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Abstract—Business-critical workloads—web servers, mail
servers, app servers, etc.—are increasingly hosted in virtualized
datacenters acting as Infrastructure-as-a-Service clouds (cloud
datacenters). Understanding how business-critical workloads de-
mand and use resources is key in capacity sizing, in infras-
tructure operation and testing, and in application performance
management. However, relatively little is currently known about
these workloads, because the information is complex—large-
scale, heterogeneous, shared-clusters—and because datacenter
operators remain reluctant to share such information. Moreover,
the few operators that did share data (e.g., Google and several
supercomputing centers) have enabled studies in business intel-
ligence (MapReduce), search, and scientific computing (HPC),
but not in business-critical workloads. To alleviate this situation,
in this work we conduct a comprehensive study of business-
critical workloads hosted in cloud datacenters. We collect 2 large-
scale and long-term workload traces corresponding to requested
and actually used resources in a distributed datacenter servicing
business-critical workloads. We perform an in-depth analysis
about workload traces. Our study sheds light into the workload of
cloud datacenter hosting business-critical workloads. The results
of this work can be used as a basis to develop efficient resource
management mechanisms for datacenters. Moreover, the traces
we released in this work can be used for workload verification,
modeling and for evaluating resource scheduling policies, etc.

I. INTRODUCTION

Spurred by a rapid development of hardware and of resource

management techniques, cloud datacenters are hosting an

increasing number of application types. Over a billion people

access daily a diverse collection of free or paid cloud utilities,

from search to financial operations, from online social gaming

to engineering [1]. To continue the adoption of cloud datacen-

ters, and to improve the ability of the datacenter operators

to tune existing and to design new resource management

techniques, understanding of the workload characteristics and

the underlying datacenters is key for both datacenter operators

and for cloud service providers. Although some of the largest

datacenter operators, that is, Google, Facebook, Microsoft,

and Yahoo, have contributed small subsets of workload in-

formation that was used later in valuable studies [2]–[5], the

information they have contributed represents a relatively small

part of the cloud service market. To better understand the

workloads of cloud datacenters, in this work we collect and

analyze workload traces from a distributed datacenter servicing

a fundamentally different workload, that of business-critical

applications of financial institutions and engineering firms.

The rapid adoption of cloud datacenters is leading to sig-

nificant changes in workload structure and, as a consequence,

in system design and operation. It is likely that datacenter

workloads are becoming increasingly data-intensive, which

may put increasingly more stress on the networking, storage,

and memory resources of the datacenter [6]. In a previous

study of tens of grid workloads [7], we have observed that the

workload units (jobs, requests, etc.) have decreased in size,

and increased in amount and possibly also interdependency,

over the last decade; this could be continued in cloud data-

centers [8]. In response, resource management techniques have

also evolved rapidly, with new approaches in computing [9],

networking [10], storage [11], and memory [12] management.

The characterization of workload traces is a long-established

practice that supports innovation in the design, tuning, and test-

ing of resource management approaches. A recent study [16]

uses the characteristics of workloads observed in the Mi-

crosoft datacenters to propose and validate an energy-efficient

scheduler. Others describe how workload characteristics could

help test the robustness of stateful cloud services [17], how

MapReduce workload traces could help understand the per-

formance of big data frameworks [3], how the characteristics

of traces could help the automated selection of the datacenter

scheduling policies [9], etc.

Although actual data and knowledge about workload char-

acteristics are often beneficial for datacenter operation, re-

markably few workload traces are publicly available or have

even been publicly characterized. Moreover, the few existing

examples, albeit seminal, are not comprehensive and, because

of their data source, may not be representative for the cloud

datacenter industry in general. Table I (which we will discuss

in detail in Section VI) presents an overview of several of

the highest-cited studies of cloud workload traces. Overall,

the traces originate from Google, Microsoft, and other giant

datacenter operators (column TS), and represent workloads

that may be typical for the MapReduce and other operations

specific to these companies (column Workload). We also

observe that few studies include information about requested

resources, and rarely include network and disk information at

all.

To address paucity of data and knowledge about datacenter

workloads, in this work we aim to characterize the workload

of a distributed datacenter servicing enterprise customers with

business-critical applications (detailed in Section II-A). We
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Table I
PREVIOUS WORK IN WORKLOAD TRACE ANALYSIS, IN CONTRAST TO THIS STUDY. THE TRACE SOURCE (TS) COLUMN: F=FACEBOOK, C=CLOUDERA,

G=GOOGLE, Y=YAHOO, T=TAOBAO, I=IBM, BB=BITBRAINS. NODES (N) COLUMN: N COUNTS THE PEAK NUMBER OF VMS; K INDICATES

THOUSANDS OF ITEMS. THE TRACES (TR) COLUMN LISTS THE NUMBER OF TRACES. TIME (T) COLUMN: Y/M/D STAND FOR YEAR/MONTH/DAY.
RESOURCES: MEM=MEMORY, NET=NETWORK.

Scale Requested resources Used resources

Study TS Workload N Tr T CPU Mem CPU Mem Disk Net

Chen et al. [13] F/C MapReduce 5k 7 1 y — — yes — yes —

Reiss et al. [2] G Mixture 12.5k 1 1 m yes yes yes yes — —

Chen et al. [3] F/Y MapReduce 2.6k 2 7 m — — yes — yes —

Mishra et al. [6] G Mixture ? 5 4 d — — yes yes — —

Ren et al. [14] T MapReduce 2k 1 2 w — — yes yes yes yes

Di et al. [8] G Grid vs Google 12.5k 1 1 m — yes yes yes — —

Birke et al. [15] I Industry workloads ?k 1 2 y yes yes yes yes yes —

This study BB Business critical 1.75k 2 4 m yes yes yes yes yes yes

analyze the requested and used resource in (Section III, IV,

and V), and discuss the limitations and implications of our

work (Section VII). Our work can be used as a basis to

build workload models, resource usage predictors, efficient

datacenter schedulers, etc. Our major contribution is four-fold:

1) We collect long-term and large-scale workload traces

from a distributed cloud datacenter (Section II). The

traces include information about CPU, memory, disk I/O,

and network I/O. We make available these traces through

the public Grid Workloads Archive [18]1.

2) We analyze the basic statistics of the requested and

actually used resources (Section III). We report the basic

statistics, such as quartiles, mean, and standard deviation.

We also contrast the basic statistics of business-critical

traces with those of parallel production environments,

grids, and the search and data-mining workloads of

Google, Microsoft, etc.

3) We investigate the time-patterns occurring in the resource

consumption (Section IV). Specifically, we investigate the

peak to mean ratio in resource usage, which we compare

with previous datacenter data, and conduct an autocorre-

lation study of each of the recorded characteristics.

4) We conduct a correlation study to identify possible re-

lationships between different resources (Section V). We

also contrast the results with results of previous datacenter

studies.

II. DATASET COLLECTION AND METHOD OF

CHARACTERIZATION

In this section, we introduce two traces representative for

business-critical workloads collected from a distributed cloud

hosting datacenter. We also present a method for characterizing

such traces.

A. A Typical Cloud-Hosting Datacenter for Business-Critical

Workloads

In this work, we study operational traces representative for

business-critical workloads, that is, workloads comprised of

applications that have to be available for the business to not

suffer significant loss. We define business-critical workloads as

the user-facing and back-end services whose downtime or even

1These traces can be accessed at http://gwa.ewi.tudelft.nl/datasets/Bitbrains

just low performance will lead to loss of revenue, of produc-

tivity, etc., and may incur financial loss, legal action, and even

customer departure. Business-critical workloads often include

applications in the solvency domain, these are often Monte-

Carlo simulation based financial modeling applications. Other

applications that characterize business-critical workloads are

email, database, CRM and collaborative, and management

services. By nature, business-critical workloads are signif-

icantly different from the applications that are running in

datacenters used by Google’s web search/services and data

analysis workload [2], and by Microsoft’s Messenger, shared

cluster, and Azure [4] datacenters. (Our study quantifies this

difference.)

A typical mid-size datacenter hosting business-critical work-

loads is managed by Bitbrains, which is a service provider

that specializes in managed hosting and business computation

for enterprises. Customers include many major banks (ING),

credit card operators (ICS), insurers (Aegon), etc. Bitbrains

hosts applications used in the solvency domain; examples

of application vendors are Towers Watson and Algorithmics.

These applications are typically used for financial reporting,

which is used predominately at the end of financial quarters.

The workloads are typically of a master worker model where

the workers are used to calculate Monte-Carlo simulations.

For example, a customer would request a cluster of compute

nodes to run such simulations. The following requirements

would come with this request: data-transfers between the

customer and the datacenter via secure channels, compute

nodes leased as virtual machines (VM) in the datacenter

that deliver predictable performance, and high availability for

running business-critical simulations.

The studied datacenter used VMwares vCloud suite to host

virtualized computing resources for its customers. Bitbrains

uses the standard VMware provisioning mechanisms such

as Dynamic Resource Scheduling and Storage Dynamic Re-

source Scheduling to manage computing resources. One of

the policies is that memory is not over-committed, this means

that a VM can get a guarantee on the amount of memory

it request. BitBrains use a power policy, high Performance,

which maximizes performance, using no dynamic frequency

scaling features. It keeps the physical and the virtual CPU in

the highest speed. For the pricing, Bitbrains adopts models



3

Table II
BUSINESS-CRITICAL WORKLOAD TRACES COLLECTED IN THIS WORK.

Name of the trace # VMs Period of data collection Storage technology Total memory Total cores

fastStorage 1,250 1 month SAN 17,729 GB 4,057

Rnd 500 3 months NAS and SAN 5,485 GB 1,444

Total 1,750 5,446,811 CPU hours 23,214 GB 5,501

which can be usage-based or subscription-based.

In general, Bitbrains hosts three types of VMs: management

servers, application servers, and compute nodes. Management

servers are used for the daily operation of customer environ-

ments (e.g., firewalls). Examples of application servers are

database servers, web servers, and head-nodes (for compute

clusters). Compute nodes are mainly used to do simulation and

other compute-intensive computation, such as Monte-Carlo-

based financial risk assessment.

B. Collected Traces

From the distributed datacenter of Bitbrains, we collect two

traces of the execution of business-critical workloads. For this

we use the monitoring and management tools provided by

VMware, such as vCloud suite. For each trace, the vCloud

Operation tools record 7 performance metrics per VM, sam-

pled every 5 minutes: the number of cores provisioned, the

provisioned CPU capacity, the CPU usage (average usage of

CPU over the sampling interval), the provisioned memory

capacity, the actual memory usage (the amount of memory that

is actively used), the disk I/O throughput, and the network I/O

throughput. Thus, we obtain traces that cover both requested

and actually used resources, for four resource types (CPU,

memory, disk, and network).

We collect between August and September 2013 two traces,

whose overview we present in Table II. Combined, the traces

accumulate data for 1,750 nodes, with over 5,000 cores and

20 TB of memory, and operationally acumulate over 5 million

CPU hours in 4 operational months; thus, they are long-term

and large-scale time series. The first trace, fastStorage,

consists of 1,250 VMs that are connected to fast storage

area network (SAN) storage devices. The second trace, Rnd,

consists of 500 VMs that are either connected to the fast SAN

devices or to much slower Network Attached Storage (NAS)

devices. The fastStorage trace includes a higher fraction

of application servers and compute nodes than the Rnd trace,

which is due to the higher performance of the storage attached

to the fastStorage machines. Conversely, for the Rnd
trace we observe a higher fraction of management machines,

which only require storage with lower performance and less

frequent access.

The two traces include a random selection of VMs from

the Bitbrains datacenter, using a uniform distribution for

the probability of selecting each VM. This is motivated by

the need to guarantee the absolute anonymity of individual

Bitbrains customers and to not reveal the actual scale of the

Bitbrains infrastructure. A similar process is used by related

work presenting the workloads of Google [2], [8], where the

anonymization is achieved through a normalization of resource

scales and by a selection of only a part of the infrastructure;

in contrast, our study is more revealing, in that it presents the

full characteristics of the virtualized resources.

Our traces do not include data about arrival processes, which

in a cloud datacenter could be used to describe the lifetime of

user jobs or of VMs. We investigate in this work resource

consumption, which replaces the notion of user jobs with

resource usage counters (this also protects the anonymity of

Bitbrains’ users and is in line with the approach adopted by

many previous studies [2], [8]). For VMs, business critical

workloads often use the same VMs for long periods of time,

typically over several months. Thus, we do not have a proper

arrival process to report on (the VMs we study run throughout

the duration of our traces).

C. Method for Workload Characterization

We conduct in this work a comprehensive characterization,

of both requested and actually used resources, and using data

corresponding to CPU, memory, disk, and network resources.

Although VMs may change configuration during the trace, the

chance of this happening is rare in our trace (under 1%), so

we show only the initial configuration of each VM present in

our traces.

For the statistical characterization we use in this study three

main statistical instruments: basic statistics, correlations, and

time-pattern analysis. For the basic statistics, we report the

min and the max, the quartiles, the mean and the standard

deviation (SDev), and the unitless “Coefficient of variation”

(CoV, defined as the ratio of standard deviation and mean).

We also report the cumulative distribution function (CDF) of

the values observed for all VMs, and for the CoV observed per

VM (a measure of dynamicity that extends previous work [2]).

To identify time patterns in our time series, we analyze

for each resource type the aggregate usage over time, by

summing, each hour, the average resource usage observed for

all the VMs. This aggregate resource usage can be used to

assist resource capacity planning. We plot the auto-correlation

function (ACF, a strong indicator for the existence repeating

patterns) of the workload traces for each aggregate resource

usage. In addition, we analyze dynamicity [2], expressed as the

ratio of peak to mean values, which we compute for hourly

and daily intervals.

To understand the dependency between the different re-

sources, and between requested and used resources, we look

at two traditional instruments: the Pearson correlation coeffi-

cient (PCC), which measures the linear relationship between

two variables, and the Spearman rank correlation coefficient

(SRCC), which measures the dependence between two ranked

series (e.g., ranked by time). We report here overall results that

summarize all VMs but also, where the process is dynamic

(e.g., resource usage), the CDF and the probability density

function (PDF).
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STATISTICS OF REQUESTED AND USED RESOURCES FOR BITBRAINS, AND REQUESTED CPU CORES (WHICH AS THE SAME AS USED) FOR GRID AND

PARALLEL TRACES. THE SAME INFORMATION IS VERY DIFFICULT TO ASSEMBLE FOR THE STUDIES LISTED IN TABLE I.

Trace source Properties Mean Min Q1 Median Q3 Max CoV SDev

Bitbrains Memory requested [GB] 10.7 0.0 1.27 3.98 15.59 511 2.8 29.3

Bitbrains Memory usage [GB] 0.6 0.0 0.03 0.10 0.29 384 3.0 1.8

Bitbrains CPU requested [GHz] 8.9 2.4 2.93 5.20 10.40 86 1.3 11.1

Bitbrains CPU usage [GHz] 1.4 0.0 0.02 0.08 0.20 64 3.3 4.4

Bitbrains Disk, Read throughput [MB/s] 0.3 0.0 0.00 0.00 0.00 1,411 14.9 5.2

Bitbrains Disk, Write throughput [MB/s] 0.1 0.0 0.00 0.00 0.01 188 14.4 1.1

Bitbrains Network receive [MB/s] 0.1 0.0 0.00 0.00 0.00 859 11.3 0.7

Bitbrains Network transmit [MB/s] 0.1 0.0 0.00 0.00 0.00 3,193 24.0 1.5

Bitbrains CPU cores 3.3 1 1 2 4 32 1.2 4.0

Bitbrains Rnd CPU cores 2.8 1 1 2 4 32 1.1 2.9

Grid DAS2 [18] CPU cores 4.3 1 1 2 4 128 1.5 6.4

Grid Grid5000 [18] CPU cores 5.8 1 1 1 2 342 3.6 21.0

Grid NorduGrid [18] CPU cores 1.1 1 1 1 1 64 1.2 1.3

Parallel CEA Curie [19] CPU cores 713.3 1 4 32 256 79,808 5.8 4,116.7

Parallel LLNL Atlas [19] CPU cores 423.4 8 8 64 256 9,120 2.9 1,249.0

III. RESOURCE REQUESTED AND USAGE

In this section, we analyze in turn requested resources,

used CPU and memory resources, and used disk and net-

work resources. Understanding the basic statistics can lead

to interesting insights into the operation of the datacenter and

into the structure of business-critical workloads, and can help

create benchmarks and tune resource-management approaches.

Table III summarizes the results, which are further analyzed

in this section. For Bitbrains, unless otherwise specified we

present here only results obtained for the fastStorage
trace; for Rnd results, which are very similar (for example,

see Figure 1), we refer to our technical report [20]. The main

findings are:

1) Over 60% of VM requests are for no more than 4 CPU

cores and 8 GB of memory (Section III-A).

2) The resource usage for most VMs is dynamic. The mean

CoV for resource usage range from around 1 to over 20.

The lowest CoV is observed for CPU and memory—CoV

values under 5 (Section III-B).

3) On average, VMs read 3 times more than write, and

use the network to send as much as they receive (Sec-

tion III-C).

A. Requested Resources

In this section, we analyze the requested resources (only

CPU and memory, as disk and network do not record such

requests). We find that VMs in our traces require on average

similar amounts of CPU cores as typical grid workloads, that

most of VMs have modest requirements for CPU cores (at

most 4) and allocated memory (at most 8GB), and that power-

of-two requests are common.

First, we compare the CPU characteristics of VMs sup-

porting business-critical workloads (rows labeled Bitbrains in

Table III) and of representative traces from grid and parallel

production environments. The rows including “CPU cores”

in Table III list the number of CPU cores requested (and

reported as used by all resource managers) in these work-

loads: fastStorage and Rnd representing business-critical

workloads; the DAS2, Grid5000, and NorduGrid datasets

representing grid workloads [18]; and the CEA CURIE and
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Figure 1. CDF of the (left) number of requested CPU cores and (right)
amount of requested memory.

LLNL Atlas datasets representing production parallel work-

loads [19]. If we view the VM as the unit of submitting

workload, our workloads require, on average, slightly more

CPU cores than production grids (NorduGrid) and slightly

less cores than experimental grids (DAS2 and Grid5000),

but significantly less CPU cores than the parallel workloads.

We further characterize the requested resources, in terms of

number CPU cores and bytes of memory provisioned to each

VM. Figure 1 (left) shows the cumulative distribution function

(CDF) of the number of CPU cores requested per VM. For

both the number of CPU cores and the amount of memory our

results show that a large percentage (more than 60%) of VMs

have low requirements (2 or 4 CPU cores for our two traces,

and less than 8 GB of memory). Most VMs (over 90%) use

power-of-two cores.

Other studies [21] show the power-of-two scale-up behavior,

which seems to be historically an artifact of the architecture

of parallel architectures and algorithms. VMs in our datasets

use from 1 up to 32 cores, but over 85% VMs use at most 4

cores. On average, VMs in the Rnd dataset use slightly fewer

cores, which we ascribe to the higher density of management

VMs in the Rnd trace—typically, management VMs require

only 1, rarely more cores.

Regarding memory requirements, we observe similar pat-

terns as for CPU requirements. Figure 1 (right) shows the

CDF for the requested memory of each VM. Memory is often

provisioned in power-of-two quantities (around 90% for mem-

ory). For the fastStorage dataset, the requested memory

can range from 1GB to 512GB per VM, but most VMs use

a relatively small amount of memory: over 70% VMs use at
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Figure 2. CPU usage: (left) CDF for all VMs, and (right) CDF of CoV
observed per VM.
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Figure 3. Memory usage: (left) CDF for all VMs, and (right) CDF of CoV
observed per VM.

most 8 GB of memory. The VMs in the Rnd dataset demand

slightly less memory than in the fastStorage dataset,

which we ascribe again to the difference in management

VM density—typically, management VMs use 1GB or less

memory.

B. CPU and Memory Usage

In this section, we analyze the CPU and memory resource

usage, for which we report both the CDF observed across all

VMs, and the CDF of CoV observed per VM. We find that

CPU usage is low on average and can be dynamic, and much

lower (around 10% for most VMs) than the requested CPU

capacity. We also find that memory usage is even lower on

average but less dynamic than CPU usage.

We study first the CDF of CPU usage, across all VMs.

Figure 2 (left) shows the CDF, computed across all VMs,

from their observed CPU usage—first-quartile (Q1), mean,

third-quartile (Q3), and maximal (Max) CPU usage—and from

their requested CPU capacity (computed as the product of

the number of CPU cores and the speed of each core, e.g.,

4× 2.6GHz for 4 cores at 2.6 GHz each).

As Figure 2 (left) shows, for most (about 80%) VMs, the

mean CPU usage (curve “mean”) is lower than 0.5 GHz. Their

mean CPU utilizations are lower than 10%. Moreover, only

30% of VMs have a maximal usage higher than 2.8 GHZ.

In addition, only for less than 5% of VMs, their CPUs are

reasonable utilized: the mean CPU utilizations are higher than

50%. These observations suggest that for most VMs the usage

is low most of the time.

Figure 2 (right) indicates that half (50%) of the CoV for

CPU usage is lower than 1. This shows that, for half of VMs

in our traces, the CPU usage is stable and centered around

the mean—these VMs have predictable CPU usage. However,

there is still a significant amount (about 20%) of VMs whose

CoV for CPU usage is higher than 2—the CPU usage of these

VMs is dynamic and unpredictable.

We now study the CDF of memory usage, across all VMs.

We construct Figure 3 (left) similarly to Figure 2 (left), but

with data about used memory. We find that the memory
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Figure 4. CPU and memory usage over time.
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Figure 5. Disk read usage: (top) CDF for all VMs, and (bottom) CDF of
CoV observed per VM.

usage is low: on average, 80% of VMs use less than 1 GB

of memory, and most (about 80%) of VMs have maximal

memory usage lower than 8 GB of memory. In Figure 3 (left),

The large gap between the “mean” and the “max” curves

indicates that the peak memory usage of each VM is much

higher than its average usage; we investigate this in more detail

in Section IV-A.

Similarly to our study for CPU usage, we investigate next

the CDF of the CoV in the observed memory usage, per VM.

As Figure 3 (right) shows, the memory usage is less dynamic

than CPU usage: about 70% of VMs (vs only 50% for CPU

usage) have a CoV for memory usage lower than 1. A similar

observation has been reported for the Google trace [2].

It is interesting to study the CPU and memory usage,

together; their progress over time can indicate opportunities for

VM consolidation and datacenter efficiency. We depict these

metrics, over time, in Figure 4. We find that CPU utilization

is higher than memory utilization, which is the opposite of the

finding of Di et al. [8] for the Google trace. This may suggest

that memory resources are more over provisioned than CPU

resources in the studied datacenter.

C. Disk and Network Usage

Similarly to Section III-B, in this section we analyze the

disk and network resource usage. We find that most VMs have

bursty disk and network accesses.

We study the CDF of disk read usage, across all VMs,

which we depict in Figure 5 (left). We find that most of VMs

only read sporadically: about 95% of VMs reads disk with a

speed less than 0.1 MB/s 75% of the time. The mean value

and especially the maximal value of disk reads of most VMs

is much higher than the Q3 value, which indicates that disk

reads are bursty. The CDF for CoV of disk reads is plotted in

Figure 5 (right). The disk read usage is much more dynamic

than the CPU usage: about 50% of VMs have their disk-read

CoV higher than 2. This may be due to application behavior,

e.g. backup tools may act periodically, financial modeling tools
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Figure 6. Disk write usage: (top) CDF for all VMs, and (bottom) CDF of
CoV observed per VM.
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Figure 7. Peak to Mean CPU usage, over time: (top) hourly data; (bottom)
daily data.

read large volumes of financial data into memory at the start

of simulations, etc.

Similarly to disk reads, we study now the disk write usage.

The results, which we depict in Figure 6 (left), are similar in

trend for disk reads and writes: most of VMs do not write

most of the time, but some VMs show very high peak disk

write usage. On average, each VM’s disk write usage is about

0.1 MB/s, which is about one third of the disk read usage

(0.3 MB/s). Comparing to disk reads, we observe that disk

writes are less dynamic, as shown in Figure 6 (right). Different

from [15], the disk activity of the Bitbrains workload are much

more dynamic.

Similarly to disk behavior analysis, we study the network

usage, expressed in terms of received and transmitted data.

On average, for most VMs the amount of data received or

transmitted over the network is low. About 80% of VMs

receive less than 30 KB/s and transmit less than 10 KB/s.

The large gap between the max and the other percentiles,

as observed per VM, indicates the bursty nature of network

traffic. The amounts of both the received and transmitted are

much more dynamic than the CPU usage.

In summary, a typical server in the studied datacenter have

rather low but highly variable CPU, memory, disk and network

usage. The variations of memory usage are lowest, whereas the

variation of disk activities are highest. Such information can

be used for designing resource schedulers. Furthermore, as

we shown in this section that there are quite a few differences

between the studied workload and others, optimal schedulers

designed specially for the workloads of [8], [15], may obtain

sub-optimal results for our studied workload.

IV. TIME-PATTERNS IN RESOURCE USAGE

In this section, we analyze the time patterns of resource

usages. Understanding the time patterns of the resource usages

can help to build smart predictors that estimate upcoming

resource usage, and can lead to improved datacenter efficiency.

The main findings are:

1) The aggregate resource usage of VMs fluctuates signifi-

cantly over time.

2) The peak CPU resource usage is 10–100 times higher

than the mean (Section IV-A).

3) CPU and memory resource usage can be predicted in

short-term.

4) The usage of disk I/O and network I/O show daily

patterns, for the fastStorage dataset. (Section IV-B).

A. Peak vs Mean Resource Usage

In this section, we analyze how dynamic the business-

critical workloads are, and contrast our findings with previ-

ously described workloads. To this end, following [2], [22] we

study the peak and mean resource usage, and their ratio, over

time. We report both hourly and daily intervals, for all the re-

sources investigated in this work. (Previous studies report this

value of intervals that range from 30 seconds [4] to 1 day [2],

which makes it difficult to compare results across studies.)

Overall, we find that workloads in the studied datacenter is

much more dynamic than most previously described datacenter

workloads, and more in line with the volatile grid workloads.

This emphasizes the opportunity to design more efficient

resource management approaches, such as the dynamic change

of the number of active physical resources underlying the

leased VMs.

We begin with a focus on CPU usage. Figure 7 shows

the peak and mean CPU usage, and their peak-to-mean ratio,

per hour and per day. CPU usage fluctuates significantly

overtime. The daily peak usage can be 10 to 100 times higher

than the daily mean usage. This phenomenon is commonly

observed in other related workloads: in the Google trace (daily

peak-to-mean ratio: 1.3), in the Microsoft Azure trace (15

minute sample, peak-to-mean ratio 1.7), and in the Microsoft

Messenger trace (30 second sample, peak-to-mean ratio range

from 2.5 to 6.0). The peak-to-mean ratios observed in the

studied workload is even higher than the ratios observed in

these traces. Iosup et al. [22] analyze 5 grid traces and find

hourly peak-to-mean ratios of up to 1,000:1. Similarly, Chen

et al. [13] analyze 7 workload traces (from Facebook and

Cloudera) and find peak-to-mean ratios ranging from 9:1 to

260:1. These ratios are more in line with the ratios we observe.

Similarly to CPU usage, we analyze the other resources,

and find similarly high or even higher peak-to-mean ratios.

Both the hourly and daily ratios for disk-read usage are much

higher than the ratios observed for CPU usage: we observe

1:1000 and even 1:10,000 ratios. We find similar numbers for

disk-write usage [20]. Moreover, ratios for network-transmit

usage are in the same order of magnitude as for disk usage

(including the occasional 1:10,000).
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Figure 8. Auto-correlation function: (top) CPU usage and (bottom) Disk
read.

B. Time Patterns through Auto-correlation

In this section, we investigate the presence of time patterns

in the usage of resources observed for the studied datacenter.

To this end, we conduct an analysis using the auto-correlation

(ACF) tool. For all resources, we identify high ACF for small

lag, which indicates predictable resource usage in the short

term (that is, a few hours). We also find strong daily patterns

in disk and, somewhat less, in network activities.

We analyze the ACF for all types of resource usage, for lag

values from 0 hours up to 1 month, with 1-hour step. Figure 8

(top) depicts the ACF values for CPU usage. The ACF values

for the first 10 lags ranges, for all resource usage types, from

0.7 to 0.8, which is high and indicates strong auto-correlation.

This indicates that, for all resource usage types, the resource

usage is predictable in the short-term (up to a few hours). For

disk read, as is shown in Figure 8 (bottom), the ACF curve

has local peaks at lag multiples that correspond to days; this

indicates that the disk read has a strong daily pattern. We also

observe that the disk write and the network I/O follow daily

patterns, albeit less pronounced for the network I/O.

V. DEPENDENCY AMONG RESOURCES

Understanding the dependency between resources can help

researchers develop better VM consolidation techniques.

Based on the observation that the peak resource usage can be

much higher than mean resource usage, researchers propose

to allocate physical resources to VMs based on 95 percentile

of usages [23]. They overlook correlations between resource

usages of VMs, thus consolidated VMs may have higher

chances of being overloaded. Verma et al. [24] propose a

method which consolidate VMs based on the information

of correlation of CPU usage between VMs. However, they

only consider CPU resource, neglecting other resources, which

lead to sub-optimal VM consolidation. To achieve better VM

consolidation, an in-depth understanding of the dependency

between resource usages is needed.

In this section, we analyze the pair-wise dependency be-

tween the requested resources (e.g., requested CPU and mem-

ory), the dependency between the request and the actual

resource usage, and the pair-wise dependency between used

resources (e.g., between the CPU and memory usage). We

study the dependency using two correlations: PCC and SRCC

(described in Section II-C). The main findings are:

1) CPU and memory are strongly correlated for requests

(Section V-A), but much less correlated for usage (Sec-

tion V-B).

2) Request and use are very weakly correlated (Sec-

tion V-A).

A. Correlation of Requested Resources

In this section, we investigate the correlation between the

two types of requested resources, CPU and memory, and find

a strong correlation between them. We also investigate the

correlation between requested and used resources, and find a

very weak correlation.

For the fastStorage dataset, the PCC and SRCC be-

tween the number of CPU cores and memory are 0.81 and

0.90, respectively. For the Rnd dataset, the PCC and SRCC

are 0.82 and 0.85, respectively. This indicates that VMs

with high values for the requested CPU tend to also have

high values for the requested memory, especially for VMs in

the fastStorage dataset. We confirm this result through

an interview with the engineers of the studied datacenter,

confirming that operators of the datacenter typically maps

either 2 GB or 4 GB memory to a CPU core, depending on

the physical CPU-to-memory ratio of the underlying physical

infrastructure. For memory-intensive workloads, they set the

memory to 16 GB per core. At the other extreme of the

CPU-to-memory ratio, small VMs (1 GB or less memory) are

typically management VMs that are needed to operate the

customer environments.

For both the fastStorage and the Rnd datasets, the

requested and the used resources are weakly correlated. This

is indicated visually by the left plots of Figures 2, 3, and

Figure 4: the CPU and memory utilizations are low most of

the time.

B. Correlation of CPU and Memory Usage

We analyze the correlation of CPU usage and memory

usage, for which we report an average correlation. Because

both CPU and memory usage vary over time, we also report

CDFs and PDFs of the correlation observed over time, per VM.

We find strong correlation between high CPU and memory

usage, that is, VMs that exhibit high CPU usage are very likely

to also exhibit high memory usage. However, the temporal

correlation is much weaker: it is less likely that VMs exhibit

high CPU and memory usage at the same time. This gives,

for the future, interesting opportunities to host business-critical

workloads more efficiently inside the datacenter.

We analyze first the average correlation, that is, the corre-

lation between mean CPU and mean memory usage. For the

fastStorage dataset, the PCC and SRCC of the mean CPU

usage and mean memory usage, per VM, are 0.83 and 0.84,

respectively. For the Rnd dataset, the PCC and SRCC are 0.72
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Figure 9. Correlation between CPU usage and memory usage: (top) CDF
and PDF of PCC over time; (bottom) CDF and PDF of SRCC over time.
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Figure 10. Correlation between network receive usage and network transmit
usage: (top) CDF and PDF of PCC over time; (bottom) CDF and PDF of
SRCC over time.

and 0.83, respectively. This indicates that VMs with high CPU

usage tend to have high memory usage. Ren et al. [14] report

that for the Taobao system the PCC between CPU usage and

memory usage is 0.76, which falls within the same range as

our overall result.

Although the average correlation indicates strong correla-

tion, we observe that the temporal nature of both CPU and

memory usage requires more in-depth analysis. We thus report

CDFs and PDFs of the correlation observed over time, per

VM, e.g., we collect data about the CPU-memory correlation

for each sampling point (every 5 minutes, as indicated in

Section II-B), and we analyze the CDF and the PDF of this

dataset.

In Figure 9 we show the distribution of PCC and SRCC for

CPU usage and memory usage. The mean PCC for CPU and

memory usage for the fastStorage dataset is 0.4, this is

much lower than Ren et al. [14] report and also much lower

than we found if we compare CPU and memory required or

used on average.

C. Correlation of CPU and Other Resource Usage

To get a better understanding of correlations between the

usage of different resource types, we conduct a comprehensive

analysis of all the possible pair-wise combinations (as through-

out this work, the resource types considered are CPU, memory,

disk read, disk write, network transmit, and network receive).

We find low correlations between CPU usage and the usage of

other resource types, and even lower correlation between disk

and network resources. We also find that about 25% of VMs in

our study exhibit strong network transmit and network receive

correlation, but either strongly positive or strongly negative;

the remaining VMs exhibit the low correlation trend we have

observed for other resources.

The correlation between CPU usage and network receive

and network transmit is very low. The majority of the pair-

wise correlations between CPU usage and network usage are

between 0.0 and 0.5. These values are much lower than, for

example, the correlation values between 0.8 and 0.9 found for

the values for requested CPU and memory. The correlations

between disk read and network transmit are even lower than

what we observe for CPU usage, and the usage of disk and

network resources. This observation holds for all other pair-

wise correlations of disk and network usage.

Figure 10 shows the correlation between network transmit

and network receive. From the figure, we observe that for the

majority of VMs the correlation between sending and receiving

network traffic is very low. However, about 16% of VMs have

a strong positive correlation between sending and receiving

network traffic, and about 8% of VMs have a strong negative

correlation between sending and receiving network traffic. We

conclude that network receive and network transmit have more

diverse pattern of correlations than other resources.

VI. RELATED WORK

In this section we present a comprehensive comparison

between our and related work, along three axes: contributions

related to benchmark, contributions related to public datasets,

and contributions related to workload characterization in dat-

acenters.

Benchmark Our work collects the performance logs from

a production datacenter. The applications that hosted in the

datacenter are “blackboxes”, that is, we cannot reveal and

cannot change the exact behaviors of these applications. This

is different from benchmarking research, which selects repre-

sentative applications and input datasets, and executes the ap-

plications in controlled environments. For example, to evaluate

the performance of a big data system, the BigDataBench [25]

selects 19 workloads (e.g., Kmeans and PageRank) and real-

world (e.g., Wikipedia Entries) or synthetic datasets as the

benchmark workloads, and reports various performance met-

rics (e.g., integer operation intensity) by executing the work-

loads in the studied big data system.

Dataset release Our data release complements well the few

datasets that are publicly available. Many previous datacenter

studies have used the workloads of distributed systems, from

parallel [19] and grid [18] environments. The seminal Google

workload dataset [2], released in 2011, includes only CPU,

memory, and disk characteristics, and only normalized, rather

than actual, values. The public SWIM workloads repository

includes 5 workload traces, possibly extracted from publicly

characterized Facebook MapReduce traces [13], but very short

(only 1 day) and with no information about memory, network,
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or number of CPUs. We are not aware of other public datasets;

notably, from the important studies [15]. Our main contribution

here is the release of a dataset representative for a new type of

workload, that is, business-critical jobs in cloud datacenters.

Workload characterization Table I summarizes the com-

parison of previous studies with our work. Overall, our study is

derived from an averagely-sized dataset, but focuses on a dif-

ferent workload, and includes a more comprehensive resource

view (four types of resources, including the rarely studied

disk and network I/O). Our study also conducts a detailed

study of both requested and used resources, something that

most public datacenter-studies are lacking. We have already

compared throughout this work, whenever possible, the results

obtained in this work with results from previous studies.

Closest to our work, Reiss et al. [2] analyze the work-

loads of Google. They use a relatively limited dataset in

comparison to ours, the Reiss et al. study does not cover

disk and network I/O. Because the Google workloads do not

match the profile of business-critical applications, we observe

significantly different results. For example, in the Google trace,

the actual workload is relatively stable, whereas our results

indicate that CPU and memory workloads change frequently

for business-critical applications; we have indicated other

differences throughout this work. Birke et al. [15] analyze the

resource usage of VMs in several datacenters. The authors

characterize the CPU, memory, disk, and file system usage

per VM, and investigate the correlations between usage of

resources. However, their target workload is different from

ours, in that industrial workloads seem to have very different

characteristics from business-critical workloads; and do not

investigate the important network resource. Moreover, in the

Birke et al. study [15] all data are normalized and not pub-

licly available and most results are monthly averages, which

contrasts to our characterization goals and achievements.

Also related to our work, Di et al. [8] analyze the workloads

of Google (with the same dataset limitations as Reiss et

al. [2]) and compare them with Grid/HPC systems regarding

job length and host load, Mishra et al. [6] propose a workload

classification approach and apply it to a four-days trace from

a Google datacenter, Gmach et al. [5] analyze workload

demands in terms of number of CPUs from an HP datacenter,

Kondo et al. [26] characterize failure of desktop grids, and Jia

et al. [27] characterize some micro-architectural and OS-level

characteristics of data analysis workloads.

Other types of datacenter workloads are complemented by

our study: Chen et al. [3] analyze MapReduce traces from

Yahoo and Facebook regarding the input/output ratio, job

count, job submission frequencies, etc.; Guenter et al. [4]

analyze the workload traces from Microsoft’s Live Messenger,

Azure, and a shared computing cluster; Chen et al. [16]

analyze the workloads of login rates and connection counts

in Microsoft’s Live Messenger cluster; and Benson et al. [28]

study network-level traffic characteristics of datacenters.

VII. LIMITATIONS AND IMPLICATIONS

In this section we list limitations of this work and the

measures we take to mitigate them in Section VII-A, and then

we discuss how can datacenter researchers and practitioners

make use the findings of this works in Section VII-B.

A. Limitations

Dataset size: Unrepresentative datasets can lead to mis-

leading characterization. Compared to other workload traces

surveyed in this work (see Table I and Section VI), but not

necessarily public, our traces are of medium size, in both

the period and the number of nodes they cover. Our traces

are also of medium size in comparison with the public traces

collected from parallel [19] and grid [18] environments. Thus,

our results suffer from this set as much as results of studies

derived from other traces in the field. Because this information

is not publicly available, we can only argue that the datacenter

size we considered in this work is more common in the

industry as a whole than the Google, Facebook, and Microsoft

datacenters.

Data collection tools: The data collection tool can cast

doubts on the validity of the dataset. We rely on the tools

provided by VMware, which are currently used by thousands

of medium and large businesses, and thus can be considered

a de-facto industry standard.

Trustworthy analysis: Mistakes in analysis occur often, in

many fields of applied statistics. To alleviate this problem,

in lack of a validation study conducted by a third-party

laboratory, our statistical analysis is conducted by two of the

authors, independently; the results have matched fully. We also

release the data for public audit and open-access use.

Collaboration with an industry partner: Analysis in

which a participant has a vested interest could lead to biased

results. To alleviate this problem, in lack of a multi-party

industry consortium, we have collected and analyzed two

traces. We note that the studies presented in Section VI have

the same limitation, but most rely on a single trace.

B. Implications

Capacity planning of distributed systems rely heavily on

the usage of representative workloads [29], [30]. By study-

ing the evolution of the resource demands of VMs at each

datacenter, datacenter operators can well plan physical hosts

in advance to host VMs. In this work, we study the ACF

of resources, which can serve as a basic to build time-series

models (e.g,. auto-regressive model) to predict future resource

demands. Researchers can use our findings and the traces

we released to develop and verify their workload-prediction

models.

VM consolidation and migration In this work, we study

resource requests and demands for VMs, which can serve as a

basic to study VM consolidation [31], [32] and migration tech-

niques [33], [34]. We study the dependency across resource

by analyzing correlations between resource usages, a nega-

tive correlation implies opportunities for consolidation. The

information that provided in this work can be used to guide
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the experimental setup of simulation study regarding multi-

resource provisioning. Moreover, researchers can leverage our

trace to verify their consolidation techniques. We are building

a scheduler which migrate a VM to another physical host based

on the resource usages of the VM and loads of physical hosts.

VIII. CONCLUSION AND ONGOING WORK

Understanding the workloads of cloud datacenters is impor-

tant for many datacenter operations, from efficient capacity

planning to resource management. In this work, we collect

from a distributed datacenter hosting business-critical work-

loads 2 large-scale and long-term workload traces from 1,750

virtual machines. We analyze these traces for both requested

resources and actual resource usage, in terms of CPU, memory,

and disk I/O and network I/O; we also compare these findings

with previous studies of workloads from search datacenters,

parallel and grid environments, etc. Our main findings, from

the workloads we collected, as reported in this article and

detailed in a technical report [20], are:

1) More than 60% of VMs use less than 4 cores and 8 GB

of memory. There is a strong positive correlation between

requested CPU and memory.

2) Resource usage is low, under 10% of the requested

resources, and the correlation between requested and used

resources is also low.

3) Peak workloads can be 10–10,000 times higher than mean

workloads, depending on resource type.

4) The CPU and memory resource usage is often predictable

over the short-term. Disk and network I/O follow daily

patterns.

We are currently extending this work with more in-depth

statistical and time-series analysis, and further compare with

other workload studies. We plan to use the findings to improve

the datacenter-wide scheduler at Bitbrains.

Acknowledgement We thank our shepherd Jianfeng Zhan

at Chinese Academy of Science and the anonymous reviewers

for their suggestions to improve this paper. The work is

supported by the National Basic Research Program of China

under grant No. 2011CB302603 and No. 2014CB340303, by

the Veni@Large (11881), NWO KiEM KiESA and NWO

COMMiT COMMiSSiONER.

REFERENCES

[1] Schwiegelshohn, U,. Badia, Rosa M., Bubak , M. et al, “Perspectives
on grid computing,” FGCS 2010, vol. 26, no. 8, Oct. 2010.

[2] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in SoCC, 2012, p. 7.

[3] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “The case for eval-
uating mapreduce performance using workload suites,” in MASCOTS,
2011.

[4] B. Guenter, N. Jain, and C. Williams, “Managing cost, performance,
and reliability tradeoffs for energy-aware server provisioning,” in IN-

FOCOM, 2011, pp. 1332–1340.
[5] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload analysis

and demand prediction of enterprise data center applications,” ser.
IISWC 2007.

[6] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google compute
clusters,” SIGMETRICS Performance Evaluation Review, vol. 37, no. 4,
pp. 34–41, 2010.

[7] A. Iosup and D. H. J. Epema, “Grid computing workloads,” IEEE
Internet Computing, vol. 15, no. 2, pp. 19–26, 2011.

[8] S. Di, D. Kondo, and W. Cirne, “Characterization and comparison of
cloud versus grid workloads,” in CLUSTER, 2012, pp. 230–238.

[9] K. Deng, J. Song, K. Ren, and A. Iosup, “Exploring portfolio scheduling
for long-term execution of scientific workloads in iaas clouds,” in SC,
2013.

[10] O. Beaumont, L. Eyraud-Dubois, and H. Larchevêque, “Reliable service
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