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ABSTRACT

We consider the issue of characterizing the coherent large-scale patterns from cosmic mi-

crowave background (CMB) temperature maps in globally anisotropic cosmologies. The

methods we investigate are reasonably general; the particular models we test them on are

the homogeneous but anisotropic relativistic cosmologies described by the Bianchi classifica-

tion. Although the temperature variations produced in these models are not stochastic, they

give rise to a ‘non-Gaussian’ distribution of temperature fluctuations over the sky that is a

partial diagnostic of the model. We explore two methods for quantifying non-Gaussian and/or

non-stationary fluctuation fields in order to see how they respond to the Bianchi models. We

first investigate the behaviour of phase correlations between the spherical harmonic modes

of the maps. Then we examine the behaviour of the multipole vectors of the temperature

distribution which, though defined in harmonic space, can indicate the presence of a preferred

direction in real space, i.e. on the 2-sphere. These methods give extremely clear signals of the

presence of anisotropy when applied to the models we discuss, suggesting that they have some

promise as diagnostics of the presence of global asymmetry in the Universe.

Key words: methods: data analysis – cosmic background radiation – cosmology:

observations.

1 IN T RO D U C T I O N

Observations of the cosmic microwave background (CMB) provide

some of the most compelling support for the currently favoured

�CDM, or concordance, cosmological model. The concordance

framework predicts that the CMB should posses temperature fluc-

tuations which are both statistically isotropic (i.e. stationary over the

celestial sphere) and Gaussian (Guth & Pi 1982; Starobinskij 1982;

Bardeen, Steinhardt & Turner 1983). Measurements by the Wilkin-

son Microwave Anisotropy Probe (WMAP) (Bennett et al. 2003;

Hinshaw et al. 2009) have undergone extensive statistical analysis,

much of which has confirmed the concordance model but with some

indications of departures that may be significant; see e.g. Yadav &

Wandelt (2008). More specifically, there is some evidence for hemi-

spherical power asymmetry (Eriksen et al. 2004; Park 2004; Eriksen

et al. 2007; Hansen et al. 2009; Hoftuft et al. 2009) and also a Cold

Spot has been identified (Vielva et al. 2004; Cruz et al. 2005). In

other words there is some evidence of an anisotropic universe, i.e.

one in which the background cosmology may not be described by

the standard Friedman–Robertson–Walker (FRW) metric. Of course

the background cosmology for a non-isotropic universe may still be

⋆E-mail: shortj1@cardiff.ac.uk

described by the FRW metric, but this would require a non-standard

topology which we do not consider in this analysis.

The Bianchi classification provides a complete characterization

of all the known homogeneous but anisotropic exact solutions to

general relativity. The classification was first proposed by Bianchi

and later applied to general relativity (Ellis & MacCallum 1969).

Initial studies used the lack of large-scale asymmetry in the CMB

temperature to put strong constraints on the possible Bianchi models

(Barrow, Juszkiewicz & Sonoda 1985; Bunn, Ferreira & Silk 1996;

Kogut, Hinshaw & Banday 1997). However, simulations of the

CMB from Bianchi universes not only show a preferred direction,

but models with negative spatial curvature (such as the types V and

VIIh) can produce localized features (Barrow et al. 1985). So more

recently attention has shifted to reproducing a Cold Spot such as

that claimed to exist in the WMAP data. Initially, Type VIIh was the

favoured model to best reproduce the anomaly (Jaffe et al. 2005,

2006a,b), and this has subsequently been investigated quite thor-

oughly (McEwen et al. 2006; Pontzen & Challinor 2007; Bridges

et al. 2008; Pontzen 2009; Sung & Coles 2010), although more

recent work has also looked at the Bianchi Type V which also

produces localized features (Sung & Coles 2009).

The most interesting range of anisotropic structures is produced

in Bianchi Types VIIh, VII0 and V. These different Bianchi types

have the effect of focusing and/or twisting the initial quadrupole
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CMB patterns in anisotropic cosmologies 493

Figure 1. Simulated maps of the the CMB temperature, at redshift z = 0, using Bianchi type cosmologies. From left to right the Bianchi types are: V, VII0

and VIIh. The colour scale is marked in milliKelvin. All the maps started as a quadruple at z = 500. The Bianchi V map shows a focused feature, the Bianchi

VII0 map has a twisted feature and the Bianchi VIIh map has both focusing and twisting in the resulting temperature pattern.

over time (see Fig. 1). In this paper we study the behaviour of

these Bianchi models so as to identify characteristics of the radia-

tion fields they produce and develop methods that can be used to

identify more general forms of anisotropy. Understanding the char-

acteristics identified in these particular cases will hopefully help us

find better and more systematic ways of constraining the level of

global symmetry present in the real Universe. Note we consider just

characteristics observable in the CMB temperature; we shall return

to a study of the polarization radiation component in later work.

We consider two statistical measures of anisotropy in some detail

in this paper. Neither of these is entirely new and both have previ-

ously been applied to observed CMB maps. However, the general

philosophy behind previous applications of these methods has been

simply to look for departures from the (composite) null hypothe-

sis of statistical isotropy and Gaussianity [or more recently they

have been developed to look at universes with multiply connected

topologies (Bielewicz et al. 2005; Bielewicz & Riazuelo 2009)]. In

other words, they have been used to construct hypothesis tests with

the concordance cosmology but their performance has not hitherto

been evaluated on models with built-in anisotropy.

For example, if the concordance model is correct, the phases of

the spherical harmonic coefficients of the CMB should be inde-

pendently random and uniformly distributed. Recent studies have

suggested some deviation from this (Chiang, Naselsky & Coles

2004; Coles et al. 2004; Dineen, Rocha & Coles 2005; Stannard &

Coles 2005; Chiang et al. 2007a; Chiang, Naselsky & Coles 2007b)

but it is not clear whether they indicate global anisotropy or de-

partures from Gaussianity, let alone whether these are of cosmic or

instrumental origin. Here we examine the use of phase correlations

in quantifying the temperature patterns generated in models with

known levels of global inhomogeneity.

Multipole vectors were first introduced over a century ago

(Maxwell 1891). There have since been attempts to understand the

multipole vectors in order to explain the CMB anomalies reported

at large angular scales (Copi, Huterer & Starkman 2004; Katz &

Weeks 2004; Schwarz et al. 2004; Land & Magueijo 2005a,b,c,d,e;

Copi et al. 2006, 2007) since is not clear how to quantify and verify

such properties from the CMB anomalies in spherical harmonics.

They have been used in a number of studies to show anomalies,

such as alignments of multiples (Abramo et al. 2006) in a similar

plane to the axis of evil (Land & Magueijo 2005d, 2007). Our aim

here is to examine the behaviour of the multipole vectors in cases

where the form of anisotropy is known priori in order to assess their

potential to act as more general descriptors.

Two points are worth making before we continue. First, any re-

alistic cosmology (whether of FRW or Bianchi type) will possess

random fluctuations on top of a smooth background. If these fluctu-

ations are stationary Gaussian then they will add correlated ‘noise’

to any signal arising from the background model and will thus ham-

per the performance of any statistical analysis method, especially at

smaller angular scales. This Gaussian ‘noise’ (which is equivalent

to stationary Gaussian fluctuations, and not to be confused with

instrumental noise) is completely characterized by second-order

statistical quantities (i.e. the power spectrum in harmonic space or

the autocorrelation function in pixel space). The statistical descrip-

tors we explore are independent of the power-spectrum, so adding

Gaussian noise will not produce any systematic response in them.

We also restrict ourselves to looking at just the large-scale fea-

tures because the patterns in the temperature maps resulting from the

Bianchi models is over large scales. Therefore, by looking at large

scales only, there is more chance of detecting the anisotropy. How-

ever, it goes without saying we are not claiming that these Bianchi

models are in themselves complete alternatives to the concordance

cosmology. Rather we think of them as representing possible per-

turbation modes of the FRW background.

The layout of this article is as follows. In Section 2 we look

at pixel distributions of the CMB maps to show how the statis-

tical anisotropy present in these models produces a form of non-

Gaussianity in the pixel distribution over the celestial sphere. We

then introduce phase correlations in Section 3 to provide character-

ization of the anisotropy displayed by the models. In Section 4 we

look at the behaviour of the multipole vectors as characteristics of

the anisotropy of the same maps. Finally, Section 5 summarizes the

conclusions.

2 STATI STI CAL DESCRI PTORS O F

NON-GAUSSI ANI TY

Sung & Coles (2009) discussed how localized features in the CMB

temperature pattern, perhaps similar to the Cold Spot observed in

the WMAP data (Vielva et al. 2004; Cruz et al. 2005), can be gener-

ated in models with negative spatial curvature, i.e. Bianchi types V

and VIIh. In the standard cosmological framework the temperature

fluctuations are described by a Gaussian random process over the

sky, so a feature like the cold spot corresponds to an extreme event

in the tail of the distribution of fluctuations. In a Bianchi model,

however, it is not stochastic at all but produced coherently as a result

of the geometry of the space–time.

Clearly we need a systematic way to characterize the relation-

ship between rare events like this and their origin through either

non-Gaussianity or global anisotropy. Analysis of the temperature

patterns using standard descriptors in non-standard scenarios will

produce signals different from what one would see in the presence

of stationary Gaussian noise. To illustrate this issue we study the

pixel distribution function of temperature values. This is an obvious

way to test for non-Gaussianity in a random field of temperature
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494 R. Sung, J. Short and P. Coles

Figure 2. The pixel distribution function of the normalized temperature for

the Bianchi CMB maps. The y axis indicates the normalized pixel number

which is the whole range of temperature covered by the plot, but normalized

so they can be plotted on the same axes. The colour cyan represents type

V, magenta for VIIh and green for VII0. The plot shows that the Bianchi V

and VIIh types have strongly peaked features at the mean, whereas the type

VII0 has a nearly uniform distribution across the temperature range.

values, but a coherent fluctuation field also possesses a one-point

distribution that yields some diagnostic information. In this sense,

all the Bianchi models are inherently non-Gaussian but their non-

Gaussianity is simply a manifestation of the presence of anisotropy.

We calculated the pixel distribution function, which is simply a

frequency count of the pixel (or temperature) values, for each of the

Bianchi maps and used it to plot the histogram seen in Fig. 2. A

perfectly homogeneous and isotropic map, such as that predicted by

the concordance model, would have a constant value over the whole

map – remember we are considering maps without fluctuations –

and therefore a histogram of the pixel distribution histogram for

this map would give a delta function at the mean. Our results show

some deviation from this prediction. In Fig. 2 we see the plots for

the Bianchi V and VIIh types have strongly peaked features at the

mean, but still with some non-zero variance; the type VII0 model has

a nearly uniform distribution across the whole temperature range.

Although not demonstrated in this diagram, another point to note

is that at early times the histograms of the pixel distribution func-

tions of the three different Bianchi types are almost identical; the

different values of the temperature pixels are roughly even over the

range. As redshift1 decreases, the temperature patterns for Bianchi

V and VIIh gradually start to focus (see Sung & Coles 2009), and

their histograms of the pixel distribution functions become suc-

cessively more peaked. For the Bianchi type VII0 the temperature

pattern just twists, reorganizing the pattern on the sky while the his-

togram stays roughly the same. These observations help to explain

the features in the histograms. As the temperature patterns become

more focused, more of the rest of the map becomes uniform and so

the histogram is tending towards a delta function.

1 Note, redshift is defined here as proportional to the inverse geometric mean

of three scale factors.

In summary, what we would hope to discover from the pixel

distribution histogram is that it gives us some clues about the ho-

mogeneity and isotropy of the maps i.e. the degree of concentration

around the mean might tell us about the homogeneity of the param-

eters or the asymmetry of the distribution might give information

about the anisotropy. But as it stands, the information from the

pixel distribution function is not that clear. All we can say is that

the histograms differ from a delta function, so the maps are not

perfectly homogeneous and isotropic, and that the histograms are

clearly non-Gaussian in shape. However the shape of this one-point

pixel distribution does not furnish us with a complete description

of the pattern because it does not take into angular correlations

between the pixels.

3 PH A S E C O R R E L AT I O N S O F B I A N C H I

CMB MAPS

We now move on from pixel distributions to consider the spherical

harmonics of the temperature maps, or more specifically the phases

of the spherical harmonic coefficients.

3.1 Spherical harmonics

The temperature of the CMB, Tθ,φ , is defined on a sphere where θ ∈
[0, π] and φ ∈ [0, 2π] are the polar and azimuthal angles. Therefore

one way of describing the temperature anisotropies, �Tθ,φ , is to

extract the corresponding spherical harmonic coefficients (aℓm):

�Tθ,φ =
Tθ,φ − T̄

T̄
=

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

|aℓm| ei�ℓmYℓm(θ, φ), (1)

where |aℓm| and �ℓm are the amplitudes and phases of the spherical

harmonic coefficients, and Yℓm are the spherical harmonics which

are defined here as

Yℓm = (−1)m

√

2ℓ + 1

4π

(ℓ − m)!

(ℓ + m)!
Pℓm(cos θ ) eimφ, (2)

where Pℓm is the associated Legendre polynomial. Note that this

definition of spherical harmonics includes a phase factor of (−1)m,

also known as the Condon–Shortley phase.

In the standard cosmological model, the temperature fluctuation

field is produced by stochastic fluctuations which are Gaussian and

statistically stationary over the celestial sphere. In this case the

phases �ℓm of each spherical harmonic mode aℓm are independent

and uniformly random on the interval [0, 2π] (Coles et al. 2004). If

instead the temperature pattern on the sky is produced by a Bianchi

geometry then the aℓm are no longer stochastically generated but

can be directly calculated from parameters of the model. Analytical

forms for the temperature pattern can be used to obtain the spherical

harmonic phases (McEwen et al. 2006; Bridges et al. 2008), but it

is clumsy to transform these between different coordinate systems

(Coles et al. 2004). In the following we therefore obtain distributions

of �ℓm from Bianchi maps generated using the method described

by Sung & Coles (2010).

3.2 Visualizing phase correlations

To visualize the information held in the phases, �ℓm, of the spher-

ical harmonic coefficients, aℓm, we plotted them over all ℓ and m.

Rather than using a 3D plot, colour has been used to represent the

�ℓm following Coles & Chiang (2000). The colours equate to the

angle on a colour wheel: red (�ℓm = 0), green (�ℓm = π/2), cyan

C© 2011 The Authors, MNRAS 412, 492–502
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CMB patterns in anisotropic cosmologies 495

Figure 3. Example of the spherical harmonic phases (�ℓm) we would expect

for the concordance model where ℓ, m ∈ [0, 20]. The distribution of �ℓm

is random, apart from for m = 0, where the phases can only be 0 or π by

definition. The colours represent the different values of the �ℓm [red (�ℓm =
0), green (�ℓm = π/2), cyan (�ℓm = π) and purple (�ℓm = 3π/2)].

(�ℓm = π) and purple (�ℓm = 3π/2). To understand these plots, first

consider what we would expect to see in the case of an isotropic

and homogeneous universe as predicted by the concordance model.

This would be a uniform map (as we are not at this point considering

fluctuations) but in spherical harmonics this only has power in one

mode (ℓ = m = 0), so there is no phase for the other modes. Better

to consider a map with Gaussian fluctuations as later in the section

we will move on to add noise to the Bianchi maps. Fig. 3 shows the

phases (�ℓm) for a homogeneous and isotropic map with Gaussian

fluctuations. The phases are random over the space i.e. there are no

visible patterns in the distribution of colours in the plot. Note that

for all the maps, �ℓm = 0 or π for m = 0 because the aℓm coefficients

are defined so that aℓm = al,−m. Other than this, the distribution of

�ℓm is random. Also, note that for all |m| > ℓ, �ℓm = 0.

We extracted the �ℓm from each of the Bianchi maps using

HEALPIX (Górski et al. 2005) and plotted them in the same way

as we have described; the results are shown in Fig. 4. The plots

show that the �ℓm are not random but have patterns, i.e. the har-

monic modes manifest some form of phase correlation. For all the

Bianchi types, �ℓm = 0 for all odd m. For the VII0 and V types, all

the �ℓm are orthogonal i.e. they are either 0, π/2, π or 3π/2. Both

the VII0 and VIIh types show sequences of increasing/decreasing

phases, which are particularly prominent for m = 2.

While some patterns are apparent in these plots, an even bet-

ter way to visualize the phase correlations is to look at the phase

differences which are defined here as

��ℓm = �ℓm − �ℓ,m−1. (3)

The phase differences are shown in Fig. 5 and the correlations are

much more apparent compared to the plots of �ℓm. All the ��ℓm

for the V type are lined up, i.e. either 0 or π. The ��ℓm for the VII0

type are again orthogonal, but whereas in the phases the distribution

of 0, π/2, π and 3π/2 seemed some what random, in the phase

differences we see similar values ‘clump’ together. Similarly, the

sequences of colours in the type VIIh (see m = 2 for example) are

now even more prominent.

So, strong correlations are observed in the phases and phases

differences of the simulated Bianchi CMB maps. But we have

only looked at large angular scales where there are only a small

number of independent data points. Even without noise, it is im-

portant to ask the question whether these correlations are likely

to be statistically significant. One way to quantify this is to use a

Kolmogorov–Smirnov test. This is a non-parametric statistical test

which measures the maximum distance of a given distribution from

a reference probability distribution. In this case we want to show

deviation from a random set of ��ℓm, i.e. a uniform distribution,

which is predicted by the concordance model.

To calculate the Kolmogorov–Smirnov test statistic a set of phase

differences ��ℓm are separated into bins of equal size between 0

and 2π. The number of ��ℓm which fall into each bin are counted

and a cumulative distribution derived. If the distribution is uni-

form, as in the case of the reference probability distribution, then

the number of ��ℓm in each of the bins should increase roughly

linearly across the bins. The difference between both the sample

and uniform cumulative distributions is found for each bin and the

biggest difference is the Kolmogorov–Smirnov statistic D. To de-

duce the significance of D, a set of ten thousand tests have been run

to generate sets of random angles of equal size to the sample sets.

D was found for each of these sets and this data was used to find

the significance of D for the sample distributions from the Bianchi

maps.

Figure 4. Phases of the spherical harmonic coefficients (�ℓm) for Bianchi types V (left), VII0 (middle) and VIIh (right) where ℓ, m ∈ [0, 20] and z = 0. Note

that ℓ is plotted against the x axis, increasing from left to right, and m is plotted against the y axis, increasing from bottom to top. The distributions are not

random (as in Fig. 3) but exhibit some distinctive features. All the �ℓm for the VII0 and V types are orthogonal, and there are sequences of colours in the type

VIIh (see m = 2).
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496 R. Sung, J. Short and P. Coles

Figure 5. ��ℓm for Bianchi types V (left), VII0 (middle) and VIIh (right) where ℓ, m ∈ [0, 20] and z = 0. Note that ℓ is plotted against the x axis, increasing

from left to right, and m is plotted against the y axis, increasing from bottom to top. Like the phases (Fig. 4) the distributions are not random but exhibit some

distinctive features. All the ��ℓm for the V type are either 0 or π. The ��ℓm for the VII0 type are again orthogonal but in a more correlated way. Similarly,

the sequences of colours in the type VIIh are now even more prominent (see m = 2).

Table 1. Results from the Kolmogorov–Smirnov test

comparing the distribution of phase differences in the

Bianchi CMB maps with a random distribution of

phases as predicted by the concordance model. D is the

Kolmogorov–Smirnov statistic found by comparing the

phase differences (��). P(D) is the Monte Carlo esti-

mate of the probability of getting the value of D, or less,

found for the Bianchi models, from a random selection

of phase differences. These are computed by forming an

empirical distribution of D from sets of random simula-

tions and counting what fraction of the ensemble gives

the results obtained for the Bianchi maps. For example,

in the case of the P(D) for the VIIh map (z = 500) we

find that, out of 10 000 simulations, 9450 have a value of

D less than 0.11. Given the probable sampling accuracy

of around 1 per cent, we have rounded the results.

Map z D P(D) per cent

VIIh 500 0.11 94.5

VIIh 200 0.09 77.1

VIIh 60 0.14 99.2

VIIh 10 0.24 >99.9

VIIh 3 0.27 >99.9

VIIh 1 0.38 >99.9

VIIh 0 0.27 >99.9

VII0 0 0.28 >99.9

V 0 0.73 >99.9

The Kolmogorov–Smirnov statistic D, and the derived probability

of that statistic P(D), for all the Bianchi maps are detailed in Table 1.

This table shows that there is indeed a significant deviation from a

uniform distribution for the phase differences for all Bianchi types.

Of the 10 000 random sets of data, none showed a value for D as

high as seen for the Bianchi cases.

The Bianchi VIIh type was also considered at different redshifts

to see how the correlations changed with time. Table 1 shows that in

general value of D gets more significant over time i.e. the correla-

tions in the phase differences of the Bianchi maps become stronger

over time.

3.3 Rotating maps and adding noise

In Section 3.2 we applied the Kolmogorov–Smirnov test to a ‘clean’

map that is perfectly aligned with the vertical axis. This section

addresses how noise and rotation affect the identification of corre-

Table 2. Results from the Kolmogorov–Smirnov test

comparing the distribution of phase differences in the

Bianchi CMB maps, rotated by θ = π/8, with a random

distribution of phase differences as predicted by the con-

cordance model. D is the Kolmogorov–Smirnov statistic

found when considering the phase differences. P(D) is

the Monte Carlo estimate of the probability of getting

the value of D, or less, found for the Bianchi models,

from a random selection of phase differences. These are

computed by forming an empirical distribution of D from

sets of random simulations and counting what fraction of

the ensemble gives the results obtained for the Bianchi

maps. For example, in the case of the P(D) for the VIIh

map we find that, out of 10 000 simulations, over 9999

have a value of D less than 0.46.

Map z D P(D) per cent

VIIh 0 0.46 >99.9

VII0 0 0.38 >99.9

V 0 0.77 >99.9

lations in the phases of the spherical harmonics of CMB maps from

Bianchi models.

First we consider rotation. Phases of spherical harmonic coeffi-

cients are not rotation invariant. Rotating the coordinate system used

to represent a CMB map in φ (which is equivalent to rotation around

the z axis) would increment each of the spherical harmonic phases

by φ, so the phase differences would remain the same. Therefore

rotation in φ would have no effect on the value of the Kolmogorov–

Smirnov statistic D. Rotation in θ is more complicated to express

so we used an empirical approach to quantity the effect on D. The

Bianchi CMB maps were rotated by a small angle, θ = π/8, and

then the spherical harmonic coefficients were derived and used to

calculate D. The results in Table 2 show that the values of D for each

of the maps are even higher than in maps that hadn’t been rotated,

indicating the presence of even stronger correlations. This suggests

that, at least for small rotations off the axis, the correlations are just

as significant, if not more so.

As an aside, the colour plots of the phase differences for Bianchi

maps rotated by a number of different θ in the range 0 to 2π were

generated. These plots have been condensed together into movies2

2 The movies can be found at http://www.astro.cardiff.ac.uk/research/

theoreticalcosmology/?page=research.
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CMB patterns in anisotropic cosmologies 497

Figure 6. ��ℓm for ℓ, m ∈ [0, 20] [Bianchi type V map at z = 0 with white (left), WMAP (middle) and �CDM fluctuations (right) noise maps , θ = π/8].

Note that ℓ is plotted against the x axis, increasing from left to right and m is plotted against the y axis, increasing from bottom to top. Correlations can still be

observed as lines of similar colours.

Table 3. Results from the Kolmogorov–Smirnov test comparing the distribution of phase differences in the Bianchi CMB maps

rotated by θ = π/8 with white, WMAP and �CDM noise maps (z = 0) . D is the Kolmogorov–Smirnov statistic found when

considering the phase differences. P(D) is the Monte Carlo estimate of the probability of getting the value of D, or less, found for

the Bianchi models, from a random selection of phase differences. These are computed by forming an empirical distribution of D

from sets of random simulations and counting what fraction of the ensemble gives the results obtained for the Bianchi maps. For

example, in the case of the P(D) for the VIIh map with white noise we find that, out of 10 000 simulations, 9920 have a value of D

less than 0.15.

Map z Dwhite P(D) per cent DWMAP P(D) per cent D�CDM P(D) per cent

VIIh 0 0.15 99.2 0.16 99.8 0.17 99.8

VII0 0 0.09 77.1 0.08 66.1 0.07 52.0

V 0 0.19 >99.9 0.18 99.9 0.14 98.2

which show that the correlations in the VII0 and V maps are visible

across all θ and for the VIIh map are visible within about π/3 of the

preferred axis.

Now to investigate the effect of noise, we considered three dif-

ferent types of noise. First we tried the simplest form by just adding

white noise to the Bianchi map. A map of random Gaussian noise

(white noise) was generated. Using HEALPIX the spherical mode res-

olution was reduced to ℓ ≤ 20. Then the ‘noise’ map was modified

to have zero mean and variance half that of the Bianchi map. The

second ‘noise’ map was derived from a product available on the

WMAP LAMBDA3 website which provides the effective number

of observations per pixel. A map of random Gaussian noise was

again generated. The variance was modified per pixel so that it was

inversely proportional to the square of the number of observations

in that pixel. Using the spherical mode resolution was reduced to

ℓ ≤ 20. Then the noise map was modified to have zero mean and

variance half that of the Bianchi map. The final ‘noise’ map used

a simulation of �CDM fluctuations of the CMB [as performed by

Eriksen et al. (2005)]. Again the noise map was modified to reduce

the spherical mode resolution to ℓ ≤ 20 and have variance half that

of the Bianchi map.

Each of these ‘noise’ maps was added to each of the rotated

Bianchi maps. We see from the example in Fig. 6 that the spher-

ical harmonic coefficients derived still have visible correlations in

the phases for the Bianchi V map. The results of the Kolmogorov–

Smirnov test (see Table 3) show that the correlations are still de-

tectable and significant for the Bianchi V and VIIh maps but not so

well for the VII0 maps. So the method is better for detecting focused

features that twisted features.

3 http://lambda.gsfc.nasa.gov/

We see that the effect of adding fluctuations here is not dissimilar

to adding just Gaussian noise. The concordance model predicts

fluctuations which are stationary and Gaussian, as discussed in the

Introduction (Section 1). Although these fluctuations are correlated

on the sky, they have random phases so are incoherent with respect

to what our statistic measures.

The ‘noise’, or fluctuation, maps are added to the Bianchi maps so

that the ratio of the variances is of the order of unity. However, any

ratio is possible; this specific choice is just for illustrative purposes

to demonstrate the proposed methods. Nevertheless, if a random-

phase (Gaussian) signal is superimposed on the Bianchi template,

the phase coherence of the resulting map will still be degraded.

If the Gaussian component is too large, the overall map will be

indistinguishable from one with purely random phases.

In the examples we have shown, the Gaussian ‘noise’ or fluctu-

ation maps are added to the Bianchi maps in such a way that the

ratio of the overall variance is of the order of unity. Our method still

functions well with this level of ‘contamination’, but if the noise

variance is much higher than that of the Bianchi maps the method

begins to struggle.

So summarizing, the phases of the spherical harmonic coefficients

are a very effective way of identifying focusing features in CMB

maps, as long as the noise is not excessive, and can be used to give

quantifiable significances. However, like the pixel distributions, the

variation from the expectation of the concordance model only gives

us an indication of non-Gaussianity. It is not clear in what form the

non-Gaussianity occurs, such as an anisotropy or inhomogeneity.

Hence the next section looks at multipole vectors which are built

from spherical harmonic coefficients but can be used to give results

in pixel (as opposed to harmonic) space, which is more meaningful

from the point of view of diagnosing the presence of a preferred

direction.

C© 2011 The Authors, MNRAS 412, 492–502
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Table 4. Results from the Kolmogorov–Smirnov test

comparing the distribution of phase differences in the

WMAP ILC map, rotated to align with either the galactic

axis or axis of evil, with a random distribution of phase

differences as predicted by the concordance model. D

is the Kolmogorov–Smirnov statistic found when con-

sidering the phase differences. P(D) is the Monte Carlo

estimate of the probability of getting the value of D, or

less, found for the Bianchi models, from a random selec-

tion of phase differences. These are computed by forming

an empirical distribution of D from sets of random simu-

lations and counting what fraction of the ensemble gives

the results obtained for the Bianchi maps. For example,

in the case of the P(D) for the ILC map in the galactic

plane we find that, out of 10 000 simulations, 6620 have

a value of D less than 0.06.

Map Axis D P(D) per cent

ILC Galactic 0.06 66.20

ILC Evil 0.07 86.05

Figure 7. �� for ℓ, m ∈ [0, 20] for the ILC map with the axis of evil

aligned with the preferred axis (left) and for the same map but with the

phases replaced with random phases (right). Note that ℓ is plotted against

the x axis, increasing from left to right, and m is plotted against the y axis,

increasing from bottom to top. No correlations are visible in either plot.

3.4 Application to WMAP 5 Year Data

For pedagogical interest, the methods described in Section 3.2 are

applied here to the WMAP 5 Year Internal Linear Combination

(ILC) map. The results of the Kolmogorov–Smirnov test on the ILC

map in the galactic coordinate system show very low significance

correlations in �� (see Table 4).

However, Section 3.3 showed that to see the phase correlations,

the Bianchi maps needed to be rotated close to the preferred axis.

There have been studies that have found a preferred direction in the

WMAP data, highlighted by the alignment of at least the quadrupole

(ℓ = 2) and octopole (ℓ = 3). This preferred axis is known as the axis

of evil. Therefore the methods from Section 3.2 are applied to the

ILC map rotated so that the vertical axis aligns with the axis of evil.

These �� plotted in Fig. 7 do not show any visual correlations.

For comparison the figure also includes a plot of the same ILC

data but with the phases replaced with random angles (i.e. so as

to not affect the magnitude of the amplitudes of the al,m). Whilst

the Kolmogorov–Smirnov test (Table 4) finds higher significance

results than when the map was in galactic coordinates, the results

are still at a low significance.

The results show there is no significant detection, so if we do live

in an anisotropic universe then it must be obscured with considerable

‘noise’ (fluctuations). However the fact that the significance of the

results do increase when the map is aligned with the axis of evil is

intriguing.

4 M U LT I P O L E V E C TO R S F RO M B I A N C H I

UNI VERSE

As shown in the previous section, the properties of spherical har-

monic coefficients provide us with a generally effective way of

identifying anisotropy through correlations in CMB maps. How-

ever the geometric interpretation of the mode correlations seen in

harmonic space is by no means easy to interpret geometrically. In

an effort to use the spherical harmonics to provide more mean-

ingful explanation of non-Gaussianities found, we now consider

an alternative approach, based on multipole vectors These can be

constructed from spherical harmonics, using the aℓm coefficients

derived from CMB maps, but they give results in real (i.e. pixel)

space. For a summary of the main terminology for the multipole

vectors, using the polynomial interpretation approach which was

introduced by Katz & Weeks (2004), please see Appendix 7.

4.1 Results for Bianchi maps

Fig. 8 shows the multipole vectors from the Bianchi V map which

serves as a good example to show how strongly the multipoles are

correlated. The dipole (left) lies exactly at the top of the sphere,

which is at the centre of the image. The two quadrupole vec-

tors (middle) are located on the same spots on which two of oc-

topole vectors (right) are placed. The remaining octopole vector is

in the centre, i.e. the same place as dipole. Now we plot the dipole,

quadrupole and octopole on the same 2-sphere for all the Bianchi

maps, at different redshifts, to see how exactly they overlap (see

Fig. 9). The background colours indicate if any of the multipoles

overlap; yellow for no overlapped multipoles, green for overlapped

dipole and octopole, light yellow for overlapped quadrupole and

octopole, and light blue if all the multipole vectors are overlapped.

The z axis is into the page and the xy plane is the large marked

circle.

First of all, in all types of the Bianchi models, we see the

quadrupole and octopole vectors lie on the same plane, except for

one of the octopole vectors which is always located in the centre of

the image. For the Bianchi V and VIIh types, the dipole vectors lie

very near the centre in the early stage but not exactly on it. However,

as time goes on, the dipole vector is overlapped by one of the oc-

topole vectors in the centre. The dipole vector of Bianchi VII0 type

is different from Bianchi VIIh. In the Bianchi VII0 type, there is no

Figure 8. The multipole vectors from Bianchi V map: dipole (left), quadrupole (middle) and octopole (right).

C© 2011 The Authors, MNRAS 412, 492–502
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CMB patterns in anisotropic cosmologies 499

Figure 9. The multipole vectors from the Bianchi V (left), VIIh (middle) and VII0 (right) maps from early stage (bottom panel) to late time (top panel). The

vectors are represented by dots: dark blue for the dipole, light red for the quadrupole and brown for the octopole. Background colours also indicate if any of

the multipoles overlap; yellow for no overlapped multipoles (right-hand column and bottom of middle column), green for overlapped dipole and octopole, light

yellow (bottom of left column) for quadrupole and octopole and light blue (top of left column) if all the multipole vectors are overlapped.

particular correlation between the dipole and other multipoles since

the dipole is not coupled with the other multipoles (quadrupole and

octopole). For the Bianchi V (left), at the beginning of the stage, the

dipole vector is ‘almost’ on the z axis and one of octopole vectors is

exactly on the z axis. However the two later-time Bianchi V cases

on the top left of Fig. 9 show the dipole and octopole are on the

same spot, in the middle of the image, which is exactly on the z

axis. Meanwhile, one of components of quadrupole and octopole

vectors are on the same spot on the xy plan. This means that the

later Bianchi V models have more extreme correlation between the

multipoles.

4.2 Results for WMAP data

Again for pedagogical interest, the multipole vectors are applied

to the WMAP 5 Year Internal Linear Combination (ILC) map in

Fig. 10. At first glance, the results in the top row look like they

might be clustered in a similar way to those in the Bianchi models

(see Fig. 9). However, when we look at the results in the second

row, where the map is orientated in the usual galactic coordinates,

we see the multipoles line up along the xy plane. This suggests an

alternative explanation that the clustering near the xy plane could

be a feature of the residual galactic contamination which is known

to remain in the full sky ILC maps.

5 D I S C U S S I O N A N D C O N C L U S I O N S

The aim of this article was to explore some simple ways of character-

izing the large-scale temperature patterns in CMB maps generated

in anisotropic Bianchi type V, VIIh and VII0 universes. The ultimate

purpose of investigating this behaviour is to find ways of quantify-

ing the global properties of the pattern produced in order to isolate

the effect of anisotropy from that of non-Gaussianity. We repeat

that when we talk about non-Gaussianity here is not related to a

stochastic field; there are no fluctuations in the Bianchi maps.

We first discussed perhaps the simplest and perhaps the most ob-

vious possible descriptive statistics, the histogram of the pixel val-

ues, primarily with the aim of demonstrating how non-Gaussianity

of a sort can arise from asymmetry. We evaluated the pixel distri-

bution functions for each of the maps and compared them to results

expected in a universe consistent with the concordance model. The

type VII0 maps show the strongest deviation from the null hypothe-

sis; but types V and VIIh behaved in a similar fashion to each other,

and closer to that of the null hypothesis. The reason these two gave

lesser indications of the presence of anomalies was because the fo-

cussing effect produces a pattern that covers only a smaller part of

the celestial sphere, which tends to get lost when averaged over the

whole sky. This method is therefore useful to characterize coherent

signals extended over a large region, such as a spiral pattern, but

not if they are concentrated.

Phase analysis is a relatively new technique, and has consequently

not been used to quantify many alternative situations to the concor-

dance model. The phases of the spherical harmonic coefficients

provide a generic way of looking at correlations in harmonic space

that could arise from non-stationarity or non-Gaussianity. While

this is a potential strength of the approach – while phase corre-

lations will not just be useful for identifying anisotropies specific

to the Bianchi models, but in theory any isotropy introduced to the

CMB – it could also prove a weakness, in that more general methods

may lack the power to discriminate very specific models.

The phase correlations identified in our Bianchi maps using this

technique were much stronger than we at first expected; given the

generic nature of the metric it was not expected to yield good re-

sults. In addition to this, the strong correlations were found to be

robust to both rotation and moderate noise. Significant correlations

in both twisted and focusing features were also identified. However

using the same methods on the WMAP 5 Year data shows little evi-

dence of non-Gaussianity. Given that the diagnostics are identified

in harmonic space, it is difficult to say whether any of the anomalies

identified this way are down to isotropy or homogeneity.

The analysis of multipole vectors is also a relatively new tech-

nique. It has been used to identify non-Gaussianities in the WMAP

data, and has been particularly successful in identifying anisotropies

(i.e. asymmetries and/or preferred directions). The multipole vec-

tors are calculated from spherical harmonic coefficients which,

as we have already shown, themselves provide a very effective

C© 2011 The Authors, MNRAS 412, 492–502
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500 R. Sung, J. Short and P. Coles

Figure 10. The multipole vectors from the WMAP 5 Year ILC map: dipole (left), quadrupole (middle) and octopole (right). The top row shows results where

the z axis is into the page and the xy plane is the large marked circle. The bottom row shows results where the z axis is the vertical line and the xy plane is the

horizontal line across the centre of the map.

way of identifying correlations in Bianchi (and presumably other

anisotropic) patterns. The multipole vectors must include at least

some of the information needed to describe these mode correlations.

The advantage of multipole vectors over the spherical harmonics

themselves, however, is that they give results in real (i.e. pixel)

space which is much more informative to the user. The results

when applied to the Bianchi maps show very strong correlations

between the directions of the multipole vectors for low ℓ, often with

them entirely overlapping, and hence showing preferred directions.

Since these vectors would not be aligned in the case of a stationary

stochastic field over the sky, these results demonstrate that they are

sensitive to departures from the standard cosmological model.

It remains the case that the standard cosmological model is a

good fit to a huge range of observational data. Nevertheless, it is

important that tools are developed that are sufficiently sensitive

to hunt efficiently for possible anomalies in the next generation

of observations. There are many ways that the CMB temperature

pattern could be anomalous other than through the presence of

Bianchi perturbation modes such as those we have studied here.

Just as there are many ways a distribution can be non-Gaussian, so

are there also many ways a fluctuation field can be non-stationary.

Testing for departures from the standard model will require not one

but a battery of statistical techniques each sensitive to particular

aspects of the distribution.

This has been a very preliminary analysis, aimed at establish-

ing whether the diagnostics described in this paper are in principle

capable of uncovering evidence of underlying anomalies in CMB

data. Of course these patterns represent somewhat extreme depar-

tures from the standard framework so it is no real surprise that

they register strongly in the descriptors used. However, in all cases

our analysis has involved only a relatively small number of quan-

tities, so the fact that we see quantifiable effects emerging is very

encouraging.
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A P P E N D I X A : M U LT I P O L E V E C TO R S T E R M I N O L O G Y

Any homogeneous polynomial FR of degree ℓ in x, y and z can be written as

FR(x, y, z) = λ(a1x + b1y + c1z)(a2x + b2y + c2z) · · · (aℓx + bℓy + cℓz) + SRGR. (A1)

The function GR is homogeneous of degree ℓ − 2 and SR = x2 + y2 + z2. All polynomials FR, GR and SR and all variables are real. If we

consider the values taken by the polynomial on the unit sphere where SR = x2 + y2 + z2 = 1 then the above expression reduces to the product

of the linear parts together with the term GR. This can be extended to a complex polynomial through

F (x, y, z) = λL1L2 · · · Lℓ + SG, (A2)

where Li = aix + biy + ciz and x, y and z are complex numbers, while the coefficients of F (ai, bi, ci and λ) are real. G is a homogeneous

polynomial of degree ℓ − 2 and S is given by x2 + y2 + z2. We are interested in the value of the polynomial F on the 2-sphere which, in the

complex space, takes the form S = x2 + y2 + z2 = 0. By Bézout’s theorem, which holds that the number of points on two curves is equal to

the product of their degrees, there are 2ℓ points in which the complex curve F(x, y, z) = 0 intersects the quadratic curve S(x, y, z) = 0, which

is topologically a 2-sphere. Since the complex curve F = 0 intersects the complex S = 0 in 2ℓ points, the product curves Li also intersect S =
0 in the same 2ℓ points, fi = (xi, yi, zi). Moreover, its complex conjugate f ∗

i = (x∗
i, y∗

i, z∗
i) has to lie in the intersection in which both F and S

are zero. We thus obtain the 2ℓ points of intersection {f 1, f ∗
1, . . . , f ℓ, f ∗

ℓ}.

Each pair {f ℓ, f ∗
ℓ} determines a unique line Li = aix + biy + ciz = 0 with real coefficients such that:

aix
Re
i + biy

Re
i + ciz

Re
i = 0,

aix
Im
i + biy

Im
i + ciz

Im
i = 0, (A3)

where the coefficients are normalized to unit length, i.e. a2
i + b2

i + c2
i = 1. Note that the index i has no sum and 1 ≤ i ≤ ℓ. In order to find the

multipole vectors, vi = (ai, bi, ci), of each ℓ we need to find the pairs of fi which lie on the curve F = 0 and S = 0 in the complex projective

plane i.e. finding the roots (α) which satisfy F = 0 on the 2-sphere (S = 0). What is required is to factorize the homogeneous, harmonic

polynomial, F into linear factors i.e. such that F is the product of Li only. However, this is not possible analytically since they are not linear

equations far from the dipole. Fortunately, the curve S = 0 can be parametrized as a single variable and the polynomial F as:

F (x, y, z) = F (i(α2 − 1),−2iα, α2 + 1). (A4)

From equation (A4), the roots α which satisfy F = 0 and S = 0, or the product of Li = 0, can be found. Once the roots α are found,

the pair of {fi, f ∗
i } can be expressed in terms of x, y and z. The next step is to find the multipole vectors from equation (A3) by using

fi = (xRe, yRe, zRe) + i(xIm, yIm, zIm) or its conjugate f ∗
i since the two points give same result.

We now apply this terminology to the relevant cosmological application, that of temperature patterns on the CMB sky, as follows. The ℓth

multipoles, Tℓ, can be represented by a polynomial F on the 2-sphere (S = 0), or the product of Li. By the given relations x = i(α2 − 1), y =
−2iα and z = α2 + 1, the spherical harmonics can be expanded as α terms. Thus the dipole (T1), quadrupole (T2) and octopole (T3) can be

described in terms of α with the aℓm as coefficients. The aℓm were calculated using HEALPIX from the maps, and we found the roots α which

satisfy equations Tℓ = 0 for each ℓ. These roots gave a pair of {f ℓ, f ∗
ℓ} , therefore from equation (A3) we obtained solution sets vi = (ai, bi,

ci) which are multipole vectors for each ℓ.

We now explain this procedure in detail for each of the multipoles considered:

A0.1 Dipole: ℓ = 1

T1 =
∑

m

a1mY1m (A5)

=
√

3

2π

(

aRe
11 x − aIm

11 y +
a10√

2
z

)

. (A6)
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For the dipole vector it is not necessary to use the α notation since it is a linear equation in x, y and z. In our polynomial notation, the dipole

is also represented as

F = L1 = λ1(a1x + b1y + c1z). (A7)

From the normalization, we obtain the multipole vector,

v1 =

(

√

2

3C1

aRe
11 , −

√

2

3C1

aIm
11 ,

1
√

3C1

a10

)

, (A8)

and the coefficient,

λ1 =
√

3

2π

√

a2Re
11 + a2Im

11 +
1

2
a2

10 =
√

3

2π

√

a2
11 +

1

2
a2

10 =
3

2

√

C1

π

, (A9)

where the C1 = (2|a11|2 + a2
10)/3 is the angular power spectrum Cℓ of the monopole.

A0.2 Quadrupole: ℓ = 2

In this case we need to expand T2 using the α notation since for multipoles from the quadrupole to higher order the equations are no longer

linear. The quadrupole on the sphere has two multipole vectors, υ1 and υ2, from F = L1L2 = λ1(a1x + b1y + c1z)(a2x + b2y + c2z). In order

to find them, we transfer the quadrupole expression from spherical harmonics to α notation for efficient computing,

T2 =
∑

m

a2mY2m (A10)

=

(

√

3

2
a20 − aRe

22 + 2iaRe
21

)

α4 − 4
(

aIm
22 − iaIm

21

)

α3 +
(√

6a20 + 6aRe
22

)

α2

+ 4
(

aIm
22 + iaIm

21

)

α +
√

3

2
a20 − aRe

22 − 2iaRe
21

(A11)

A0.3 Octopole: ℓ = 3

We use the same method as we have done for the quadrupole. The octopole has three multipole vectors, υ1, υ2 and υ3, from F = L1L2L3 =
λ1(a1x + b1y + c1z)(a2x + b2y + c2z)(a3x + b3y + c3z), which gives a 6th order of equation in α:

T3 =
∑

m

a3mY3m (A12)

= A6α
6 + A5α

5 + A4α
4 + A3α

3 + A2α
2 + A1α + A0, (A13)

in which the coefficients are,

A6 = 5a30 −
√

30aRe
32 +

(

−5
√

3aRe
31 +

√
5aRe

33

)

i

A5 = −4
√

30aIm
32 +

(

−10
√

3aIm
31 + 6

√
5aIm

33

)

i]

A4 = 5[3a30 +
√

30aRe
32 −

(√
3aRe

31 + 3
√

5aRe
33

)

i

A3 = −20
(√

3aIm
31 +

√
5aIm

33

)

i

A2 = A∗
4, A1 = −A∗

5, A0 = A∗
6.

Each multipole has 2ℓ roots of α which gives the (fi, f ∗
i ) pairs; however, only ℓ components are used to find the multipoles since their

conjugators give the same results, as we mentioned earlier.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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