
Statistical Computations
on Grassmann and Stiefel Manifolds

for Image and Video-Based Recognition
Pavan Turaga, Member, IEEE, Ashok Veeraraghavan, Member, IEEE,

Anuj Srivastava, Senior Member, IEEE, and Rama Chellappa, Fellow, IEEE

Abstract—In this paper, we examine image and video-based recognition applications where the underlying models have a special

structure—the linear subspace structure. We discuss how commonly used parametric models for videos and image sets can be

described using the unified framework of Grassmann and Stiefel manifolds. We first show that the parameters of linear dynamic

models are finite-dimensional linear subspaces of appropriate dimensions. Unordered image sets as samples from a finite-dimensional

linear subspace naturally fall under this framework. We show that an inference over subspaces can be naturally cast as an inference

problem on the Grassmann manifold. To perform recognition using subspace-based models, we need tools from the Riemannian

geometry of the Grassmann manifold. This involves a study of the geometric properties of the space, appropriate definitions of

Riemannian metrics, and definition of geodesics. Further, we derive statistical modeling of inter and intraclass variations that respect

the geometry of the space. We apply techniques such as intrinsic and extrinsic statistics to enable maximum-likelihood classification.

We also provide algorithms for unsupervised clustering derived from the geometry of the manifold. Finally, we demonstrate the

improved performance of these methods in a wide variety of vision applications such as activity recognition, video-based face

recognition, object recognition from image sets, and activity-based video clustering.

Index Terms—Image and video models, feature representation, statistical models, manifolds, Stiefel, Grassmann.

Ç

1 INTRODUCTION

MANY applications in computer vision, such as dynamic
textures [2], [3], human activity modeling and

recognition [4], [5], video-based face recognition (FR) [6],
and shape analysis [7], [8], involve learning and recognition
of patterns from exemplars which obey certain constraints.
To enable this study, we often make simplifying assump-
tions of the image-formation process such as a pin-hole
camera model or the Lambertian reflectance model. These
assumptions lead to constraints on the set of images thus
obtained. A classic example of such a constraint is that
images of a convex object under all possible illumination
conditions form a “cone” in image-space [9]. Once the
underlying assumptions and constraints are well under-
stood, the next important step is to design inference
algorithms that are consistent with the algebra and/or

geometry of the constraint set. In this paper, we shall
examine image and video-based recognition applications
where the models have a special structure—the linear
subspace structure.

In many of these applications, given a database of
examples and a query, the following two questions are to be
addressed—1) What is the “closest” example to the query in
the database? 2) What is the “most probable” class to which
the query belongs? A systematic solution to these problems
involves a study of the underlying constraints that the data
obeys. The answer to the first question involves a study of
the geometric properties of the space, which then leads to
appropriate definitions of Riemannian metrics and further
to the definition of geodesics, etc. The answer to the second
question involves statistical modeling of inter and intraclass
variations. It is well known that the space of linear
subspaces can be viewed as a Riemannian manifold [10],
[11]. More formally, the space of d-dimensional subspaces
in IRn is called the Grassmann manifold. On a related note,
the Stiefel manifold is the space of d orthonormal vectors in
IRn. The study of these manifolds has important conse-
quences for applications such as dynamic textures [2], [3],
human activity modeling and recognition [4], [5], video-
based face recognition [6], and shape analysis [7], [8], where
data naturally lie either on the Stiefel or the Grassmann
manifold. Estimating linear models of data is standard
methodology in many applications and manifests in various
forms such as linear regression, linear classification, linear
subspace estimation, etc. However, comparatively less
attention has been devoted to statistical inference on the
space of linear subspaces.
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1.1 Prior Work

The Grassmann manifold’s geometric properties have been
utilized in certain vision problems involving subspace
constraints. Examples include [12], which deals with
optimization over the Grassmann manifold for obtaining
informative projections. The Grassmann manifold structure
of the affine shape space is also exploited in [13] to perform
affine invariant clustering of shapes. Hamm and Lee [14]
perform discriminative classification over subspaces for
object recognition tasks by using Mercer kernels on the
Grassmann manifold. In [15], a face image and its perturba-
tions due to registration errors are approximated as a linear
subspace and hence are embedded as points on a Grassmann
manifold. Most of these methods do not employ statistics on
the Grassmann manifold or are tuned to specific domains
lacking generality. Srivastava and Klassen [16] exploited the
geometry of the Grassmann manifold for subspace tracking
in array signal processing applications. On a related note, the
geometry of the Stiefel manifold has been found to be useful
in applications where, in addition to the subspace structure,
the specific choice of basis vectors is also important [17]. The
methods that we present in this paper form a comprehensive
(not exhaustive) set of tools that draw upon the Riemannian
geometry of the Grassmann manifold. Along with the
mathematical formulations, we also present efficient algo-
rithms to perform these computations.

The geometric properties of general Riemannian mani-
folds form a subject matter of differential geometry; a good
introduction can be found in [18]. Statistical methods on
manifolds have been studied for several years in the statistics
community. Some of the landmark papers in this area
include [19], [20], [21]; however, an exhaustive survey is
beyond the scope of this paper. The geometric properties of
the Stiefel and Grassmann manifolds have received sig-
nificant attention. A good introduction to the geometry of the
Stiefel and Grassmannmanifolds can be found in [10], which
introduced gradient methods on these manifolds in the
context of eigenvalue problems. These problems mainly
involved optimization of cost functions with orthogonality
constraints. A compilation of techniques for solving optimi-
zation problems with such matrix manifolds is provided in
[22]. Algorithmic computations of the geometric operations
in such problems were discussed in [11]. A compilation of
research results on statistical analysis on the Stiefel and
Grassmann manifolds can be found in [23].

In addition to the Grassmann manifold, general Rie-
mannian manifolds have found important applications in
the vision community. A recently developed formulation of
using the covariance of features in image patches has found
several applications such as texture classification [24],
pedestrian detection [25], and tracking [26]. The Rieman-
nian geometry of covariance matrices was exploited
effectively in all of these applications to design state-of-
the-art algorithms. More recently, Subbarao and Meer [27]
provided an extension of euclidean mean shift clustering to
the case of Riemannian manifolds.

Shape analysis is another application area where
statistics on Riemannian manifolds have found wide
applicability. Theoretical foundations for manifolds-based
shape analysis were described in [7], [8]. Statistical learning

of shape classes using nonlinear shape manifolds was
presented in [28], where statistics are learned on the
manifold’s tangent space. Using a similar formulation, the
variations due to execution rate changes in human activities
is modeled as a distribution over time-warp functions,
which are considered as points on a spherical manifold in
[29]. This was used for execution rate-invariant recognition
of human activities.

A preliminary version of this paper was presented in [1],
which used extrinsic methods for statistical modeling on the
Grassmann manifold. This paper provides a mathematically
well-grounded basis for these methods, where the specific
choice of the method in [1] is interpreted as a special case of
using a nonparametric density estimator with an extrinsic
divergence measure. In this paper, we provide more
detailed analysis and show how to exploit the geometry
of the manifold to derive intrinsic statistical models. This
provides a more consistent approach than the extrinsic
methods of [1]. Further, the dimensionality of the manifold
presents a significant road block for computer implementa-
tion of Riemannian computations. Straightforward imple-
mentation of formulas for geodesic distances, exponential
and inverse-exponential maps given in earlier work such as
[10], [11], [27] is computationally prohibitive for large
dimensions. This is especially true of our applications
where we deal with high-dimensional image and video
data. Toward this end, we also employ numerically efficient
versions of these computations.

Contributions. We first show how a large class of
problems drawn from face, activity, and object recognition
can be recast as statistical inference problems on the Stiefel
and/or Grassmann manifolds. Then, we present methods to
solve these problems using the Riemannian geometry of the
manifolds. We also discuss some recently proposed ex-
trinsic approaches to statistical modeling on the Grassmann
manifold. We present a wide range of experimental
evaluation to demonstrate the effectiveness of these
approaches and provide a comprehensive comparison.

Organization of the paper. In Section 2, we discuss
parametric subspace-based models of image sets and videos
and show how the study of these models can be recast as a
study of the Grassmann manifold. Section 3 introduces the
special orthogonal group and its quotient spaces—the Stiefel
and the Grassmann manifolds. Section 4 discusses statistical
methods that follow from the quotient interpretation of these
manifolds. In Section 5, we develop supervised and un-
supervised learning algorithms. Complexity issues and
numerically efficient algorithms for performing Riemannian
computations are discussed in Section 6. In Section 7, we
demonstrate the strength of the framework for several
applications including activity recognition, video-based face
recognition, object matching, and activity-based clustering.
Finally, concluding remarks are presented in Section 8.

2 MODELS FOR VIDEOS AND IMAGES

2.1 Spatio-Temporal Dynamical Models and the
ARMA Model

A wide variety of spatio-temporal data have often been
modeled as realizations of dynamical models. Examples
include dynamic textures [2], human joint angle trajectories
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[4], and silhouettes [5]. A well-known dynamical model for
such time-series data is the autoregressive and moving
average (ARMA) model. Linear dynamical systems repre-
sent a class of parametric models for time series. A wide
variety of time-series data such as dynamic textures, human
joint angle trajectories, shape sequences, video-based face
recognition, etc., are frequently modeled as ARMA models
[2], [4], [5], [6]. The ARMA model equations are given by

fðtÞ ¼ CzðtÞ þ wðtÞ wðtÞ � Nð0; RÞ; ð1Þ

zðtþ 1Þ ¼ AzðtÞ þ vðtÞ vðtÞ � Nð0; QÞ; ð2Þ

where z 2 IRd is the hidden state vector, A 2 IRd�d the
transition matrix, and C 2 IRp�d the measurement matrix.
f 2 IRp represents the observed features, while w and v are
noise components modeled as normal with 0 mean and
covariances R 2 IRp�p and Q 2 IRd�d, respectively.

For the ARMA model, closed-form solutions for learning
themodel parameters have been proposed in [30], [2] and are
widely used. For high-dimensional time-series data (dy-
namic textures, etc.), the most common approach is to first
learn a lower-dimensional embedding of the observations
via PCA, and learn the temporal dynamics in the lower-
dimensional space. Let observations fð1Þ; fð2Þ; . . . fð�Þ,
represent the features for the time indices 1; 2; . . . � . Let
½fð1Þ; fð2Þ; . . . fð�Þ� ¼ U�V T be the singular value decom-
position of the data. Then,

Ĉ ¼ U; Â ¼ �V TD1V ðV
TD2V Þ

�1
��1;

where

D1 ¼
0 0

I��1 0

� �

and D2 ¼
I��1 0

0 0

� �

:

The model parameters ðA;C) do not lie in a vector space.
The transition matrix A is constrained to be stable with
eigenvalues inside the unit circle. The observation matrix C
is constrained to be an orthonormal matrix. For comparison
of models, the most commonly used distance metric is
based on subspace angles between column spaces of the
observability matrices [31]. For the ARMA model of (2),
starting from an initial condition zð0Þ, it can be easily shown
that the expected observation sequence is given by [32]

E

fð0Þ
fð1Þ
fð2Þ
:
:

2

6

6

6

6

4

3

7

7

7

7

5

¼
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CA2

:
:
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6

6

6

6

4

3

7

7

7

7

5

zð0Þ ¼ O1ðMÞzð0Þ: ð3Þ

Thus, the expected observation sequence generated by a
time-invariant modelM ¼ ðA;CÞ lies in the column space of
the extended observability matrix given by OT

1 ¼ ½CT ; ðCAÞT ;
ðCA2ÞT ; . . . ðCAnÞT . . .�. In experimental implementations,
we approximate the extended observability matrix by the
finite observability matrix, as is commonly done [33],
OT
m ¼ ½CT ; ðCAÞT ; ðCA2ÞT ; . . . ðCAm�1ÞT �. The size of this

matrix is mp� d. The column space of this matrix is a
d-dimensional subspace of IRmp, where d is the dimension of
the state-space z in (2). d is typically of the order of 5-10.

Thus, given a database of videos, we estimate the model
parameters as described above for each video. The finite

observability matrix is computed next. To represent the
subspace spanned by the columns of this matrix, we store
an orthonormal basis computed by Gram-Schmidt ortho-
normalization. Since a subspace is a point on a Grassmann
manifold, a linear dynamical system can be alternately
identified as a point on the Grassmann manifold corre-
sponding to the column space of the observability matrix.

2.2 Image Sets as Collections of Subspaces

In image and object recognition, recent methods have
focused on utilizing multiple images of the same object,
taken under varying viewpoints or varying illumination
conditions, for recognition [34], [14], [35], [36]. For example,
it was shown by Jacobs et al. that the illumination cone of a
convex Lambertian surface can be approximated by a 9D
linear subspace [37]. Motivated by this, the set of face images
of the same person under varying illumination conditions is
frequently modeled as a linear subspace of 9D [38].

Given a large set of images indexed by, say, the pose or
viewing angle of the camera, we estimate multiple
subspaces—one for each view—as the model of object
appearance. The subspaces can be estimated by straight-
forward principal component analysis. Given another set
of images during testing, we would like to compute the
likelihood of it coming from a specific class. In the training
phase, given a set of these subspaces for a given class, we
would like to compute their class conditional densities.
During testing, we are given a set of images taken under
approximately the same viewing angle, which allows us to
model the set using a subspace. Then, the maximum
likelihood classification can be performed for each test
instance using these class conditional distributions. How-
ever, since subspaces are viewed as elements of a Grass-
mann manifold, the goal is to learn a probability
distribution over the Grassmann manifold from the given
image data.

2.3 Overall Approach

The set of all d-dimensional linear subspaces of IRn is
called the Grassmann manifold, which will be denoted as
Gn;d. The set of all n� d orthonormal matrices is called the
Stiefel manifold and shall be denoted as Sn;d. As discussed
in the applications above, we are interested in computing
statistical models over the Grassmann manifold. Let
U1; U2; . . . ; Uk be some points on Sn;d and we seek their
sample mean, an average, for defining a probability model
on Sn;d. Recall that these Uis are tall, orthogonal matrices.
It is easy to see that the euclidean sample mean 1

k

Pk
i¼1 Ui

is not a valid operation because the resultant mean does
not have the property of orthonormality. This is because
Sn;d is not a vector space. Similarly, many of the standard
tools in estimation and modeling theory do not directly
apply to such spaces, but can be adapted by accounting
for the underlying nonlinear geometry.

On a computer, a subspace is stored as an orthonormal
matrix which forms a basis for the subspace. As mentioned
earlier, orthonormal matrices are points on the Stiefel
manifold. However, since the choice of basis for a subspace
is not unique, any notion of distance and statistics should be
invariant to this choice. This requires us to interpret each
point on theGrassmannmanifold as an equivalence of points
on the Stiefel manifold, where all orthonormal matrices that
span the same subspace are considered equivalent. This
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interpretation is more formally described as a quotient
interpretation, i.e., the Grassmann manifold is considered a
quotient space of the Stiefel manifold. Quotient interpreta-
tions allow us to extend the results of the base manifold such
as tangent spaces, geodesics, etc., to the quotient space. In our
case, it turns out that the Stiefel manifold itself can be
interpreted as a quotient of a more basic manifold—the
special orthogonal groupSOðnÞ. A quotient of Stiefel is thus a
quotient of SOðnÞ as well. Thus, we shall study the Grass-
mann as a quotient of SOðnÞ. Hence, first we recapitulate
relevant results of SOðnÞ, then review the required concepts
from differential geometry that enable us to derive distances
and statistical models on the special manifolds.

3 PRELIMINARIES: THE SPECIAL ORTHOGONAL

GROUP SOðnÞ AND ITS QUOTIENTS

Let GLðnÞ be the generalized linear group of n� n
nonsingular matrices. It is not a vector space but a
differentiable manifold, i.e., it can be locally approximated
by subsets of a euclidean space. The dual properties of being
a group and a differentiable manifold make it a Lie group. If
we consider the subset of all orthogonalmatrices, and further
restrict to the ones with determinant þ1, we obtain a
subgroup SOðnÞ, called the special orthogonal group. It can
be shown that this is a submanifold of GLðnÞ and is also a
group by itself; it possesses the Lie group structure. Since it
has n2 elements and nþ nðn� 1Þ=2 constraints (unit length
columns ! n constraints and perpendicular columns !
nðn� 1Þ=2 constraints), it is an nðn� 1Þ=2-dimensional Lie
group. To perform differential calculus on a manifold, one
needs to specify its tangent spaces. For the n� n identity
matrix I, an element of SOðnÞ, the tangent space TIðSOðnÞÞ is
the set of all n� n skew-symmetric matrices ([18]). For an
arbitrary point O 2 SOðnÞ, the tangent space at that point is
obtained by a simple rotation of TIðSOðnÞÞ: TOðSOðnÞÞ ¼
fOXjX 2 TIðSOðnÞÞg. Define an inner product for any
Y ; Z 2 TOðSOðnÞÞ by Y ; Zh i ¼ traceðY ZT Þ, where trace
denotes the sum of diagonal elements. With this metric
SOðnÞ becomes a Riemannian manifold.

Using the Riemannian structure, it becomes possible to
define lengths of paths on a manifold. Let � : ½0; 1� ! SOðnÞ
be a parameterized path on SOðnÞ that is differentiable
everywhere on ½0; 1�. Then d�

dt , the velocity vector at t, is an
element of the tangent space T�ðtÞðSOðnÞÞ. For any two
points O1; O2 2 SOðnÞ, one can define a distance between
them as the infimum of the lengths of all smooth paths on
SOðnÞ which start at O1 and end at O2

dðO1; O2Þ

¼ inf
f�:½0;1�!SOðnÞj�ð0Þ¼O1;�ð1Þ¼O2g

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d�ðtÞ

dt
;
d�ðtÞ

dt

� �

s

dt

 !

:

ð4Þ

A path �̂which achieves the above minimum, if it exists, is a
geodesic between O1 and O2 on SOðnÞ. Geodesics on SOðnÞ
can be written explicitly using the matrix exponential [10].
For an n� n matrix A, define its matrix exponential by:
expðAÞ ¼ I þ A

1!
þ A2

2!
þ A3

3!
þ � � � . It is easy to show that given

any skew-symmetric matrix X, expðXÞ 2 SOðnÞ. Now we
can define geodesics on SOðnÞ as follows: For anyO 2 SOðnÞ

and any skew-symmetric matrix X, �ðtÞ � O expðtXÞ, is the
unique geodesic in SOðnÞ passing through O with velocity
vector OX at t ¼ 0.1

An important tool in statistics on a manifold is an
exponential map. If M is a Riemannian manifold and
p 2M, the exponential map expp : TpðMÞ !M is defined
by exppðvÞ ¼ �vð1Þ, where �v is a constant speed geodesic
starting at p and with the initial velocity v. In case of SOðnÞ,
the exponential map expO : TOðSOðnÞÞ ! SOðnÞ is given by
expOðXÞ ¼ O expðXÞ, where the exponential on the right
side is actually the matrix exponential. To help visualize
these ideas, we illustrate the notions of tangent spaces,
geodesics in Fig. 1. We illustrate the notions of the
exponential map in Fig. 2.

3.1 Stiefel and Grassmann Manifolds as Quotients
of SOðnÞ

A quotient of a group results from equivalence relations
between points in the space. If one wants to identify certain
elements of a set, using an equivalence relation, then the set
of such equivalent classes forms a quotient space. This
framework is very useful in understanding the geometry of
Sn;d and Gn;d by viewing them as quotient spaces, using
different equivalence relations, of SOðnÞ.

Stiefel manifold. A Stiefel manifold is the set of all
d-dimensional orthonormal bases of IRn for 1 � d � n. Since
eachorthonormalbasis canbe identifiedwithann� dmatrix,
a Stiefel manifold is also a set of n� d matrices with
orthonormal columns.More interestingly, Sn;d can be viewed
as a quotient space of SOðnÞ as follows: Consider the
subgroup of smaller rotations SOðn� dÞ as a subgroup of
SOðnÞ using the embedding: �a : SOðn� dÞ ! SOðnÞ, de-
fined by
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Fig. 1. Illustration of tangent spaces, tangent vectors, and geodesics. P1

and P2 are points on the manifold. TP1
and TP2

are the tangent spaces at
these points. Note that there is a unique local mapping between the
manifold and the tangent space and this local mapping depends upon
the pole. Geodesics paths are constant velocity curves on the manifold.
Tangent vectors correspond to velocities of curves on the manifold.

1. We note here the distinction between a geodesic and the geodesic
distance. The geodesic passing through a point is simply a constant speed
curve specified by its initial velocity, whereas the geodesic distance between
two points is the length of the shortest constant speed curve passing
through both points. For a point and a tangent vector on a Riemannian
manifold, we can construct a geodesic path whose initial point and the
velocity are same as the given pair.



�aðV Þ ¼
Id 0

0 V

� �

2 SOðnÞ : ð5Þ

Now define two elements O1; O2 2 SOðnÞ to be equivalent,

i.e.,O1 �a O2, ifO1 ¼ O2�aðV Þ for some V 2 SOðn� dÞ. (The

subscript a is used to distinguish it from another equivalence

relation used later for studying Gn;d.) Note that �aðSOðn� dÞÞ

consists of those rotations in SOðnÞ that rotate only the last

ðn� dÞ components in IRn, leaving the first d unchanged.

Hence, O1 � O2 if and only if their first d columns are

identical, irrespective of the remaining columns. The result-

ing equivalence classes are: ½O�a ¼ fO�aðV ÞjV 2 SOðn� dÞg.

Since all elements of ½O�a have the same first d columns, we

will use that submatrixU 2 IRn�d to represent ½O�a.Sn;d is now

viewed as the set of all such equivalence classes and is

denoted simply by SOðnÞ=SOðn� dÞ.
Grassmann manifold. A Grassmann manifold is the set

of all d-dimensional subspaces of IRn. Here we are interested

in d-dimensional subspaces and not in a particular basis. In

order to obtain a quotient space structure for Gn;d, let SOðdÞ �

SOðn� dÞ be a subgroup of SOðnÞ using the embedding �b :

ðSOðdÞ � SOðn� dÞÞ ! SOðnÞ

�bðV1; V2Þ ¼
V1 0

0 V2

� �

2 SOðnÞ: ð6Þ

Define an equivalence relation on SOðnÞ according to

O1 �b O2 if O1 ¼ O2�bðV1; V2Þ for some V1 2 SOðdÞ and

V2 2 SOðn� dÞ. In other words, O1 and O2 are equivalent if

the first d columns of O1 are rotations of the first d columns

of O2 and the last ðn� dÞ columns of O1 are rotations of the

last n� d columns of O2. An equivalence class is given by

½O�b ¼ fO�bðV1; V2ÞjV1 2 SOðdÞ; V2 2 SOðn� dÞg;

and the set of all such equivalence classes is Gn;d. Notation-

ally, Gn;d can also be denoted as simply SOðnÞ=ðSOðdÞ �

SOðn� dÞÞ. For efficiency, we often denote the set ½O�b by

½U� ¼ fUV1 2 IRn�djV1 2 SOðdÞg, where U denotes the first

d columns of O. Another way to express U is OJ where J is

the matrix of the first d columns of In.

3.1.1 Tangent Structures via the Quotient Interpretation

As noted earlier, for any O 2 SOðnÞ, a geodesic flow in a
tangent direction, say, OTA, is given by  OðA; tÞ ¼
OT expðtAÞ where exp is the matrix exponential. This is a
one-parameter curve with t as the parameter. From this one
can deduce that, in case of Sn;d and Gn;d a geodesic flow
starting from a point U ¼ OTJ 2 Sn;d is of the type

t 7! OT expðtAÞJ: ð7Þ

Here, the skew-symmetric matrix A is either of the type

C �B
BT 0

� �

for Sn;d, of the type

0 �B
BT 0

� �

for Gn;d. In general, the tangent vectors on Sn;d or Gn;d can be
written as OTAJ .

Tangent structure of Sn;d. It can be shown that the
tangent structure of Sn;d is given as

TJðSn;dÞ ¼
C
BT

� �

�

�C 2 IRd�d skew-symm; B 2 IRd�ðn�dÞ

� 	

:

ð8Þ

For any other point U 2 Sn;d, let O 2 SOðnÞ be a matrix that
rotates the columns of U to align with the columns of J , i.e.,
let U ¼ OTJ . Note that the choice of O is not unique. It
follows that the tangent space at U is given by: TUðSn;dÞ ¼
fOTGjG 2 TJðSn;dÞg.

Tangent structure of Gn;d. The tangent space at ½J � 2 Gn;d is

T½J �ðGn;dÞ ¼
0

BT

� �

�

� B 2 IRd�ðn�dÞ

� 	

: ð9Þ

For any other point ½U � 2 Gn;d, let O 2 SOðnÞ be a matrix
such that U ¼ OTJ . Then, the tangent space at ½U� is given
by T½U �ðGn;dÞ ¼ fOTGjG 2 T½J �ðGn;dÞg.

On Sn;d and Gn;d, the exponential map is given by

OT C
BT

� �

� OTAJ 7! OT expðAÞJ;

where A takes an appropriate structure for each case. The
expression for inverse exponential map is not available
analytically for these manifolds and is computed numeri-
cally as described later in Section 6.

4 USING GEOMETRY TO COMPUTE SAMPLE

STATISTICS ON THE GRASSMANN MANIFOLD

The first question that we consider is: What is a suitable
notion of amean on the RiemannianmanifoldM? A popular
method for defining a mean on a manifold was proposed by
Karcher [39] who used the centroid of a density as its mean.

Karcher mean [39]. The Karcher mean � of a probability
density function f on M is defined as a local minimizer of
the cost function: � : M ! IR	0, where

�ðpÞ ¼

Z

M

dðp; qÞ2fðqÞ dq; ð10Þ
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Fig. 2. Illustration of exponential maps. The exponential map is a “pull-
back” map which takes points on the tangent space and pulls them onto
the manifold in a manner that preserves distances. As an example,
shown are two points V1 and V2 on the tangent space at pole P . Both
points lie along the same tangent vector. The exponential map will map
them onto the same geodesic. In a local neighborhood, the geodesic
distance between the pole and the obtained points will be the same as
the euclidean distance between the pole and the tangent vectors on the
tangent space.



dq denotes the reference measure used in defining the
probability density f on M. The value of the function � at
the Karcher mean is called the Karcher variance. How does
the definition of the Karcher mean adapt to a sample set,
i.e., a finite set of points drawn from an underlying
probability distribution? Let q1; q2; . . . ; qk be independent
random samples from the density f . Then, the sample
Karcher mean of these points is defined to be the local
minimizer of the function: �kðpÞ ¼

1
k

Pk
i¼1 dðp; qiÞ

2.
An iterative algorithm is employed for computing the

sample Karcher mean, as summarized in Algorithm 1. It can
be shown that this algorithm converges to a local minimum
of the cost function given in the definition of � [40].
Depending upon the initial value �0 and the step size �, the
algorithm converges to a local minimum.

Algorithm 1. Algorithm for computing the sample Karcher

mean

1. Given a set of k points fqig on the manifold.

2. Let �0 be an initial estimate of the Karcher mean,

usually obtained by picking one element of fqig at

random. Set j ¼ 0.
3. For each i ¼ 1; . . . ; k, compute the inverse exponential

map vi of qi about the current estimate of the mean, i.e.,

vi ¼ exp�1
�j
ðqiÞ.

4. Compute the average tangent vector �v ¼ 1
k

Pk
i¼1 vi.

5. If k�vk is small, then stop. Else, move �j in the average

tangent direction using �jþ1 ¼ exp�jð��vÞ, where � > 0 is

small step size, typically 0.5.

6. Set j ¼ jþ 1 and return to Step 3. Continue till �j
does not change anymore or till maximum iterations

are exceeded.

5 SUPERVISED AND UNSUPERVISED LEARNING

ALGORITHMS FOR THE GRASSMANNIAN

Many of the image and video-based analysis tasks involve
one of two tasks: 1) recognition of an input video as one of
several classes or 2) finding underlying structural similarities
in a large collection of videos. For example, given videos of
activities, the ARMA model parameters M ¼ ðA;CÞ are
estimated using the methods described in Section 2. Subse-
quently, the finite observability matrix OmðMÞ is computed.
Then for each observability matrix, an orthonormal basis is
computed using standard SVD-based algorithms. So, we
now have a set of subspaces or, in other words, a point cloud
on the Grassmann manifold. In recognition problems, we
also have corresponding class labels provided in the training
set. In this section,we shall providemethods that follow from
the theory described above to solve the supervised and
unsupervised learning problems.

5.1 Learning with Parametric Class Conditional
Densities

In addition to sample statistics such as the mean and
covariance, it is possible to define probability density
functions (pdfs) on manifolds for use in modeling random
quantities. Similarly to the euclidean spaces, we have a
choice between parametric and nonparametric probability
models. While parametric models are typically more

efficient, the nonparametric models often require fewer
assumptions. For nonlinear manifolds, one can also have a
choice between extrinsic and intrinsic probability models.
The extrinsic models result from embedding nonlinear
manifolds in higher dimensional euclidean spaces and
defining models in those larger spaces. In contrast, the
intrinsic models are completely restricted to the manifolds
themselves and do not rely on any euclidean embedding. In
view of the efficient nature of parametric models and the
independence of intrinsic models from a need for euclidean
embedding, we will pursue intrinsic parametric models.
The general idea here is to define a pdf on the tangent space
of the manifold, and then “wrap” the distribution back onto
the manifold. This allows us to draw upon the wealth of
methods available from classical multivariate statistics for
the problem at hand.

Suppose we have n sample points, given by q1; q2; . . . qn,
from a manifold M. Then, we first compute their Karcher
mean �q as discussed before. The next step is to define and
compute a sample covariance for the observed qis. The key
idea here is to use the fact that the tangent space T�qðMÞ is a
vector space. For a d-dimensional manifold, the tangent
space at a point is also d dimensional. Using a finite-
dimensional approximation, say V 
 T�qðMÞ, we can use
classical multivariate statistics for this purpose. We can
estimate the parameters of a family of pdfs, such as Gaussian
ormixtures of Gaussian, and then use the exponentialmap to
wrap these parameters back onto the manifold.

Truncation of domains. The exponential map exp�q :

T�qðMÞ ! M proves useful to map estimated pdfs back to
the manifold M, giving rise to wrapped densities [40], [28].
In general, one can define arbitrary pdfs on the tangent
space, such as mixtures of Gaussian, Laplace, etc., and wrap
it back to the manifold via the exponential map. However,
for manifolds of interest in this paper, the exponential map
is a bijection only if its domain is restricted. Otherwise, any
tangent line, being of infinite length, can be wrapped
around these compact manifolds infinitely many times.
Consequently, if one is interested in deriving an explicit
expression for a wrapped density on M, the resulting
expression will have infinite sums and will complicate the
derivations. Truncating the domain of density functions in
the space T�qðMÞ such that exp�q is a bijection is one solution.
This would require truncation beyond a radius of � in
T�qðMÞ. The main modification required is that, for the
multivariate density in T�qðMÞ, the normalization constant
changes. It gets scaled down depending on how much of
the probability mass is left out of the truncation region. This
can be evaluated empirically by drawing a large number of
samples N from the estimated density and counting the
number, N�, of them that are within a radius of � from the
origin in T�qðMÞ. Then, the normalization constant needs to
be multiplied by the effective fraction of samples within this
radius, i.e., Neff ¼ N�=N .

In experiments, we employ wrapped Gaussians in two
ways which we denote as common-pole and class-specific
pole wrapped Gaussians. In the common-pole case, given
points on the manifold with class labels, we compute the
mean of the entire data setwithout regard to class labels. This
data set mean is referred to as the common pole. Then, class
conditional densities are estimated in this tangent space. In
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the class-specific pole case, we compute the Karcher mean

for each class. Separate tangent spaces are considered for

each class at the class-mean. The class conditionals are

estimated in these individual tangent spaces. Algorithms for

estimating class conditionals for both these cases are shown

in Algorithms 2 and 3.

Algorithm 2. Truncated Wrapped Gaussian using common
pole

1. Given a set of points with class labels D ¼ fðUi; liÞg on

the manifold, and number of classes K.

2. Compute the Karcher mean � of the entire data set

without regards to class labels.

3. For each point Ui, compute the inverse exponential map

about the data set mean vi ¼ exp�1
� ðUiÞ and associate

with the corresponding class label li, giving rise to a set
of tuples V ¼ fðvi; liÞg.

4. For each class fit a Gaussian distribution in the tangent

space T�ðMÞ.

5. For each class, sample a large number N of points from

the estimated Gaussian distribution.

6. Count the number of points N� which lie within a

distance � from the origin of T�ðMÞ (origin here

corresponds to exp�1
� ð�Þ). Compute multiplication

factor Neff ¼ N�=N and adjust the normalization

factor.

Algorithm 3. Truncated Wrapped Gaussian using

class-specific pole

1. Given a set of points with class labels D ¼ fðUi; liÞg on
the manifold, and number of classes K.

for i ¼ 1; . . .K do

Compute the Karcher mean �i of the ith class using

algorithm 1.

For all points fUjg of the current class, compute the

inverse exponential map about the class mean

vj ¼ exp�1
�i
ðUjÞ.

Fit a Gaussian distribution for the ith class in the
tangent space T�iðMÞ.

Sample a large number N of points from the estimated

Gaussian distribution.

Count the number of points N� which lie within a

distance � from the origin of T�iðMÞ (origin here

corresponds to exp�1
�i
ð�iÞ). Compute multiplication

factor Neff ¼ N�=N and adjust the normalization factor

for the ith class conditional density.

end for

5.1.1 Synthetic Examples

In this section, we illustrate the concepts of sample Karcher
mean and wrapped densities on a Grassmann manifold. To
help visualization, we choose Gn;d with n ¼ 2 and d ¼ 1, i.e.,
one-dimensional subspaces of IR2. This is the set of all lines
passing through of the origin on the X-Y plane. Lines on a
plane can be parametrized by their principal angle with the
X-axis. Using this parameterization, in the first experiment
we randomly sample directions centered around 	 ¼ �=3
with variance in 	 set to 0.2. A set of such samples in shown in
Fig. 3a with dotted blue lines. The Karcher mean of this set is
shown as a red line in Fig. 3a. As can be seen, the Karcher
mean corresponds well to the notion of a “mean-axis” in this
case. In Fig. 3b, we illustrate the concept of estimating the
wrapped normal distribution. In this experiment, we
generated samples from two classes—one centered at 	 ¼ 0

and the other centered at 	 ¼ �=2. Points from each class are
shown in different colors. The Karcher mean of the whole
data set was taken as the pole to compute the tangent vectors
for the points. Each of the classes was parameterized by a
mean � and standard deviation 
 on the tangent plane. The
points corresponding to � and and �� 
were then wrapped
back onto the manifold. The mean and standard-deviation
axes for each of the classes are shown as bold and dashed
lines, respectively.

An earlier paper [1] used extrinsic nonparametric models
for similar purposes and in this paper we will compare them
with our current approach. Recall that the Karcher mean
computation is an iterative procedure. In recent years, the
Procrustes methods proposed by [23] have become popular
for noniterative density estimation as an alternative. How-
ever, it requires a choice of parameters (kernel-width) whose
optimal value is not known in advance. Given several
examples from a class ðU1; U2; . . . ; UnÞ on the Grassmann
manifold, the class conditional density is given by [23] as

f̂ðU ;MÞ ¼
1

n
CðMÞ

X

n

i¼1

K½M�1=2



Ik � UT
i UU

TUi
�

M�1=2�;

ð11Þ
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Fig. 3. In IR2, the set of all axes (lines passing through the origin) is the Grassmann manifold with n ¼ 2 and d ¼ 1. (a) Karcher mean illustration: Blue
dotted lines represent individual points on the Grassmann manifold. The bold red line is the Karcher mean of this set. The Karcher mean
corresponds to the notion of a mean axis. (b) Illustration of wrapped Gaussian: Wrapped normal class conditional densities of two classes on the
Grassmann manifold. Each class is shown in a different color. The mean of each class is shown in bold lines. The wrapped standard-deviation lines
are shown in dashed lines for each class.



where KðT Þ is the kernel function, M is a d� d positive
definite matrix which plays the role of the kernel width or a
smoothing parameter. CðMÞ is a normalizing factor chosen
so that the estimated density integrates to unity. The matrix
valued kernel function KðT Þ can be chosen in several ways.
We have used KðT Þ ¼ expð�trðT ÞÞ in all of the experiments
reported in this paper.

5.2 Unsupervised Clustering

The statistical tools that have been described in the previous
sections can be used for unsupervised learning tasks such as
clustering of data. Using them, it is possible to estimate
clusters in an intrinsic manner. Let us assume that we have a
set of points D ¼ ðU1; U2; . . . ; UnÞ on the Grassmann mani-
fold.We seek to estimate k clustersCC ¼ ðC1; C2; . . . ; CkÞwith
cluster centers ð�1; �2; . . . ; �kÞ so that the sum of geodesic-
distance squares,

X

k

i¼1

X

Uj2Ci

d2ðUj; �iÞ;

is minimized. Here d2ðUj; �iÞ ¼ j exp�1
�i
ðUjÞj

2. As is the case
with standard k-means, we can solve this problem using an
EM-based approach. We initialize the algorithm with a
random selection of k points as the cluster centers. In the
E-step, we assign each of the points of the data set D to the
nearest cluster center. Then in the M-step, we recompute
the cluster centers using the Karcher mean computation
algorithm described in Section 4. The procedure is
summarized in Algorithm 4.

Algorithm 4. Intrinsic K-means clustering algorithm on

Riemannian manifolds

1. Given set of points D ¼ ðU1; U2; . . . ; UnÞ on the
Grassmann manifold, number of clusters K, maximum

iteration Nmax.

2. Initialize cluster centers ð�
ð0Þ
1 ; �

ð0Þ
2 ; . . . ; �

ð0Þ
k Þ randomly.

while (i � Nmax) do

Assign each point to nearest cluster center by

computing d2ðUj; �kÞ ¼ exp�1
�k
ðUjÞ

�

�

�

�

�

�

2

.

Recompute cluster centers ð�
ðiÞ
1 ; �

ðiÞ
2 ; . . . ; �

ðiÞ
k Þ using

algorithm 1.

i ¼ iþ 1

end while

6 SIZE OF PROBLEMS AND METHODS FOR

EFFICIENT RIEMANNIAN COMPUTATIONS

As described in Section 2, the finite observability matrix is

given by OT
m ¼ ½CT ; ðCAÞT ; ðCA2ÞT ; . . . ðCAm�1ÞT �. The size

of this matrix ismp� d. The column space of this matrix is a

d-dimensional subspace of IRmp. d is typically of the order of

5-10, and we choosem to be the same as d. However, p is the

dimension of the feature vectors, and this in general can be

quite large. Typical image sequences used for, say, video-

based face recognition result in images of size 100� 100

resulting in p ¼ 104. Similarly, in the case of modeling image

sets, the PCA basis vectors are stored as p� d matrices,

where p is the size of raw images and d is the subspace

dimension (typically small). Due to the large size of these

matrices, straightforward implementation of Riemannian

computations is nontrivial. The computation of the geodesic

OT expðtAÞJ in the direct form implies a complexity ofOðn3Þ,

where n ¼ mp for the observability matrix and n ¼ p for the

case of PCA basis vectors. By exploiting the special structure

of the matrix A, it is possible to reduce the complexity of

these operations to no more than Oðnd2Þ and Oðd3Þ, which

represents a significant reduction. These efficient methods

were first proposed by Gallivan et al. [41]. For a self-

contained treatment, here we summarize the key results that

will be used in this paper in the Appendix, which can be

found in the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPAMI.2011.52.

7 APPLICATIONS AND EXPERIMENTS

In this section, we show the utility of the methods discussed
so far on several image and video-based recognition tasks.
We shall show four different applications:

1. Activity recognition on INRIA iXMAS data [42].
2. Video-based Face recognition on NIST-MBGC data

[43].
3. Face Recognition from Image Sets on CMU-PIE data

[44].
4. Video Clustering on SFU figure skating data [45].

In all of these applications, we show that subspace
matching arises naturally. We compare with other related
methods that involve subspace matching, and show that
statistical modeling of class conditionals using Riemannian
geometry demonstrates better performance over other
simpler methods.

Implementation details. For parametric class conditional
densities as described in Section 5.1, we consider two
versions of wrapped Gaussians—common-pole and class-
specific poles. In the common-pole case, the tangent space is
constructed at the Karcher mean of the entire training data
set (Algorithm 2). In the class-specific pole case, we
construct a class-specific tangent space at the Karcher mean
of each of the classes (Algorithm 3). The class conditional for
the ith class is completely specified by the tuple
Ci ¼ fpi; �vi;�ig, where pi is the pole about whose tangent
space the density is defined, �vi is the mean in TpiðMÞ, and �i

the covariance matrix in TpiðMÞ. In the common-pole case,
all pis are set to the data set mean. In the class-specific pole
case, the pis are set to individual class means. To evaluate
the ith class conditional density at a test point, one merely
evaluates the truncated Gaussian by mapping the test point
to the tangent space at pi. Then, the point is classified into
the class that has the highest likelihood. In our experiments,
we have restricted �i to be a diagonal matrix instead of a
full covariance matrix. As mentioned in Section 5.1, to
evaluate the class conditional probability using truncated
wrapped Gaussians we also need to adjust the normalizing
constant of each Gaussian. It is our experience that the
appearance/activity models on Stiefel and Grassmann
manifolds are rather clustered around their class mean
and rarely are some points so far away from the mean to
necessitate truncation. So, we ignore this minor adjustment.
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7.1 Activity Recognition

We performed a recognition experiment on the publicly
available INRIA data set [42]. The data set consists of
10 actors performing 11 actions, each action executed three
times at varying rates while freely changing orientation. We
used the view-invariant representation and features as
proposed in [42]. Specifically, we used the 16� 16� 16

circular FFT features proposed by [42]. Instead of modeling
each segment of activity as a single motion history volume
as in [42], we build a time series of motion history volumes
using small sliding windows. This allows us to build a
dynamic model for each segment. We use the segmentation
results used in [42]. Using these features, we first performed
a recognition experiment on the provided data.

To perform recognition, first each activity wasmodeled as
an ARMA model given in (2). The state-space dimension d
was chosen to be five. Model fitting was performed as
described in Section 2. After this, the finite observability
matrix OmðMÞ is computed, and an orthonormal basis
corresponding to its column space is stored. Testing was
performed using a round-robin (leave-one-person-out) ex-
periment where activity models were learned using nine
actors and tested on one actor. For fitting the ARMA model
we used 16� 16� 16 ¼ 4;096 dimensional features, chose
state-space dimension d ¼ 5, and truncated the observability
matrix at m ¼ d ¼ 5. Thus, in this case, the Grassmann
manifold Gn;d corresponds to n ¼ mp ¼ 20;480 and d ¼ 5.

In Table 1, we show the recognition results obtained
using four baseline methods that do not require any
statistical modeling. The first column shows the results
obtained using dimensionality reduction approaches of [42]
on 16� 16� 16 features. Reference [42] reports recognition
results using a variety of dimensionality reduction techni-
ques (PCA, LDA, Mahalanobis) and here we choose the
row-wise best performance from their experiments (de-
noted “Best Dim. Red.”) which were obtained using 64�
64� 64 circular FFT features. The third column corresponds

to the method of using subspace angles-based distance
between dynamical models [31]. This is based on comput-
ing the angles between subspaces 	i and measuring the
distance using

P

sin2ð	iÞ. Column 4 shows the nearest-
neighbor classifier performance using Procrustes distance
measure (16� 16� 16 features). We see that the manifold
Procrustes distance performs as well as ARMA model
distance [31].

In Table 2, we show results of statistical modeling using
parametric and nonparametric methods. As can be seen in
the results in Table 2, statistical modeling of class condi-
tional densities leads to a significant improvement in
recognition performance over simpler methods shown in
Table 1. We also present the results of nonparametric kernel
density estimator reported in [1]. Note that even though the
manifold approaches presented here use only 16� 16� 16

features they outperform other approaches that use higher
resolution (64� 64� 64 features) as shown in Table 1.

As mentioned before, for the nonparametric case, an
appropriate choice of the kernel widthM has to be made. In
general, cross validation is suggested to estimate the
optimal kernel width. Different classes may have a different
optimal kernel width. Hence, cross validation requires a
lengthy training phase. A suboptimal choice can often lead
to poor performance. This is one of the significant draw-
backs of nonparametric methods. However, addressing this
formally is beyond the scope of the current paper.

7.2 Video-Based Face Recognition

Video-based face recognition by modeling the “cropped
video” either as dynamical models ([6]) or as a collection of
PCA subspaces [46] have recently gained popularity
because of their ability to recognize faces from low-
resolution videos. Given a video, we estimate the a low-
dimensional subspace from the sequence of frames using
standard PCA. The subspace is then considered as a point
on the Grassmann manifold.

We performed a recognition experiment on NIST’s
Multiple Biometric Grand Challenge (MBGC) data set.
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TABLE 1
Comparison of View-Invariant Recognition of Activities in the INRIA Data Set Using

1) Best Dim. Red. [42] on 16� 16� 16 Features, 2) Best Dim. Red. [42] on 64� 64� 64 Features,
3) Nearest Neighbor Using ARMA Model Distance, 4) Procrustes Distance (Reported in [1])



The MBGC Video Challenge data set consists of a large
number of subjects walking toward a camera in a variety of
illumination conditions. Face regions are manually tracked
and a sequence of cropped images is obtained. There were a
total of 143 subjects with the number of videos per subject

ranging from 1 to 5. In our experiments, we took subsets of
the data set which contained at least two sequences per
person denoted as S2, at least three sequences per person
denoted as S3, etc. Each of the face images was first
preprocessed to zero-mean and unity variance and scaled to
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TABLE 3
Comparison Recognition Accuracies of Video-Based Face Recognition Using Subspace-Based Approaches

1) Subspace Angles + Arc-Length Metric, 2) Procrustes Distance, 3) Kernel Density,
4) Wrapped Normal Using a Common Pole for All Classes (Algorithm 2)

TABLE 2
Statistical Modeling for Recognition of Activities in the INRIA Data Set Using

1) Common-Pole Wrapped Normal, 2) Class-Specific Pole Wrapped Normal, 3) Kernel Density (First Reported in [1])

TABLE 4
CMU-PIE Database: Face Identification Using Various Grassmann Statistical Methods

Performance of various methods is compared as the subspace dimension is varied.



100� 100. For each subject, a PCA basis is estimated of
dimension d ¼ 5. Thus, in this case Gn;d corresponds to
n ¼ 10;000, d ¼ 5. In each of these subsets, we performed a
leave-one-out testing. The results of the leave-one-out
testing are shown in Table 3. In the comparisons, we show
results using the “arc-length” metric between subspaces
[10]. This metric computes the subspace angles between two
subspaces and takes the L-2 norm of the angles as a distance
measure [10]. We also show comparisons with the

Procrustes measure, the Kernel density estimate with
M ¼ I, and a wrapped normal density with the Karcher
mean of the entire data set as the pole given in Algorithm 2.

As can be seen, statistical methods outperform nearest-
neighbor-based approaches. As one would expect, the
results improve when more examples per class are
available. Since the optimal kernel-width is not known in
advance, this might explain the relatively poor performance
of the kernel density method.
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Fig. 4. Shown here are a few sequences from each obtained cluster. Each row in a cluster shows contiguous frames of a sequence. (a) Cluster 1:
Sit-spins. (b) Cluster 2: Stand-spins. (c) Cluster 3: Camel-spins. (d) Cluster 4: Spirals.



7.3 Face Recognition from Image Sets

We consider the CMU-PIE face data set which contains
images of 68 persons under varying poses, illumination,
and expressions. For comparison, we use the methods
proposed in [14]. The methods proposed in [14] involve
discriminative approaches on the Grassmann manifold
using Mercer-kernels. In this approach, a Mercer-kernel is
defined on the Grassmann manifold which then enables
using kernel versions of SVMs, Fisher Discriminant
Analysis, etc., for classification. In this experiment, we use
the experimental protocol suggested in [47]. For each of the
68 subjects, seven near frontal poses are used in the
experiment. For each person under a fixed pose, we
approximate the variations due to expressions and illumi-
nation as a linear subspace. Thus, for each person we have a
set of subspaces corresponding to each pose. This allows us
to build a statistical model on the Grassmann manifold for
each person. A round-robin (leave-one-pose-out) experi-
ment is performed in which six poses are used for training
and the remaining pose is used for testing. The results are
shown in Table 4. The results using the other methods were
reported in [47].

As can be seen, the proposed statistical approaches
compare well with the state-of-the-art. In particular, the
kernel density method outperforms all of the other
methods. The discriminative approaches of [14] outper-
forms the wrapped normal approach. However, the varia-
bility of the performance is high depending on what Mercer
kernel is chosen. The wrapped normal provides consistent
performance and beats most other methods.

7.4 Video Clustering

We performed a clustering experiment on the figure skating
data set of [45]. These videos are unconstrained and involve
rapid motion of both the skater and the camera. As reported
in [50], color models of the foreground and background are
used to segment the background and foreground pixels.
Median filtering followed by connected component analysis
is performed to reject small isolated blobs. From the
segmented results, we fit a bounding box to the foreground
pixels by estimating the 2D mean and second order
moments along x and y directions. We perform temporal
smoothing of the bounding box parameters to remove jitter
effects. The final feature is a rescaled binary image of size
100� 100 of the pixels inside the bounding box. We build
ARMA models for fixed length subsequences using sliding
windows as done in [50]. State-space dimension d ¼ 5, and
the observability matrix is truncated at m ¼ 5. Thus, we
have Gn;d with n ¼ mp ¼ 50;000, d ¼ 5. Then, we used the
intrinsic K-means clustering on the Grassmann manifold
using Algorithm 4. In [50], the segments were treated as
nodes in a graph and normalized cuts (N-cuts) was used for
clustering. The cited reason was that the space of ARMA
models is not a vector space and it is not apparent how to
perform k-means clustering and thereby N-cuts is used as
an alternative. The approach that we use here, while
achieving similar results, is a principled method to solve
the video-clustering problem using ARMA models. As is
the case with standard k-means, it enjoys lower computa-
tional load compared to the spectral clustering algorithms,
especially for long videos. We show some sample sequences

in the obtained clusters in Fig. 4. We observe that the
clusters predominantly correspond to “Sitting Spins,”
“Standing Spins,” “Camel Spins,” and “Spirals.” There is
a fifth cluster which corresponds mainly to “Glides” and
has been omitted due to space constraints.

8 CONCLUSION

We have shown that the Grassmann manifold arises
naturally in many image and video-based classification
problems. We have presented statistical modeling methods
that are derived from the Riemannian geometry of the
manifold. We have shown the utility of the methods on
several applications such as activity recognition, video-
based face recognition, and recognition from image sets. In
addition to definitions of distances and statistics on
manifolds, many interesting problems such as interpolation,
smoothing, and time-series modeling on these manifolds of
interest are potential directions of future work. These
techniques can prove useful in applications such as
adapting appearance models for active vision applications,
or modeling time-varying dynamic models for human
activities [32].
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