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Abstract—Ultra-wideband (UWB) technology offers the poten-
tial for unparalleled support of short-range broadband commu-
nication over a multi-gigahertz spectrum and are expected to
enable several applications with extreme requirements in future
wireless networks. Enabling these systems in the unlicensed
spectrum requires efficient co-existence management and ade-
quate understanding of the characteristics and spatio-temporal
dynamics of interference signals over the multi-GHz bandwidth.
This paper investigates the suitability of Gaussian, Middleton
canonical class A, symmetric alpha stable and Gaussian Mixture
distributions for modelling radio frequency interference from
systems in the UWB spectrum based on measurements. We
evaluate the closeness of fit of the distributions to measured
interference data and provide insights on the applicability of these
models for characterizing interference in the UWB spectrum.
Results show that the Gaussian Mixture distribution (GMD)
yielded the best fit to the measured interference evaluated with
Kullback-Leibler (KL) divergence below 0.05. Results also show
that interference signals generated from the GMD agree closely
with the measurements.

Index Terms—UWB, Interference measurements, Gaussian
mixture model, Interference modelling, statistical distributions,
symmetric alpha stable distribution.

I. INTRODUCTION

UWB transmission enables low power, short range com-

munication over a large part of the radio spectrum from

3.1 GHz to 10.6 GHz, with tight restrictions in terms of power

spectral density. The restrictions on transmission power limits

the amount of interference from UWB devices to other co-

existing users. However, UWB devices may be interfered by

the large number of licensed and unlicensed systems such as

WLAN, WiMAX, and satellite systems operating in the ultra-

wide spectrum.

Recently, unlicensed spectrum is receiving attention as at-

tractive option for the support of ultra-relaible and low latency

communication [1], though it may suffer from regulatory

limitations such as Listen Before Talk (LBT). It is therefore

important to understand the behaviour of potential coexisting

systems in such spectrum.

There has been considerable amount of research on in-

terference from UWB devices to other co-exisiting systems

such as WiFi, WIMAX and GPS, see e.g., [2] and the

references therein. However, investigations on interference to

UWB systems [3] has been mostly focused on performance

evaluations and receiver processing techniques for specific

UWB transmission technologies. For instance, approximations

for multiuser interference in time hopping-UWB using Gaus-

sian mixture distribution, Middleton class A noise and the

Laplace distribution are investigated in [4] based on bit error

rate performance simulations. In [5], results of a number of

interference measurements at an indoor and outdoor location

on the campus of Aalborg University, Denmark were pre-

sented. An analysis of the amplitude and inter-arrival time

distributions were also presented. While it was shown that

inter-arrival time between signal occurrence is predominantly

exponential distributed, no model for amplitude and/or power

distribution was investigated.

In this paper, we study the suitability of four statistical dis-

tributions viz: Gaussian, Middleton class A, symmetric alpha

stable and Gaussian mixture distributions for characterizing

interference signals over the entire UWB spectrum. While

these models has been extensively studied for interference

at different frequencies below 3 GHz, see e.g., [6]–[8], their

suitability for interference signals at higher frequencies and

possibility for a generic distribution that is able to model

interference at different frequencies over a large spectrum re-

mains an open problem. Based on the measurements in [5], we

evaluate the goodness of fit of four statistical distributions to

measured empirical probability distributions and give insights

on their suitability for interference characterization. We further

illustrate the accuracy of the distributions for interference

modelling by sampling from the Gaussian mixture model and

comparing with the measured signals.

The remaining part of this paper is organized as follows.

The statistical distributions considered in the analysis are

introduced in Section II. A discussion of the analysis as well

as techniques for estimating parameters of the distributions

from measurements is then presented in Section III. The results

are discussed in Section IV. Finally, we draw conclusions in

Section V.

II. RADIO FREQUENCY INTERFERENCE MODELS

We present a brief overview of the interference models

in this section. These distributions are chosen based on the

expected differences in the characteristics of systems operating

over the large bandwidth.

A. Gaussian Distribution

The Gaussian distribution represents each interference sam-

ple, xk, as a realization of a random variable with probability



distribution function (pdf) defined as

fGD(xk|µ;σ2) =
1√
2πσ2

e−
(xk−µ)2

2σ2 , (1)

where µ and σ are the mean and standard deviation of the ran-

dom variable, respectively. The Gaussian distribution is used

extensively in the radio communication literature for several

applications. However, it has been shown that interference

signals are generally non-Gaussian [9].

B. Middleton Class A Model

Middleton class A model [9], [10] characterizes narrow-

band interference and is thus applicable when the receiver

bandwidth is much larger than the interference spectrum as in

the case of UWB systems interfered by signals from systems

with relatively smaller bandwidth. The model defines an

interference signal as the sum of a Gaussian and non-Gaussian

component and the interference statistics is expressed as [9]

fMCA(x) = e−A
∞
∑

n=0

Ane−x2/2σ2
n

n!
√

2πσ2
n

, (2)

where the variance of the nth component, σ2
n is expressed as

σ2
n =

n
A +Σ

1 + Σ
. (3)

The distribution in (2) is characterized by two parameters: an

overlap/impulsive index, A, which is the product of the mean

number of interfering signals arriving at the receiver per unit

time and the mean duration of a typical interference signal,

and a Gaussian factor, Σ, defined as the amplitude ratio of the

Gaussian to non-Gaussian components.

C. Symmetric Alpha Stable Model

The Symmetric Alpha Stable (SαS) model [11] was pro-

posed as an approximation to Middleton Class B model [9]

for characterizing impulsive noise in cases where the noise (or

interference) originates from a broadband system and has no

Gaussian component. An interference sample, xk, is said to

be SαS distributed if its characteristic function is of the form

[6], [11]:

Φ(ω) = ejδω−γ|ω|α , (4)

where γ(γ > 0) is the scale (or dispersion) parameter and δ is

the localization parameter, which is equivalent to the median of

the distribution. The parameter, α indicates the thickness of the

distribution’s tail and is often referred to as the characteristic

exponent.

D. Gaussian Mixture Model

The Gaussian Mixture Model (GMM) represents each in-

terference samples xk as a realization of a random variable

with probability distribution function (pdf) given by an N -

components mixture of Gaussian pdfs [12]

fGMM(xk|Θ) =

N
∑

n=1

λnfn(xk|µn;σ
2
n) (5)

(a) Illustration of the set-up. (b) Image from the Lab.

Fig. 1: Diagramatic illustration and picture of the measurement

set-up.
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(a) WCN Lab.
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(b) FRB7 Roof Top.

Fig. 2: Spectrogram of UWB RFI obtained from measurements at
WCN Lab and FRB7 roof top [5].

where Θ is a vector of model parameters; Θ =
(λ1, · · · , λN , σ2

1 , · · · , σ2
N ), λn are non-negative coefficients

referred to as mixing probabilities, the sum of which is equal

to unity, i.e.,
∑N

n=1
λn = 1 and fn(xk|µn;σ

2
n) is the pdf of a

Gaussian distribution with mean µn and variance, σ2
n, defined

as

fn(xk|µn;σ
2
n) =

1
√

2πσ2
n

e
−

(xk−µn)2

2σ2
n . (6)

Thus, a GMM distributed interference sample has a pdf:

fGMM(xk|Θ) =

N
∑

n=1

λn
√

2πσ2
n

e
−

(xk−µn)2

2σ2
n . (7)

III. UWB RFI MEASUREMENTS AND DATA FITTING

In this section, we describe the radio frequency interfer-

ence (RFI) measurements as well as procedure for estimating

parameters of the distributions from the measured data.

A. Measurements

The RFI data used in this paper are from interference mea-

surements in the 3 - 11 GHz band conducted at an indoor (i.e.,

Wireless Communication Networks laboratory) and outdoor

(on the roof top of the FRB building) location on the premises

of Aalborg University, Denmark [5]. The measurements were

conducted using the system in Fig. 1 which comprises of;

a 2GHz − 30GHz biconical antenna, a 2 − 18GHz Low

Noise Broadband Amplifier (LNBA) with 26 dB gain/3 dB

noise figure, and a R & S FSEM 30 spectrum analyzer with



frequency range, 20 Hz - 26.5 GHz and resolution bandwidth

(RBW) of 10 Hz - 10 MHz.

The datasets for the two locations contain 55000× 500

samples corresponding to 55000 consecutive sweep of the

entire 8 GHz spectrum over a duration of 24 hours with

resolution bandwidth (RBW) and video bandwidth (VBW) of

1 MHz.The maximum peak detector of the analyzer was used

for all measurements and a total of 500 equally spaced discrete

samples (i.e., bins) were recorded over the 8 GHz frequency

span. Thus, the recorded spectrum analyzer measurements

during each sweep correspond to the maximum power level

within each 16 MHz bin from the start frequency (3 GHz)

to the stop frequency (11 GHz). Detailed description of the

measurements can be found in [5]. Measured spectrograms

from the indoor and outdoor locations are shown in Fig. 2.

The spectrograms show clear differences in signal activity at

the two locations as well as across the spectrum.

B. Model Parameter Estimation

Empirical fitting of the interference models in Section II to

measurements requires estimation of the models parameters.

Parameter estimation for these models have been extensively

investigated (see e.g., [6], [9]–[11], [13] and the references

therein). For the MCA and GMM, Expectation Maximization

(EM) [10], [12] algorithm have been shown to offer superior

estimation performance over other methods and will be used in

this study. We will estimate the parameters of the SαS model

using the fast estimator in [14], which is based on the asymp-

totic behaviour of extreme-order statistics. For completeness,

we summarize the estimation procedure for each of the models

as follows.

1) Middleton Class A: Denoting the parameters of the

MCA as θ = [A,G], where G = AΣ, the EM method for

MCA involves: [10]:

E-step: Evaluate the expected log-likelihood function,

Q(θ|θ̂p
).

M-step: Determine θ = θ̂
p+1

to maximize Q(θ|θ̂p
).

where θ̂
p

denotes the parameter estimates at the pth iteration.

A closed form expression for Q(θ|θ̂p
) is derived in [10].

2) Symmetric Alpha Stable: The estimators for the three

parameters of the SαS are given as [14]

δ̂ = median[x1, x2, · · · , xK ]

α̂ =
π

2
√
6

(

1

σmin

+
1

σmax

)

γ̂ =

{

1

K

∑K
k=1

(xk − δ̂)v

C(v, α̂)

}α̂/v

, (8)

where C(v, α̂) is defined as

C(v, α̂) =
Γ(1− p/α̂)

cos(πv/2)Γ(1− v)
(9)

In (8), σmin and σmax corresponds to the standard deviations of

the minimum and maximum centered data segments obtained

by dividing the interference samples into L non-overlapping
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(b) 5244 MHz.
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(c) 5693 MHz.
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Fig. 3: Probability density function of selected measured RFI and
fitted statistical models obtained from the indoor measurement.
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(a) 3048 MHz.
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(b) 3080 MHz.
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(c) 9541 MHz.
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(d) 9910 MHz.

Fig. 4: Probability density function of selected measured RFI and
fitted statistical models obtained from the outdoor measurement.

subsets, respectively. Detailed discussion on the segmentation

procedure can be found in [14].

3) Gaussian Mixture Model: The steps in the EM estimator

for the GMM are similar to those for the MCA with the

parameter set; θ = {λn, µn, σ
2
n}Nn=1. Expressions for posterior

probability distributions and the log-likelihood function are

given in [12].

We will utilize the implementation of these estimation

methods contained in an Interference Modeling and Mitigation

MATLAB Toolbox [15] in this work.

IV. RESULTS AND DISCUSSION

We now present results on the empirical fitting of the models

in section II to the measured interference data. We used
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Fig. 5: Tail probabilities of measured RFI and fitted statistical models
obtained from the indoor measurement.

TABLE I: Estimated Kullback-Leibler divergence between

empirical distribution and considered models.

Location Freq.[MHz] Kullback-Leibler Divergence

SαS MCA Gaussian GMM

Indoor

5196 0.146 - 0.462 0.104
5244 0.043 0.0951 0.130 0.008
5324 0.056 - 0.707 0.007
5533 0.207 - 0.683 0.128
5693 0.032 2.219 0.314 0.046
7665 0.047 0.058 0.131 0.011

10406 0.149 - 0.619 0.031

Outdoor

3048 0.031 0.029 0.078 0.016
3080 0.020 0.014 0.029 0.009
9541 0.037 0.066 0.078 0.024
9910 0.045 0.102 0.380 0.051

the Kullback-Leibler (KL) divergence (i.e., relative entropy

between two probability distributions) to evaluate the similar-

ities between the empirical probability distribution computed

from measurements and distributions of each of the models.

A KL divergence of zero indicates an exact match between

the measured and fitted probability distributions. In the uti-

lized toolbox, empirical probability distribution is computed

using kernel smoothing density estimator [16]. Except where

otherwise stated, the number of components for the GMM

and MCA are 2 and 100, respectively. These values were

heuristically selected and appear to provide reasonable fits to

the measurements. However, in practical applications, methods

for model order selection such as Akaike Information Crite-

rion (AIC) and Bayesian Information Criterion (BIC) can be

used to determine the best number of components for each

distribution.

Fig. 3 shows the distribution functions of selected inter-

ference from the indoor measurements and the fitted models.

The plots show that the Gaussian distribution does not fit any

of the interference signals well. Except for the interference

at 5196 MHz, probability distributions of the MCA, SαS and
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Fig. 6: Tail probabilities of measured RFI and fitted statistical models
obtained from the outdoor measurement.

TABLE II: Estimated parameters of two components GMM.

Location Freq.[MHz] Parameters

Mean Variance Probabilities

Indoor

5196 0.066 -0.413 9.43 401.73 0.863 0.137
5244 -0.016 0.001 2.245 0.129 0.055 0.945
5324 0.0234 -0.013 95.77 0.439 0.055 0.945
5533 0.019 -0.188 9.149 898.450 0.909 0.091
5693 0.011 -0.252 0.354 30.630 0.960 0.040
7665 0.001 0 0.477 0.062 0.300 0.700

10406 0 0.015 0.175 35.670 0.97 0.030

Outdoor

3048 -0.018 0.011 7.041 0.943 0.387 0.613
3080 0.009 -0-019 5.060 0.681 0.687 0.313
9541 0 0.001 0.056 0.443 0.634 0.365
9910 -0.0289 0 35.65 0.157 0.013 0.987

GMM exhibit some similarities with the measured distribution.

The GMM is seen to yield the closest fit to all measured

interference distributions. This agrees with the results in [4],

where it was shown via simulations that the bit error rate of a

TH-UWB systems with MUI GMM distributed agree closely

with the actual BER.

Similar observations are made from Fig. 4, where we

plot fitted distributions to interference signals in the outdoor

measurement. However, Gaussian distribution fit to the signals

at 3048 MHz and 3080 MHz appears much closer to the

measured distributions when compared to the Gaussian fits

in Fig. 3. Fig. 4 also shows that the SαS distribution is closer

to the empirical distribution than the MCA for the signals at

3048 MHz, 3080 MHz, and 9541 MHz.

We present the tail probabilities (i.e., probability that the

interference power deviates from its mean by a given amount

or equivalently, the probability that the centered interference

power exceeds a threshold, PTH ) for the indoor and outdoor

measurements in Fig. 5 and Fig. 6, respectively. In Fig. 5,

an exact match is seen between the tail probabilities of

measured indoor signals and the GMM for interference sources

at 5693 MHz in Fig. 4c and 10406 MHz in Fig. 4d. The

tail probabilities of Gaussian and SαS distributions, differ

significantly from the empirical probabilities. It is therefore
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Fig. 7: Temporal variation and CDF of measured and simulated RFI
from the 2 components GMM at 5196 MHz.

reasonable to infer that these interference signals can not be

modelled using either Gaussian or SαS distributions. A plausi-

ble explanation for the difference between tail probabilities of

the measured data and SαS distribution is that, the interfering

signals can not be considered broadband relative to the large

UWB spectrum. Similar agreement between the empirical tail

probabilities obtained from the outdoor measurements and the

GMM is seen in Fig. 6. In addition, the MCA distribution’s fit

shows good agreement to the empirical tail probability from

the measurements. We show the KL divergence for all the

distributions in Table I. The GMM and Gaussian distributions

have the lowest and highest KL divergence for all interfer-

ence sources in both measurements. This indicates that while

Gaussian distribution is not suitable for interference modelling,

most of the signals in the UWB can be approximated using

the GMM.

The parameters of the two-components GMM distribution

for the different interference signals is shown in Table II. These

parameters, can for example be used to model realizations of

interference at the measured frequency bands. The table shows

that the model parameters differ for all sources except for the

two interferers at 3048 MHz and 3080 MHz, which are spaced

32 MHz apart and may potentially originate from the same

system(s).

Finally, we compare interference signals generated from

the GMM distribution with measurements in Fig. 7 where

we show the measured signal at 5196 MHz along with an

example generated from the two components GMM. As seen

in Fig. 7a, the simulated signal exhibits a high similarity with

the measured interference indicating that GMM is a good

statistical model for the interference at this frequency. This

similarity is further shown in Fig. 7b where emprical CDF of

the simulated signal matches that of the measured data very

closely.

V. SUMMARY AND CONCLUSION

This paper presents the analysis of radio frequency interfer-

ence measurements in the UWB spectrum between 3 GHz and

11 GHz. The suitability of Gaussian, MCA, SαS and GMM

for modelling interference from different sources in the UWB

has been evaluated based on measurements. Results show that

interference signals in the UWB spectrum are not Gaussian

distributed. MCA and SαS models provide reasonable fits to
some of the interference signals. The GMM gives the best

fit to all measurements and signals generated from this distri-

bution agree closely with measurements. Study on temporal

characteristics of these signals is the focus of our ongoing

research.
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