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Abstract: We exploit Surface-Enhanced Raman Scattering (SERS) to investigate aqueous droplets
of genomic DNA deposited onto silver-coated silicon nanowires, and we show that it is possible to
efficiently discriminate between spectra of tumoral and healthy cells. To assess the robustness of
the proposed technique, we develop two different statistical approaches, one based on the Principal
Components Analysis of spectral data and one based on the computation of the `2 distance between
spectra. Both methods prove to be highly efficient, and we test their accuracy via the Cohen’s κ statis-
tics. We show that the synergistic combination of the SERS spectroscopy and the statistical analysis
methods leads to efficient and fast cancer diagnostic applications allowing rapid and unexpansive
discrimination between healthy and tumoral genomic DNA alternative to the more complex and
expensive DNA sequencing.

Keywords: tumoral genomic DNA; Raman spectroscopy; classification; principal component analysis;
logistic regression; minimum distance classifiers.

1. Introduction

Today, it is widely accepted that cancers result from changes in the nucleotide sequence
due to unrepaired DNA damage [1]. Identifying circulating tumor DNA in human body
fluids, blood in primis can indeed favor the development of promising approaches for early
disease diagnosis and personalized therapies [2,3]. Currently, the most popular molecular
genetic technology is based on DNA sequencing methods which require expensive and
complex enzyme based target or signal amplification procedures, as well as the risk of false
positive or false negative identifications, still prevent genetic analysis to be introduced in
the routine clinical. Therefore, there is an urgent need of innovative, low-cost, easy and fast
approaches which allow for identifying the DNA changes.

The relevance of Raman spectroscopy in medical diagnostics [4], and in particular
in the study of cancer diseases [5], has been widely pointed out in the recent pertinent
literature. The potentiality of this technique lies in its label–free character, which allows
for directly analyzing biological samples and obtaining unaltered information about their
physico–chemical properties.

Here, we exploited Raman spectroscopy to investigate aqueous droplets of genomic
DNA deposited onto silver-coated silicon nanowires (Ag/SiNWs). By following the same
experimental procedure proposed in [6], whose proposal consists of the use of a platform
based on silicon nanowires (SiNWs) to interrogate DNA, we use Raman mapping to
collect several spectra that are statistically analyzed here to discriminate between samples
extracted from tumoral and healthy cells.

Raman spectroscopy is an inelastic optical scattering technique, which records the
light scattered from vibrations in molecules or optical phonons in solids [7,8]. These
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inelastic scattering processes have a small cross section and, thus, the typical intensity
of Raman signals is very low, as discussed for example in [9]. On the other hand, as it
was firstly shown in [10], due to electromagnetic and chemical effects, the Raman signal
coming from molecules adsorbed on a metal nanostructure can be increased by several
orders of magnitude. This phenomenon, known as Surface-Enhanced Raman Scattering
(SERS), as shown for instance in [11,12], has been exploited in our experiment by dripping
the DNA aqueous solution on a substrate made of a disordered array of silver-coated
silicon nanowires, whose effectiveness in enhancing the Raman signal has been recently
demonstrated in a series of experimental studies; we refer, for example, to [13–19] and the
references therein.

In this way, we are able to collect Raman maps of the deposited drops composed
of several good quality Raman spectra, which, although very similar among each other,
allow us to distinguish between drops of healthy and tumoral DNA. Anyway, the major
challenge of this approach is that the Raman mapping generates large data sets that need an
advanced data processing to extract meaningful information allowing us the discrimination
between the healthy and tumor DNA sample.

The aim of this work is thus to build a binary classification model aimed to discrim-
inate, with high accuracy, spectra coming from different DNA molecules, correspond-
ing to the outcomes of a target variable taking values 0 and 1 for healthy and tumoral
samples, respectively.

Our proposal is based on two different methods. The first one reduces initially the
amount of predictors by means of a Principal Components Analysis (PCA). After reducing
dimensionality, the new variables are exploited to build a logistic regression model, whose
outcome is the desired classifier. The second method involves the full data set to exploit
the geometric features of the Raman spectra. Indeed, the classifier adopted in this case is
based on the computation of the `2 distance between test samples and the spectral average
of healthy and tumoral training spectra. We will show that both of the strategies achieve a
very high accuracy, close to 90%.

The paper is organized as follows: in Section 2, we discuss experimental and statistical
methods, mainly focusing on the latter. Our results are discussed in Section 3, whereas, in
Section 4, we summarize our conclusions.

2. Methods

In this section, we describe the processes and approaches that we have developed
in the different steps of our study. We shall provide a very short account of the sample
preparation procedure and the Raman measurements, referring to [6] for a thorough and
detailed description. On the other hand, we shall discuss in detail the statistical approach
developed to analyze the experimental data, which is the true novel contribution provided
in this paper.

2.1. Experimental Procedures

Plasma enhanced chemical vapor deposition (PECVD) was used to grow Au catalyzed
SiNWs on Si wafers, kept at 350 °C, using SiH4 and H2 as precursors. The coating was
realized by evaporating an Ag film onto SiNWs arrays with a nominal thickness of 100 nm.

Following the skin cancer model given by [20], we used the human melanoma cell
line SK-MEL-28, which was compared to the human immortalized keratinocyte HaCaT as
a control health skin model. After standard culture, harvesting, and centrifugation, cell
pellets were obtained and used to extract the genomic DNA that, in turn, was re-suspended
in DNase free water to obtain a 20 ng/µL solution.

The final samples are prepared by depositing one drop of the DNA solution on
Ag/SiNWs substrates coming from the very same batch.

Each droplet is spectrally mapped after drying by means of a DXR2xi Thermo Fisher
Scientific Raman Imaging Microscope equipped with a 532 nm excitation laser, to better
exploit the plasmon resonance of nanostructured silver, and a 50× objective. For each
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droplet, Raman spectra are collected at points on a square grid with spacing 4 µm, at 1 mW
laser power and performing four accumulations lasting 5 ms each, for a total of about
2000 spectra per droplet. The entire comparison experiment has been repeated 10 times,
by analyzing 10 droplets of healthy DNA, and ten of cancer DNA. For each comparison
experiment, the two measured droplets came from a new pellet of corresponding cells.

As far as the cell culture is concerned, the human melanoma cell line SK-MEL-28,
routinely used in skin cancer research and able to form tumors in nude mice, was used as
a skin cancer model and compared with the human immortalized keratinocyte cell line,
HaCaT (American Type Culture Collection, ATCC), which was chosen as the control health
skin model [21,22]. The cell lines were cultured in complete Dulbecco’s modified Eagle’s
medium (DMEM; Hyclone, South Logan, UT, USA) with high glucose (4.5 g/L), supple-
mented with 10% fetal bovine serum (FBS, HyClone), 2 mM-glutamine, and 100 IU/mL
penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). The cells were kept in a hu-
midified atmosphere with 5% CO2 at 37 ◦C, passaged every 3–4 days at a sub-cultivation
ratio of 1:5 and used within 5–20 passages. Regarding the DNA isolation, SK-MEL-28
and HaCaT cells, after medium removal, were harvested by trypsin treatment and an
amount of 2–3 × 106 were centrifuged for 5 min at 4000 rpm. The resulting cell line pellets
were processed to extract the genomic DNA. The cells were lysed in 1 mL of hypotonic
lysis buffer (HEPES 10 mM, MgCl 1.5 mM, KCl 10 mM, and fresh Ditiotreitolo 5 mM),
incubated 15 min in ice, and centrifuged for 10 min, at 2000 rpm and 4 ◦C. To extract the
genomic DNA, the pellet samples were incubated for 1 h at 37 ◦C in 750 µL of nuclear lysis
buffer (Tris-HCl 10 mM, NaCl 400 mM, EDTA 2 mM, 75 µL SDS 10%, 25 µL of 10 µg/µL
proteinase-K), treated with 250 µL of NaCl 6 M and centrifuged for 15 min at 2000 rpm
and 4 ◦C. The supernatants containing genomic DNA were recovered and then precipi-
tated adding a double volume of EtOH 100% and centrifuged for 10 min at 2000 rpm and
4 ◦C. The DNA pellets were washed in EtOH 70%, centrifuged for 10 min at 7500 rpm
and 4 ◦C and re-suspended in 100–200 µL of DNase free H2O. The DNA concentrations
were measured with a spectrophotometer (Eppendorf BioSpectrometer® basic) by reading
absorbance at 260 nm, and 260/280 ratio absorbance was checked to assess the purity of
the DNA. The DNA concentration was kept constant throughout the entire study at ca.
20 ng/µL. This concentration was selected in order to achieve sufficient signal-to-noise
ratio for both Raman spectra and fluorescence image after staining with Hoechst 33,342 so-
lution. To exclude any influence of the unavoidable morphological variations related to
different fabrication batches of the Ag/SiNWs, for each experiment, we deposited two
drops, containing respectively HaCaT and SK-MEL-28 cell DNA, on fresh substrates from
the very same batch. In addition, we repeated each experiment for three times by using
different DNA samples from SK-MEL-28 and HaCaT cells.

2.2. Data Set and Conveyed Information

As a data set, we have considered n = 3980 spectra, 1990 from the tumoral and 1990
from the healthy DNA droplet. The spectra have been randomly chosen in the central part
of the droplets, since in this region the biological layer formed after dehydration happens
to be thinner, so that the interaction between the single molecules and the nanostructured
substrate is direct and tighter, and the SERS effect more effective, ensuring a good quality
of the Raman spectra. Due to the fact that the spectra are collected at points of the droplet at
distance larger than, or equal to, 4 µm while the size of a DNA molecule is of a nanometer
order, we can reasonably assume that our data are independent. A typical Raman spectrum
we will deal with is reported in Figure 1. In order to explain its main features, we have
to review some basic facts about Raman spectroscopy. In Raman spectroscopy, incident
photons are scattered by molecules in such a way that the emitted photon has energy
different from that of the incident one and molecules, after the interaction, jump to a
different vibrational energetic level. This phenomenon is often explained saying that
the molecule absorbs the incident photon and jumps to a “virtual” energy level with an
incredibly short life-time (say less than 10−15 s); then, it relaxes to a vibrational energy
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state different from the initial one emitting a photon, which, consequently, has energy
different from that of the incident one. The total emitted energy, suitably normalized
and expressed in arbitrary units, is called Raman intensity, whereas the energy difference
between the incident (laser) light and the scattered (detected) light, expressed in cm−1, is
called Raman shift.
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Figure 1. Comparison between a raw Raman spectrum and the curve (in red) obtained by performing
Savitzky–Golay filtering.

Raman spectroscopy is a powerful method in investigating biological systems because
it provides a molecular fingerprint of the samples in a completely label-free way and with
high specificity [4]. Indeed, the peaks appearing in the spectra are uniquely associated with
particular chemical structure present in the molecule. For instance, in the raw spectrum
reported in Figure 1, where no pre-processing has been performed on the data obtained
from the spectrometer, some peaks are perfectly visible and can be roughly located at
230 cm−1, 540 cm−1, 1320 cm−1, 1570 cm−1, and 2930 cm−1. Very precise measures of the
peak positions can be performed by suitably averaging several spectra, as shown in [6],
Supplementary Materials, Figure S5, but we note that, even in the data reported in Figure 1,
the CH-group vibration peak at 2930 cm−1 and the Ag-N stretching vibration mode at
230 cm−1 are perfectly visible.

As regards the diagnostic potential of Raman spectroscopy, cancer is nowadays associ-
ated with changes in the nucleotide sequence of DNA molecules [1] which also induces
variations in DNA physical properties, such as stiffness, length, and shape. It has been
demonstrated in [6], in the same experimental set–up considered herethat the variation of
these physical properties causes modifications in the interaction between DNA molecules
and the nanostructured substrate which is reflected in the observed Raman spectra.

2.3. Data Pre-Processing

Each Raman spectrum here considered consists of p = 1680 Raman intensity values
corresponding to p-values of the Raman shift, lying in the interval between 50.6 and
3288.5 cm−1. Moreover, we obtained smoothed data by filtering the original raw spectra
with the Savitzky–Golay algorithm [23] with a polynomial order 5 (see also [24]) over a
window of 90 data points treated as convolution coefficients. In Figure 1, we plotted a
raw spectrum and its smoothed version. The original data are kept for the highest and
lowest wavenumbers, otherwise truncated by the preprocessing procedure, to avoid losing
information at the sides.

Although the large part of the collected spectra share a similar behavior, there are
some that are suspiciously different from the others. These spectra have been consid-
ered as outliers associated with local experimental fluctuations and thus eliminated from
the analysis.

We build a decision surface to identify and remove outliers from both the healthy
and tumoral data sets by adding and subtracting three times the (point-wise) empirical



Micromachines 2022, 13, 1388 5 of 12

standard deviations to the average spectra. All the spectral patterns featuring at least a
point out of the decision surface are then discarded.

Figure 2 shows the whole set of spectra for the healthy and tumoral cell, in the left
and in the right panel, respectively. Both the panels show the corresponding decision
surfaces, labeled by average spectra (solid lines) and the extreme curves (dashed lines). In
both of the cases, the selection procedure allows us to discard approximately 15% of the
available spectra.
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Figure 2. For the healthy (left) and tumoral (right) data set, we report the smoothed spectra (black
solid lines), the average spectra (red solid lines), and the extreme curves computed by adding to and
subtracting from the average Raman intensity three times the standard deviation (red dashed lines)
labeling the decision surfaces.

2.4. Two Statistical Approaches

We will propose two different models, one based on the PCA analysis and one based
on the computation of `2 distance. The spectra are split into test and training sets, the first
used to tune simultaneously the parameters of both the models proposed here, the second
to validate them. As aforementioned, we deal with a binary target variable W, whose
outcomes 1 and 0 correspond to tumoral and healthy DNA molecules, respectively.

The Local Method: PCA Analysis and Logistic Regression

Borrowing the notation from ([25], Chapter 1 and Paragraph 8.2.1), any single spectrum
is represented as a column vector x ∈ Rp. By collecting the N row vectors x†, where
† denotes transpositions, we construct the N × p matrix X which represents the entire data
set. The j-th column of X is the collection of the N observations of the j-th variable, namely,
the intensity corresponding to the j-th value of the Raman shift.

Thus, we produce the N × p matrix Y by centering X with respect to the columns (i.e.,
the Raman shift). In more detail, each entry yij of Y is computed by subtracting from each
entry xij of X the sample mean computed along the elements corresponding to the same
Raman shift, that is to say by setting

yij = xij −
1
N

N

∑
s=1

xsj (1)

for any i = 1, . . . , N and j = 1, . . . , p. A principal components analysis is then obtained by
the eigendecomposition of the empirical covariance matrix Y†Y (see, for example, [26]).
The so-called principal components directions v1, . . . , vp ∈ Rp are computed and, as usual, we
call i-th principal component loadings the p elements of the column vector vi. The projection
zi = Yvi ∈ RN is called the i-th principal component of the data Y. The variance of each
principal component (PC) is given by the corresponding eigenvalue and it concentrates on
the first m principal components, allowing us to neglect in the next step all the other p−m
components.
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The selected first m principal components z1, . . . , zm are thus interpolated to build a
logistic regression model to estimate the probability mass function of the binary target
variable W by

Pr(W = 1|z1, . . . , zm) =
eβ0+∑m

i=1 βizi

1 + eβ0+∑m
i=1 βizi

and Pr(W = 0|z1, . . . , zm) =
1

1 + eβ0+∑m
i=1 βizi

, (2)

where βi ∈ R for i = 0, . . . , m. In this case, we consider an optimization parameter
λ ∈ [0, 1] such that we associate the outcome for the binary variable W = 1 to each set of
components z1, . . . , zm if Pr(W = 1|z1, . . . , zm) ≥ λ and W = 0 otherwise. This method is
referred to as “local” since the PCA analysis selects a subset of spectral indices to be the
most relevant within the subsequent regression.

2.5. The Global Method: Geometric Analysis

The second proposed strategy aims to distinguish spectra coming from the healthy
and tumoral data set following their geometric features.

After splitting the dataset into training and test sets, the training set is used to produce
the healthy and the tumoral average spectra, represented by the column vectors h and t of
Rp (see also Figure 3). Thus, for each spectrum belonging to the test set represented by the
i-th row of the data matrix X, we compute the `2 distances

dh(i) =
p

∑
s=1
|xis − hs|2 and dt(i) =

p

∑
s=1
|xis − ts|2. (3)

so that each spectrum can be classified by setting the following outcome binary function

gout(i) = I{τdt(i) ≤ (1− τ)dh(i)}, (4)

where τ ∈ [0, 1] is an optimization parameter. As above, the outcome is equal to 0 if the
spectrum is identified as coming from healthy DNA molecules and equal to 1 otherwise.
This method is referred as “global” since the `2 distance is computed over the complete set
of spectral data.
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Figure 3. The red and the blue solid lines are, respectively, the average spectrum of the healthy and
the tumoral data set. The point-dashed and the dashed lines report, respectively, one healthy and
tumoral pre–processed spectrum. For the healthy spectrum, dt = 14.9× 106 and dh = 4.7× 106. For
the tumoral spectrum, dt = 2.8× 106 and dh = 16.6× 106.

3. Results and Discussion

The first step of our analysis is concerned with the estimation of the two optimal
tuning parameters λ and τ by means of a 10-fold cross-validation procedure, a popular
method used to evaluate predictive models over a limited amount of sampled data (see ([27],
Ch. 7)). As aforementioned, the tuning parameter λ sets a threshold for the probability
mass function of the binary target variable built by means of the logistic regression. Given
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an input, if the corresponding estimated probability is higher than λ, the sample element
is labeled as tumoral, otherwise as healthy. On the other hand, as shown in Equation (4),
the tuning parameter τ sets a multiplicative factor to scale the distances between the sample
element and the healthy and tumoral means in order to label it.

The original sample is randomly partitioned into 10 equally sized subsamples. A sub-
sample is kept as test set, while the other nine are used as training data. Then, the accuracy
of both methods are evaluated, while the cross-validation process is repeated 10 times,
paying attention to using each round a different subsample as a test group. The 10 results
are then averaged to compute a single estimation. The advantage of this validation strategy
is that all observations are used at the same time for both training and testing and each
observation is used for testing exactly once.

The accuracy of the choice of the tuning parameters is evaluated by means of the
so-called Youden’s J statistic, or-simpler, Youden’s index, given by the formula

Youden’s index = sensitivity + specificity− 1, (5)

where sensitivity and specificity are the true and false positive rates, respectively. Figure 4
explores the trade-off between specificity and sensitivity by means of the corresponding
ROC curve, while Table 1 presents for both of the models the choice of the optimal tuning
parameters, corresponding to the maximal Youden’s indices, and the Area Under the
Curve (AUC) value, measuring the two-dimensional area under the ROC curve and thus
providing an aggregate measure of the performance across all possible choices of the tuning
parameters (see, for example, [28]).

As shown in Table 1, both λ and τ are smaller than 1/2, which is the exact balance
of the healthy and tumoral subsets. However, it matches our goals since these values of
the tuning parameters reduce the amount of false negatives (i.e., not detecting tumoral
samples) paying the price of a larger amount of false positives (i.e., misclassifying healthy
samples), which seems to be the fairest choice.

Concerning the PCA analysis, as shown in Table 2 (see the right panel in Figure 5),
97.0% circa of the variance concentrates on the first m = 4 principal components. Further-
more, Figure 6 shows a strong separation between the third and fourth principal component.
Thus, from now on, only the first four principal components are selected. In addition, each
discarded component is characterized by a proportion of variance sensibly smaller than 1%
(see again Table 2).
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Figure 4. ROC curves for the local (left panel) and the global (right panel) methods. The markers
make evident the corresponding Youden’s indices.
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components (blue first, brown second, green third, and yellow fourth); the dashed black lines are the
intensity, i.e., the square root of the sum of the squares, of the loadings of the first four components.
(Right) percentage of variance as a function of the principal component index.
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Figure 6. Projections on the coordinate planes of the distribution of the first four principal compo-
nents on the coordinate planes. The healthy and the tumoral samples are labeled by blue and red
points, respectively.

The left panel in Figure 5 collects the loadings, that is, the coefficients of the linear
combinations of the original variables defining the principal components, related to the
first four PC’s, and, thus provide a measure for the contribution of each observable to the
main components. The solid lines are concerned with the first four PC’s separately, while
the dashed black line represents the associated intensity, that is, the `2–norm associated
with the loadings of the considered PC’s. The three main peaks appearing in the panel
correspond to wavenumber 230 cm−1, 1550 cm−1, and 2930 cm−1. The first one is related to
the Ag–N stretching vibration mode. The second one is contributed both by the overlapping
of C–C and C–N stretching vibrations involving the aromatic rings of the DNA bases, and
the so–called “cathedral peaks”, deriving from the formation of a carboneous layer due to
the photo-decomposition of the DNA at the silver surface upon laser irradiation. The last
one is linked to the vibrations of the CH-group. While the first and the third peaks can be
associated with the fourth and the third principal components, respectively, the first two
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principal components are related mostly to the second peak, which behaves very differently
for healthy and tumoral data (see also Figure 3).

Table 1. Optimal tuning parameters and AUC for both the methods.

Method Optimal Tuning Parameter Area under the Curve

local λ = 0.46 0.899
global τ = 0.34 0.871

Table 2. Variance analysis (first eight principal components).

Principal
Component Standard Deviation Proportion of

Variance
Cumulative
Proportion

PC1 5157.11860 0.78068 0.78068
PC2 2311.49810 0.15684 0.93752
PC3 866.34106 0.02203 0.95955
PC4 581.91444 0.00994 0.96949
PC5 496.66847 0.00724 0.97673
PC6 405.79667 0.00483 0.98156
PC7 327.32049 0.00314 0.98471
PC8 284.63234 0.00238 0.98708

The estimates for the coefficients βi, i = 0, . . . , 4 obtained by the logistic regression
are collected in Table 3. Recall that, in this case, the optimization parameter λ ∈ [0, 1] is
defined such that W = 1 for each z1, . . . , z4 if Pr(W = 1|z1, . . . , z4) ≥ λ, otherwise W = 0.

Table 3. Estimates of βi and corresponding errors.

i Estimate Standard Deviation

0 −6.6094526 0.2424116
1 −0.0014903 0.0000540
2 −0.0002585 0.0000440
3 −0.0020081 0.0001042
4 −0.0007470 0.0001154

We evaluate, now, the accuracy of the proposed methods by means of the two con-
fusion matrices in Table 4 (see, again, [28]) computed by averaging true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) over all the possible
choices of the training and the test set of data. We use the values collected in Table 4 to
calculate, for both methods, the so-called Cohen’s κ statistic, which takes values in [−1,+1]
and measures the agreement between two classifiers and can also be used to assess the
performance of a classification model, given by the formula (in the binary case)

κ =
2(TP× TN− FP× FN)

(TP + FP)(FP + TN) + (TP + FN)(FN + TN)
, (6)

see, for example, [29]. For the first method, we obtain κlocal = 0.66, while for the second
κglobal = 0.62. Both values make evident a good agreement and accuracy in predictions for
both methods.

Table 4. Confusion matrix (local method/global method).

Population (col.) vs. Prediction (Row) Positive (%) Negative (%)

Positive (%) 44.6/44.6 11.6/13.8

Negative (%) 5.3/5.4 38.4/36.2
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Now, we aim to evaluate the performance of the combination of the two methods,
with the purpose of improving predictions and, at the same time, reducing the variance
in the predictions and, thus, enhancing their stability. Table 5 compares the reliability
of the predictions of the two models, averaging over the outcomes of the 10-fold cross-
validation performed for the optimal tuning parameters. It is important to remark that
when the outcomes for both models are either 0 (TN or FN) or 1 (TP or FP), the amount of
correct prediction is 92.2% (negative predictive value) and 81% (positive predictive value),
respectively. Furthermore, the total proportion of wrong negative outcomes is 2.9%.

Table 5. Performance of the outcomes for the joint methods. Empty cells correspond to impossible
combinations of outcomes.

Local (row) vs. Global (col.) TP (%) FP (%) FN (%) TN (%)

TP(%) 42.1 2.5

FP(%) 9.7 1.9

FN(%) 2.5 2.9

TN(%) 4.1 34.3

Table 6 investigates the accuracy of the predictions. Even if 11% of the predictions
are at odds, and thus they should be directly marked as unreliable, 86% (joint accuracy)
predictions are valid when both agree.

Table 6. Correct vs. wrong predictions (joint models).

Local (row) vs. Global (col.) Correct Predictions (%) Wrong Predictions (%)

correct predictions (%) 76.4 6.6

wrong predictions (%) 4.4 12.6

4. Conclusions

Raman spectra of tumoral and healthy genomic DNA have been collected by analyzing
aqueous DNA droplets deposited onto silver-coated silicon nanowires. We used, respec-
tively, the human melanoma cell line SK-MEL-28 and the human immortalized keratinocyte
HaCaT as tumoral and healthy samples.

Pre-processed spectra were analyzed by means of two different techniques: a PCA
based algorithm powered with linear regression and a pure geometric algorithm were
devised to predict the tumoral or healthy origin of each spectra. Both algorithms achieve
very high accuracy, close to 90%. We also checked accuracy by means of the Cohen’s κ
statistic and for both algorithms we found very good values of the Cohen’s κ index—larger
than 0.6. As far as the evaluation of the pre-processing method is concerned, we fix the
optimal tuning parameters, and then we compare sensitivity and specificity of the pre-
processed spectra with the ones characterizing raw data. Regarding the local method, we
obtain 0.80 vs. 0.79 and 0.86 vs. 0.81 for specificity and sensitivity, respectively, while we
have 0.76 vs. 0.69 (specificity) and 0.84 vs. 0.85 (sensitivity), as far as the global method is
considered. We achieve thus a slight improvement for the local method, while we obtain a
substantial enhancement for the global method.

On one hand, the PCA approach, rather standard in analyzing Raman measurements,
aims at reducing the data set through the analysis of the covariance matrix. On the other
hand, the geometric method that we implemented in this paper looks at the whole set of
data and is based on the simple computation of the `2 distance between spectra. The fact
that both methods work nicely in discriminating healthy and tumoral molecules is a strong
sign of the robustness of the indications provided by the Raman measurements.

In conclusion, we developed a detailed statistical analysis which proves that SERS
measurements can be successfully used for efficient and fast cancer diagnostic applica-



Micromachines 2022, 13, 1388 11 of 12

tions. In particular, our innovative classification approach allows a rapid and unexpansive
discrimination between healthy and tumoral genomic DNA, which is based on the dif-
ferent conformation assumed by healthy and cancer DNA upon dehydration on the 3D
nanostructured substrate, and thusrepresents a powerful alternative to the more complex
and expensive DNA sequencing. The undemanding fabrication technology of the Ag/S-
iNWs, combined with the potential of Raman analysis and proper data processing methods,
makes the proposed approach suitable for cancer diagnostic applications, alternative or
complementary to the more complex and expensive DNA sequencing analysis.
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