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This paper reviews machine-learning methods that are nowadays the most frequently used for the supervised classification of spectral
signals in laser-induced breakdown spectroscopy (LIBS). We analyze and compare various statistical classification methods, such as linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), partial least-squares discriminant analysis (PLS-DA), soft independent
modeling of class analogy (SIMCA), support vector machine (SVM), naive Bayes method, probabilistic neural networks (PNN), and K-nearest
neighbor (KNN) method. The theoretical considerations are supported with experiments conducted for real soft-solder-alloy spectra obtained
using LIBS. We consider two decision problems: binary and multiclass classification. The former is used to distinguish overheated soft solders
from their normal versions. The latter aims to assign a testing sample to a given group of materials. The measurements are obtained for
several laser-energy values, projection masks, and numbers of laser shots. Using cross-validation, we evaluate the above classification
methods in terms of their usefulness in solving both classification problems.
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1 INTRODUCTION

The most popular method of connecting electronic compo-

nents on printed circuit boards (PCBs) is soft soldering. In

this process, metallic material (solder) heated to the melting

point (usually lower than 450◦C) covers the connected ele-

ments. After the solder solidifies, an inseparable connection

is obtained. Soft soldering can be performed in various ways.

In manual assembly and repair of electronic parts, soldering

irons (pencils, stations) are used. In an automated production

process, more advanced soldering techniques are used, i.e., re-

flow and wave as well as laser soldering1. Regardless of the

method used, high-quality joints are obtained by using a suit-

able metal solder alloy, ensuring very good wettability of the

alloy by using flux, and setting the correct melting tempera-

ture.

When the soldering parameters are not set correctly, the qual-

ity of the solder can decrease considerably. In particular, us-

ing a temperature that is too high may reduce the effective-

ness of the flux. Overheating most often results in the forma-

tion of new layers of intermetallic compounds that weaken

the solder, thereby increasing the risk of damage to an elec-

trical circuit. This phenomenon occurs more frequently when

lead-free solders are used [1]. When overheating occurs, a sol-

1IPC-7530: Guidelines for Temperature Profiling for Mass Soldering Pro-

cesses (Reflow and Wave), Association Connecting Electronics Industries,

May 2001

der surface is immediately covered with a layer of oxides and

becomes desiccated.

To assess the quality of solders on a PCB, several inspec-

tion techniques can be used, including visual inspection, auto-

mated optical inspection [2, 3], analysis X-ray inspection (re-

ferred to as 2D or 3D X-ray computed tomography) [4]–[7],

acoustic microscopy [8]–[10], and inspection by infrared laser

systems [11, 12]. These methods provide a variety of oppor-

tunities for determining the quality of the solder by detecting

cracks, air-filled voids in the solder, insufficient wetting, over-

soldering, and bridging. However, they cannot be used to an-

alyze the chemical composition, assign the solder to a given

group (according to the EN: ISO 9453:2014 standard2), or de-

termine whether the solder has been overheated or dried out.

Such information is needed for assessing the quality of solder

alloys. It is important for both solder and equipment man-

ufacturers, who refer to technical documentation and stan-

dards, especially the RoHS and Waste Electrical and Electronic

Equipment (WEEE)3.

Laser-induced breakdown spectroscopy (LIBS) [13]–[15], com-

bined with statistical classification methods, is used in this pa-

2ISO 9453:2014: Soft solder alloys - Chemical compositions and forms, In-

ternational Organization for Standardization, April 2014
3Directive 2012/19/EU: Waste Electrical and Electronic Equipment, Eu-

ropean Union, July 2012
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per to tackle this problem. The foundations of the LIBS tech-

nique have been laid in the early 1960s through many stud-

ies [16]–[19]. A comprehensive review of this technique and

its applications can be found in several recently published re-

view papers [20]–[25] and books [26, 27]. LIBS is an atomic

emission spectroscopy technique that can be used for chemical

material analysis. It uses a short laser pulse to generate a high-

temperature microplasma on the surface of a sample. The

plasma is formed by the laser ablation of a very small amount

(picograms to nanograms) of material, and it contains free

electrons, excited atoms, and ions. Beginning a few microsec-

onds after the end of the laser pulse, the plasma emits a con-

tinuous spectrum (continuum) in the range of 200–1000 nm.

However, information about the structure of the analyzed ma-

terial cannot be obtained directly from this spectrum. Thus,

after another period of microseconds, the temperature of the

plasma is lowered, and the discrete structure of the spectrum,

which is essential for analysis and identification of plasma

products, starts to emerge [28]–[30]. The parameters of the dis-

crete spectrum, such as the wavelength, intensity, and shape,

uniquely characterize the analyzed material.

Solder alloys used in soft soldering can be classified as leaded

or lead-free (RoHS- and RoHS2-compliant4). Their chemical

composition is specified by the EN ISO 9453:2014 standard.

LIBS emission spectra should uniquely determine the chem-

ical composition. However, when solder alloys differ only in

the proportions of the same chemical elements, their spectra

may be significantly correlated. The largest differences can be

observed between leaded and lead-free solder alloys, where

the detection of one or more emission lines of lead is quite sim-

ple. Many industrial devices use such an analytical approach,

in addition to determining the percentage of lead in the alloy,

on the basis of the respective calibration curves. If the type and

quality of solder is expected to be assessed, and the alloys to

be analyzed contain the same elements, it is advisable to use

more advanced methods to analyze the observed spectra.

In many areas of research, LIBS-based data have been re-

cently analyzed and classified using various statistical ma-

chine learning methods [31, 32]. Principal component analysis

(PCA) is probably the most frequently used method for pro-

cessing LIBS data. Examples include biomedical and environ-

mental applications [33], phone manufacturer identification

[34], and inspection of concrete aggregates recycled from de-

molished buildings [35]. In geology, Gottfried et al. [36] used

PCA and partial least-squares discriminant analysis (PLS-DA)

to classify carbonate, fluorite, and silicate geological materials.

In a later study, Kim et al. [37] employed these methods for the

rapid detection of heavy metals and oils in soil. Next, Zhu et

al. [38] applied PLS-DA and support vector machine (SVM) to

analyze LIBS data for sedimentary rocks. PLS-based computa-

tional tools have also been used to determine the composition

of geological samples from Mars [39], for ash determination in

coal [40], and to establish the fuel–air equivalence ratio [41].

Another approach to the analysis of LIBS data was presented

by El Haddad et al. [42], who performed the on-site quanti-

tative analysis of lead in real soil samples by using a series of

artificial neural networks (ANNs). Other methods, such as lin-

4Restriction of Hazardous Substances Directive, European Union,

http://www.rohs.eu

ear discriminant analysis (LDA) and soft independent model-

ing by class analogy (SIMCA) [43], gave satisfactory results

in the classification of soil and geomaterial samples. Senesi

[44] provided a comprehensive review of the applications of

LIBS in the classification of geomaterials with a focus on min-

erals and rocks. In archeology, PCA, PLS-DA [45], and ANNs

[46] have been used to classify ceramics efficiently. Vı́tková et

al. [47] applied LDA to analyze brick samples. In medicine,

Kanawade et al. [48] used a similar computational technique

to discriminate tissues during laser surgery. SIMCA, PLS-DA,

SVM, classification and regression tree, and binary logistic re-

gression are applied for the classification of human bones in

[49]. Godoi et al. [50] tackled the problem of identifying toxic

elements in toys using SIMCA, PLS-DA, and the K-nearest

neighbor (KNN) method. Cisewski et al. [51] used SVM for the

classification of a suspect powder to detect Bacillus anthracis

spores. SVM was also successfully used by Liang et al. [52] to

classify steel materials. In industrial applications, SVM, KNN,

and the naive Bayes (NB) method are applied for the auto-

matic sorting of aluminum alloys [53]. The analysis of vari-

ance, which is closely related to LDA, is used in [54] for the

depth-profile analysis of galvanized steel sheets. Comprehen-

sive reviews of statistical tools used for the identification and

classification of LIBS data can be found in [24, 25].

In this paper, we discuss the application of LIBS technology

to the classification and identification of soft solder alloys. We

consider two decision problems. The first is concerned with

binary classification that aims to discriminate overheated soft

solders from their normal versions using LIBS spectra. The

other uses multiclass classification to identify a group of ma-

terials to which a given sample belongs. Various statistical

machine-learning methods are studied with respect to both

classification problems. We review the most popular methods,

including PLS-DA, SIMCA, LDA, QDA, SVM, KNN, NB, and

one version of ANN. As mentioned above, all these methods

have already been used in LIBS technology in various appli-

cations. In the experimental section, we discuss their effective-

ness in solving these two classification problems.

The remainder of this paper is organized as follows: Section 2

presents the experimental setup and a short description of the

analyzed solder materials. The statistical tools are described in

Section 3. The classification results are presented in Section 4.

Finally, the conclusions are drawn in Section 5.

2 EXPERIMENTAL STUDY

The testing instrumental configuration, which is shown in Fig-

ure 1, consists of a KrF excimer laser system, an LIBS spec-

trometer (which is connected to the optical head for observing

plasma light by a fiber optic cable and a reflective collimator

with a plano-convex lens), and a computer running the Spec-

traSuite software (Ocean Optics, USA).

2.1 KrF (248 nm) excimer laser system

The laser system used in the experiments consists of the

CNC Optec Promaster with the excimer KrF (248 nm) ATL

16006i- 2
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FIG. 1 LIBS experimental setup.
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FIG. 2 (a) Real energy and (b) fluence values on the material, depending on the output laser energy and mask.

Lasertechnik ATLEX-300-SI-248 laser. The basic parameters of

the output laser beam are as follows:

• energy: 4.5–22 mJ

• size: 6 × 4 mm2

• duration: 5–6 ns

• average power: <6 W

• pulse repetition rate: 1–300 Hz

The laser source is combined with the optical system and a

selector for choosing from among 32 masks with various mo-

tifs (circle, bar-shaped, and square apertures) and sizes. The

optical system ensures the demagnification of the mask’s size

on the material at a rate of −10.45×. The laser beam in the

workspace has a maximum energy of 2.03 mJ (measured us-

ing a Thorlabs energy meter with the ES111C pyroelectric en-

ergy sensor), and its size ranges from 24 to 240 µm, regardless

of the shape of the projection mask. In this research, we used

four square masks with sizes of 98 × 98, 144 × 144, 191 × 191,

and 240 × 240 µm 2 and four output beam energies: 10, 12, 15,

and 18 mJ. The real energy and fluence values of the material

are shown in Figure 2. Five shots are taken at one location on

the sample. Precise movement of the material is obtained by

using the computerized numerical control table in the Optec

system.

2.2 LIBS device

The plasma light emission is observed using a spectrome-

ter (Ocean Optics Libs 2500+) in the bandwidth range of

295–635 nm (three of seven channels) with a spectral resolu-

tion of 0.1 nm (FWHM). The trigger output of the laser is

used to trigger the detection system. The integration time of

the CCD array amounts to 1 ms, with a gate delay of 4 µs

from the beginning of a laser pulse (a minimal value result-

ing from delays in the CCD arrays and a delay in the laser

trigger). Direct acquisition of a plasma plume is performed by

the optical head, which includes a reflective collimator (Thor-

labs RC12SMA-P01) with a plano-convex lens (LA-4306-ML;

f = 40 mm) and a seven-channel sampling probe (BUN-7,

Ocean Optics). It was placed at an angle of 45◦ with respect

to the direction normal to the sample surface. The spectra

from three channels are recorded by the SpectraSuite software

and concatenated into one. Then, the continuum component

(background) is removed by applying a denoising method

based on the same concept as in [55] but fully automated.

2.3 Materials

The experiments are conducted using five soft solder alloys

produced by the Cynel-Unipress5. Two of them are lead–tin

alloys, and the rest, instead of lead, have more tin and dif-

ferent proportions of silver and copper. The symbols and the

chemical compositions, specified by the manufacturer of the

Spektromaxx spectrometer6, are listed in Table 1.

The test alloys are divided into two groups. One group con-

tains the reference alloys, which are equivalent to solder made

5Phage Cynel-Unipress Co. Ltd.: solders, July 2015
6SPECTRO Analytical Instruments GmbH, July 2015

16006i- 3
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Name Flux/No. core/% Sn% Pb% Ag% Cu%

S-Sn60Pb40 SW26/3/2.5 59.9 40.02 0.0003 0.0014

S-Pb70Sn27Ag SW26/3/1.8 26.93 69.8 3.01 0.038

S-Sn99Cu1 F-SW32/3/3 98.85 0.020 0.0004 0.98

SAC 305

(Sn96.5Ag3Cu0.5) PRO/1/1.5 96.53 0.014 2.97 0.46

S-Sn97Cu3 – 96.88 0.029 0.028 3.03

TABLE 1 Parameters of the solder alloys used in the tests, according to EN ISO 9453:2014, Flux [DIN 8511].

properly but covered with an oxide layer as a result of aging

(Figure 3, top), and the other consists of overheated samples

(Figure 3, bottom).

A hot-air gun with the air temperature set to 450◦C is used

to overheat the samples. The alloys are subjected to high tem-

perature until the symptoms of overheating (described in Sec-

tion 1) are observed. Consequently, the surfaces of the alloys

change owing to the evaporation of the flux, their colors be-

come dull, and surface tension is observed.

Ten testing alloys (five in each group) are selected. The spec-

tral data are collected in 50 series of five laser shots in one

location on each sample. Taking into account the settings de-

scribed in Section 2.1, we use four types of masks and four

energy values for the ten types of samples, which gives a total

of 40,000 test shots (8000 series). Each series of measurements

is performed at a pulse repetition rate equal to 1 Hz. Examples

of emission spectra obtained with our measurement system at

12 mJ and using mask 12 are shown in Figure 4.

3 STATISTICAL ANALYSIS

The proposed methodology is based on the supervised classi-

fication of LIBS data, assuming that training data can be easily

obtained. This approach is useful for the identification or dis-

crimination of soft solder alloys, especially in decision prob-

lems, where a given testing sample must be classified with re-

spect to a certain group of training samples. For example, one

should decide whether the analyzed sample is overheated. In

this case, we have a binary decision problem, which is easily

solved using the standard SVM.

A more difficult decision problem occurs when we have more

classes, for example, if we need to determine the group of ma-

terials to which a testing sample belongs. We assume that we

have a dictionary or database of LIBS spectra of soldering ma-

terials that can be found on PCBs.

Let the observed LIBS spectrum be represented by the vec-

tor x ∈ R
I . The number I determines the spectral resolu-

tion, and it is not necessarily the number of subbands ob-

served in one channel. Multichannel registrations can be con-

catenated. Hence, it might be a large number. In supervised

classification, we need to have the training samples, i.e., the

LIBS spectra of the most relevant materials to be analyzed.

Let D = {(x
(r)
t , y

(r)
t ), t = 1, . . . , T} be the set of T training

samples. Each x
(r)
t contains the LIBS spectrum of the known

material (solder alloy) that belongs to the group (class) indi-

cated by y
(r)
t . We assume we have C groups of materials.

The aim of training is to find a classification rule or classifier

F such that F (x
(r)
t ) → y

(r)
t for t = 1, . . . , T. The mapping

can be obtained using many classification methods. In what

follows, we attempt to find the most efficient classifier for a

given classification problem.

The efficiency of the training is evaluated in the testing pro-

cess: F (x(t)) → y(t), where x(t) is the testing sample, and y(t)

is the index of the class returned by the trained classifier F .

The quality of classification can be easily evaluated, e.g., by

using the n-fold cross-validation (CV) technique [31, 32].

3.1 Principal component analysis

Let the training vectors {x
(r)
t } be regarded as realizations of

a multivariate stochastic process X = {xt : t = 1, . . . , T}.
They form an inhomogeneous cloud of points in the space R

I .

The heterogeneity is justified by the spiky nature of LIBS spec-

tra (see, e.g., Figure 4); only a few variables (emission lines) in

each random vector xt are highly active. The low-activity vari-

ables generate the background, which is partially removed

in the preprocessing stage. If the observed spectra have high

resolution and the number of analyzed materials (classes) is

much lower than the number of spectral points I, the vari-

ance of the random variables in xt can be quite diverse. In

this case, we can easily find such orthogonal directions in the

high-dimensional cloud of data points along which the vari-

ance is maximal. Such directions in R
I will be referred to as

feature vectors. Hence, the data points in R
I can be modeled

by a low-dimensional geometric object, which motivates the

use of PCA [56, 57].

The random variables in xt are assumed to be correlated by

the covariance matrix

C
(t)
X = E

(

x̃t x̃
T
t

)

∈ R
I×I , (1)

where x̃t = xt − E(xt) is the vector of centralized random

variables, and E(·) is the expectation operator. Assuming that

the stochastic process is ergodic, we can approximate the co-

variance matrix C
(t)
X by its empirical version ĈX , which is

symmetric and positive semidefinite. Thus, by using eigen-

value decomposition, we have ĈX = VΛV T , where V TV = I.

The eigenvectors of ĈX , which are expressed by the columns

of V = [v1, . . . , vI ] ∈ R
I×I , determine mutually orthogo-

nal feature vectors. The entries of the real diagonal matrix

Λ = diag{λi} ∈ R
I×I are the corresponding eigenvalues. Let

16006i- 4
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FIG. 3 Surface structure of the S-Sn97Cu3 alloy: (top) natural; (bottom) overheated; magnification rates: (left) 100; (middle) 500; (right) 1000.
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FIG. 4 LIBS spectra of soft solder alloy: (a) normal and (b) overheated. Spectra are recorded at an energy of 12 mJ using mask 12 (98 × 98 µm2) on the third shot.

V J = [v1, . . . , vJ ] ∈ R
I×J be a submatrix created from the first

J eigenvectors that correspond to the largest eigenvalues. The

column vectors in V J span the basis for the following orthog-
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onal linear mapping:

z
(r)
t = V T

J x̃
(r)
t , (2)

where x̃
(r)
t are realizations of x̃t. The row vectors of

Z(r) = [z
(r)
1 , . . . , z

(r)
T ] ∈ R

J×T determine the principal com-

ponents (PCs). They are mutually uncorrelated, and because

the eigenvalues are sorted in decreasing order, we have

Var{z
(r)
1 } ≥ Var{z

(r)
2 } ≥ . . . ≥ Var{z

(r)
J }, where z

(r)
j is the

j-row vector of Z(r).

Because J << I and J < T, there is no need to calculate all the

eigenvectors of ĈX . To calculate only a few dominant eigen-

vectors, we can use the stabilized version of the Lanczos it-

erations [58], which is implemented in MATLAB in the eigs

function.

The number J can be roughly estimated by observing the be-

havior of the eigenvalues {λi}. The ratio of the variance ex-

plained by J PCs to the total variance is given by

ξ =
∑

J
i=1 λi

∑
I
i=1 λi

100%. (3)

Hence, J should be as small as possible but, on the other hand,

it should also be selected to maximize ξ. The problem of deter-

mining the optimal number of PCs has been widely discussed

in the literature, e.g., [59]–[61]. In our approach, we set J = 30,

for which ξ ∼= 90%. Thus, this choice considerably reduces the

dimensionality while retaining nearly 90% of the explained

variance.

3.2 K-nearest neighbor

The k-nearest neighbor (KNN) method [31, 32] is a fundamen-

tal method for classification and regression. Given the unla-

beled testing sample x(test) and the set D containing labeled

training samples, the aim of KNN is to find k samples from

the set D that are the most similar to x(test) according to some

metric. The predicted class of the sample x(test) is determined

by majority voting.

The number k can be regarded in terms of penalty or regular-

ization. For k = 1, the method is the simplest, and it is recom-

mendable when the number of training samples is large and

unperturbed with outliers. If k = T, KNN predicts the class of

majority voting, which leads to strong oversmoothing. When

some outliers are expected to occur, a few nearest neighbors

should be used (often k < 10). Our observations show that the

LIBS data obtained for many soft solders are not considerably

perturbed with spiky outliers. We also check experimentally

that for our measurements, the best classification accuracy is

obtained for k = 1. For this case, the decision rule is given

by y(t) = arg min1≤t≤T D(x(test)||x
(r)
t ), where D(x(test)||x

(r)
t )

is the dissimilarity measure between both arguments. The Eu-

clidean distance is the most frequently used, and it is optimal

for samples normally distributed in classes. The LIBS spec-

tra have a spiky nature, and the classes can sometimes differ

in the magnitudes of only few emission lines. Hence, the Eu-

clidean distance does not seem to be optimal for this appli-

cation. In our tests, we also used the cosine measure, which

expresses the similarity in terms of the angle between the unit

length vectors. In contrast to the former, the cosine measure is

normalized and may be more suitable for comparing nonneg-

ative data, such as LIBS spectra.

KNN can be directly applied to observed LIBS spectra, but in

this case, it might be inefficient, especially because the number

of spectral subbands (I) is very large. In our experiments, we

analyze both cases, i.e. when KNN is applied directly to the

high-dimensional LIBS data as well as to the PCs given by

Eq. (2).

3.3 Linear discr iminant analysis

PCA assumes the convexity and linear separability of classes,

but the information on their labels is neglected. In supervised

learning, class-specific linear models usually work better than

linear dimensionality reduction alone. This motivates us to

use LDA [31, 32], which is based on Fisher’s linear discrim-

inant, for the multiclass classification problem.

In PCA, we attempt to orthogonally diagonalize the empirical

covariance matrix ĈX by maximizing the Rayleigh quotient:

v
(PCA)
j = arg max

vj

vT
j ĈXvj

vT
j vj

, s.t. vT
j vj = 1, (4)

for j = 1, . . . , J.

In LDA, the generalized Rayleigh quotient is maximized:

v
(LDA)
j = arg max

vj

vT
j ĈBvj

vT
j ĈW vj

, (5)

for j = 1, . . . , C − 1. The matrix ĈB represents the empirical

covariance matrix of the class means. It is expressed as

ĈB =
C

∑
c=1

Nc(x̄
(r)
c − x̄(r))(x̄

(r)
c − x̄(r))T , (6)

where x̄
(r)
c is the sample mean of the cth class, x̄(r) is the to-

tal empirical mean, and Nc is the number of training samples

in the cth class. The matrix ĈB represents between-class scat-

tering or the mean distance between the centroids of classes.

Obviously, this quantity should be maximized. The matrix ĈW

in Eq. (5) expresses the within-class scattering, which can be

modeled as follows:

ĈW =
C

∑
c=1

∑
k∈Nc

(x
(r)
k − x̄

(r)
c )(x

(r)
k − x̄

(r)
c )T , (7)

where Nc is the set of indices of the training samples that be-

long to the cth class.

The problem in Eq. (5) can be rewritten in an equivalent form

that involves the Fisher criterion:

V (LDA) = arg max
V

det(V TĈBV)

det(V TĈWV)
, (8)

where V = [v1, . . . , vC−1]. The nominator in Eq. (8) represents

the variance of the class means, and its denominator refers

16006i- 6
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to the variance of individual classes. Hence, LDA attempts to

find the projection that maximizes the variance of the class

means and minimizes the variance of individual classes.

It is well known that any solution to the maximization prob-

lem in Eq. (5) satisfies the generalized eigenvalue equation

ĈBv
(LDA)
j = λjĈW v

(LDA)
j , for j = 1, . . . , C− 1, (9)

where λj is the generalized eigenvalue that corresponds to

the jth generalized eigenvector v
(LDA)
j . Assuming that ĈW

is nonsingular, the equation reduces to the standard eigen-

value equation Ĉ
−1
W ĈBv

(LDA)
j = λjv

(LDA)
j . Because the matrix

Ĉ
−1
W ĈB is not symmetric, the eigenvectors {v

(LDA)
j } are not

mutually orthogonal.

Note that rank(ĈB) = C− 1, but rank(ĈW) = minc(Nc − C),

which is usually much smaller than the length of x
(r)
k . Thus,

the matrix ĈW is singular in our application, if LDA is ap-

plied directly to observed LIBS spectra. To tackle the singu-

larity problem, several stability techniques can be applied, in-

cluding various forms of regularization. In our approach, we

combined LDA with PCA; i.e., LDA is applied to the low-

dimensional samples that are obtained using Eq. (2).

After PCA is used, the matrix

V (LDA) = [v
(LDA)
1 , . . . , v

(LDA)
C−1 ] ∈ R

J×(C−1)

contains the basis for the following linear projection:

y
(LDA)
t = (V (LDA))Tz

(r)
t ∈ R

C−1, (10)

where z
(r)
t is given by Eq. (2).

The set {y
(LDA)
t } contains the low-dimensional training vec-

tors, where the classes should be linearly separable. Note that

for any testing sample x(test) ∈ R
I , we need to apply a similar

projection:

y
(LDA)
(test)

= (V (LDA))TV T
J x(test) ∈ R

C−1, (11)

where V T
J is obtained by PCA.

Then, the decision on the class to which the sample x(test)

belongs can be taken using the KNN classifier with the Eu-

clidean or Mahalanobis distance.

LDA assumes that the within-class scattering is modeled by

one matrix, given in Eq. (7). However, this assumption does

not have to be satisfied generally. Modeling it separately by

one covariance matrix for each class leads to the quadratic dis-

criminant [31]. This approach is used in the QDA classifier.

3.4 Part ial least-squares discr iminant
analysis

The partial least squares (PLS) method is used for modeling a

statistical relationship between two sets of observed variables.

Originally, it was designed for solving regression problems in

the social sciences [62], but recent studies demonstrate that it

has become increasingly popular in the classification of LIBS

spectra [24, 25, 36, 44], [63]–[68].

The PLS regression aims to determine orthogonal latent vari-

ables that best explain the set of observed variables and si-

multaneously predict the output variables. In classification,

the latent variables should maximize the covariance between

the training variables and the output variables associated with

the indices of classes.

Let X = [x
(r)
1 , . . . , x

(r)
T ] ∈ R

I×T be the matrix of training LIBS

spectra, and Y = [y
(r)
1 , . . . , y

(r)
T ] ∈ R

C×T contain the samples

of output variables that can be defined in many ways. If Y is a

vector of indices of classes, then we have PLS1. In general, the

output variable can be statistically dependent. In our multi-

class classification tests, Y = [yct] is a binary matrix with the

following entries: yct = 1 if c = y
(r)
t , and yct = 0 otherwise,

where c = 1, . . . , C. The index of the class to which the tth

training sample belongs is denoted by y
(r)
t . The observed vari-

ables should be centralized, as in PCA. Hence, X̃ = [x̃t] and

Ỹ = [ỹt], where x̃t = xt − E(xt) and ỹt = yt − E(yt). If C > 2,

the PLS regression used for classification is referred to as the

PLS-DA (PLS discriminant analysis).

The fundamental model for the PLS regression has the form

of bilinear equations:

X̃ = PTT + E, (12)

Ỹ = QUT + F. (13)

Similarly to PCA, P ∈ R
I×J and Q ∈ R

C×J are referred to as

the loading matrices, but they are not orthogonal. The matrix

T ∈ R
T×J contains J latent vectors or X-scores. The Y-scores

are represented by the matrix U ∈ R
T×J . If J << I, PLS

can be regarded as a dimensionality reduction technique. The

residual errors are modeled by the matrices E ∈ R
I×T and

F ∈ R
C×T .

There are many computational strategies for estimating the

matrices T , P, U, and Q in the models in Eqs. (12) and (13).

In the nonlinear estimation by iterative partial least-squares

(NIPALS) algorithm [62], the column vectors of these matrices

are estimated recursively from the deflated matrices:

X̃(j) = X̃(j−1) − pjt
T
j , (14)

Ỹ (j) = Ỹ (j−1) − qju
T
j , (15)

where j = 1, . . . , J, and {pj, t j, qj, uj} are the jth columns of the

matrices P, T , Q, and U, respectively. Initially, X̃(0) = X̃ and

Ỹ (0) = Ỹ . The X- and Y-scores are assumed to belong to the

corresponding spaces of the observed and predicted output

variables. Thus,

t j = X̃
T
(j−1)wj s.t. tT

j t j = 1, (16)

uj = Ỹ
T
(j−1)cj s.t. uT

j uj = 1, (17)

where wj ∈ R
I and cj ∈ R

C are the weight vectors. To pre-

dict Y from X, the X-scores should be maximally correlated

with the Y-scores, which leads to the constrained optimization
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problem:

(wj, cj) = arg max
w ∈ R

I , ||w||2 = 1

c ∈ R
C , ||c||2 = 1

cov2 (t, u)

= arg max
w ∈ R

I

c ∈ R
C

(

wTE(X̃(j−1)Ỹ
T
(j−1))c

)2

(wTw)(cTc)

= arg max
w∈RI

(wTw)−1 max
c∈RC

cTC
(j−1)
YX w(C

(j−1)
YX w)Tc

cTc

= arg max
w∈RI

wTC
(j−1)
XY C

(j−1)
YX w

wTw
, (18)

where C
(j−1)
XY = E(X̃(j−1)Ỹ

T
(j−1)) ∈ R

I×C is the covari-

ance matrix between the variables in X(j−1) and Y (j−1),

C
(j−1)
YX = (C

(j−1)
XY )T , and cj = C

(j−1)
YX wj. Assuming C

(j−1)
XY is a

full-rank matrix, formula (18) shows that wj is the eigenvector

of the symmetric and positive-definite matrix C
(j−1)
XY C

(j−1)
YX ,

associated with the leading eigenvalue. The largest singular

value of C
(j−1)
XY determines the covariance between t j and

uj. The loading matrix P in Eq. (12) can be estimated by

formulating the ordinary least-squares (LS) problem, which

minimizes the residual error E in the Euclidean metrics.

Considering Eq. (16), the jth column vector of P is given by

pj = (wT
j X̃(j−1)X̃

T
(j−1)wj)

−1X̃(j−1)X̃
T
(j−1)wj. (19)

The rank-one estimate of X(j−1) associated with the first latent

variable is given by

X̂ j = pjt
T
j . (20)

In the first iterative step, X̂ j is also the rank-one estimate of X.

For the Y-variables, we have uj = Ỹ
T
(j−1)cj,

qj = (cT
j Ỹ (j−1)Ỹ

T
(j−1)cj)

−1Ỹ (j−1)Ỹ
T
(j−1)cj,

and Ŷ j = qju
T
j .

In many versions of the NIPALS, the weight vectors {wj}
are not directly estimated by the eigenvalue decomposition of

the covariance matrix C
(j−1)
XY C

(j−1)
YX ; rather, the concept of the

power method is applied. The weight vectors are computed

with the following iterative rules:

wj =
X̃(j−1)uj

uT
j uj

, Normalization : ||wj||2 → 1, (21)

cj =
Ỹ (j−1)t j

tT
j t j

, Normalization : ||cj||2 → 1. (22)

The vectors t j and uj are updated according to Eqs. (16) and

(17). Initially, u1 can be chosen as one column of Ỹ
T

. Note

that wj ∝ X̃(j−1)uj ∝ X̃(j−1)Ỹ
T
(j−1)cj ∝ X̃(j−1)Ỹ

T
(j−1)Ỹ (j−1)t j ∝

X̃(j−1)Ỹ
T
(j−1)Ỹ (j−1)X̃

T
(j−1)wj. Hence, wj is an eigenvector of

C
(j−1)
XY C

(j−1)
YX . The column vectors in T satisfy the orthogonal-

ity condition, i.e., ∀i 6= j : tT
i t j = 0.

In our tests, we used a modified version of NIPALS called the

statistically inspired modification of PLS (SIMPLS) [69]. This

method is computationally more efficient and easier to inter-

pret. In this approach, the covariance matrix C
(j)
XY is updated

recursively, but it is not calculated from the deflated matrices.

Thus, ∀j : X̃(j) = X̃, Ỹ (j) = Ỹ , and C
(0)
XY = X̃Ỹ

T
. The latent

vectors {t j} are assumed to be orthogonal:

∀i 6= j : tT
i t j = wT

i X̃X̃
T

wj = 0. (23)

From Eqs. (23) and (19), we have ∀i 6= j : pT
i wj = 0,

which means that the current wj should be orthogonal to

all previous X-loading vectors {p1, . . . , pi} for i < j. Next,

the X-loadings are projected onto the base {v1, . . . , vi}, cre-

ated with the Gram–Schmidt orthogonalization. It means that

∀i < j : vT
i vj = 0. In such a base, the covariance matrix C

(j−1)
XY

is deflated by the following rule:

C
(j)
XY = C

(j−1)
XY − V j(V

T
j C

(j−1)
XY ), (24)

where V j = [v1, . . . , vj]. Finally, the Y-scores are orthogonal-

ized with respect to the X-scores:

∀j : uj ← uj − (tT
i uj)ti for i = 1, . . . , i− 1. (25)

The relationship between the output and input variables can

be described by the multivariate regression model:

Ỹ = B̃

[

1
T
T

X̃

]

, (26)

where B̃ =
[

b̂, B
]

∈ R
C×(I+1) is the matrix of regression co-

efficients, and 1T = [1, . . . , 1] ∈ R
T is a vector of all ones.

Inserting the equations (12)–(13) to the model (26), we have

B = QW̃
T
∈ R

C×I , where W̃ =
[

w1

||t1||2
, . . . ,

wJ

||t J ||2

]

∈ R
I×J .

The vector b̂ = T−1(Y1T − BX1T) ∈ R
C expresses the inter-

cept term.

In the testing stage, the response for the testing sample

x(test) ∈ R
I can be readily calculated using the model (26).

Thus,

ỹ(test) = B̃

[

1

x̃(test)

]

, (27)

where x̃(test) = x(test) −E(x(test)). Finally, the index of the test-

ing sample is determined as y(t) = maxc{ỹ
(test)
c }.

One of the main advantages of the PLS regression is its high

efficiency in working with a large set of input variables that

can be partially dependent, whereas the number of observed

samples may be relatively small. It is therefore particularly

useful in the classification of LIBS spectra, where the num-

ber of spectral subbands is pretty large. Moreover, the emis-

sion spectrum of the analyzed material (solder alloy) usually

contains a few emission lines that determine a spectral signa-

ture. Hence, some variables in any source signal (endmemebr)

might be correlated. The set of observed spectra is also not

very large in practice. PLS also works well for collinear prob-

lems. It is also the case for the LIBS technology, where the dif-

ference between the LIBS spectra of various materials might

be very small. Similarly to PCA, PLS extracts some hidden
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factors (components) from the training LIBS spectra, but PLS

extracts factors much more informative for classification. The

factors not only capture the largest variance (as in PCA) but

are the most correlated with the responses (output variables).

The PLS regression is therefore much more robust in classify-

ing LIBS spectra than the ordinary orthogonal regression with

the PCs.

3.5 Soft independent modeling of class
analogy

The soft independent modeling of class analogy (SIMCA) is

a well-known supervised machine-learning method that was

proposed for statistical pattern recognition by Wold in the

1970s [70, 71]. Since then, it has found many real-world ap-

plications, including the classification of LIBS spectra [43, 49,

50, 72].

It is based on the concept of PCA, but it does not search for

global features holistically representing the whole set of train-

ing LIBS spectra. The global PCs do not necessary provide dis-

criminant information. In SIMCA, PCA is applied separately

to each class, which gives us relevant information on individ-

ual group structures. The testing sample is orthogonally pro-

jected onto the space spanned by PCs of each class, and the

residual distances are calculated to evaluate the similarity of

the testing sample to each class.

Let X
(r)
c = [x

(r)
tc
] ∈ R

I×Tc contain Tc training samples that be-

long to the cth class. By applying PCA to each X
(r)
c , we obtain

the matrix V
(c)
J ∈ R

I×J containing J feature vectors, and the

PCs given by z
(r)
tc

according to the mapping (2). Selecting J

PCs for the cth class, the residual error between the training

samples and the PC model is given by

E(c) = X̃
(r)
c − V

(c)
J Z(c), (28)

where X̃
(r)
c = [x̃

(r)
tc
], ∀c : x̃

(r)
tc

= x
(r)
tc
− E(x

(r)
tc
) and

Z(c) = [z
(r)
tc
] ∈ R

J×Tc . The mean distance between the

samples assigned to the cth class and the space spanned by

their PCs can be expressed by the standard deviation of the

residual error E(c) = [e
(c)
i,tc

]:

s0 =

√

√

√

√

Tc

∑
tc=1

I

∑
i=1

(e
(c)
i,tc

)2

(I − J)(Tc − J − 1)
. (29)

As the error e
(c)
i,tc

follows a normal distribution, the F-test is

used to determine the critical distance at a given level of

significance. Thus, sc =
√

Fcs2
0, where Fc is the F-value for

(I− J) and (I− J)(Tc− J− 1) degrees of freedom at the signif-

icance level α. This parameter determines a confidence region

around each class, which can be interpreted as the threshold

for the classification of a training sample as an outlier.

To classify the testing sample x(test) to any group, it is first

sequentially projected onto the spaces spanned by the PCs of

each class. The projection is defined as follows:

x̂
(test)
c = x̄(c) + V

(c)
J (V

(c)
J )T(x(test) − x̄(c)), (30)

where x̄(c) is the mean of the cth class. The residual error

e
(test)
c = x(test) − x̂

(test)
c is normally distributed with the stan-

dard deviation

s
(test)
c =

√

(e
(test)
c )Te

(test)
c

(I − J)
. (31)

If

s
(test)
c < sc, (32)

the sample x(test) is considered to belong to the cth class. Note

that the condition (32) may be satisfied for multiple classes.

Thus, SIMCA provides soft classification. If the hard classifi-

cation is expected, then the sample x(test) is assigned to the

c∗th class, if c∗ = arg min1≤c≤C F
(test)
c , where F

(test)
c =

(

sc
s0

)2
is

the F-value for x(test).

3.6 Naive Bayes

The LIBS spectra that belong to the cth class can be re-

garded as samples from the conditional probability dis-

tribution p(x|Y = c), where the discrete random variable

Y ∈ {1, . . . , C} takes the value c. Let us assume that we have

prior knowledge on the distribution p(Y), usually inferred

directly from the training data. For the cth class, it is given by

the ratio

p(Y = c) =
Nc

T
, (33)

where Nc is the number of training samples in the cth class. By

applying the Bayes rule, the probability of the class c, given

the observation x, can be represented by the posterior distri-

bution:

p(Y = c|x) =
p(x|Y = c)p(Y = c)

∑
C
c=1 p(x|Y = c)p(Y = c)

. (34)

Neglecting the marginal distribution in Eq. (34), the Bayes

classifier for the testing sample x(test) is given by

F (x(test)) = arg max1≤c≤C p(Y = c|x(test))

= arg max1≤c≤C p(x(test)|Y = c)p(Y = c). (35)

The distribution p(x|Y = c) needs to be estimated; this can be

done in many ways. In the naive Bayes (NB) classifier [31, 32],

the random variables in x = [x1, . . . , xI ]
T are assumed to be

statistically independent, i.e., p(x|Y = c) = ∏
I
i=1 p(xi|Y = c).

This assumption considerably simplifies the model and de-

ceases computational cost but is often not fully satisfied in

practice. As already mentioned, the emission lines of certain

materials might be correlated, which violates the condition of

independence. Nevertheless, NB often works well in many

applications, especially for sparse features. LIBS spectra are

nonnegative and have a spiky nature. Hence, the variables

xi should not be modeled by a Gaussian distribution. If the

intensities of spectral lines were modeled by discrete values,

then p(xi|Y = c) could be expressed by the multinomial distri-

bution. However, such a model involves high computational

cost. A good solution in practice is the use of a non-parametric
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density estimation method, such as the kernel-smoothing den-

sity estimator:

p(xi|Y = c) = N−1
c

Nc

∑
tc=1

h
(c)
i K





xi − x
(r)
i,tc

h
(c)
i



 . (36)

The parameters of the model (36) are estimated from the train-

ing samples {x
(r)
t }, where x

(r)
i,tc

is the ith entry of the training

vector x
(r)
tc

from the cth class, h
(c)
i is the smoothing parameter

associated with the ith variable, and K(·) is the kernel function.

To enforce local smoothing, the kernel K is modeled with the

Gaussian distribution. For simplicity, h
(c)
i = h(c)σ

(c)
i , where

h(c) is a constant in the cth class and σ
(c)
i is the empirical stan-

dard deviation of the ith variable in the vectors {x
(r)
tc
}. To es-

timate p(x|Y = c), the multidimensional kernels can also be

used. In such a case, p(x|Y = c) can be modeled by

p(x|Y = c) = N−1
c

Nc

∑
tc=1

KH

(

x− x
(r)
tc

)

. (37)

The multidimensional kernel is given by

KH(ξ) = det(H)−1/2K(H−1/2ξ), (38)

where H ∈ R
I×I is a symmetric and positive-definite smooth-

ing matrix and K(·) is a standard multivariate Gaussian dis-

tribution. Note that if H is a diagonal matrix, the model (37) is

equivalent to the product of Eq. (36).

NB also has some disadvantages that should not be neglected

for our application. The probability density in Eq. (37) is es-

timated from training samples, and the estimate is better if

the dimension x is smaller and more samples is used. How-

ever, the case in LIBS technology is usually the reverse. More-

over, on summing the same number of training samples in

each class, the priors (33) are identical for each class, which

is not informative. Hence, from the theoretical viewpoint, NB

may not be optimal for classifying LIBS spectra.

3.7 Probabi l ist ic neural network

The probabilistic neural network (PNN) is intrinsically related

to the Bayes classifier, but it is implemented with the architec-

ture of a feedforward multilayer neural network. It was pro-

posed by Specht in 1990 [73] and is particularly useful for solv-

ing classification problems. PNN belongs to a family of artifi-

cial neural networks that are also applied for the classification

of LIBS spectra [42, 63], [74]–[76].

Similarly to NB, PNN attempts to estimate the conditional dis-

tribution p(x|Y) for each class. In the testing stage, PNN clas-

sifies x(test) according to the rule (35), given the prior p(Y).

However, the result of classification can be different from that

with NB owing to a different implementation of the Bayes

classifier.

PNN consists of four layers. The input layer contains I neu-

rons: each of them receives one subband (the entry x
(test)
i )

from the observed spectrum x(test). The input signals, after be-

ing centralized and normalized, are then given to the second

layer named the pattern layer. It consists of many hidden neu-

rons grouped into C categories. In each category, there are as

many neurons as the number of training vectors in this class.

Each training vector is assigned to one neuron that has I input

synapses receiving the signals from all subbands {x
(test)
i }. The

neuron computes the Euclidean distance between the testing

sample x(test) and the training sample x
(r)
t , and then the Gaus-

sian radial basis function is used for activation. The output

signals from all neurons in the pattern layer are then yielded

to the third layer that performs the summation over each class.

Hence, the summation layer contains C neurons. The outputs

from these neurons are normalized to obtain estimates of the

probability density function for each class. The hidden lay-

ers therefore play the role of the Gaussian kernel density esti-

mator that was discussed in Subsection 3.6. The final (output)

layer contains one output neuron, which compares the activa-

tions from the third layer, weights with the prior, and provides

the index of the class to which the testing sample is assigned

with the highest probability.

In the training stage, parameters such as standard deviations

in the Gaussian activation functions are learned. They play

a role similar to that played by the smoothing parameters in

NB and can be estimated, e.g., using the cross-validation tech-

nique. Hence, one of the main advantages of PNN is fast train-

ing, which is much faster than in a backprojection network.

Such a distributed architecture can also be readily parallelized

but requires large memory resources.

3.8 Support vector machine

Many recently published studies [38], [51]–[53], [76]–[78] have

shown that the SVM classifier [31, 32, 79] is also very efficient

in a statistical analysis of LIBS spectra. The fundamental ver-

sion of this classifier performs binary classification with linear

separability of classes. It aims to find the hyperplane in the

sample space that has the largest distance to the nearest train-

ing sample of any class.

Let x
(r)
t ∈ R

I be the training sample, and ∀t : yt ∈ {−1, 1} be

the indicator of the class to which the tth sample is assigned.

The aim is to find the hyperplaneH = {x : wT x+ b = 0} that

best separates both classes. The vector w ∈ R
I is normal toH,

and b
||w||2

is the perpendicular distance fromH to the origin in

R
I . The data points located closest to H are referred to as the

support vectors (SVs). The best separating hyperplane should

maximize the distance between the SVs in both classes. Thus,

it should satisfy the conditions wT x
(r)
t + b ≥ +1 for yt = +1

and wT x
(r)
t + b ≤ −1 for yt = −1. This gives us the constraints

∀t : yt(w
T x

(r)
t + b) ≥ 1. (39)

The equality in Eq. (39) occurs only for the SVs. The margin

between the classes, i.e., the shortest distance between the SVs

from opposite classes, is equal to 2
||w||2

. Obviously, the margin

should be maximized, which leads to minimization of ||w||2.

Regarding the constraints in Eq. (39), the task of finding the

best separating hyperplane reduces to the quadratic program-

ming (QP) problem, subject to the following inequality con-
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straints:

min
w,b

1

2
||w||22, s.t. ∀t : yt(w

T x
(r)
t + b)− 1 ≥ 0. (40)

The Lagrangian associated with the problem in Eq. (40) has

the form

L(w, b) =
1

2
||w||22 −

T

∑
t=1

αt

(

yt(w
T x

(r)
t + b)− 1

)

, (41)

where ∀t : αt ≥ 0 is the Lagrangian multiplier. It has a station-

ary point when ∂
∂wL(w, b) = 0, which leads to

w =
T

∑
t=1

αtytx
(r)
t , (42)

and the condition ∂
∂bL(w, b) = 0 gives us

T

∑
t=1

αtyt = 0. (43)

By inserting Eqs. (42) and (43) into Eq. (41) and performing

straightforward computations, we obtain the dual QP prob-

lem:

min
α

(

1

2
αT Hα− eTα

)

, s.t. yTα = 0 and α ≥ 0, (44)

where H = [hst] ∈ R
T×T , hst = ysyt(x

(r)
s )T x

(r)
t , α = [αt] ∈ R

T ,

y = [yt] ∈ R
T , and e = [1, . . . , 1] ∈ R

T . The QP problem in

Eq. (44) is convex and can be easily solved by many solvers

using, e.g., the active set or interior point algorithm. Having

found the Lagrangian multipliers α, we obtain the optimal

vector woptim from Eq. (42) and then calculate the optimal in-

tercept boptim from

boptim = −
maxt:yt=−1 wT

optimx
(r)
t + mint:yt=1 wT

optimx
(r)
t

2
. (45)

The parameters woptim and boptim uniquely determine the best

separating hyperplaneH.

Let x(test) ∈ R
I be the testing sample. The class of x(test) can

be determined from the decision rule

F (x(test)) = sign
(

wT
optimx(test) + boptim

)

. (46)

If the training samples are not perfectly separable, i.e., if out-

liers exist, the constraint in Eq. (39) can be relaxed to the form

∀t : yt(wT x
(r)
t + b) ≥ 1− ξt, where ∀t : ξ ≥ 0 is the slack vari-

able. Obviously, the outlier samples are assumed to be rare in

the entire training set; hence, the vector ξ = [ξt] is sparse. In

this case, the primal QP problem in Eq. (40) takes the form

min
w,b

1

2
||w||22 + Cξ ||ξ||1, s.t. yt(w

T x
(r)
t + b)− 1 + ξt ≥ 0, (47)

where ξ ≥ 0, and Cξ ≥ 0 is the soft-margin penalty parameter.

Surprisingly, the problem in (47) transforms to the very simple

dual form

min
α

(

1

2
αT Hα− eTα

)

, s.t. yTα = 0 and Cξ ≥ αt ≥ 0, (48)

which can also be solved using many well-known QP solvers.

When the classes are not linearly separable, nonlinear SVM

[31, 32] can be applied. In this classifier, the training sam-

ples are nonlinearly mapped to a higher-dimensional space

using the so-called kernel tricks. In classification, several ker-

nels are commonly used, e.g., the Gaussian, polynomial, sig-

moidal, and multilayer perceptron kernels. If SVM is applied

to the output from PCA, nonlinear separation seems unnec-

essary. The PCs are linearly uncorrelated, and the clusters are

convex. This motivates the use of linear SVM. We have also

experimentally confirmed this assertion by using nonlinear

singular value decomposition with various trained kernels. In

each case, the box constraint Cξ in the soft margin was esti-

mated from the training set with the quasi-Newton method

(the Broyden–Fletcher–Goldfarb–Shanno method). A similar

optimization tool was used to estimate the variance in the

Gaussian kernel. We also tested various degrees of the poly-

nomial from one to four. In each case, the best results were

obtained for the linear classifier or when the polynomial de-

gree was set to one.

The standard linear SVM is a binary classifier. Thus, it can be

directly applied to binary decision problems, e.g., to decide

whether a given solder alloy is overheated. When a sample

can be classified into more than two classes, we can use one

multiclass SVM or a larger number of standard SVM classi-

fiers. We selected the latter; i.e., we use as many classifiers

as there are classes. Each classifier is trained to recognize one

class against the rest. Then, in the testing process, a testing

sample is verified separately by each classifier. Note that this

methodology incurs higher computational cost than the use

of one multiclass classifier, but it offers many additional ad-

vantages. For example, if a testing sample cannot be identi-

fied by any trained classifier, we can apply another classifier

only to the unrecognized sample, or we can assign this sample

to some unknown class. Similarly, if a testing sample is recog-

nized by more than one classifier, we can also repeat the classi-

fication with another, more efficient, classifier. This approach

is particularly useful in practice, when outliers or other per-

turbations occur.

4 CLASSIFICATION RESULTS

In this section, we compare the algorithms discussed in Sec-

tion 3 in terms of their efficiency in classifying the LIBS spec-

tra of soft solder alloys. In the experiments, we used the soft

solder alloys discussed in Section 2.3 and the LIBS device

described in Section 2.2. The classification tools were imple-

mented in MATLAB 2012 and run on a computational server

equipped with two CPUs [Intel Xeon(R) X5650, 2.66 GHz].

We analyzed two classification problems:

• A: 2 classes: the samples of the normal solder alloys

(listed in Table 1) form one class, and their overheated

versions belong to the other class,

• B: 10 classes: the labels 1–5 correspond to the solder al-

loys listed in Table 1, and the labels 6–10 refer to their

respective overheated versions.

The quality of classification is evaluated using the misclassi-

fication rate (MCR) and the confusion matrix implemented in
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MATLAB 2012. The MCR measure (as a percentage) is taken

from the Statistics Toolbox, and it accounts for the proportion

of misclassified samples. The confusion matrix is calculated

by the confusion function in the Neural Network Toolbox, and

then it is plotted in a Hinton diagram.

The classification results obtained with the tested algorithms

are statistically compared using 100 repetitions of n-fold CV.

For problem A, 20% of the samples are selected for training,

and the rest for testing. In the other case, a five-fold CV is ap-

plied, i.e., 40 samples from each class are taken for training,

and 10 are taken for testing.

Several measurement scenarios are tested. In each case, we

set the following parameters of the excimer laser system: the

mask size, energy, and number of laser shots in each location

(see Section 2.1). We selected four masks, four energy values,

and five shots, which gives us 80 measurement scenarios. In

the following, we use the following notation: m, mask (size);

e, energy (in mJ); s, shot. For example, the scenario labeled

m12e10s1 uses mask 12, an energy of 10 mJ, and the first shot.

For solving both classification problems, we selected the fol-

lowing algorithms: KNN(E) (KNN with Euclidean metrics)

and KNN(C) (KNN with the cosine similarity) (Section 3.2),

LDA (Section 3.3), QDA (Section 3.3), PLS-DA (Section 3.4),

SIMCA (Section 3.5), NB (Section 3.6), PNN (Section 3.7), and

SVM (Section 3.8). For the KNN family, we set k = 1. In gen-

eral, classification algorithms can be applied directly to high-

dimensional LIBS data or low-dimensional PCs. We analyze

both cases. The former is restricted only to the selected al-

gorithms. When PCA is not used, LDA and QDA fail ow-

ing to the singularity of the covariance matrices (as men-

tioned in Section 3.3). The methods, such as NB and PNN,

are also intractable owing to their computational complex-

ity when applied to high-dimensional data. Hence, we could

classify the high-dimensional LIBS spectra using only PLS-

DA, SVM, and KNNs. The latter case is more flexible be-

cause low-dimensional and orthogonal data are easier to han-

dle. The above algorithms, except for SIMCA, are combined

with PCA, i.e., applied to the low-dimensional PCs (see Sec-

tion 3.1). SIMCA is intrinsically related with PCA; hence, there

is no need to apply it to PCs. Each tested algorithm is applied

in each measurement scenario and run according to the CV

rule mentioned above. The statistics of the MCR of the sam-

ples is presented in various forms: box plots and cumulative

results in tables, bar charts, and confusion matrices. A box

plot shows the median and 25th and 75th percentiles (marked

by the edges of the box), extreme data points (indicated by

whiskers), and outliers.

4.1 Problem A

All the above algorithms can be used for solving problem

A. We consider two cases. First, the algorithms (except for

SIMCA) are combined with PCA. Table 2 lists the number of

measurement scenarios that satisfy various MCR thresholds

(rows) for this case. It can also be interpreted as the cumula-

tive MCR with respect to the number of measurement scenar-

ios for each algorithm.

The results demonstrate that SIMCA, LDA, PLS-DA, and SVM

significantly outperform the other methods. These algorithms

make it possible to attain an accuracy of 100 % (MCR = 0%)

for many measurement scenarios. There are 62 scenarios for

SIMCA, 39 for LDA and PLS-DA, and 21 for SVM. We have

observed that SIMCA is more resistant to fluctuations in the

laser energy and inexact setting of the mask. This observa-

tion also confirms the theoretical assumption that it is suitable

for the data disturbed with outliers. Its performance dimin-

ishes with increasing energy for large masks, i.e., for mask 28

when the energy exceeds 18 mJ and for mask 32 when the en-

ergy exceeds 15 mJ. The condition MCR ≤ 3% is satisfied for

98.75% of the samples (see Table 2). The statistics of the MCR

for LDA and PLS-DA are comparable, i.e., the same number

of measurement scenarios satisfying a given MCR threshold,

and nearly identical accuracy for each scenario. This observa-

tion is surprising because the algorithms orthogonalize differ-

ent covariance matrices. The highest accuracy (MCR = 0%) in

the entire energy range is observed for mask 12. The remain-

ing scenarios give MCR > 0%. The threshold MCR ≤ 3%

is satisfied for 96.25% of the cases. SVM can also yield the

highest accuracy, but for not as many measurement scenarios.

Like LDA and PLS-DA, this algorithm works best for mask

12 in the entire energy range. Increasing the mask number

and energy also lowers the performance. It satisfies the con-

dition MCR ≤ 3% in 92.5% of the samples . Independent

of the measurement scenario, all four algorithms – SIMCA,

LDA, PLS-DA, and SVM – give results that satisfy the thresh-

old MCR ≤ 5% (see Table 2).

The KNN algorithms, despite their simplicity, do not exhibit

the worst performance. Indeed, the LDA applies KNN to the

feature vectors. When the Euclidean distance was used, we

could obtain MCR = 0.18% for m12e10s4, but only five sce-

narios give MCR ≤ 1%. When the cosine similarity was

used, nine scenarios satisfy this threshold, but for one case

m12e12s4, we could obtain MCR = 0.17%. Both KNN algo-

rithms give MCR ≤ 3% for at least 30% of the scenarios.

The performance of PNN in classifying the LIBS spectra is

slightly worse than the performance of KNN algorithms. The

lowest MCR = 0.69% is obtained for the scenario m12e12s5,

and it was the only result below 1%. NB and QDA give

MCR values one order worse than those of the other algo-

rithms. The best scenario for NB and QDA is m20e18s4, for

which MCR = 3.13% and MCR = 3.66%, respectively. For

MCR ∈ [5, 10]%, NB is more efficient than QDA. The com-

parison of the results obtained with NB and PNN shows that

the feedforward neural-network implementation of the Bayes

classifier seems to be more efficient.

In summary, SIMCA gives the best accuracy in the binary clas-

sification of the LIBS spectra. Owing to its high resistance to

outliers, it is not so sensitive to the choice of measurement sce-

nario. It classifies all the samples correctly in approximately

30% more scenarios compared to LDA and PLS-DA. SVM can

also be used for solving problem A, especially when imple-

mented with one extra class. The other algorithms are not rec-

ommendable for classifying the LIBS spectra in problem A.

In the experiments, we also test the algorithms with the high-
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Method
MCR

= 0 ≤ 0.01 ≤ 0.1 ≤ 0.5 ≤ 1 ≤ 3 ≤ 5 ≤ 10

LDA 39 (48.75) 50 (62.5) 58 (72.5) 63 (78.75) 66 (82.5) 77 (96.25) 80 (100) 80 (100)

QDA – – – – – – 2 (2.5) 44 (55)

SVM 21 (26.25) 37 (46.25) 54 (67.5) 63 (78.75) 66 (82.5) 74 (92.5) 80 (100) 80 (100)

NB – – – – – – 8 (10) 67 (83.75)

KNN(E) – – – 5 (6.25) 12 (15) 24 (30) 41 (51.25) 74 (92.5)

KNN(C) – – – 9 (11.25) 14 (17.5) 27 (33.75) 47 (58.75) 75 (93.75)

PLS-DA 39 (48.75) 50 (62.5) 58 (72.5) 63 (78.75) 66 (82.5) 77 (96.25) 80 (100) 80 (100)

SIMCA 62 (77.5) 62 (77.5) 66 (82.5) 69 (86.25) 70 (87.5) 79 (98.75) 80 (100) 80 (100)

PNN – – – – 1 (1.25) 17 (21.25) 38 (47.5) 74 (92.5)

TABLE 2 Number of measurement scenarios (in parentheses, percentage) that satisfy a given MCR threshold for binary classification, where the algorithms are combined with

PCA.

Method
MCR

= 0 ≤ 0.01 ≤ 0.1 ≤ 0.5 ≤ 1 ≤ 3 ≤ 5 ≤ 10

SVM 59 (73.75) 61 (76.25) 64 (80) 70 (87.5) 70 (87.5) 74 (92.5) 80 (100) 80 (100)

KNN(E) – – 1 (1.25) 6 (7.5) 13 (16.25) 25 (31.25) 43 (53.75) 74 (92.5)

PLS-DA 70 (87.5) 70 (87.5) 70 (87.5) 70 (87.5) 71 (88.75) 80 (100) 80 (100) 80 (100)

TABLE 3 Number of measurement scenarios (in parentheses, percentage) that satisfy a given MCR threshold for binary classification without using PCA.

Method
MCR

≤ 0.05 ≤ 0.1 ≤ 0.5 ≤ 1 ≤ 3 ≤ 5 ≤ 10

LDA – 1 (1.25) 17 (21.25) 46 (57.5) 75 (93.75) 79 (98.75) 80 (100)

QDA – – – – 11 (13.75) 49 (61.25) 80 (100)

SVM – – 2 (2.5) 10 (12.5) 58 (72.5) 75 (93.75) 80 (100)

NB – – – – 4 (5) 46 (57.5) 80 (100)

KNN(E) – – – – – 5 (6.25) 28 (35)

KNN(C) – – – – – 5 (6.25) 37 (46.25)

PLS-DA – – 9 (11.2) 27 (33.7) 69 (86.2) 77 (96.25) 80 (100)

SIMCA 2 (2.5) 4 (5) 32 (40) 52 (65) 77 (96.2) 79 (98.75) 80 (100)

PNN – – – – – 1 (1.25) 21 (26.25)

TABLE 4 Number of measurement scenarios (in parentheses, percentage) that satisfy a given MCR threshold for problem B (10 classes) using the algorithms combined with PCA.

dimensional LIBS data (without using PCA). In this case, we

selected only three algorithms: PLS-DA, SVM, and KNN(E).

As already mentioned, SIMCA intrinsically projects the input

data on the local PCs; therefore, it is not considered in this test.

The results of such a classification are summarized in Table 3.

We observed that if SVM and PLS-DA are not used with

PCA, the number of best measurement scenarios (for which

MCR = 0%) is substantially higher, i.e., by 38 and 31, respec-

tively. A particularly good result was obtained with PLS-DA,

for which 70 scenarios ensure the highest accuracy. SVM is

more sensitive to outliers (even with the soft margin) but also

gives much better results than with PCA. The accuracy could

be even better if a kernel version of SVM is applied without

PCA, but the learning of the kernel on such high-dimensional

data is very time-consuming. With the use of KNN(E), the im-

provement in the number of scenarios is not very large (only 2

for MCR ≤ 5%). For the best scenario m12e10s4, MCR dimin-

ishes from 0.18 to 0.14. Thus, all the tested algorithms with-

out PCA offer better accuracy of binary classification but ob-

viously at higher computational cost. It is justified by the fact

that 30 PCs explain only about 90% of the total variance. The

small difference in the intensity of spectral lines is included in

the unexplained variance.

4.2 Problem B

For problem B, similar measurement scenarios are tested.

First, we analyze the classification algorithms combined with

PCA. Figure 5 illustrates the box plots of the MCR samples ob-

tained with each algorithm for the best measurement scenario.

The confusion matrices for the best measurement scenarios

are presented in Figure 6 in the form of Hinton diagrams. The

titles give the lowest MCR values.

For problem B, the number of measurement scenarios that sat-

isfy a given MCR threshold are listed in Table 4.

The results show that the tested algorithms can be assigned

to four groups on the basis of their performance, and they are

ordered in the decreasing order of performance as follows: (1)

SIMCA; (2) LDA, SVM, and PLS-DA; (3) QDA and NB; (4)

the KNN family and PNN. The groups have different sensitiv-

ity to the spectral shape. When low energy and a small mask
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FIG. 5 MCR statistics (box plots) obtained by the classification algorithms combined with PCA and applied to problem B (10 classes) for their best measurement scenarios (given

in the titles).

(particularly m12) are used, the spectrum is weakly noisy, and

its emission lines have low intensity. Increasing the energy or

mask size causes the intensity of emission lines and the back-

ground to increase, which may emphasize the spectrum in

one or more observed channels. For all the algorithms, at least

three shots should be used. The first two shots remove unde-

sirable pollution or oxides.

The first algorithm, regarded as the individual group, is

SIMCA. As in problem A, the SIMCA gives the best results for

multi-label classification. It classifies one scenario (m28e12s4)

with 100% accuracy, and MCR ≤ 0.1% for 4 scenarios (see

Table 4). LDA can reach this level of MCR with only one sce-

nario (m20e18s4). It is the second best algorithm for solving

problem B but noticeably worse than SIMCA. The condition

MCR ≤ 0.5% is satisfied by LDA in 17 scenarios, whereas

SVM and PLS-DA satisfy it in 2 and 9 scenarios, respectively.

The performance of SVM and PLS-DA is considerably worse

than with LDA. PLS-DA also has some occasional problems

in the classification of solder alloys with labels 8 and 9. This

means that it has a lower sensitivity to the difference in con-

centration of Cu and Sn in the overheated solder alloys, de-

spite one of them containing Ag. The emission lines of Ag may

not contain meaningful information owing to the low concen-

tration of this element. The problem does not occur for the sol-

ders with labels 8 and 10, as well as 9 and 10, which addition-

ally shows that PLS-DA is the most sensitive to the difference

in concentration of Cu in the overheated soft solders.

The performance of the third group is one order worse. QDA

and NB allow us to obtain MCR ≤ 2% in one case. NB

gives slightly worse results for MCR ≤ 3%. In the range

MCR ∈ [5, 10]%, their performance is comparable. For both

algorithms, we observed some difficulty in the classification

of overheated lead-free solders that contain Sn and Cu. They

are labeled 8, 9, and 10 (see Figure 6). The effect is even more

noticeable when we compare solders with the labels 8 and 10,

which have a very similar proportion of Sn and Cu, and there

is no other relevant element. The solder labeled 9 contains the

third significant element, Ag, but it is also often misclassified

because of the similar proportions of Sn and Cu. Similar clas-

sification errors are observed for NB.

The fourth group is very sensitive to Ag. The KNN algo-

rithms classify the samples with MCR > 3.4%, and they

cannot distinguish well the overheated solders with Ag from

their healthy versions. This problem occurs for the solders

Pb70SnAg3, labeled 2 and 7, and Sn96.5Ag3Cu0.5, labeled 4

and 9 (see Figure 6). The phenomenon is easier to observe for

KNN(C). We also noticed some problems in the classification

of the overheated leaded solders (labeled 6 and 7), despite

the presence of Ag. The emission lines of Pb have consider-

ably higher intensity than those of Ag. Hence, the latter are

ignored, which results in the low classification accuracy. The

KNN family is weakly sensitive to the difference between the

solders in 8 and 10 (with similar proportions of Sn and Cu).

However, with reference to NB and QDA, these algorithms
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FIG. 6 Hinton diagrams of the confusion matrices for the best measurement scenario for each algorithm combined with PCA. The title of each panel gives the corresponding MCR

value.

recognize the lead-free solders labeled 9 (Sn96.5Ag3Cu0.5)

well. PNN, in spite of having similar problems as the KNN

algorithms, cannot classify well the solders labeled 8, 9, and

10. Consequently, PNN shows the highest classification error

(MCR = 4.6%).

In summary, the condition MCR ≤ 3% is satisfied by LDA,

QDA, SVM, NB, PLS-DA, and SIMCA in at least one measure-

ment scenario. All the algorithms are able to yield MCR ≤ 5%

for the selected parameter settings, but this condition is met by

LDA, SVM, PLS-DA, and SIMCA in 98.75%, 93.75%, 96.25%,

and 98.75% of all the cases, respectively.

For problem B, the changes resulting from the direct appli-

cation of the classification methods to the high-dimensional

LIBS data are more gentle than for problem A. There is sig-

nificant correlation in the MCR statistics between the results

obtained with and without the use of PCA – compare Figure 5

with Figure 7 for SVM, KNN(E), and PLS-DA. Similarly, the

Hinton diagrams shown in Figures 6 and 8 appear very simi-

lar. However, the best MCR values are not the same.

Table 5 lists the results obtained for problem B without us-

ing PCA. For the multi-class classification, the difference in

accuracy is less than that for problem A. The lowest MCR

for SVM increases from 0.37% to 0.45%, and the best scenario

changes from m20e18s5 to m28e12s5. The number of scenarios

in the range MCR ∈ [1, 3]% is comparable. For KNN(E), the

minimal MCR slightly decreases from 3.47% to 3.42%. PLS-

DA is rather advantageous; its lowest MCR diminishes from

0.192% for m20e18s4 to 0.026% for m28e12s5 (the same sce-

nario as for SVM without PCA). The condition MCR ≤ 0.05%

is satisfied for two scenarios. The number of scenarios falling

into the range MCR ≤ 0.5% triples to 27. Thus, when con-

sidering the accuracy of classification, PLS-DA should not be

applied to the PCs. Indeed, PLS-DA intrinsically performs

model-dimensionality reduction on the observed data; hence,

it need not be applied to already reduced PCs.

Figure 9 illustrates the mean MCR obtained in testing each al-

gorithm combined with PCA versus the number of folds in

n-fold CV, where n = 2, . . . , 10. The best measurement sce-

nario is selected for each algorithm according to Figure 5. By

increasing the number of CV folds, we observe a decrease in

the MCR with a decay rate depending on the algorithm. This

behavior is explained by the fact that the training set has fewer

samples for smaller n. The results show that the MCR does not

change significantly for n ≥ 5. Hence, the use of five-fold CV

is justified by this fact.

A similar analysis is performed for problem A. We obtain

nearly the same mean MCR for each CV fold with SIMCA,

LDA, PLS-DA, and SVM. For the latter, we were able to ob-

tain satisfactory results even when the training set contains

10% of all the samples.

The classification algorithms are also compared with respect

to the mean runtime in MATLAB. This includes the averaged

time required for training and testing, which increases lin-

early with increasing number of CV folds. For n = 2, . . . , 10,
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Method
MCR

≤ 0.05 ≤ 0.1 ≤ 0.5 ≤ 1 ≤ 3 ≤ 5 ≤ 10

SVM – – 2 (2.5) 12 (15) 60 (75) 75 (93.75) 80 (100)

KNN(E) – – – – – 5 (6.25) 27 (33.75)

PLS-DA 2 (2.5) 4 (5) 27 (33.75) 45 (56.25) 75 (93.75) 78 (97.75) 80 (100)

TABLE 5 Number of measurement scenarios (in parentheses, percentage) that satisfy a given MCR threshold for problem B (10 classes) without using PCA.
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QDA appeared to be the fastest, with a runtime in the range

of 15− 40 ms. LDA has a similar runtime of 22 − 42 ms.

Among the fast algorithms, we can also include KNN(E),

with a runtime of 28− 59 ms, and KNN(C), with a runtime

of 25− 63 ms. NB and SVM are slower, with runtimes of

2.56− 9.26 s and 3.71− 10.97 s, respectively. SIMCA appeared

to be the slowest with a runtime of 29.4− 198.2 s.

Changing n in CV affects the MCR values and runtime. The

ranges of the absolute changes and relative changes are listed

in Table 6. Additionally, the last column presents the efficiency

as the ratio of the relative changes (MCR to runtime).

The results demonstrate that LDA not only exhibits very good

performance (the second best with respect to MCR) but also is

16006i- 16



J. Eur. Opt. Soc.-Rapid 11, 16006i (2016) R. Zdunek, et al.

Algorithm MCR [%] RC-MCR Time [ms] RC-T Efficiency

LDA 0.42-0.8 81 15-40 167 0.49

QDA 1.75-1.15 37 22-42 91 0.41

SVM 0.87-0.28 69 3709-10973 196 0.35

NB 2.27-1.45 37 2555-9256 262 0.14

KNN(E) 3.69-3.25 13 28-59 111 0.12

KNN(C) 3.86-3.11 19 25-63 152 0.13

PLS-DA 0.33-0.07 85 48-209 335 0.25

SIMCA 0.02-0 100 29400-198220 574 0.17

29400-125388* 326* 0.31*

PNN 5.08-4.35 14 335-1222 265 0.05

TABLE 6 Efficiency and performance changes (MCR, time) versus number of CV folds (n = 2, . . ., 10) for the tested algorithms combined with PCA. For example, the range

0.05− 0.02 in the MCR means that the MCR values change from 0.05 to 0.02 as n changes from 2 to 10. RC-MCR is the relative change in the MCR values, and RC-T refers to the

relative change in time. The efficiency is computed as the ratio of RC-MCR to RC-T.

the most efficient. A large relative change in the MCR value

is also observed for SIMCA, PLS-DA, and SVM. SIMCA gives

the best classification results but is not so efficient due to its

computational time. This result is attributed to the fact that

SIMCA applies PCA separately to each class of the training

samples. For this algorithm, we noticed that the relative MCR

for the folds n = 2, . . . , 5 is the same as for n = 2, . . . , 10.

Hence, the case for n = 2, . . . , 5 is also included in Table 6 and

denoted with an asterisk. The worst efficiency is observed for

PNN. An increase in the RC-MCR by only 14% results in the

very low level of its efficiency.

5 CONCLUSIONS

We studied computational tools for the statistical classifica-

tion of solder alloys. Two classification problems were an-

alyzed: (a) supervised separation of healthy solder samples

from their overheated versions and (b) material identifica-

tion. Several statistical classification tools, such as LDA, QDA,

SVM, NB, KNN, PLS-DA, SIMCA, and PNN were discussed.

Experiments based on LIBS observations showed that SIMCA

outperforms the other algorithms for both classification prob-

lems. It yields the highest classification accuracy for the largest

number of measurement scenarios. Unfortunately, it is the

slowest algorithm with a runtime of dozens or even hun-

dreds of seconds. For the first classification problem, algo-

rithms such as LDA with PCA, SVM, PLS-DA, and SIMCA

can classify the samples in many scenarios with an accuracy

of 100%, where only 20% of samples are used for training. The

performance of SVM, PLS-DA, and KNN(E) can be improved

for a large number of the measurement scenarios if these al-

gorithms are applied directly to high-dimensional LIBS data.

i.e. without using PCA (especially SVM and PLS-DA). For the

other problem, the classification error (MCR) of SIMCA does

not exceed 1% for more than 60% of the samples. For one sce-

nario, m28e12s4, we obtained MCR = 0%. LDA and PLS-DA

leads to slightly higher values of MCR and a lower number

of scenarios, but their computational time is relatively short

and changes from dozens of milliseconds (LDA) to hundreds

of milliseconds (PLS-DA). With reference to SIMCA, they are

significantly faster – by a factor of hundreds to thousands.

PLS-DA should not be applied to PCs. If applied directly to

high-dimensional data, its MCR is one order lower. SVM ex-

hibits slightly worse performance, and in the multiclass im-

plementation, it is considerably slower than LDA and PLS-

DA. Nevertheless, SVM has other clear advantages. In our ap-

proach, it classifies one class versus the rest. If a tested solder

lies outside of any training group, it cannot be recognized by

any SVM classifier. Hence, it can be assigned to an extra class.

When LDA is used, it might be assigned to the most similar

class (according to some metrics), which leads to incorrect in-

terpretation. This case may occur in practice, e.g., if a laser

shot reaches the substrate or the solder has a chemical compo-

sition different from that of the training samples. With the use

of SVM, the testing samples that cannot be classified into any

training group can be quite diverse. To find some similarity

between them, we may try to cluster them using unsupervised

machine-learning algorithms. For nonnegatively constrained

samples such as LIBS spectra, we may use various models of

nonnegative matrix factorization [80]. This approach will be

analyzed in our future research.
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