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ABSTRACT 72 

Most clinical trials evaluating COVID-19 therapeutics include assessments of antiviral activity. In 73 

recently completed outpatient trials, changes in nasal SARS-CoV-2 RNA levels from baseline 74 

were commonly assessed using analysis of covariance (ANCOVA) or mixed models for 75 

repeated measures (MMRM) with single-imputation for results below assay lower limits of 76 

quantification (LLoQ). Analyzing changes in viral RNA levels with singly-imputed values can 77 

lead to biased estimates of treatment effects. In this paper, using an illustrative example from 78 

the ACTIV-2 trial, we highlight potential pitfalls of imputation when using ANCOVA or MMRM 79 

methods, and illustrate how these methods can be used when considering values <LLoQ as 80 

censored measurements. Best practices when analyzing quantitative viral RNA data should 81 

include details about the assay and its LLoQ, completeness summaries of viral RNA data, and 82 

outcomes among participants with baseline viral RNA ≥LLoQ, as well as those with viral RNA 83 

<LLoQ. 84 

 85 

Key Words: SARS-CoV-2 RNA, COVID-19, linear regression for censored data, randomized 86 

trial 87 

Trial Registration: ClinicalTrials.gov Identifier: NCT04518410  88 
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BACKGROUND 89 

Clinical trials designed to evaluate COVID-19 therapeutics should have clinically meaningful 90 

endpoints. FDA guidance states that clinical outcomes, such as the proportion of participants 91 

hospitalized or time to symptom recovery, are recommended as primary outcomes in phase III 92 

outpatient COVID-19 trials [1]. However, it also states that viral shedding should be measured to 93 

assess antiviral activity, primary virology outcomes are acceptable in phase II, and quantitative 94 

and qualitative virological assessments are encouraged. 95 

 96 

In typical COVID-19 randomized trials, samples such as nasopharyngeal swabs, anterior or 97 

mid-turbinate nasal swabs, oropharyngeal swabs, saliva, or plasma, are collected longitudinally 98 

for SARS-CoV-2 RNA testing before and after intervention. Repeat sampling from early 99 

timepoints is common and in phase III typically includes one to four timepoints (Supplemental 100 

Table 1). 101 

 102 

To evaluate virologic efficacy, SARS-CoV-2 RNA, henceforth called viral RNA (vRNA), is 103 

measured with quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays. 104 

Like other nucleic acid assays, SARS-CoV-2 RNA assays have limits between which vRNA is 105 

accurately quantified, called the lower limit of quantification (LLoQ) and upper limit of 106 

quantification (ULoQ). For results >ULoQ, samples can be rerun with dilution to obtain 107 

quantifiable values. Assays may also indicate whether results <LLoQ are detectable or not. 108 

 109 

Recent outpatient COVID-19 therapeutic trials considered various vRNA outcome measures 110 

and statistical methods. Most commonly, vRNA changes from baseline were analyzed using 111 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.13.23287208doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.13.23287208
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

analysis of covariance (ANCOVA) at each timepoint or mixed models for repeated measures 112 

(MMRM). With these methods, single-imputation was used to assign values for vRNA results 113 

<LLoQ (Supplemental Table 1) [2–18]. However, such imputation can introduce bias in 114 

estimating the magnitudes of treatment effects, as uncertainty for values <LLoQ isn’t captured 115 

[19]. 116 

 117 

Using an illustrative example from the ACTIV-2 COVID-19 outpatient treatment trial, we 118 

describe bias that may arise when estimating treatment effects using single-imputation with 119 

ANCOVA and MMRM. Drawing on the HIV literature [19], we describe and discuss alternative 120 

approaches for analyzing vRNA changes, that may be more appropriate by considering vRNA 121 

values <LLoQ as censored measurements. Finally, we provide recommendations for the 122 

analysis and presentation of results concerning vRNA changes in future trials. 123 

 124 

METHODS 125 

ACTIV-2 (NCT04518410) is an adaptive platform trial designed to evaluate potential outpatient 126 

therapeutics for COVID-19[20]. Our illustrative example includes 114 participants randomized to 127 

receive tixagevimab/cilgavimab intravenously or placebo; the primary results previously reported 128 

[21]. Nasopharyngeal swabs were collected before treatment at Day 0 (baseline) and Days 3, 7 129 

and 14 for SARS-CoV-2 RNA quantitative testing using a RT-qPCR assay with LLoQ of 2 log10 130 

copies/ml [22]. All results >ULoQ were rerun with dilution to obtain quantifiable results. ACTIV-2 131 

was approved by a central institutional review board (IRB), Advarra (Pro00045266), with 132 

additional local IRB review and approval as required by participating sites. All participants 133 

provided written informed consent. 134 

 135 
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As this manuscript aims to illustrate and discuss different approaches to analyze vRNA 136 

changes, we provide an overview in Table 1, but integrate descriptions of each method in the 137 

Results. For methods that use imputed values for results <LLoQ, two commonly-used single-138 

imputation strategies (Supplemental Table 1) were assessed:  139 

(1) “LLoQ-imputation”: impute values <LLoQ as the LLoQ, 140 

(2) “½LLoQ-imputation”: impute values <LLoQ as ½ the LLoQ.  141 

See Supplemental Methods for additional details on model specifications and sample SAS 142 

software code. 143 

 144 

RESULTS 145 

Descriptive summaries of vRNA across timepoints for the 114 participants are shown in Table 146 

2A and Figure 1A and 1B. At baseline, 15 participants (13%) had missing vRNA (Supplemental 147 

Figure 1). There was a chance imbalance in vRNA between the randomized arms, with median 148 

vRNA in the active arm 1.0 log10 copies/ml higher than the placebo arm, and a higher proportion 149 

of participants with vRNA ≥LLoQ (72% versus 62%).  150 

 151 

Following the recommendation of Marschner et al. [19], we separately considered data for 152 

participants with vRNA <LLoQ from those ≥LLoQ at baseline. For those with vRNA <LLoQ at 153 

baseline (N=33), vRNA remained <LLoQ at all follow-up timepoints in both arms, suggesting 154 

peak vRNA may have been achieved before enrollment. For the remaining analyses, we focus 155 

on the 66 participants with vRNA ≥LLoQ at baseline. The proportion with vRNA <LLoQ 156 

increased over time: 27% and 28% at Day 3, 62% and 54% at Day 7, and 93% and 89% at Day 157 

14 for the active and placebo arms, respectively (Table 2B and Figure 1C and 1D). 158 
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 159 

Analyzing vRNA at a Single Timepoint  160 

1. Using imputed values leads to biased estimates 161 

Fifty-five (83%) of the 66 participants had vRNA results at Day 3 (Supplemental Figure 1). For 162 

these 55 participants, at baseline there was a modest difference (0.33 log10 copies/ml) in mean 163 

vRNA: 5.61 and 5.28 log10 copies/ml for the active and placebo arms, respectively. 164 

 165 

Using LLoQ-imputation, the mean vRNA at Day 3 was 3.43 and 3.97 log10 copies/ml for the 166 

active and placebo arms, respectively, with estimated mean changes from baseline of -2.18 and 167 

-1.30 log10 copies/ml. Within each arm, the estimated mean changes are conservative and 168 

biased because for participants with vRNA <LLoQ at Day 3, the true changes are at least as 169 

large in magnitude as the imputed changes. Using ½LLoQ-imputation gives mean changes that 170 

are larger (more negative) compared to LLoQ-imputation: -2.45 and -1.58 log10 copies/ml for the 171 

active and placebo arms, respectively. This imputation still results in biased estimates, but with 172 

an unknown direction (estimated changes may be larger or smaller than the truth). For both 173 

approaches, the larger mean change in the active arm could reflect higher average baseline 174 

values, and thus larger changes are observable. Since the estimated mean changes within each 175 

arm are biased, the estimated difference between arms will be biased, and further bias may be 176 

introduced with the baseline imbalances.  177 

 178 

The estimated difference in mean change for the active versus placebo arms at Day 3 was -0.87 179 

log10 copies/ml using LLoQ-imputation and -0.86 log10 copies/ml using ½LLoQ-imputation (Table 180 

3A). Although these estimates are similar, this may not be the case in other datasets when 181 
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using the two approaches. By Day 14, when ~90% of participants had vRNA <LLoQ (and hence 182 

had imputed changes), the estimated difference in mean change between arms was 183 

approximately equal to the baseline mean difference for both imputation approaches. If all 184 

participants had vRNA <LLoQ at Day 14, the difference in mean change would equal the 185 

difference in mean vRNA at baseline, despite the choice of imputed value and underlying true 186 

difference. With larger proportions <LLoQ, differences between arms can reflect chance 187 

imbalances at baseline rather than true differences. 188 

 189 

2. Adjusting for baseline can help address baseline imbalances 190 

Although adjusting for baseline doesn’t remove the bias in estimating differences between arms 191 

using singly-imputed values, it may help reduce the impact of baseline imbalances in mean 192 

vRNA when assessing treatment effects.  193 

 194 

The estimated differences in mean changes between arms using standard linear regression are 195 

shown in Table 3A-B. In adjusted analyses, differences between arms have some attenuation at 196 

each timepoint compared with unadjusted analyses, reflecting the adjustment for higher 197 

baseline vRNA levels in the active arm.  198 

 199 

3. Analysis methods considering vRNA <LLoQ as censored 200 

Statisticians refer to vRNA values <LLoQ as being left-censored because the if the true vRNA 201 

could be measure it would be a value between zero and LLoQ (i.e., a value to the left of LLoQ). 202 

This contrasts with right-censoring like in survival analysis where, for example, participants alive 203 

at the end of follow-up have time of death greater than (to the right of) the time at the end of 204 
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follow-up. Statistical methods used for survival analysis can be used to analyze vRNA data, with 205 

the small adaptation that values are left-censored rather than right-censored. Change in vRNA 206 

is defined as the difference in vRNA at the follow-up time minus the baseline. However, for 207 

follow-up vRNA values that are <LLoQ or left-censored, the change in vRNA is calculated as the 208 

LLoQ minus baseline vRNA, and is also left-censored.  209 

 210 

Linear regression using software designed to handle censored data (known as tobit regression) 211 

is a possible method. Using this approach, adjusting for baseline vRNA, the estimated 212 

difference between arms in mean change from baseline to Day 3 was -0.97 log10 copies/ml 213 

(95% confidence interval [CI]: -1.81, -0.13) favoring the active arm (Table 3C), and is somewhat 214 

larger than the differences in mean change by either imputation approach (Table 3B). At Day 7, 215 

the difference in mean change from baseline was -1.36 log10 copies/ml, also favoring the active 216 

arm (95% CI: -2.31, -0.41), which is much larger than differences observed by either imputation 217 

approach, illustrating the potential bias using those methods when the proportion with vRNA 218 

<LLoQ increases. We didn’t pursue an analysis of mean changes to Day 14 using tobit 219 

regression because of the high level of censoring (~90%) and hence the inability to check model 220 

assumptions. 221 

 222 

As with standard linear regression, there is an assumption that the errors in the model are 223 

normally distributed. These errors are estimated by the residuals calculated as the observed 224 

vRNA value minus the predicted model value. The distributional assumption can be evaluated 225 

with quantile-quantile (Q-Q) plots, comparing the quantiles of the observed distribution of the 226 

residuals (calculated using Kaplan-Meier methods to account for censored residuals) against 227 

the corresponding quantiles of a standard normal distribution. If the assumption was satisfied, 228 
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the plots would show linear associations. Figure 2 shows Q-Q plots for the distribution of 229 

standardized residuals from models for change from baseline, adjusting for baseline. For the 230 

models of change from baseline to Days 3 and 7, the Q-Q plots appear reasonably linear, 231 

supporting normality assumptions. We note, however, the more restricted range of the Q-Q plot 232 

for changes to Day 7, as shown by the lack of standardized residuals below -1. This reflects the 233 

higher proportion of censored values at Day 7; thus, the normality assumption cannot be verified 234 

for the tail of the distribution, corresponding to large negative changes from baseline. 235 

 236 

4. Quantile regression as an alternative distribution-free method 237 

An alternative to tobit regression is quantile regression applied to assay-censored data, for 238 

example to model median change in vRNA. With this approach, there are no assumptions 239 

concerning the distribution of the errors in the model. However, there is an assumption that the 240 

median change has linear associations with continuous covariates in the model, including 241 

baseline vRNA.  242 

 243 

At Day 3, the adjusted difference between arms in median change from baseline was -1.17 log10 244 

copies/ml (95% CI: -2.42, 0.07) favoring the active arm. This is reasonably similar to the 245 

adjusted difference in mean change of -0.97 log10 copies/ml obtained from tobit regression, 246 

though estimated without making the assumption of normally distributed errors. There is a 247 

somewhat narrower CI for the difference in means, versus difference in medians, reflecting the 248 

gain in precision from assuming a normal distribution for the errors. At Day 7, the adjusted 249 

difference in median change was -0.96 log10 copies/ml, also favoring the active arm. However, it 250 

wasn’t possible to obtain a CI from the numerical methods used to fit the model, due to the high 251 
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proportion of participants with vRNA <LLoQ at Day 7. At Day 14, the higher proportion with 252 

vRNA <LLoQ meant the difference in median change between arms couldn’t be estimated. 253 

 254 

Analyzing Repeated vRNA Over Time 255 

5. Imputed values can affect estimates from MMRM due to correlation structure  256 

Another strategy in several recent COVID-19 trials has been to use an MMRM with single-257 

imputation for vRNA values <LLoQ [2–14]. These models estimate the difference in mean vRNA 258 

change in each arm at each timepoint, in a similar manner as linear regression models fit 259 

separately by timepoint. However, MMRMs incorporate a stronger assumption about the 260 

distribution of errors across timepoints, specifically that they follow a multivariate normal 261 

distribution with a specified correlation structure. Using this assumption, a global test evaluating 262 

the null hypothesis of no difference between arms in vRNA change at any timepoint can be 263 

undertaken. The stronger assumption may provide improved precision in estimating the 264 

differences in mean change at each timepoint by borrowing information between timepoints. 265 

However, this assumption may not be appropriate when using singly-imputed values for 266 

measurements <LLoQ as the correlation structure is affected by imputation. As an example, 267 

participants with vRNA <LLoQ at Days 7 and 14 will have identical imputed changes at both 268 

timepoints leading to higher correlations of errors in the model, than if the actual values <LLoQ 269 

were observed. To illustrate the impact of this, Table 3E shows results from MMRMs for 270 

changes from baseline to Days 3, 7, and 14. Compared with the estimates from models fitted 271 

separately at each timepoint (Table 3B), the borrowing of information through the correlation 272 

structure leads to smaller estimated differences in mean change between arms, particularly at 273 

Day 3 and to a lesser extent at Day 7 for both imputation approaches. This attenuation is driven 274 

by including Day 14, where ~90% of participants had vRNA <LLoQ; removal of this timepoint 275 
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from the MMRM reduces the magnitude of the attenuation (Table 3F). The estimates remain 276 

biased, however, for the same reasons as those obtained from separate regression models at 277 

each timepoint. 278 

 279 

Extensions to MMRM that account for censored data exist (also known as linear mixed effects 280 

models for censored responses[LMEC]), but still require the multivariate normality 281 

assumption[23,24]. A caveat with these models is that they can be difficult to implement in 282 

standard statistical software, especially as the number of timepoints increases. Estimated 283 

differences between arms in mean change from baseline to Days 3 and 7 from LMEC are 284 

shown in Table 3G. The estimates are similar to those from the tobit regression models fitted 285 

separately at Days 3 and 7 (Table 3C). The stronger multivariate normal assumption leads to 286 

small gains in precision at Day 7 as seen by the narrower CI, though the gain at Day 3, where 287 

there’s less censoring, is negligible. As with the separate regression models, we didn’t pursue 288 

LMEC over the three days, as the high level of censoring at Day 14 meant that a normality 289 

assumption couldn’t be reasonably verified. 290 

 291 

Analyzing Proportion of Participants with vRNA <LLoQ Over Time 292 

6. Strategies that don’t rely on quantitative values may be preferred with large % <LLoQ  293 

When there is a high proportion of participants with vRNA <LLoQ at one or more timepoints, it 294 

may be more appropriate to focus on how this proportion changes with time. This could be 295 

analyzed over time using log-binomial models fit using generalized estimating equations (GEE). 296 

However, due to problems with numerical algorithms, in ACTIV-2 we used Poisson regression 297 

models modified for binary outcomes [25] fit using GEEs with independence working correlation 298 

structure and robust standard errors, adjusting for baseline vRNA. When implementing this 299 
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model across the three days, the proportion with vRNA <LLoQ didn’t differ between arms 300 

(Supplemental Table 2). When excluding the Day 14 measurements, where ~90% of 301 

participants had vRNA <LLoQ, the results for Days 3 and 7 were almost identical, confirming 302 

this method isn’t sensitive to including timepoints with high proportions <LLoQ. This strategy 303 

can lead to loss in statistical power compared to analyses of quantitative vRNA, so is best 304 

reserved for when high proportions of participants are expected to have vRNA <LLoQ at one or 305 

more timepoints. However, there is also no need to restrict the analysis population to 306 

participants with vRNA ≥LLoQ, potentially providing more comprehensive analyses of qualitative 307 

vRNA in the overall study population. 308 

 309 

DISCUSSION 310 

In this paper we summarize methods commonly used in outpatient COVID-19 therapeutic trials 311 

for analyzing quantitative changes in SARS-CoV-2 RNA over time, and through an illustrative 312 

example from the ACTIV-2 study, highlight potential pitfalls. In ACTIV-2, our primary virology 313 

analyses focused on comparing the proportion of participants with vRNA <LLoQ over time, and 314 

examined vRNA levels rather than changes. As the pandemic has evolved and we have learned 315 

more about viral trajectories and variability, so has our thinking about the best analytic strategy. 316 

Since designing ACTIV-2, we have implemented exploratory analyses examining treatment 317 

effects on changes in vRNA over time using tobit regression models with adjustment for 318 

baseline RNA, restricted to participants with baseline vRNA ≥LLoQ, a method we advocate for 319 

in this paper [19,26,27]. 320 

 321 

In our illustrative example, the primary focus was on the population with quantifiable vRNA at 322 

baseline, which has been a focus in recent COVID-19 studies. This was reasonable in our 323 
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analysis as none who were <LLoQ at baseline had quantifiable vRNA at later timepoints. 324 

Including these individuals in analyses using imputed values would have led to imputed 325 

changes of zero and likely attenuation of the estimated mean changes. Regression analyses for 326 

censored data are more complex if such individuals are included, requiring strong, unverifiable 327 

assumptions about the distribution of vRNA changes over time among those with baseline 328 

vRNA <LLoQ. Looking more broadly across the study population in phase II placebo-controlled 329 

evaluations in ACTIV-2 (N=1565 enrolled with a median of 6 days from symptom onset), we 330 

observed that only 14% (of 287) of those with vRNA <LLoQ at baseline later had quantifiable 331 

vRNA. As new studies are developed, potentially with enrollment closer to onset of symptoms, 332 

the decision to exclude those <LLoQ at baseline should be carefully scrutinized, as doing so 333 

could remove individuals on an upward viral load trajectory and we lack understanding of these 334 

trajectories in the setting of vaccination, reinfection, and emergent variants. At a minimum, 335 

documenting viral shedding changes among participants with baseline vRNA <LLoQ is 336 

important, and analyses stratified by level (<LLoQ and ≥LLoQ at baseline) might be pursued.  337 

 338 

The methods considered in this paper aren’t exhaustive of imputation or modeling strategies, 339 

but were chosen to align with methods from recent publications of COVID-19 trials. We focus on 340 

single-imputation, and don’t evaluate the performance of multiple-imputation strategies, which 341 

are more complicated and rely on distributional assumptions to support the imputation, but may 342 

reduce potential biases with imputation highlighted in this paper [28,29]. We also haven’t 343 

evaluated the statistical performance of these methods through formal simulation studies, which 344 

may add further insights to benefits or downsides of the analytic strategies, particularly when 345 

high proportions of participants have vRNA <LLoQ during follow-up, where verification of model 346 

assumptions becomes more difficult. We also haven’t considered potential biases due to 347 

missing data, for example, missingness arising due to hospitalization, if hospitalized participants 348 
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have higher vRNA levels. In designing studies, the impact on power and precision in estimating 349 

treatment effects needs consideration [30]. Finally, analysis of vRNA changes among 350 

participants with baseline levels above a threshold (e.g., the LLoQ) leads to estimated mean 351 

changes within each arm that are affected by regression to the mean, though estimated 352 

differences in mean changes between randomized arms are not. Despite these limitations, our 353 

paper highlights key issues and considerations when analyzing SARS-CoV-2 RNA data from 354 

outpatient treatment trials. These methods aren’t only applicable in the COVID-19 setting, but 355 

should be considered when analyzing any biomarker that is measured with an assay with an 356 

LLoQ. 357 

 358 

Recommendations 359 

The best practices in analyzing SARS-CoV-2 RNA from outpatient trials depend on the number 360 

of timepoints and proportion of results <LLoQ. Regardless of the planned analysis, some key 361 

details should be reported to facilitate interpretation. 362 

1. Provide sufficient details of the RT-qPCR assay, including the LLoQ. 363 

2. Explain who is included in the analysis, such as via a CONSORT-type diagram (see 364 

Supplemental Figure 1), including an accounting of missing data and the reasons for 365 

missing (e.g., death, hospitalization, loss to follow-up, sample not obtained, sample 366 

processing/shipping issue). 367 

3. If restricting the analysis population to those with quantifiable baseline vRNA, describe 368 

outcomes among those with vRNA <LLoQ. 369 

4. Although we don’t recommend the use of single-imputation, if used, the choice of 370 

imputed values should be provided, and implications for interpretation of results 371 

discussed.  372 
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5. Include descriptive summaries of vRNA by treatment arm and timepoint. We suggest 373 

including two figures (see Figure 1): distributions of quantitative levels (e.g., box and 374 

whisker plots) and distribution of vRNA categories (e.g., <LLoQ versus ≥LLoQ). 375 

 376 

Analytic strategies to estimate differences between arms we recommend: 377 

1. Methods that address censoring without imputation, such as tobit or median regression, 378 

or LMEC [23,24] be prioritized. But with increased censoring: 379 

a. Normality assumptions underlying regression analysis for censored data cannot 380 

be evaluated over the full range of the distribution, and dropping timepoints with 381 

high levels of censoring from analysis may be appropriate. 382 

b. Differences in medians (and their CIs) between arms might not be estimable from 383 

quantile regression. 384 

2. Alternatively, consider non-parametric tests to analyze quantitative vRNA, such as the 385 

censored version of the Wilcoxon test (Gehan-Wilcoxon) which is implementable in 386 

standard software as a stratified test to account for baseline vRNA. 387 

3. Comparing the proportion of participants with vRNA <LLoQ between arms over time may 388 

be preferred if there are high amounts of censoring. 389 

4. With early, frequent measurements (e.g., daily), more complex extensions of LMEC that 390 

evaluate viral dynamics (e.g., estimating initial increases and subsequent vRNA decay) 391 

[20,31–34], or time-to-viral clearance via methods for time-to-event data [4–7,10,35,36] 392 

might be used.  393 
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Table 1:  Summary of Analytic Methods Considered in Our Illustrative Example for the Analysis of Changes from Baseline in SARS-

CoV-2 RNA 

Methods 
No. of 

Timepoints 

Handing 

Values 

<LLoQ 

Pros Caveats/Issues 

Analysis of covariance 

(ANCOVA)/linear 

regression 

1 
Single 

Imputation 

Easy to implement in 

standard software. 

 

With small proportion 

<LLoQ, impact of imputation 

is likely modest. 

Using imputation results in biased estimates of 

differences between randomized arms in mean 

change. 

 

Normality assumption in model may be violated 

Need to restrict to those ≥LLoQ at baseline to calculate 

changes. 

Linear regression for 

censored data (tobit 

regression) 

1 
Not 

Required 

Easy to implement in 

standard software. 

 

Analyses considering 

censored measurements 

avoids bias that may be 

created by using imputed 

Normality assumption in model cannot be confirmed 

when large proportion of data are censored. 

 

Need to restrict to those ≥LLoQ at baseline to calculate 

changes. 
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values. 

Median regression for 

censored data 
1 

Not 

Required 

Easy to implement in 

standard software. 

 

Distribution free model 

removes assumptions about 

distribution of the errors. 

Model cannot be fitted when large proportion of data 

are censored. 

 

Need to restrict to those ≥LLoQ at baseline to calculate 

changes. 

Mixed models for repeated 

measures (MMRM) 
> 1 

Single 

Imputation 

Easy to implement in 

standard software. 

 

Global test of, no difference 

between randomized arms 

across timepoints, can be 

easily generated. 

Using imputation results in biased estimates of the 

difference between randomized arms in mean change, 

with the bias at one time dependent on the proportion 

<LLoQ at other times (as information is shared among 

times through an assumed correlation structure).  

 

Multivariate normality assumption may be violated. 

 

Need to restrict to those ≥LLoQ at baseline to calculate 

changes. 

MMRM for Censored Data 

(Linear mixed effects 

models for censored data, 

> 1 
Not 

Required 

Analyses considering 

censored measurements 

avoids bias that may be 

Increase complexity in implementing model in standard 

software as the number of timepoints increases. 

Multivariate normality assumption difficult to verify, 
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LMEC) created by using imputed 

values. 

 

Global test of, no difference 

between randomized arms 

across timepoints, can be 

easily generated. 

 

Possible improved precision 

by sharing information over 

timepoints through an 

assumed model.  

particularly when large proportion of data are censored 

at one or more times.  

 

Need to restrict to those ≥LLoQ at baseline to calculate 

changes. 

Binary Regression ≥ 1 
Not 

Required  

Easy to implement in 

standard software. 

 

Includes all participants, 

regardless of baseline value. 

 

Estimation of treatment 

effects not influenced by the 

Loss of statistical power when dichotomizing outcome 

from continuous variable to a binary variable.  
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proportion <LLoQ.  

LLoQ = Lower Limit of Quantification; ANCOVA = Analysis of Covariance; MMRM = Mixed Model Repeated Measures; LMEC = 

Linear Mixed Effects Models with Censored Response 

 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

arch 17, 2023. 
; 

https://doi.org/10.1101/2023.03.13.23287208
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.03.13.23287208
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Table 2: Distribution of SARS-CoV-2 RNA by Study Visit in each Treatment Arm in overall 

cohort (A) and among those with vRNA ≥LLoQ at Baseline/Day 0 (B)  

A: All participants in cohort (N=114)  

Visit   Active (N=58) Placebo (N=56) 

Baseline 

Median (quartiles) 

<LLoQ, n (%) 

Missing, n 

4.0 (<LLoQ, 6.6) 

14 (28) 

9 

3.0 (<LLoQ, 5.9) 

19 (38) 

6 

Day 3 

Median (quartiles) 

<LLoQ, n (%) 

Missing, n 

<LLoQ (<LLoQ, 3.9) 

26 (52) 

8 

<LLoQ (<LLoQ, 3.9) 

24 (52) 

10 

Day 7 

Median (quartiles) 

<LLoQ, n (%) 

Missing, n 

<LLoQ (<LLoQ, 2.2) 

37 (74) 

8 

<LLoQ (<LLoQ, 2.2) 

35 (71) 

7 

Day 14 

Median (quartiles) 

<LLoQ, n (%) 

Missing, n 

<LLoQ (<LLoQ, <LLoQ) 

49 (98) 

11 

<LLoQ (<LLoQ, <LLoQ) 

45 (97) 

7 

B: All participants with vRNA ≥LLoQ at baseline (N=66) 

Visit  Active (N=35) Placebo (N=31) 

Baseline 

Median (quartiles) 

<LLoQ, n (%) 

Missing, n 

5.5 (3.7, 8.0) 

0 (0) 

0 

5.0 (3.1, 6.7) 

0 (0) 

0 

Day 3 

Median (quartiles) 

<LLoQ, n (%) 

Missing, n 

3.0 (<LLoQ, 4.5) 

8 (27) 

5 

3.4 (<LLoQ, 5.9) 

7 (28) 

6 

Day 7 
Median (quartiles) 

<LLoQ, n (%) 

<LLoQ (<LLoQ, 2.5) 

18 (62) 

<LLoQ (<LLoQ, 3.3) 

14 (54) 
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Missing, n 6 5 

Day 14 

Median (quartiles) 

<LLoQ, n (%) 

Missing, n 

<LLoQ (<LLoQ, <LLoQ) 

27 (93) 

6 

<LLoQ (<LLoQ, <LLoQ) 

24 (89) 

4 

LLoQ = Lower Limit of Quantification 
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Table 3: Differences between Treatment Arms in SARS-CoV-2 RNA (log10 copies/ml) change 

from baseline– Mean/Mediana, 95% CI and p-value among those with quantifiable baseline 

vRNA 

Imputation Day 3 Day 7 Day 14 

A: Linear regression model with imputation, separate model by day – unadjusted 

LLoQ imputation 
-0.87 (-1.70, -0.06) 

p=0.037 

-0.82 (-1.79, 0.15) 

p=0.09 

-0.25 (-1.30, 0.81) 

p=0.64 

½LLoQ imputation 
-0.86 (-1.69, -0.04) 

0.041 

-0.90 (-1.82, 0.01) 

p=0.053 

-0.29 (-1.32, 0.74) 

p=0.58 

B: Linear regression model with imputation, separate model by day – adjusted for baseline 

LLoQ imputation 
-0.74 (-1.41, -0.06) 

p=0.034 

-0.56 (-1.01, -0.11) 

p=0.015 

-0.06 (-0.18, 0.07) 

p=0.38 

½LLoQ imputation 
-0.77 (-1.53, 0.002) 

0.050 

-0.69 (-1.29, -0.09) 

p=0.024 

-0.11 (-0.37, 0.16) 

p=0.42 

C: Linear regression model for censored data (tobit regression), separate model by day – adjusting for 

baseline 

N/A 
-0.97 (-1.81, -0.13) 

p=0.023 

-1.36 (-2.31, -0.41) 

p=0.005 
Not Obtainedb 

D: Median regression model for censored data, separate model by day – adjusting for baseline 

N/A 
-1.17 (-2.42, 0.07) 

p=0.07 

-0.96 (NE, NE) 

NE 
NE 

E: MMRM across all three days (Day 3, 7 and 14) with imputation – adjusting for baseline 

LLoQ imputation 
-0.39 (-1.23, 0.45) 

p=0.36 

-0.49 (-0.95, -0.04) 

p=0.032 

-0.07 (-0.20, 0.06) 

p=0.27 

½LLoQ imputation -0.52 (-1.44, 0.40) -0.60 (-1.21, 0.01) -0.13 (-0.40, 0.14) 
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p=0.26 p=0.052 p=0.33 

F: MMRM across Days 3 and 7 with imputation – adjusting for baseline 

LLoQ imputation 
-0.65 (-1.36, 0.07) 

p=0.08 

-0.58 (-1.01, -0.15) 

p=0.009 
- - 

½LLoQ imputation 
-0.72 (-1.50, 0.06) 

p=0.07 

-0.71 (-1.29, -0.13) 

p=0.018 
- - 

G: MMRM for censored data across Days 3 and 7– adjusting for baseline 

N/A 
-1.10 (-1.94, -0.26) 

p=0.011 

-1.33 (-2.23, -0.43) 

p=0.004 
- - 

aDifferences in mean change provided except for (D), which is difference in median change. 

bResults are not shown at Day 14 for the linear regression model for censored data because 

model assumptions cannot be reasonably verified due to the high level of censoring at Day 14. 

LLoQ = Lower Limit of Quantification; N/A = Not Applicable; NE = Not Estimable; MMRM = 

Mixed Model for Repeated Measures.  
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Figure 1: Distribution of SARS-CoV-2 RNA from nasopharyngeal swabs in Active and Placebo 

arms by study visit in overall cohort (A and B) and among those with vRNA ≥LLoQ at 

Baseline/Day 0 (C and D).  

Levels of SARS-CoV-2 RNA (log10 copies/ml) with horizontal line = median, box=interquartile 

range, whiskers = minimum/maximum (A and C); results below the LLoQ are plotted using an 

imputed value of 1 log10 copies/ml. Proportion with quantifiable SARS-CoV-2 RNA (green) and 

unquantifiable (purple) (B and D). LLOQ = Lower Limit of Quantification. 
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Figure 2: Quantile-quantile (Q-Q) plot for linear regression model for censored data for change 

in vRNA from baseline to Day 3 (A) and to Day 7 (B), both models included an indicator variable 

for treatment versus placebo and adjusted for baseline vRNA 

Standardized residuals (for the non-censored observations) calculated by dividing the residuals 

by their standard deviation (estimated from the fitted model). Quantiles for a standard normal 

distribution plotted on the x-axis take account of censored residuals.  
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