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Abstract—A large data set of raindrop size distribution (RSD)
measurements collected with the Joss–Waldvogel disdrometer
(JWD) and the 2-D video disdrometer (2DVD) in the U.K., Greece,
Japan, and the U.S. are analyzed and modeled. This work extends
a previous effort devoted to the exploitation of U.K. data and the
design of a stochastic procedure to randomly generate synthetic
RSD intermittent time series. This study seeks to: 1) explore the
differences of RSD-derived moments for distinct hydroclimate
regions, ranging from tropics to subtropics and mid and northern
latitudes; 2) compare the governing parameters of the normal-
ized gamma RSD for both stratiform and convective events and
perform a sensitivity analysis by using different best fitting tech-
niques; 3) exploit the time-correlation structure of the estimated
RSD parameters as the input of a vector autoregressive stationary
model used to simulate time series (or horizontal profiles) of RSDs
and, consequently, its moments as the rain rate and concentration;
and 4) characterize the distribution of the inter-rain duration and
rain duration to design a semi-Markov chain to represent the
intermittency feature of the rainfall process in a climatological
framework. This climatological analysis and the related stochastic
RSD generation model may find useful applications within both
hydrometeorology and radio propagation.
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I. INTROUCTION

RAINDROP size distribution (RSD) plays a fundamental
role in governing both the atmospheric precipitation mi-

crophysics and phenomenology and the response of microwave
remote sensors and radio-propagation links [1]–[3]. In this
respect, the variability of the RSD is significantly dependent
on the meteorological, geographical, and climatological condi-
tions [4]. This intrinsic variability may be even noted within
each storm’s space–time evolution and obviously affects the
macroscopic relationship between the rain rate and microwave
observables such as weather radar reflectivity and radio-link
specific attenuation [5], [6].

The knowledge of RSD and its variability is also important
to design model-based retrieval algorithms for remote sensing
and prediction methods for radio propagation since an accurate
RSD characterization, coupled with an electromagnetic scat-
tering and absorption model, allows us to simulate polarimetric
radar and radio observables [7]–[9]. To this aim, it may be also of
relevant interest the capability to generate synthetic time series
of RSDs, constrained by the measured statistics in a climatolo-
gical context, in order to increase the available databases and
test new algorithms and processing techniques [5], [6], [10].

This work starts from a previous effort devoted to the exploi-
tation of three years of disdrometer data in the U.K. and to the
design of a stochastic procedure to randomly generate synthetic
RSD intermittent time series [14]. The latter methodology was
named vector autoregressive Markov synthesizer (VARMS).
In this further investigation, we have extended the sources of
the available RSD time series, including the Joss–Waldvogel
disdrometer (JWD) and the 2-D video disdrometer (2DVD)
from Greece, Japan (JP), and the U.S. This choice tends to
cover different geographical and climatological areas in order
represent as much as possible the intrinsic RSD variability.
A new technique to retrieve the parameters of the best fitting
normalized gamma RSD for each data set is also tested, and the
results are classified with respect to the stratiform and convec-
tive regimes. Finally, the VARMS approach is characterized for
each distinct hydroclimate area in order to design a general tool
for both hydrometeorology and radio-propagation purposes.

The paper is organized as follows. In Section II, we describe
the disdrometer measurement characteristics and data process-
ing procedures. In the same section, the retrieval methods for
estimating the RSD parameters are introduced and applied
to the available raindrop spectra to show how the moment
techniques may give results substantially different from those
of the maximum likelihood (ML) method. A discussion on the
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TABLE I
STATISTICAL CHARACTERISTICS OF

DISDROMETER-DERIVED RAIN-RATE DATA SETS

various RSD features as a function of the available hydrocli-
mate zones is carried out in Section III. Finally, in Section IV,
the retrieved RSD parameters are exploited to specify the RSD
stochastic simulator used to randomly generate time series of
normalized gamma RSD parameters.

II. RSD DATA SETS

The disdrometer measurements used in this study were col-
lected at Chilbolton (U.K.), JP, Iowa, Virginia, and Florida
(U.S.) with JWD and in Athens (ATH; Greece) with 2DVD,
spanning a period from 2001 to 2006, and are all available at
1-min temporal resolution. The U.K. data set, based on JWD
measurements, is extensively described in [14].

A. Globally Distributed Disdrometer Measurements

The JP data set is composed of different disdrometric mea-
surements gathered in four places, which are: 1) Tamaho
(JPTMH), 2) Kitaashigara (JPKAS), 3) Hiratsuka, (JPHRJ),
and 3) Shibusawa (JPSBS). In order to mitigate the effects
of isolated spikes and noise in the measured RSD sequences
(Nm), we applied a selection procedure on the RSD-derived
rain rate (Rm), which has been computed through the moment
of order 3.67 of Nm. This selection procedure individuates the
wet periods (WPs) and, correspondingly, the dry periods (DPs),
which have been defined as the instants where consecutive
samples of Rm overcome the threshold of 0.1 mm/h for at least
10 min. Details on the obtained sample sizes and associated
rain-rate statistics are listed in Table I.

In this table, we note that all data sets have a significant num-
ber of samples (see first column of Table I), and maximum rain
rates up to 188 mm/h registered in ATH. All these distributions
show positive values of skewness (obtained as the third-order
moment of the distribution normalized to the third power of
the standard deviation). This latter feature implies that the right
tails of the distribution of the rain rate are longer so that the
distribution is concentrated on small values of rain intensities.
The highest values for the skewness are registered in U.K. and
Iowa: this indicates the prevalence of stratiform events in these
data sets. On the other hand, the lowest value of skewness is
registered in the Florida data set, and this may be interpreted
as the prevalence of convective events in that region. These
conclusions, based on the moment analysis of the rain-rate
distribution, will be also confirmed in Section III-A, where an
algorithm for identifying the stratiform and the convective part
of the RSD sequences is applied on all the available data sets.

B. Analysis of RSD Data

In this section, a systematic comparison of the four distinct
approaches for best fitting the observed RSD and estimating
the parameters of an assumed normalized gamma distribution is
discussed. Many authors adopt the following expression to de-
scribe the volumetric size distribution of raindrops [1], [6], [14]:

N(D,p)=Nw ·f(µ)·

(

D

Dm

)µ

·exp

[

−(4+µ)·
D

Dm

]

(1)

where N(D,p) (m−3 · mm−1) is the number of drops per unit
volume per unit size interval, D (mm) is the sphere-equivalent
drop diameter, Nw (m−3 · mm−1), µ, and Dm (mm) are the
intercept, shape, and mass-weighted mean diameter parameters,
respectively. The vector p = [Nw, Dm, µ]T, with “T” indicat-
ing a matrix transpose, stands for the time-dependent parameter
set of the modeled RSD.

The three parameters of the vector p in (1) are estimated by
means of the gamma moment (GM) method [1], the ML method
in two versions [4], [14], and the truncated GM (TGM) method
[8]. The latter method is a numerical version of GM, taking into
account the finite integration over a minimum and a maximum
diameter. ML methods can be implemented in 1-D (ML1)
and 3-D (ML3) versions. In the first case, the parameters Nw

and Dm are estimated by using the GM method, whereas µ
is retrieved by minimizing, for each diameter interval, the
square difference between the observed RSD Nm and N given
in (1). Eventually, if the latter minimization is performed by
varying all the components of p, the ML3 estimation is accom-
plished [14].

C. Results

All RSD-parameter estimation methods introduced in the
previous paragraph have been implemented on the whole data
set of disdrometer measurements (see Table I). The perfor-
mance of each estimation technique is evaluated by comput-
ing the root-mean-square error (RMSE) between Nm(D) and
N(D,p), as shown in Fig. 1. In the following, RMSEX will
indicate the RMSE of the method X .

In most cases, values of RMSEML3 smaller than RMSEML1,
RMSEGM, and RMSETGM are noted in the range [0.5, 1.5] mm,
but there are larger values of RMSEML3 for diameters beyond
about 1.2 mm. For large raindrop diameters, the curves of
RMSEML1, RMSEGM, and RMSETGM appear very close to
each other, whereas for smaller diameters, RMSEML1 is po-
sitioned between RMSEML3 and RMSEGM. The analysis of
Fig. 1 would imply that the ML3 estimation method may be an
accurate technique for the overall measured RSD best fitting but
not a good candidate for the computation of higher moments of
RSD, where the larger diameters play a major role. In addition,
the TGM method, in most cases, seems to have a behavior very
similar to the RMSEGM curves, whereas for the Virginia and
ATH data sets and smaller diameters, RMSETGM is larger than
the RMSE curves associated with the other methods.

The analysis of Fig. 1 suggests, as in [10], that the ML1
method is a relatively robust choice for estimating the RSD
parameters when compared with both TGM and GM methods.
Based on the considerations just exposed, hereafter, the ML1
method will be considered for estimating Dm, Nw, and µ in (1).
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Fig. 1. RMSE between the measured RSD spectra and the estimated gamma ones as a function of raindrop diameter. The RMSE trend has been derived for the
four implemented estimation methods: GM, TGM, ML1, and ML3. The inset subplots for each disdrometer measurement show an enlarged version of the whole
view of the RMSE trend.

Note that this conclusion is coherent with what was found in
[14], analyzing U.K. data only.

III. RAINDROP SPECTRA OF THE DIFFERENT

HYDROCLIMATE REGIMES

To have a comprehensive picture of RSD best fitting, the
scaled data Nm(D)/Nw are plotted against the normalized drop
diameter D/Dm and are shown in Fig. 2. Superimposed on
the scaled disdrometer data, the corresponding scaled gamma
distributions for values of µ equal to −3, 10, and 100 are shown.
The measured RSDs, when scaled as previously shown, are
well bounded by the family of scaled gamma functions as µ
varies over the range −3 to 10, but values of µ outside of this
range may be also represented. It is interesting to note that the
right tails of the normalized RSDs (D/Dm ≥ 3 mm) are well
characterized for values of µ that fluctuate around −3.

A. Convective–Stratiform Separation

To better understand the differences between the considered
data sets, a classification procedure, similar to those adopted in
[4] and [7], to separate the stratiform rain type from convective
is applied. The classification procedure here adopted is based
on the criterion that stratiform rain tends to be horizontally
extended and weak in intensity as opposed to the convective
regime, which generally shows high concentrated intensities.
A sample of rain rate Rm at the instant ti, denoted Rm(ti),
is classified as stratiform if the values of Rm from ti − N
to ti + N lie in the range [0.5, 10] mm/h, and their standard
deviation is less than 1.5 [4], [6], [7]. On the other hand, a

sample Rm(ti) is classified as convective if values of Rm from
ti − N to ti + N are greater than 10 mm/h. Samples Rm(ti)
that belong to neither the convective nor the stratiform cluster
are classified as mixed type and will be excluded from the
investigation. In this analysis, N has been set to five.

An example of the rain-regime classification procedure here
adopted is shown in Fig. 3, where the sequences of RSD
parameters and the rain rate extracted from the JPKAS data
set are considered. The analysis of this figure evidences that
for convective samples (indicated with the red color), the time
sequence of the mean diameter Dm evolves over the values
of 1.5 mm, and the shape parameter µ is nearly zero (see the
lower panel). Following this temporal evolution analysis, in
the transition zone i.e., a mixture of convective, mixed-type
(yellow color), and stratiform samples (blue color) Dm and
µ slightly decrease and increase, respectively, with respect to
the convective zone. On the other hand, in the stratiform time
slots (horizontal shaded blue bars), Dm oscillates around 1 mm,
whereas µ oscillates around five. It should be noted that when
the rain rate intensity is very low (about 0.1–0.5 mm), the RSD
parameters show a very high variability, as also found in [10].

B. Statistical Analysis of RSD Features

The conclusions, achieved from the example shown in Fig. 3,
can be also extended to the whole disdrometer data set through
the analysis of Fig. 4, where the RSD features are compared in
mean term 〈Dm〉, 〈log10 Nw〉, with the symbol “〈·〉” indicating
the average operator. This figure suggests a clear separation
between the convective and stratiform domains in the plane
〈Dm〉, 〈log10 Nw〉. Indeed, a linear least square fit, applied
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Fig. 2. Normalized RSD N(D)/N
w

versus D/D
m

where Nw (mm−1m−3) and Dm (mm) are calculated by using the ML1 method. Dotted lines represent
the gamma distribution, normalized as done for the measured DSD, when µ takes the values −3, 10, and 100 as indicated in the lower left panel.

Fig. 3. Example of classification of RSD sequences.

to the average values of Dm and log10 Nw for each climatic
regime and for each cluster, points out an inverse relation-
ship as 〈log10 Nw〉 = p1〈Dm〉 + p2 for both the stratiform and
convective rain types. The values of the p1 and p2 coefficients
found in this analysis are listed in Table II. In addition, in order
to compare these results with those shown in [4], the dotted-line
curve for stratiform cases is shown in Fig. 4 together with the
convective cluster (see the gray cross markers).

It is worth mentioning that for the analyzed data set, the
two clusters are mainly discriminated by Dm [4]: for 〈Dm〉 >
1.5 mm, the convective cluster is identified and vice versa.
The average and standard deviation values of µ associated

Fig. 4. Average of the mean diameter (Dm), against the mean intercept
parameters log10(Nw), both estimated by applying the ML1 method on the
classified data set. The standard deviation bar of log10(Nw) is shown as
vertical bars as well. The least square fit of the average points is shown for both
the stratiform (S) and the convective (C) cluster. In addition, the disdrometric
measurements classified as convective in [4] have been indicated with the cross
markers, whereas the dotted line is for their stratiform cases.

TABLE II
COEFFICIENT FOR THE 〈Dm〉,〈log10 Nw〉 LINEAR RELATIONSHIP

with convective and stratiform clusters (i.e., for the data sets
altogether) are (7.59, 12.88) and (8.26, 12.57), respectively. The
average µ of the stratiform cluster is slightly larger than that
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TABLE III
STATISTICAL INDICATORS OF THE WHOLE RSD PARAMETERS FOR THE STRATIFORM AND CONVECTIVE CLASSES

Fig. 5. Distributions of (gray lines) the estimated and synthesized RSD parameters and the synthesized ones for (dashed black lines) L = 1 and (dotted black
lines) L = 8 for the UK, ATH, JPSBS, and Florida data sets.

associated with the convective one, and this behavior seems
to be slightly different from that shown in [6] and [10]. A
possible explanation is that low rain regimes may cause a large
RSD variability [10] so that other definitions for the stratiform
cluster may account for these different behaviors. In addition,
as confirmed by the positive values of skewness and large
values of kurtosis of µ, which are shown among other statistical
indicators in Table III, the major variability of this parameter is
due to extreme cases, which are aggregated on the right tail of
the distribution. Indeed, if the median value of the distribution
of µ is considered instead of the mean, no difference is noted
between the convective and stratiform clusters (i.e., the median
of µ is equal to 4.47 for both classes), and values of µ consistent
with those found by other authors in past works [4], [6], [10] are

obtained. On the other hand, it should be noted that the estimate
of µ is the most critical, being strongly affected by disdrometer
data quality.

IV. GENERATION OF RAINDROP SPECTRA TIME SERIES

A brief description of the autoregressive model, used to
generate the time series of RSD parameters, is here discussed
and then characterized for each data set. More details can be
found in [14].

A. Autoregressive Generation of Raindrop Spectra Series

Rainfall is usually characterized by a significant space–time
variability. Within a rainfall process, we can distinguish two
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TABLE IV
PARAMETERS OF THE PARETO DISTRIBUTION FOR DP AND WP DURATIONS

Fig. 6. Comparison between the autocovariance functions of (gray lines) the estimated RSD parameters and the synthesized ones for (dashed black lines) L = 1
and (dotted black lines) L = 8 for the U.K., ATH, JPSBS, and Florida data sets.

different macroscopic phenomena: 1) the rain periods or WPs
and 2) the no-rain periods or DPs. In order to model this “in-
termittent” behavior, the rainfall random process is considered
as a renewal process, which is a generalization of the Poisson
process, the latter being a continuous-time Markov process
[12]. Within each WP, the time series of RSD parameters p(t)
are modeled as a vector autoregressive (VAR) process of
order L, named VAR3(L) (i.e., future-time behavior is condi-
tioned by L past time), thus taking into account the correlation
properties of the RSD parameters. The general formulation of
VAR3(L) is given by

z(t) =
L

∑

i=1

D(i) · z(t − i) + ε(t) (2)

where z(t − i) is the synthesized time sequence vector z at the
ith time lag before, D(i) are 3 × 3 autoregressive coefficient
matrices, and ε(t) is a 3 × 1 zero-mean Gaussian white noise
vector, and the vector z(t) is related to the mean-centered value
of the synthesized RSD parameters p(t) through a logarithmic
relation:

z(t) = ln [p(t)] − 〈ln [pX(t)]〉 (3)

where 〈ln[pX(t)]〉 is the temporal ensemble mean of ln[pX(t)],
and “X” indicates the chosen estimation method of RSD
parameters.

Both the matrices D and the Gaussian noise ε can be
retrieved from the estimated RSD parameter time series (see
[14, Appendix B] for details). The Gaussian noise ε is described
through its autocovariance matrix Sε of the Gaussian white
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TABLE V
RMSE VALUES BETWEEN ESTIMATED AND SYNTHESIZED AUTOCOVARIANCE FUNCTIONS OF THE RSD PARAMETERS AND RAIN RATE

noise error. In order to allow a practical implementation of the
proposed autoregressive model through (2) and, at the same
time, to limit the length of this paper, the matrices D(1) and Sε

for the order L = 1 are given below for some selected climatic
zones, which are the U.K., ATH, JPSBS, and Florida data sets,
respectively:

D(1) =

⎡

⎣

0.8595 −0.2858 −0.1008
0.0071 0.9475 0.0286
−0.0356 −0.0556 0.8171

⎤

⎦

Sε =

⎡

⎣

0.3202 −0.0576 0.0772
−0.0576 0.0208 −0.0227
0.0772 −0.0227 0.1792

⎤

⎦ (4)

D(1) =

⎡

⎣

0.8716 −0.5401 −0.2398
0.0149 0.9688 0.0271
−0.0354 −0.5219 0.6176

⎤

⎦

Sε =

⎡

⎣

0.2992 −0.0508 0.0854
−0.0508 0.0190 −0.0295
0.0854 −0.0295 0.1286

⎤

⎦ (5)

D(1) =

⎡

⎣

0.9070 −0.2587 −0.0640
0.0119 1.0024 0.0145
−0.0212 −0.3025 0.7808

⎤

⎦

Sε =

⎡

⎣

0.1825 −0.0364 0.0736
−0.0364 0.0153 −0.0214
0.0736 −0.0214 0.1660

⎤

⎦ (6)

D(1) =

⎡

⎣

0.8711 −0.0672 −0.1293
0.0279 0.8775 0.0187
0.0447 −0.0572 0.6045

⎤

⎦

Sε =

⎡

⎣

0.4699 −0.0668 0.2033
−0.0668 0.0280 −0.0268
0.2033 −0.0268 0.3527

⎤

⎦ (7)

The mean subtraction in (3) holds under the assumption,

valid in this work, of considering the WPs and then the RSD

parameters p as a quasi-stationary process. In addition, to avoid

the log-transform failure for negative values of µ, in (3), we

have added to µ the absolute value of its minimum so that

the translated µ is positive defined (when inverting (3), this

translation must be corrected).

The choice of developing the VAR algorithm in (2) by

using the logarithm of p(t), instead of directly using p(t),
has been prompted by the consideration that: 1) under the

hypothesis that the joint probability density function (pdf) of

the estimated RSD parameters p follows a log-normal distrib-

ution, the estimated zX(t) time sequence follows a Gaussian

distribution; this is a characteristic required to apply an autore-

gressive model under the Gaussian hypothesis on ε(t), and 2)

as shown in [13], the rainfall process in logarithmic coordinates

can be regarded as a stationary Gaussian process. Indeed, the

Gaussian assumption on the RSD parameters in the logarithmic

plane seems to be confirmed by a visual inspection of Fig. 5,

where the marginal pdf’s of the RSD parameters are shown

with the gray color. To keep the figure comprehensible, we

limited our attention on the U.K., ATH, JPSBS, and Florida

data sets.
In summary, to generate a time series of correlated RSD

parameters, (2) has to be iterated for a given number of time
steps [14]. This number nt of steps is provided, every time
the RSD generator is in a wet state, by a value extracted from
the Pareto duration distribution fp. The Pareto pdf for a given
duration T is described as

fp(T ) = a(ba) · T−(a+1) for T ≥ b (8)
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where a and b are the parameters of the distribution. The
choice of modeling the duration of DPs and WPs with a Pareto
distribution is due to the fact that it fits better, in terms of the
RMSE between the measured and synthesized WP and DP dis-
tributions, than other tested distributions such as exponential,
log normal, gamma, and Weibull. From the definition given in
Section II-A for WPs and DPs, the latter must have durations
of, at least, 10 min and 1 min, respectively. As a result, the pa-
rameter b in (8) is equal to 10 for WPs and 1 for DPs, whereas
the values of the parameter a are listed in Table IV for all
considered climatic zones. On the other hand, within each DP,
void values of RSD parameters p(t) have been considered to
describe the no-rain events. The overall procedure is named
VARMS.

B. Results

In order to asses its features, VARMS is tested, taking as

input the time series of RSD parameters estimated for the

various climatological regimes considered in this work. The

output of VARMS (i.e., the synthesized time series of RSD

parameters) is discussed in terms of the autocovariance prop-

erties and distributions of RSD parameters. Figs. 5 and 6 show

examples of the properties of the synthesized RSD parameters

and rain rates from the U.K., ATH, JPSBS, and Florida data

sets. A point to note is that VARMS can reproduce, with a good

agreement, the distributions of the estimated Nw, Dm, µ, and

rain rate R (see Fig. 5), the latter being retrieved by computing

the moment of order 3.67 of (1).

On the other hand, in Fig. 6, the normalized autocovariance

function of the synthesized WP time series is plotted in the case

of the orders from L = 1 (red dotted lines) and L = 8 (blue

dotted lines). VARMS reconstruction follows the measured

data (gray lines) with a discrete accuracy up to 10 min for

Nw, Dm, or R. Indeed, for the Florida data set, we note that

the autocovariance curves of synthesized R are all positioned

below the measured ones, and this behavior indicates that in

this case, VARMS techniques cannot accurately reproduce the

correlation of the data. This conclusion can be supported by the

fact that the Florida data show a high temporal variation of Nw,

Dm, and µ (see how the autocorrelation functions of the Florida

RSD parameters rapidly decrease with respect to the other data

sets), which results in being difficult to follow.

In addition, we observe that in the case of JPSBS, shown in

the same figure, the correlation of µ is not well captured, and

this may be probably due to the fact that it is difficult, in some

cases, to reproduce the high variability shown by the shape

parameter µ with respect to the other parameters. Figs. 5 and 6

seem to indicate that as the order L of the VAR process in-

creases, the autocovariance function of RSD parameters and the

rain rate are better described (see Fig. 6) but without any appre-

ciable improvement on their distributions (see Fig. 5). An error

analysis between the measured and synthesized autocovariance

functions for orders of the VAR process ranging from one to

eight and for all available disdrometric data sets has revealed

that the optimum order Lopt oscillates between five and eight.

This can be observed in more detail in Table V, where the values

of the RMSE between the measured and synthesized autoco-

variance functions for the four selected climatic ones are listed.

Fig. 7. Distributions of (gray lines) measured and (blue dotted line) synthe-
sized (left panel) WPs and (right panel) DPs extracted from the U.K., JPSBS,
Florida, and ATH data sets.

To qualitatively show the ability of VARMS to reproduce the

intermittent behavior of the rainfall process, the synthesized and

measured WP and DP distributions are shown in Fig. 7 for some

examples extracted from the U.K., ATH, JPSBS, and Florida

data sets. In this figure, it seems that the Pareto distribution

describes well the WP and DP distributions, respectively. Be-

haviors similar to those shown in Fig. 7 have been found for the

other data sets.

Finally, to further investigate the performances of VARMS,

the estimated and synthesized RSD parameters with L = 7 for

the U.K., ATH, JPSBS, and Florida data sets have been com-

pared to each other and shown in Fig. 8 as scatterplots. By vi-

sual inspection of the plots in this figure, we can appreciate how

VARMS is able to generate time sequences where the inverse

proportional relationship between the intercept parameter Nw

and the mean diameter Dm, evidenced in Fig. 3 for all mea-

sured RSD spectra, seems to be properly reproduced. The

relationships between the other parameters (i.e., Dm versus µ
and Nw versus µ) are not always reproduced with excellent

accuracy but some exception are possible (e.g., Dm versus µ
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Fig. 8. Scatterplots of (blue markers) synthesized and (gray markers) estimated RSD parameters Nw , Dm, and µ using VARMS, which has been driven with
(from the left to the right) the U.K., JPSBS, Florida, and ATH data.

for JPSBS and ATH). The capability of VARMS to reproduce

the mutual correlation of the temporal evolution of the three

RSD parameters, particularly Dm and Nw, is, in some way,

expected given the fairly good agreement in reproducing, in

most cases and at least up to time lags of about 10 min, the

measured autocovariance functions shown in Fig. 6. The afore-

mentioned conclusions can be also extended to all other disdro-

metric data sets.

V. CONCLUSION

A large set of disdrometer measurements, collected in the pe-

riod from 2001 to 2006 in the U.K., Japan, the U.S., and Greece

have been analyzed in this work. The governing parameters of

the normalized gamma distribution have been estimated using

four methods: 1) the consolidated GM; 2) TGM; 3) ML1; and

4) ML3. The results of the comparison between these four RSD

estimation methods have shown that they may lead to quite

different results, and ML1 may represent a good compromise

for estimating RSD higher order moments.

The characteristics of the various climatologic regions have

been shown, and after a convective–stratiform classification

procedure, a marked separation between these two classes has

been found in the plane 〈Dm〉, 〈log10 Nw〉. Based on RSD

ML1-based estimation, a stochastic VAR model (VARMS) has

been developed to randomly synthesize (generate) time series of

normalized gamma RSD parameters. The performance of this

model has been discussed in terms of autocovariance functions,

marginal probability distributions, and intermittence properties

of the generated RSD parameters. Further development of this

work should be focused on the improvement of rain classifica-

tion and to the extension of RSD generation to a spatial domain.

A tentative work about the latter point can be found in [15].

REFERENCES

[1] C. W. Ulbrich and D. Atlas, “Rainfall microphysics and radar properties:
Analysis methods for drop size spectra,” J. Appl. Meteorol., vol. 37, no. 9,
pp. 912–923, Sep. 1998.

[2] D. Atlas, C. W. Ulbrich, F. D. Marks, Jr., E. Amitai, and C. R. Williams,
“Systematic variation of drop size and radar-rainfall relation,” J. Geophys.

Res., vol. 104, no. D6, pp. 6155–6169, 1999.
[3] A. Tokay, A. Kruger, W. F. Krajewski, P. A. Kucera, A. Jose, and P. Filho,

“Measurements of drop size distribution in the southwestern Amazon
basin,” J. Geophys. Res., vol. 107, no. D20, 8052, 2002.

[4] V. N. Bringi, V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and
M. Schoenhuber, “Raindrop size distribution in different climatic regimes
from disdrometer and dual-polarized radar analysis,” J. Appl. Meteorol.,
vol. 60, no. 2, pp. 354–365, Jan. 2003.

[5] E. A. Brandes, G. Zhang, and J. Vivekanandan, “Comparison of polari-
metric radar drop size distribution retrieval algorithms,” J. Atmos. Ocean.

Technol., vol. 21, no. 4, pp. 584–598, Apr. 2004.
[6] T. Maseng and P. M. Bakken, “A stochastic-dynamic model of rain atten-

uation,” Int. J. Satell. Commun., vol. 29, no. 5, pp. 660–669, 1981.
[7] J. Testud, S. Oury, R. A. Black, P. Amayenc, and X. Dou, “The concept of

‘normalized’ distribution to describe raindrop spectra: A tool for cloud
physics and cloud remote sensing,” J. Appl. Meteorol., vol. 40, no. 6,
pp. 1118–1140, Jun. 2001.

[8] V. N. Bringi and V. Chandrasekar, Polarimetric Doppler Weather Radar:

Principles and Applications. Cambridge, U.K.: Cambridge Univ. Press,
2001.

[9] J. Vivekanandan, G. Zhang, and E. Brandes, “Polarimetric radar estima-
tors based on a constrained gamma drop size distribution model,” J. Appl.

Meteorol., vol. 43, no. 2, pp. 217–230, Feb. 2004.
[10] A. Berne and R. Uijlenhoet, “A stochastic model of range profiles

of raindrop size distributions: Application to radar attenuation correc-
tion,” Geophys. Res. Lett., vol. 32, no. 10, pp. L10 803.1–L10 803.4,
May 2005.

[11] M. Maki, T. D. Keenan, Y. Sasaki, and K. Nakamura, “Characteristics
of the raindrop size distribution in tropical continental squall lines ob-
served in Darwin,” J. Appl. Meteorol., vol. 40, no. 8, pp. 1393–1412,
Aug. 2001.

[12] R. Lawrence Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–
286, Feb. 1989.

[13] D. Veneziano, R. L. Bras, and J. D. Niemann, “Nonlinearity and self-
similarity of rainfall in time and a stochastic model,” J. Geophys. Res.,
vol. 101, no. D21, pp. 26 371–26 392, 1996.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 1, 2008 at 09:14 from IEEE Xplore.  Restrictions apply.



MONTOPOLI et al.: STATISTICAL CHARACTERIZATION AND MODELING OF RAINDROP SPECTRA TIME SERIES 2787

[14] M. Montopoli, F. S. Marzano, and G. Vulpiani, “Analysis and synthesis of
raindrop size distribution time series from disdrometer data,” IEEE Trans.

Geosci. Remote Sens., vol. 46, no. 2, pp. 466–478, Feb. 2008.
[15] F. S. Marzano and M. Montopoli, “Microwave modelling of rain attenu-

ation fields using disdrometer measurements and stochastic methods,” in
Proc. EuCAP, Nov. 2007, pp. 1–5.

Mario Montopoli received the Laurea degree
in electronic engineering from the University of
L’Aquila, L’Aquila, Italy, in 2004. He is currently
working toward the Ph.D. degree in radar meteo-
rology in a joint program between the University
of Basilicata, Potenza, Italy, and the University of
Rome “La Sapienza,” Rome, Italy.

In 2005, he joined the Center of Excellence
(CETEMPS), University of L’Aquila, as a Research
Scientist on ground-based radar meteorology, with a
special focus on C-band applications and processing

techniques. Since 2006, he has also been a Research Assistant with the
Department of Electrical Engineering and Information, University of L’Aquila.

Frank Silvio Marzano (S’89–M’99–SM’03) re-
ceived the Laurea degree (cum laude) in electrical
engineering and the Ph.D. degree in applied
electromagnetics from the University of Rome
“La Sapienza,” Rome, Italy, in 1988 and 1993,
respectively.

After being a Lecturer with the University of
Perugia, Perugia, Italy, in 1997, he joined the De-
partment of Electrical Engineering and cofounded
the Center of Excellence (CETEMPS), University of
L’Aquila, L’Aquila, Italy, where he is currently the

Vice Director. In 2005, he joined the Department of Electronic Engineering,
University of Rome “La Sapienza,” where he teaches courses on antennas and
remote sensing. He is the author of more than 70 papers in international refereed
journals and more than 120 extended abstracts in conference proceedings. His
current research concerns passive and active remote sensing of the atmosphere
from ground-based, airborne, and spaceborne platforms, with a particular
focus on precipitation using microwave and infrared data, development of
inversion methods, radiative transfer modeling of scattering media, and radar
meteorology issues. He is also involved in radio-propagation topics in relation
to incoherent wave modeling, scintillation prediction, and rain fading analysis
along satellite microwave links.

Dr. Marzano is a member of the Italian Society of Electromagnetics (SIEM).
He received the Young Scientist Award of the Twenty-Fourth General Assem-
bly of the International Union of Radio Science (URSI) in 1993. In 1998,
he received the Alan Berman Publication Award (ARPAD) from the Naval
Research Laboratory, Washington, DC. Since 2001, he has been the Italian
National Delegate for the European Cooperation in the Field of Scientific and
Technical Research (COST) Action 720 on atmospheric profiling by ground-
based remote sensing and Action 280 on satellite fade mitigation techniques.
Since January 2004, he has been acting as an Associated Editor of the IEEE
GEOSCIENCE REMOTE SENSING LETTERS. In 2004 and 2006, he was a Co-
Guest Editor of the Special Issues on MicroRad for the IEEE TRANSACTIONS

ON GEOSCIENCE AND REMOTE SENSING.

Gianfranco Vulpiani received the Laurea degree in
physics and the Ph.D. degree in radar meteorology
from the University of L’Aquila, L’Aquila, Italy, in
2001 and May 2005, respectively.

In 2001, he joined the Department of Physics and
the Center of Excellence (CETEMPS) at the Univer-
sity of L’Aquila, as a Research Scientist on ground-
based radar meteorology, with a special focus on
C-band applications and polarimetric applications.
He was a Visiting Scientist with Colorado State
University, Fort Collins, during 2004. In February

2006, he was with the Météo-France radar group as a Postdoctoral Research
Scientist within the framework of the European project FLYSAFE. Since March
2007, he has been with the Italian Department of Civil Protection, Rome, Italy,
working on the national radar network management and development within the
national early-warning system for multirisks management. He is a Reviewer for
several international journals in remote sensing topics.

Marios N. Anagnostou (S’01–M’04) received the
B.S. and M.Eng. degrees in electrical engineering
from York University, Toronto, ON, Canada, and the
Ph.D. degree in environmental engineering from the
University of Connecticut, Storrs.

He is currently a Contractor Research Associate
with the Institute for Inland Waters, Hellenic Center
for Marine Research, Anavissos, Greece. His main
research experience and interests are in rainfall mi-
crophysics and precipitation remote sensing on the
basis of new radar remote-sensing systems such as

X-band dual polarization (polarimetric). He has participated in numerous in-
ternational field experiments, deploying mobile dual-polarization radar. Lately,
he has been involved in underwater acoustics for quantitative estimation of rain
and wind. He has authored or coauthored more than 13 journal papers in the
areas of dual polarization, radar rainfall estimation, and hydrometeorological
applications.

Emmanouil N. Anagnostou received the B.S. de-
gree in civil and environmental engineering from the
National Technical University, Athens, Greece, and
the M.S. and Ph.D. degrees from the University of
Iowa, Iowa.

He is currently the Team Leader of a Marie Curie
Excellence Team with the Institute of Inland Waters,
Hellenic Center for Marine Research, Anavissos,
Greece, and an Associate Professor with the De-
partment of Civil and Environmental Engineering,
University of Connecticut, Storrs. His research is on

precipitation estimation from space and ground-based sensors and the optimum
assimilation of remote sensing data in atmospheric and hydrological models for
the prediction of floods and other hydrological variables.

Dr. Anagnostou is a member of the Precipitation Constellation Subgroup,
International Committee on Earth Observation Satellites, and of NASA’s Inter-
national Precipitation Science Team. He is the recipient of several prestigious
awards, including the 1999 NASA Earth Sciences Directorate New Investigator
Award, the 2002 NSF Geosciences Program CAREER Award, and the 2003
Outstanding Junior Faculty Award by the School of Engineering of the Uni-
versity of Connecticut. He is also the recipient of two top-level international
awards: the 2002 EGU Plinius Medal for outstanding achievements in the field
of natural hazards and important interdisciplinary activity involving remote
sensing and hydrometeorological research areas and the 2005 Marie Curie
Excellence Award in recognition to pioneering work on precipitation remote
sensing and his innovations in multisensor global rainfall measurement.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 1, 2008 at 09:14 from IEEE Xplore.  Restrictions apply.


