largely on CNVs in the

germline, and issues unique to tumour CNVs (also known as
copy number alterations) are not discussed.

2 FOUR CLASSES OF METHODS FOR CNV
DETECTION USING NGS

We describe each of the four methods for CNV detection using
NGS data, namely (i) DOC, (ii) PEM, (iii) SR and (iv) AS

methods. Except for the latter, the other three classes of methods

require first mapping the sequenced reads to a known reference

genome. We summarize a list of commonly used software for

CNV detection using NGS data in Table 1. Readers may refer

to seqanswers website: http://seqanswers.com/wiki/Software for

a more comprehensive list.
The underlying concept of identifying CNVs using DOC is

similar to that of using intensity data: a lower than expected

DOC/intensity indicates deletion and a higher than expected

DOC/intensity indicates duplication. Most DOC methods

count the number of reads that fall in each pre-specified

window of a certain size (Abyzov et al., 2011; Xie et al., 2009;

Yoon et al., 2009). The algorithm relies heavily on the assump-

tion that the sequencing process is uniform, i.e. the number of

reads mapped to a region is assumed to follow a Poisson distri-

bution and is proportional to the number of copies. However,

certain biases such as GC-content and mappability cause this

assumption to be unrealistic. Regions of the genome may be

Table 1. Commonly used software for CNV detection using NGS data

Programme Reference Comments

DOC

CNVnatora Abyzov et al., 2011 Uses mean shift approach on fixed window GC-content-adjusted read counts.

Rdxplorera Yoon et al., 2009 Uses event-wise testing on fixed window GC-content-adjusted read counts.

SeqCBS Shen and Zhang, 2012 Gives approximate confidence intervals for assessing confidence in the segmentation.

CNVseq Xie et al., 2009 Uses ratios between reads from target and reference genome.

SegSeq Chiang et al., 2009 Segments genomes of a tumour and matched normal sample by a sliding fixed size window.

Boundary is refined after change point is called.

ExomeCNV Sathirapongsasuti et al., 2011 For exome sequencing data. Uses read count ratio to detect CNVs, and B allele frequencies to

detect LOH.

Control-FREEC Boeva et al., 2012 Uses total coverage and B allele frequencies of SNPs to call CNVs and LOH.

PEM

Variation Huntera Hormozdiari et al., 2009 Based on maximum parsimony.

Uses soft clustering.

BreakDancera Chen et al., 2009 Consist of two complementary algorithms: BreakDancerMax predicts insertions, deletions,

inversions and inter- and intra-chromosomal translocations; BreakDancerMini predicts

small indels.

PEMera Korbel et al. 2009 Clusters long and short events separately.

Confidence value for each SV.

Built in database and simulation programme.

SR

Pindela Ye et al., 2009 Uses pattern growth algorithm.

Identifies breakpoints of large deletions and medium sized insertions.

Assembly based

Cortexa Iqbal et al., 2011 Capable of assembling multiple genomes simultaneously.

SOAPdenovoa Li et al., 2010 Claims faster computation time and longer contig size and assembly accuracy when compared

with earlier methods such as ABySS and velvet.

Velvet Zerbino et al., 2008 —

ABySS Simpson et al., 2009 —

Combination/others

Genome STRiPa Handsaker et al., 2011 Combines DOC, PEM and distribution of evidence across samples and within a genomic

locus.

HYDRA Quinlan et al., 2010 DOCþPEM

ABI tools McKernan et al., 2009 CBS

Spannera Mills et al., 2011 Uses PEM and able to find tandem duplications.

SVDetect Zeitouni et al., 2010 DOCþPEM

Competible with SoLiD and Illumina paired-end reads.

aused in 1000 Genomes Project.
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over- or under-sampled regardless of the copy number of the

region, often resulting in spurious signals. Most DOC algorithms

correct for GC-content bias before detecting CNVs (Abyzov

et al., 2011; Yoon et al., 2009), whereas there are others that

use ratios between reads from the target and reference genome

and claim to mitigate the need for GC-correction if the two data

sets are prepared in the same way (Xie et al., 2009). Other algo-

rithms also exploit SNP heterozygosity information or also

known as ‘B allele frequency’ to call CNVs and loss of hetero-

zygosity (LOH) regions (Boeva et al., 2012; Sathirapongsasuti

et al., 2011). DOC algorithms usually detect large CNVs and

are unable to detect copy neutral events such as inversions and

translocations. Single-end or paired-end data may be used for

this analysis.

PEM methods require the reads to be paired (Chen et al.,

2009; Hormozdiari et al., 2009; Korbel et al., 2009). The concept

is that the fragments of deoxyribonucleic acid (DNA) from

which the reads are to be sequenced have a fragment length

(or also known as insert size) of a certain distribution. When

the sequenced ends of the fragment map to the reference at a

distance longer than expected, it is indicative of a deletion in the

studied genome. Vice versa, when the sequenced ends of the

fragment map to the reference at a distance shorter than

expected, it is indicative of an insertion in the studied genome.

Based on the patterns from which the paired reads are mapped to

the reference, PEM can also detect inversions and translocations

(see Xi et al., 2011 for a review of the different SV signatures in

PEM). For example, if the two ends of a fragment are mapped

with a wrong orientation, it could be an indication of an inver-

sion (Feuk, 2010). The size of CNVs detected using PEM is

limited by the insert size, and as a result, PEM often detects

smaller CNVs.

SR methods focus on pairs of reads where one read is mapped

uniquely to the reference, whereas the other read failed to be

aligned (Ye et al., 2009). The idea is that the location of the

unmapped read may span the breakpoint of the CNV. The

mapped read is used as an anchor to narrow down the search

space for the SR alignment of the unmapped read. SR analysis

has the advantage of being able to pinpoint the location of the

breakpoints.
AS methods, on the other hand, do not align the reads to a

known reference but construct the genome piece-by-piece; this is

also known as de novo sequencing. Some AS methods still use the

reference genome as a guide to resolve repeats. This is known as

comparative assembly (Pop et al., 2004). AS methods can dis-

cover new non-reference sequence insertions. AS methods work

best for small genomes such as bacterial genomes and are less

widely used in NGS sequencing of humans because the short

reads from NGS makes assembly in repeat regions difficult

(Ye et al., 2009). Most AS algorithms for NGS data are exten-

sions of the method described by Pevzner et al., 2001, which uses

de Bruijn graphs. It is difficult to judge which method is superior,

although the methods developed more recently such as

SOAPdenovo (Li et al., 2010), claims faster computation time

and longer contig size and assembly accuracy when compared

with earlier methods such as ABySS (Simpson et al., 2009) and

velvet (Zerbino et al., 2008). Cortex (Iqbal et al., 2011) is capable

of assembling multiple genomes simultaneously.

Some algorithms use a combination of methods for more ac-
curate detection of CNVs. For example, CNVer (Medvedev

et al., 2010), HYDRA (Quinlan et al., 2010) and SVDetect
(Zeitouni et al., 2010) supplements DOC with PEM information.
Genome STRiP combines information from DOC, PEM and

SR, as well as other features of sequence data at population
level (Handsaker et al., 2011). Genome STRiP is one of the high-

est performing methods used in the 1000 Genomes pilot Project,
indicating that there is benefit in combining different approaches

(Mills et al., 2011).

3 DATA SETS

For the purpose of gaining insights to the issues we are about to
discuss, we download sequenced data of individual NA12891

that was deeply sequenced (420� coverage) by the Illumina
Genome Analyzer platform as part of the 1000 Genomes pilot

Project (The 1000 Genomes Consortium, 2010). The reads are
paired, 36 bases in length and aligned to the human reference

build 36 (hg18) using the MAQ aligner (Li et al., 2008). The
aligned reads are downloaded in BAM format from http://

www.1000genomes.org/.
MAQ calculates a Phred-scaled quality score for each read/

pair of reads that is equal to minus ten times the common loga-
rithm of the probability that a read is wrongly aligned; a quality

score of 30 indicates a 1 in 1000 probability that the read is
incorrectly mapped. When a read can be mapped equally well

to more than one location, a random position is chosen out of all
equally possible positions, and the reads are assigned a quality
score of zero; these reads are termed multi-reads (Harismendy

et al., 2009; Treangen et al., 2012). Different aligners have dif-
ferent approaches of dealing with multi-reads. For example, the

aligner ‘micro-read fast alignment search’ (mrFAST) reports all
suitable positions of multi-reads (Alkan et al., 2009).

3.1 Estimating DOC

We estimate DOC by counting the number of reads, based on

their start positions, in non-overlapping windows of 100 bases.
This is the current strategy of most DOC algorithms (Abyzov

et al., 2011; Yoon et al., 2009).

3.2 Pre-filtering criteria

For DOC calculation, we keep only reads that are flagged prop-
erly aligned, termed ‘read mapped in proper pair’ in Picard

(http://picard.sourceforge.net/explain-flags.html), and reads that
are not paired (i.e singletons). Approximately 67% of the reads

are flagged properly aligned and �23% are singletons. We
exclude reads that are technical duplicates, paired reads where

one read in the pair is unmapped and other reads that are not
‘mapped in proper pair’. Singletons are reads where only one end
of the fragment is sequenced either because of library prepar-

ation or sequencing failure of one the reads in a pair (A.Abyzov,
personal communication, Nov 2011). It should be differentiated

from reads that are paired but where only one of the reads in the
pair is mapped to the reference. Singletons are informative and

should not be filtered. This is illustrated in Figure 1, which shows
obvious signal of decreased DOC using only singleton reads in a

region validated to be a deletion by Mills et al., 2011.
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In the ‘Phred score filtered dataset’, we further remove 7% of the

reads whose mapping quality is 530 (but not zero).

Approximately 14% of the reads have a mapping quality of

zero. These multi-reads are reads that cannot be uniquely aligned

to a single position in the genome, meaning that there exists more

than one location where the read can be mapped to equally well.

We observe the patterns of multi-reads in regions with known

CNVs to investigate how these reads can affect CNV detection.

3.3 Reference CNVs

We use the integer copy numbers for a total of 5037 CNV loci

from the studies of Conrad et al. (2010) and McCarroll et al.

(2008) as a reference list. Conrad’s experiments were done as

follows: first, a set of 20 NimbleGen arrays, each comprising

2.1 million oligonucleotide probes, were used to generate a new

map of CNV locations. Subsequently, a customized Agilent

CGH-platform composed of 105 000 oligonucleotide probes

was used to detect the loci, and the genotypes were estimated

for 450 HapMap samples using a Bayesian algorithm with strin-

gent selection for optimal normalization and cluster locations for

every locus (see Supplementary Methods in Conrad et al., 2010

for more details). In total, for individual NA12891, there are 517

deletions (copy number 52) and 253 duplications (copy

number42). It should be noted, however, that a true gold stand-

ard reference list for CNVs is not available, and this list does not

have 100% sensitivity and specificity.

3.4 SNP array intensities

We download SNP array intensities for the Affymetrix 6.0 array

for individual NA12891 from the HapMap 3 project raw

data database (ftp://ftp.ncbi.nlm.nih.gov/hapmap/raw_data/

hapmap3_affy6.0/). We use the PennCNV algorithm (Wang

et al., 2007) to obtain log R ratios (LRRs), using samples from

the third phase of the HapMap project as the reference panel.

3.5 High-confidence regions

To investigate the reasons for the discordance between the ref-

erence regions and DOC data, we plot DOC data for specific

regions and observe patterns in the data. To narrow down our

search for interesting regions, we limit this analysis to
high-confidence regions, which we define as follows: a deletion
region from the reference list is considered ‘high-confidence’ if it

also shows an average LRR of5log(0.5)��0.7. A duplication
region is considered ‘high-confidence’ if it shows an average
LRR of4log(1.5)� 0.4. There are 60 high-confidence deletions

and 8 high-confidence duplications. The regions range from 1 to
156kb, and the number of SNP markers range from 1 to 73.

4 REPEAT REGIONS AND MAPPABILITY ISSUES

NGS technology produces mainly short reads, and this poses a

challenge in the alignment to the reference genome because reads
that fall in repetitive regions in the genome cannot be mapped
unambiguously. Furthermore, mutations or sequencing errors in

one or two locations may also cause reads to be mapped wrongly
(Li et al., 2008). In the 1000 Genomes trios Project, �20% of the
reference genome was considered inaccessible (defined as regions

with many ambiguously placed reads or unexpectedly high or
low numbers of aligned reads). The resulting low sensitivity in
detecting CNVs in repeated/segmental-duplicated regions is a

serious problem because there is an observed enrichment of
CNVs in segmental duplicated regions, and many breakpoints

lie in duplicated regions (Medvedev et al., 2009). This class of
CNVs is one of the most poorly studied variants, as previous
technologies for CNV detection such as aCGH and SNP arrays

also have problems resolving them.
For AS methods, repeat regions create challenges because if

the read length is shorter than the repeat region, it is not straight-

forward to decipher the original sequence because overlap
between the reads or contigs will be ambiguous (Knudsen
et al., 2010). For other methods that require mapping to a ref-

erence, there are different alignment strategies for dealing with
multi-reads, such as (i) discarding the reads, (ii) choosing a pos-
ition at random out of all equally good match positions and (iii)

reporting all possible positions.
The first strategy limits the analysis only to unique regions of

the genome, and may miss many CNVs. Moreover, when using

DOC methods, excluding multi-reads may cause the identifica-
tion of false deletions, i.e. regions with a large number of
multi-reads will be falsely detected as a deletion if these reads

were removed. This is illustrated in Figure 2, which shows a
region in Chromosome 20 where several deletions would be fal-

sely identified if multi-reads are excluded. This phenomenon was
also observed by Abyzov et al. (2011), whose algorithm picked
up ten times as many deletions when multi-reads are discarded.

Placing a multi-read at random (Strategy 2) is also not ideal:
for example, a true deletion may exist in a region where there
exist similar sequences elsewhere in the genome, causing

multi-reads to be mapped to the deletion region where there is
supposed to be less or none, thereby diluting the signal (Fig. 3).
This suggests that the alignment strategy of discarding

multi-reads or random placement of multi-reads is inadequate
for detecting duplications in repeated regions. A better strategy
incorporating other alignment methods and other kinds of data

is needed to identify these regions.
He et al. (2011) developed a new algorithm for tandem CNV

reconstruction in repeat-rich regions that considers all locations

of possible mappings and uses information on PEM and DOC.

Fig. 1. DOC using singletons only (deletion region in Chromosome 22:

34572901–35478000). This figure shows that singleton reads independ-

ently provide informative evidence of a deletion in this region
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Alkan et al. (2009) developed a new alignment method, mrFAST;

the aligner maps short sequence reads to a repeat-masked refer-

ence genome, meaning that all loci with known high-copy

common repeats were first masked before alignment, and reports

all mapping locations for multi-reads. It also keeps track of mu-
tation in multi-reads. This method has been shown to be able to

predict absolute copy number and multi-copy differences.

Sudmant et al. (2010) also uses a similar approach to identify

and genotype CNVs within segmental duplications. However,

these approaches seem to work only for deeply sequenced data
(420�), and more has to be done to extend these methods for

lower coverage data (Chiang and McCarroll, 2009).
Longer read lengths from third-generation sequencing (TGS)

may partially solve the problems with repeats, but even with a

read length of 1 kb, there still remains �1.5% of the human

genome sequence that is non-unique (Schatz et al., 2010).

5 GC-CONTENT

It has been observed that DOC has a unimodal relationship with

GC-content (Abyzov et al., 2011; Benjamini et al., 2012; Yoon

et al., 2009), where regions with high or low GC-content have

decreased DOC. Harismendy et al. (2009) also observed that

unique sequences present at equimolar quantities in library gen-

eration end up being sequenced at vastly different DOC. This

bias causes problems in all methods. For example, in PEM or SR

methods, a region of low DOC may have insufficient reads for

enough evidence to discern the variants at that location. For AS

methods, regions with low coverage may also result in insuffi-

cient information to infer a continuous sequence (Knudsen et al.,

2010). The problem can however be solved by increasing the

overall sequence depth. The most affected of four methods by

GC-content bias is the DOC method.
DOC algorithms rely heavily on the assumption that the

sequencing process is uniform, so that the DOC can be assumed

to be proportional to the copy number. However, when there are

biases that cause sequencing depth to differ for reasons other

than the change in copy number, it makes differentiating true

deletions/duplication from under/over-sampled regions in the

genome difficult. Previous published algorithms correct for

GC-content by adjusting the DOC in the window using the

GC-content of the window (Abyzov et al., 2011; Yoon et al.,

2009). This method of correction may be inadequate as the

choice of bin size is often arbitrary. Moreover, several studies

have observed that it is the GC-content of the full DNA frag-

ments, not only the reads, that causes most of the bias

(Benjamini et al., 2012).
A recently developed algorithm for GC correction considers

the GC-content of the fragment and can produce base pair reso-

lution predictions of GC-content bias (Benjamini et al., 2012).

We applied the method on this data set but observed an increase

in overall variance of DOC after correction. Hence, we did not

use the results of this correction for subsequent comparisons (see

Supplementary Materials for more details).
We download the GC-content per five bases from the

University of California, Santa Cruz genome bioinformatics

website: http://hgdownload.cse.ucsc.edu/goldenPath/hg18/gc5

Base/. We correct for GC-content bias in a similar fashion as

described by Yoon et al. (2009). The GC-corrected DOC was

calculated using the following equation:

RD
i

corrected
¼ RDglobal�RD

i

raw=RDgc,

where i is the bin index, RDglobal is the average DOC over all bins

in the chromosome (we used a trim mean, omitting 5% of

bins from both extremes), RDi
raw is the DOC for the ith

window before correction and RDgc is the median DOC of all

windows with the same GC-content. As there are few windows

with GC 520 or 475, for robustness, we set the lower/upper

limits for GC in a window to 20 and 75, respectively. Figure 4

(left) plots the DOC of the windows versus the GC percentage of

the windows. We observe a similar unimodal relationship be-

tween DOC and GC-content, as reported by previous articles.

In AT-rich regions, coverage increases with increasing GC, and

in GC-rich regions, coverage decreases with increasing

GC. The peak coverage can be different for different data

sets and different chromosomes but is usually located between

Fig. 2. Fragment count for NA12891, Chromosome 20. (a) It uses all

fragments and shows a relatively flat DOC, which varies around the

average. (b) It uses only multi-reads and shows several small regions

with spikes in multi-reads. (c) It uses all fragments with multi-reads

removed; we observe ‘holes’ or dips in DOC that would be identified

as deletions by DOC algorithms. Multi-reads are placed at random out

of all equally possible locations

Fig. 3. High-confidence deletion region in Chromomsome 4 (116148170–

116151343) not identified by DOC methods in Mills et al. (2011). (a)

Some evidence of deletion is seen when we include all reads. (b)

Deletion signal becomes more obvious with multi-reads removed
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0.35 and 0.5 GC. Figure 4 (right) shows that GC-content bias is

removed after correction. However, it is worth noting that even

though GC-content bias is removed, the variance in DOC re-

mains rather large, meaning that not all local variations in

DOC are associated with GC-content and thus cannot be

removed by the GC-correction.

The cause of GC-content bias is speculated to be largely

because of polymerase chain reaction (PCR) amplification step

in NGS (Aird et al., 2011; Benjamini et al., 2012). As PCR amp-

lification is not required in TGS, bias observed in DOC because

of PCR may be resolved (Schadt et al., 2010). The longer read

lengths of TGS will also improve challenges caused by the short

read lengths of NGS. However, as TGS technology is still new, it

is premature to comment on its performance, and too soon to

judge whether TGS can fulfil its promises of advancement over

NGS.

6 PHRED-SCORE FILTERING

There has been little documentation on how read mapping qual-

ity affects CNV calling. Most algorithms state a default filtering

criteria without any substantial evidence for the choice. For

example, PEM algorithm, BreakDancer, uses a default filter of

mapping quality 410 (Chen et al., 2009), whereas DOC algo-

rithm, Rdxplorer, uses a default filter of mapping quality430

(Yoon et al., 2009).

7 COMPARISONS

We perform sensitivity analysis to investigate the effects of

GC-correction and Phred-score filtering. We compare three

methods: (i) GC-corrected and Phred-score filtered, (ii)

GC-corrected but not filtered by Phred-score and (iii) Phred-

score filtered but GC-uncorrected. For each CNV in the refer-

ence list, we use the t-statistic to determine whether the DOC in

the region is significantly increased/decreased. For each deletion

region i, we calculate the t-statistic as such:

ti ¼
�xi � c�̂g

�̂i=
ffiffiffiffi

ni
p ,

where �xi is the average DOC in the region, �̂g is the global

average DOC for the chromosome where the region lies, �̂i
is the standard deviation of the DOC in region i, ni is the

number of windows in the region and c is a constant that we

vary from 0.5 to 0.8. For each duplication region j, the t-statistic

is calculated in a similar fashion:

tj ¼
k�̂g � �xj
�̂j=

ffiffiffiffi

nj
p ,

where k varies from 1.2 to 1.6. For each set of tests, we account

for multiple comparisons using the FDR. A region is identifiable

if the FDR is50.01.

Table 2 shows that there are little differences in sensitivities for

all three methods, suggesting that both GC-correction and

Phred-score filtering do not seem to be crucial in the sensitivity

of detection of CNVs. It should be noted however that this ana-

lysis does not investigate the specificity of CNV detection.

Overall, GC-correction and Phred-score filtering lowers the vari-

ance of DOC, indicating the potential of minimizing the number

of false positive regions identified. However, this is a simple and

limited analysis, and further studies are needed to discern the

benefits of GC-correction and filtering by Phred-score.

8 INSERTIONS ARE HARDER TO DETECT
THAN DELETIONS

For all methods, identifying duplications has been acknowledged

as more challenging as compared with identifying deletions. With

regards to PEM methods, the bias against detection of insertions

is because PEM detects insertions when the mapped reads are at

a distance shorter than the fragment length, and hence, it is

unable to detect insertions larger than the insert size of the ref-

erence library, or more specifically the length upper bound of an

insertion detected is the average fragment length minus the

length of the reads (Hormozdiari et al., 2009; Wang et al.,

2008). This is evident in detection of CNVs using PEM of the

diploid Asian ‘YH’ genome, where 2441 deletions were identified

as compared with 33 duplications (Wang et al., 2008).

In DOC methods, we observe that the sensitivity of detecting

deletions and duplications is �89 and 25%, respectively, for the

best case scenarios (Table 2). This observation is similar to that

observed in Abyzov et al. (2011), who estimated that �90% of

deletions identified by aCGH or SNP arrays are DOC accessible,

whereas only 20–30% of duplications are DOC accessible. This

may be because of the lack of sensitivity of DOC methods in

distinguishing a change in number of copies from N to Nþ 1,

especially if N is large. For example, suppose a sequence is

repeated twice in the reference genome (N¼ 2) at locations

Table 2. Sensitivity of Phred-score filtered and unfiltered data sets, and

GC-corrected and non-GC-corrected data sets

Dataset Deletion Duplication

c/k 0.5 0.6 0.7 0.8 1.6 1.5 1.4 1.3 1.2

Phred-score filtered

þGC-corrected

0.31 0.66 0.83 0.89 0.07 0.12 0.15 0.2 0.24

Phred-score

unfiltered

0.31 0.66 0.82 0.89 0.09 0.12 0.16 0.21 0.25

GC-uncorrected 0.32 0.65 0.81 0.89 0.08 0.11 0.15 0.2 0.25
Fig. 4. Read depth versus GC percentage before and after correction
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A and B, although the studied genome has an additional copy
(N¼ 3). Then, assuming an average of 20� coverage, locations A
and B would have an average of 60 reads shared among both

locations (following strategy of random placement of multi-
reads), meaning an average of 30 reads at both A and B, a
50% increase in DOC. If we increase N to 5 in the reference

and 6 in the studies genome, then each repeated location in the
reference would have an average of 120/5¼ 24 reads, only 20%
more than the average, and likely to be undetectable because of

the high variance in DOC.
In the list of high-confidence regions (see section

‘High-Confidence Regions’), all 60 deletions can be found in at

least one release set from Mills et al. (2011), but four of the
regions were not detected by DOC methods. When we plotted
the read depth in these regions, we observed that two regions

have obvious decreased DOC (figure not shown) and should
have been detected, whereas the other two were not detected

most likely because of the presence of multi-reads diluting the
deletion signal (see Fig. 3).
On the other hand, all eight duplications are not identified in

any of the release sets (see Table S1 and Figs S1–8 in
Supplementary Materials). This is partly because of the fact
that most release sets in Mills et al. (2011) focus mainly on

deletions, with few sets reporting duplications/insertions. Even
then, of the 8 regions, only Regions 2 and 5 show distinct
elevated DOC; these regions have little or no multi-reads.

Among the other six regions that do not show obvious increase
in DOC, four of them overlap with known segmental duplica-
tion regions (segmental duplicated regions as defined in http://

humanparalogy.gs.washington.edu/). This is also supported by
the presence of multi-reads in these regions; neither keeping nor
removing multi-reads result in strong DOC signal of the pres-

ence of duplication.

9 DISCUSSION

NGS, with its ability to perform massive parallel sequencing in a
single run, is becoming increasingly popular. This brings with it

an unprecedented opportunity to sequence many genomes at a
relatively inexpensive cost (as compared with using Sanger
sequencing). However, with billions of reads generated per indi-

vidual, the sheer and exponentially increasing amount of data
demands for better bioinformatics support and computers with
larger storage and higher computing powers. No less important

than the production of the data is the information technology
infrastructure, and bioinformatics team needed to analyse it,

with speculations that the costs associated with handling, storing
and analysis of the data could be more than the production of
the data.

Analysing NGS data for structural variants is a relatively new
and challenging field, with no standard protocols or quality con-
trol measures. The four methods of CNV detection are comple-

mentary. Comparing DOC, PEM and SR methods used in the
1000 Genomes Project, each approach uniquely discovered 30–
60% of the CNVs (Abyzov et al., 2011). These three methods

require first mapping the sequenced reads to a reference genome.
As the mapped reads are used in all downstream analysis, this
first step of alignment is extremely crucial. As has been shown in

the article, how the aligner or subsequent algorithm deals with

reads in repeat regions is important for detecting variants that lie

in these regions. Currently, the problem of CNV detection in

repeated regions is still not completely solved.
Using real data from the 1000 Genomes Project, this article

highlights and investigates challenges associated with current

methodologies and areas of potential biases encountered when

analysing NGS data for CNVs. In particular, we focus on issues

pertaining to (i) mappability, (ii) GC-content bias, (iii) quality

control measures of reads and (iv) difficulty in identifying dupli-

cations. We feel this is a timely critical review that would aid

researchers in a much needed well-validated pipeline for the ana-

lysis of structural variants.
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