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Our current understanding of how DNA is packed in the nucleus is most accurate at the fine scale of individual nucle-

osomes and at the large scale of chromosome territories. However, accurate modeling of DNA architecture at the in-

termediate scale of ~50 kb–10 Mb is crucial for identifying functional interactions among regulatory elements and their

target promoters. We describe a method, Fit-Hi-C, that assigns statistical confidence estimates to mid-range intra-chro-

mosomal contacts by jointly modeling the random polymer looping effect and previously observed technical biases in Hi-C

data sets. We demonstrate that our proposed approach computes accurate empirical null models of contact probability

without any distribution assumption, corrects for binning artifacts, and provides improved statistical power relative to

a previously described method. High-confidence contacts identified by Fit-Hi-C preferentially link expressed gene pro-

moters to active enhancers identified by chromatin signatures in human embryonic stem cells (ESCs), capture 77% of RNA

polymerase II-mediated enhancer-promoter interactions identified using ChIA-PET inmouse ESCs, and confirm previously

validated, cell line-specific interactions in mouse cortex cells. We observe that insulators and heterochromatin regions are

hubs for high-confidence contacts, while promoters and strong enhancers are involved in fewer contacts. We also observe

that binding peaks of master pluripotency factors such as NANOG and POU5F1 are highly enriched in high-confidence

contacts for human ESCs. Furthermore, we show that pairs of loci linked by high-confidence contacts exhibit similar

replication timing in human and mouse ESCs and preferentially lie within the boundaries of topological domains for

human and mouse cell lines.

[Supplemental material is available for this article.]

Recently, several chromatin conformation capture (3C)-based

methods have been used to characterize, on a genome-wide scale,

the chromatin architectures of many genomes and cell types at

different resolutions (Fullwood et al. 2009; Lieberman-Aiden et al.

2009; Duan et al. 2010; Tanizawa et al. 2010; Dixon et al. 2012;

Sexton et al. 2012; Lemieux et al. 2013; Zhang et al. 2013). Driving

much of this research is the underlying hypothesis that the three-

dimensional form of the genome in vivo is tightly related to ge-

nome function; hence, a better understanding of chromatin ar-

chitecture is likely to provide insights into how the genome con-

tributes to biological fitness.

A 3C-based genome architecture assay such asHi-C (Lieberman-

Aiden et al. 2009) produces as output a list of paired sequence tags

that indicate contact between two genomic regions when the two

tags map uniquely to nonadjacent locations along the genome.

Because these assays operate on a population of cells, observing

one such sequence tag implies that, in one cell in the sample, the

corresponding pair ofDNA regionswas in close physical proximity.

The natural resolution of Hi-C data is in terms of restriction en-

zyme (RE) fragments, which are the genomic units resulting from

DNA digestion with restriction enzymes. However, depending on

the sequencing depth and the size of the genome of interest, Hi-C

data may be processed either using fixed-size genomic bins or by

combining multiple consecutive restriction fragments (metafrag-

ments). Here we use ‘‘locus’’ to refer to the unit of resolution. We

refer to the number of contacts between a pair of loci as a ‘‘contact

count’’ and the matrix of contact counts among all locus pairs in

the genome as a ‘‘contact map.’’

In this work, we focus on statistically characterizing a partic-

ular aspect of chromatin architecture: intra-chromosomal contacts

between locus pairs separated by 10–250 kb for yeast and 50 kb–10

Mb for complex eukaryotes (‘‘mid-range’’ contacts). Although

a 3C-based genome architecture assay such as Hi-C (Lieberman-

Aiden et al. 2009) generates contact counts between all pairs of

loci, assigning statistical confidence estimates to mid-range con-

tacts is particularly challenging because a large portion of such

contacts occur due to random looping of the DNA (Lieberman-

Aiden et al. 2009), rather than due to formation of specific chro-

matin loops. On the other hand, many biologically important

interactions, such as contacts between enhancers and promoters

or between multiple promoters, occur in this distance range (Li

et al. 2012; Sanyal et al. 2012; Zhang et al. 2013). Improving our

ability to discriminate between functional mid-range contacts and

contacts that occur due to random polymer looping has the po-

tential to yield significant improvements in our understanding of

genome function.

Previous chromatin architecture studies have handled mid-

range contacts in several different ways. Because Lieberman-Aiden

et al. (2009) analyzed the relatively large human genome with low
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sequencing depth, their assay provided data at 1-Mb resolution.

Consequently, they simply discarded all proximal and a large

portion ofmid-range contacts, focusing instead on distal and inter-

chromosomal contacts. Tanizawa et al. (2010) analyzed mid-range

contacts in fission yeast by first normalizing the observed contact

counts with respect to an experimental control and then correct-

ing for random polymer looping using a double-exponential curve

fitting procedure. Sexton et al. (2012) proposed a hierarchical do-

main model for the Drosophila genome that infers an expected

chromosomal contact matrix at 10-kb resolution for each chro-

mosome. This matrix was then used to normalize the observed

contact counts to provide a relative enrichment score for intra-

chromosomal locus pairs. However, in both of these studies, the

resulting values were not subject to any statistical confidence es-

timation procedure. Finally, Duan et al. (2010) used a simple sta-

tistical model to assign statistical confidence to a contact between

two loci based on their observed contact count relative to a null

model in which every pairwise contact is assumed to be equally

likely. To account for random polymer looping, intra-chromo-

somal locus pairs were grouped into bins corresponding to geno-

mic distances of 20–25 kb, 25–30 kb, etc., and all pairs within

a given bin were treated as equally likely to produce a single con-

tact (Methods).

All the studies mentioned above pointed out the importance

of controlling for the random polymer looping effect. More recent

studies have pointed out another important factor, namely, that

experimentally derived contact maps exhibit multiple sources of

experimental and technical bias (Yaffe and Tanay 2011; Cournac

et al. 2012; Hu et al. 2012; Imakaev et al. 2012). These biases relate

to genomic characteristics such as GC content and mappability, as

well as technical aspects of the assays such as cross-linking pref-

erence, fragment length, and circularization length. Each study

proposes a normalization protocol to reduce or eliminate these

biases. Yaffe and Tanay (2011) propose a method that estimates

a probabilistic background model representing GC content, frag-

ment length, and mappability biases and calculates the corrected

contact map for each experiment. This method only corrects for

biases that are known a priori, such as GC content. More recently,

Imakaev et al. (2012) developed an iterative correction method

that does not require a priori knowledge and is based on the as-

sumption that all loci should have an equal number of total con-

tacts. The corrected contact maps reported by these two different

methods are highly consistent with each other, and both methods

yield improved reproducibility across replicate experiments.

In this work, we describe a method, Fit-Hi-C (Fig. 1), for

assessing the statistical significance of mid-range chromosomal

contacts with respect to a background that jointly models the

random polymer looping effect and previously observed biases in

Hi-C data sets.We use contactmaps from three different organisms

(Supplemental Table 1) processed at a resolution of single RE

fragments for yeast and metafragments (either 10 or 50 consecu-

tive RE fragments) for mouse and human. We use the ICE nor-

malization procedure (Imakaev et al. 2012) to compute biases for

each locus from these contact maps. This normalization is appli-

cable to data from a Hi-C assay as well as from variations of Hi-C

that provide genome-wide contact maps, such as the budding

yeast data set of Duan et al. (2010). We then use these biases to-

gether with genomic distance to calculate a contact probability

between each pair of loci (Methods).We demonstrate that Fit-Hi-C

removes artifacts and yields improved statistical power relative to

a previously described approach (Duan et al. 2010). We confirm,

across a variety of data sets, that the set of novel contacts deemed

significant by Fit-Hi-C are both spatially consistent with and

complementary to contacts identified using the previous method.

Furthermore, we show that, compared to the method used in

Duan et al. (2010), Fit-Hi-C captures a larger percentage of RNAPII-

mediated chromatin interactions identified by ChIA-PET inmouse

ESCs using either a false discovery rate (FDR) or rank-based

threshold. Applying Fit-Hi-C to Hi-C data from several mouse and

human cell lines, we observe that high-confidence contacts pref-

erentially link expressed gene promoters to active enhancers

identified by chromatin signatures in human embryonic stem cells

(ESCs) (Rada-Iglesias et al. 2011); capture 77% of enhancer-pro-

moter interactions identified using ChIA-PET in mouse ESCs

(Zhang et al. 2013); and confirm previously validated, cell line-

specific interactions in mouse cortex (Shen et al. 2012). We also

demonstrate that regions containing binding peaks of pluri-

potency factors such as NANOG and POU5F1, as well as regions

annotated as insulators or heterochromatin, are hubs for high-

confidence contacts in human ESCs, whereas RNAPII binding

Figure 1. Assigning statistical confidence estimates to mid-range contacts using Fit-Hi-C. Cross-linking and digestion from a Hi-C assay produces
a genome-wide contact map. We extract intra-chromosomal contacts in the range of (10 kb, 250 kb] for the yeast genome and (50 kb, 10 Mb] for the
human and mouse genomes. We fit an initial spline (spline-1) using the observed contact counts and genomic distances between all possible mid-range
locus pairs. The general shape of the spline is assumed to be due to random polymer looping and is the basis for the initial null model. This initial spline
determines a threshold (dashed line) to identify outliers (red dots) which are excluded from the calculation of a refined null represented by a second spline
(spline-2). For eachmid-range locus pair, we estimate the prior contact probability from spline-2 using the exact genomic distance between the loci in the
pair. We calculate P-values for all contacts, including null and outlier pairs, by using a binomial distribution and apply multiple hypothesis testing
correction to compute a Q-value for each P-value.
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sites, transcription start sites, promoters, and strong enhancers are

involved in fewer high-confidence contacts. Our results provide

further support for the existence of recently described topological

domains at the submegabase scale (Dixon et al. 2012) and provide

evidence that traces of these domains are visible even in lower

resolution Hi-C data (Lieberman-Aiden et al. 2009). Finally, we

show that genomic regions exhibiting similar replication timing

profiles tend to be in contact with one another, suggesting 3D

colocalization of synchronously replicating loci that are not nec-

essarily proximal in 1D, in agreement with previous observations

(Ryba et al. 2010).

Results

Decay in contact probability with increasing genomic distance

between two loci on the same chromosome is a hallmark of all

published Hi-C data sets. However, no single function can capture

the relationship between contact probability and genomic dis-

tance because different organisms or different parameter settings

for the same organism yield different scaling curves. For instance,

data from Lieberman-Aiden et al. (2009) suggests that a power law

function with an exponent of �1 captures this scaling for human

cell lines, whereas the work of Duan et al. (2010) suggests an ex-

ponent of�1.5 for yeast. Furthermore, the genomic distance range

of interest, the resolution at which data is analyzed, and the se-

quencing depth all impact the relationship between contact

probability and genomic distance (Fig. 2). Therefore, a method to

assign confidence estimates for intra-chromosomal contacts from

any organism, at any given resolution and desired genomic dis-

tance range, must be able to capture these differences in scaling of

contact probability.

Fit-Hi-C eliminates binning bias

We use as a starting point the method of Duan et al. (2010), which

assigns confidence estimates to mid-range contacts by segregating

locus pairs into discrete genomic distance bins (e.g., 20–25 kb,

25–30 kb, etc.) and computing a contact probability for each

bin separately to control for the random polymer looping ef-

fect. This method leads to bias in confidence estimation due to

sharp transitions in contact probability from one bin to the next.

Our method, Fit-Hi-C, replaces the discrete bins with a mono-

tonic spline fitting procedure that assigns confidence estimates

(P-values) to contact counts for two loci while conditioning on the

exact genomic distance between them (Methods), thereby elimi-

nating the artifactual stair-step pattern produced by the binning

approach (Fig. 3A). In the figure, at distances for which the hori-

zontal binning line is above the spline fit, the binning approach’s

contact probability estimates are too conservative and vice versa.

Accordingly, as shown in Figure 3B and quantified by Fisher’s exact

test, these biases in contact probabilities are reflected in the cor-

responding confidence estimates, yielding overestimation of sig-

nificance for the locus pairs that fall to the left side of each bin and

vice versa (dark blue). Our spline fitting corrects this skew, yielding

an unbiased (dark green) distribution. This correction can be seen

when we plot the distributions of contacts that are only deemed

significant by one method and not by the other (only by binning

in light blue, only by spline-1 in light green). Similar results were

obtained for nine genome architecture data sets from three dif-

ferent organisms (Supplemental Fig. 1). Our further analysis of the

method-specific contact sets for each of the four cell lines of Dixon

et al. (2012) demonstrates that the contacts identified by only

spline-1 are more complementary (i.e., these contacts increase the

transitivity of the contact graph, as described in Supplemental

Note 1) to the set of contacts common to both methods compared

to contacts identified only by binning (Supplemental Table 2).

Fit-Hi-C boosts statistical power

To boost the statistical power of the spline fitting method, we

remove ‘‘positive’’ outliers, corresponding to bona fide (non-

random) contacts, and then re-fit the spline to the remainder (Fig.

1; Supplemental Fig. 2). This modification, motivated by previous

work onmicroarrays, drugmutation, and sequence data sets (Efron

et al. 2001; Bailey and Gribskov 2002), yields a more accurate

empirical null model. In general, such refinement has to be done

carefully in order to avoid removing actual null observations from

the refined null. To avoid this problem, we calculate initial sig-

nificance estimates by using a conservative model, i.e., the non-

refined null represented by spline-1, and we choose a stringent

threshold that accepts approximately one null contact as an out-

lier and removes it from the null model during the refinement

(Methods).

Application of the refined method to data sets from different

organisms and cell lines demonstrates that, at varying FDR

thresholds, the refined null identifies more significant contacts

compared to the binning approach (Fig. 3C), yielding a 6%–46%

increase in the number of contacts at 1% FDR, depending on the

data set (Supplemental Table 3). The degree of improvement de-

pends mainly on the sequencing depth and not on the size of the

genome. Analysis of control data sets from Duan et al. (2010) in-

dicates that our null model successfully avoids introducing false

positives (Supplemental Table 3). Furthermore, the new contacts

identified by the refined null (spline-2), whichwe simply refer to as

Figure 2. Differences in scaling of contact probability when sequencing
depth, resolution, or the distance range of interest changes. We plot the
relationship between contact probability and genomic distance by bin-
ning the total number of mid-range read pairs into 200 equal occupancy
bins. We compute the mean genomic distance and mean contact prob-
ability among all locus pairs for each bin and calculate the best power-law
(i.e., log-linear) fit to these observations (dashed line) for the genomic
distance range spanned by the x-axis. We plot these for the K562 library
from Lieberman-Aiden et al. (2009) at a resolution of 50 RE fragments (A),
for the hIMR90 library from Dixon et al. (2012) at a resolution of 50 RE
fragments for genomic distances up to 10 Mb (B), 50 RE fragments for
genomic distances up to 5 Mb (C ), and 10 RE fragments (D).

Fit-Hi-C: confidence estimation for Hi-C data
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Fit-Hi-C from here on, at a fixed FDR threshold are spatially con-

sistent with contacts identified by the more conservative spline-1

(Supplemental Note 1; Supplemental Fig. 3).

High-confidence Hi-C contacts capture interactions identified

by ChIA-PET in mouse embryonic stem cells

Several lines of evidence suggest that the 3D proximity of en-

hancers to target promoters plays a role in gene expression (Tolhuis

et al. 2002; Ferraiuolo et al. 2010; Shen et al. 2012). Development

of techniques such as ChIA-PET (Fullwood et al. 2009) now allows

genome-wide profiling of a subset of these contacts that are me-

diated by a protein of interest. A recent application of ChIA-PET

generated a catalog of RNA polymerase II (RNAPII)-mediated

contacts, approximately half of which are believed to be enhancer-

promoter pairs, for mouse cells during lineage commitment, in-

cludingmouse ESCs (Zhang et al. 2013). Here we use this catalog as

a validation set, testingwhether Fit-Hi-C can capture these RNAPII-

mediated contacts when applied to Hi-C data of mouse ESCs from

Dixon et al. (2012). We also compare the results from Fit-Hi-C to

those produced using discrete binning.

Fit-Hi-C captures 77% of enhancer-promoter contacts and

73% of all contacts reported by ChIA-PETat 5% FDR (Fig. 4A). This

result suggests that our confidence estimation can accurately

identify contacts mediated by a specific protein among the very

large set of chromatin contacts between any two loci as assayed by

Hi-C. Also, to the best of our knowledge, this analysis is the first

systematic comparison between Hi-C and ChIA-PET data showing

that the two assays produce highly consistent results.

Another important observation from Figure 4A is that

Fit-Hi-C captures a larger percentage of all ChIA-PET contacts and

enhancer-promoter pairs compared to discrete binning. However,

it would be misleading to conclude superiority of our method

solely based on this observation, because we report more contacts

at a given FDR due to improved statistical power. To perform a fair

comparison of the two methods, we rank contacts by the P-value

assigned by each method, and we ask howmany contacts between

enhancer-promoter pairs or any locus pair from the ChIA-PET

catalog are among the k most significant contacts. Our results

show that Fit-Hi-C consistently captures more ChIA-PET contacts

of both types for different values of k (Supplemental Fig. 4), sug-

gesting that Fit-Hi-Cproduces amore accurate ranking compared to

the discrete binning approach.

High-confidence Hi-C contacts link active enhancers in human

embryonic stem cells to highly expressed genes

Chromatin signatures such as histone modifications and nucleo-

some density can also be predictive of enhancer-promoter in-

teractions. In work by Rada-Iglesias et al. (2011), enhancer ele-

ments were predicted using these chromatin signatures for human

ESCs. Using these predictions and Hi-C data for human ESCs, we

examine whether pairs of loci that are assigned high significance

(i.e., small Q-values) by our method are enriched for pairs of pre-

dicted enhancers and gene promoters. In other words, in the list of

locus pairs sorted by increasingQ-value, we test whether ‘‘positive’’

pairs (i.e., pairs that link an active enhancer with an expressed

gene) are ranked above ‘‘negative’’ pairs (i.e., pairs that do not in-

volve any promoter or enhancer region) (see Methods for details).

We perform a Mann–Whitney U-test and report the normalized

U statistic, which ranges between 0 and 1. A large value of the U

statistic implies that positive pairs tend to have higher significance

than negative pairs (Methods). Figure 4B shows that promoters of

highly expressed genes colocalize significantly with enhancers

that are annotated as active in human stem cells (Mann-Whitney

U-test P-value of 6�190 for RPKM > 10) and that these active en-

hancers engage in stronger contacts compared to enhancers that

are poised before cellular differentiation. These results suggest that

specific chromatin loops beyond 50 kb are tightly linked to func-

tional interactions and agree with recently published 5C data for

three ENCODE cell lines suggesting chromatin interactions are

prevalent at distances around 120 kb upstream of transcription

start sites (Sanyal et al. 2012).

Furthermore, an analysis of the expression profiles of five

groups of genes segregated according to their contact profiles

(Fig. 4C) shows that genes whose promoters are predicted to con-

tact at least one active enhancer at FDR < 1% (first two groups in

Fig. 4C) exhibit higher expression compared to genes that do not

(last three groups). Within the groups of genes that do not have

high-confidence contacts to active enhancers, the group with

contacts to some locus at a loose FDR threshold of 10% (‘‘Non-

enh’’) have higher expression compared to genes with contacts to

Figure 3. Fit-Hi-C eliminates edge effects caused by discrete binning and boosts statistical power for confidence estimation. (A) Comparison of fits
resulting from our method to the discrete binningmethod which uses 5-kb genomic distance bins for a S. cerevisiaeHindIII library from Duan et al. (2010).
Only the genomic distance range of 50–100 kb is shown for visualization purposes. (B) Histograms of genomic distance offsets (Methods) for contacts
identified at FDR 1% from ICE-corrected contactmaps by differentmethods (dark blue, dark green) and for all possiblemid-range locus pairs (black) for the
library described in A. Histograms for each series sums up to 100%. For each locus pair, the offset is calculated with respect to the left edge of the enclosing
5-kb bin. Because we divide each 5-kb bin into 10 equally sized windows, we expect a contact set with no binning bias to have 10% (dashed line) of its
members in each of these 10 windows, similar to the set of all mid-range locus pairs (black). We quantify the bias by testing the null hypothesis that the
proportion of significant contacts on each side of the bin identified by a specific method is equal to this proportion for all mid-range locus pairs (black).
Fisher ’s exact test P-values for this null hypothesis are 8.33 10�44 and 0.34 for all contacts identified by binning (dark blue) and by spline-1 (dark green),
respectively. (C ) Comparison of the number of contacts deemed significant by the refined null-based spline fit (spline-2) and discrete binning methods at
varying FDR thresholds for hIMR90 and mESC libraries from Dixon et al. (2012).
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only poised enhancers (‘‘Only poised-enh’’) and genes that are

isolated (‘‘No contacts’’). These results suggest that three-dimensional

proximity to adistal region, and especially to an active enhancer, is an

important determinant of gene expression. Also, these results are

consistentwith amodel inwhichpoised enhancers establish contacts

with their target promoters before lineage commitment but do not

enhance the expression until after differentiation.

Fit-Hi-C accurately identifies 3C-validated cell line-specific

enhancer-promoter contacts

To further validate our findings, we focus on a list of locus pairs

that were previously tested using 3C to identify contacts between

predicted enhancer regions and promoters (Shen et al. 2012). For

each of six locus pairs separated by >50 kb, we identify the corre-

sponding pair of windows at a resolution of 10 RE fragments, one

containing the predicted enhancer and the other containing the

gene promoter, and we use theQ-value of the contact between this

window pair as the measure of colocalization between the en-

hancer-promoter pair. For two pairs that were confirmed by 3C not

to interact in bothmouse embryonic stem cells (mESC) and cortex

cells (mCortex), ourQ-value estimates were larger than 0.1 for both

cell lines. For the remaining four pairs, all of which are confirmed

to interact in mCortex but not in mESC, our Q-value estimates

using corrected contactmapswere all less than 10�5 for cortex cells

and were all larger than 0.1 for stem cells (10�11 vs. 0.3, 10�13 vs.

Figure 4. Fit-Hi-C identifies high-confidence contacts between previously predicted/validated enhancer-promoter pairs. (A) Percentage of RNAPII-
mediated chromatin interactions identified by Zhang et al. (2013) in mouse ESCs that are captured either using our method (spline-2) or the discrete
binning approach of Duan et al. (2010) frommESC Hi-C data at different FDR thresholds. A total of 1007 enhancer-promoter contacts and 2494 contacts
between any two RNAPII binding peaks are extracted from Zhang et al. (2013) by limiting our analysis to mid-range contacts in the genomic distance
interval of (50 kb, 5Mb]. (B) NormalizedMann-Whitney U statistics for predicted locus pairs sorted by statistical significance, where ‘‘positive’’ pairs link an
active enhancer (red line) or a poised enhancer (black line) to a gene expressed at least at the level given on the x-axis. The P-value of the Mann-Whitney
test is shown for rejecting the null hypothesis that highly expressed genes (RPKM > 10) are not linked to active enhancers by Fit-Hi-C with Q-values lower
than chance. (C ) Average expression values and their standard errors for five nonoverlapping gene groups for the hESC cell line. The first three groups are
defined according to the presence of contacts at FDR 1% from gene promoters to either or both active and poised enhancers. The remaining genes (i.e.,
genes with no contacts at FDR 1% to any annotated enhancer) are further segregated into two groups depending onwhether their promoters have at least
one contact at FDR 10% to some loci (‘‘Non-enh’’) or no contacts to any loci even at FDR 10% (‘‘No contacts’’). The first two groups of genes with at least
one contact with an active enhancer show similar expression profiles regardless of the presence/absence of a contact with a poised enhancer (P-value of
0.92, two-sample Kolmogorov-Smirnov test). Genes that have a contact with an active enhancer show significantly higher expression compared to genes
in all three groups that lack such contacts (P-values of 4 3 10�10, 0.0014, and 1.5 3 10�45 for ‘‘Only poised enh,’’ ‘‘Non-enh,’’ and ‘‘No contacts,’’
respectively). (D) Contact profiles at FDR 0.1% for promoter regions of two genes (Gucy1b3 and Gucy1a3) that show differential expression between two
mouse cell lines (mESC andmCortex). Each connector represents a significant contact with thickness proportional to theminus log(P-value) of the contact.
The connector colors indicated in square boxes are determined jointly by the cell line (mESC or mCortex) and by the gene promoter of interest (magenta
oval forGucy1b3, blue oval forGucy1a3). No pink connectors are drawn from the promoter ofGucy1a3 due to the lack of significant contacts involving this
promoter in mESCs. Cortex-specific enhancer elements predicted by Shen et al. (2012) and midpoints of each of the 10 consecutive restriction fragments
are shown as two separate tracks. Contact confidences are assigned by Fit-Hi-C using ICE-corrected contact maps. A similar figure is also generated using
raw contact maps (Supplemental Fig. 6).

Fit-Hi-C: confidence estimation for Hi-C data
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0.2, 10�6 vs. 1.0, 10�7 vs. 1.0). This demonstrates that Fit-Hi-C can

precisely identify the cell line specificity of these interactions for

a reasonable FDR threshold choice of 1% or 5% even at the reso-

lution of large (;40 kb) metafragments. Repeating the same

analysis with raw contact maps results in Q-values that are at least

10 orders of magnitude smaller for mCortex compared to mESC,

although two out of four of these contacts are still significant for

mESC at an FDR of 1%. This difference between using raw and cor-

rected contact maps points out the importance of coupling Fit-Hi-C

with aHi-C correctionmethod to eliminate false positives due to loci

with an overall high number of contacts (Supplemental Fig. 5).

Figure 4D illustrates two of these high-confidence contacts,

involving two promoters on mouse chromosome 3. Both of the

genes transcribed from these promoters (Gucy1a3, Gucy1b3), as

well as a third gene that is 212 kb downstream from the Gucy1a3

promoter (Map9), exhibit cortex-specific expression (Shen et al.

2012). This cell line-specific expression is partially explained by 3C

validation of two contacts from an enhancer region (anchoring

point chr3:82,055,789–82,055,808) to Gucy1a3 and Gucy1b3 pro-

moters (marked by asterisks) (Shen et al. 2012). Our confidence

estimates confirm these two contacts and reveal additional cortex-

specific contacts that suggest formation of a complex loop bringing

the promoters of Gucy1b3 andMap9 in close proximity in mCortex

but not in mESC (see Supplemental Fig. 6 for comparison of sig-

nificant contacts when raw versus corrected contact maps are used).

This promoter-promoter contact occurs beyond the boundaries of

previously defined ‘‘enhancer-promoter units’’ (Shen et al. 2012).

Another example (Supplemental Figs. 7, 8) suggests that cell line-

specific expression of two inward rectifier potassium channel genes

may be related to contacts that aremediated by distal CTCF binding

sites beyond enhancer-promoter unit boundaries.

Insulators, heterochromatin, and binding peaks of pluripotency

factors are hubs for high-confidence contacts in human

embryonic stem cells

We observe that the number of high-confidence contacts in which

a particular locus participates varies from one locus to the other. To

characterize further the type of regions that participate in many

versus few high-confidence contacts, we compare Hi-C contact

maps to annotations from two semiautomated genome annota-

tion methods, ChromHMM (Ernst and Kellis 2012) and Segway

(Hoffman et al. 2013). These methods take as input a collection of

chromatin accessibility, histone modification, and selected tran-

scription factor (TF) binding assays and then use unsupervised

learning to simultaneously partition the genome into segments

and assign a semantic label to each segment. For human ESCs, we

ask howmany significant contacts at an FDR of 1% each annotated

segment is involved in. Then, we compute the average number of

significant contacts per locus among all occurrences of each an-

notation label genome-wide (Supplemental Fig. 9). Figure 5 plots

these numbers for similar labels from each segmentation method

and shows that regions of insulator binding and heterochromatin

are enriched in the number of high-confidence contacts. On the

other hand, regions annotated as transcription start sites, active

promoters, or strong enhancers engage in less than half the

number of high-confidence contacts compared to insulators, sug-

gesting they are potentially more selective in picking contact

partners that may impact gene regulation.

We carry out a similar analysis with TF binding data to ex-

amine the relationship between TF binding and the number of

significant Hi-C contacts at a given locus. We observe that for

human ESCs, the regions bound by NANOG and POU5F1 are hubs

for high-confidence contacts (Supplemental Fig. 10A), consistent

with these genes’ roles as master regulators in undifferentiated ESCs

regulating the maintenance of developmental potency (Niwa et al.

2000; Mitsui et al. 2003). Interestingly, the two other TFs with the

highest contact counts, BCL11A andMAFK, are both developmental

stage-specific regulators that either repress (Sankaran et al. 2008) or

activate (Hwang et al. 2013) genes that are implicated in major ma-

lignancies. Confirming the results from the above analysis with an-

notations from segmentationmethods, CTCF is among the TFs with

the highest number of contacts, whereas RNAPII (POL2RA) is among

the TFs with the lowest number of contacts. Similar analysis for

human fibroblast (hIMR90) cell lines, forwhichbinding information

for only five TFs is available, suggests no significant differences in the

number of high-confidence contacts for these TFs other than a slight

depletion for RNAPII (Supplemental Fig. 10B). To further understand

what types of CTCF binding sites are enriched in high-confidence

contacts in human ESCs, we divide these sites into two groups using

topological domain coordinates from Dixon et al. (2012): CTCFs

within a topological domain and boundary CTCFs. The within-

domain group contains ;91% of all CTCF binding sites and has

;16 high-confidence contacts per site on average, whereas the

boundary group has only;11. Thus, it appears that CTCF-bound

regions engage in a larger number of contacts, especiallywhen these

regions reside within domains which are shown to be enriched in

high contact counts (Dixon et al. 2012).

Figure 5. Insulators and heterochromatin regions participate in more high-confidence contacts than promoters and strong enhancers. Average
number of high-confidence (FDR 1%) contacts and their standard errors identified by Fit-Hi-C for each annotation term from two different semi-
automated genome annotation methods. Contact confidences are assigned at a resolution of 10 RE fragments for the Hi-C data from hESC cells (Dixon
et al. 2012), using ICE-corrected contact maps and one-step refinement of the null model (spline-2). In order to map genome annotations to the windows
used in the Fit-Hi-C analysis, each annotated region is assigned to the 10 RE fragmentwindowwithwhich it has themost overlap. (A) Six selected annotations
from 15-label genomic segmentation of hESC using ChromHMM (Ernst and Kellis 2012). (B) Five selected annotations from 25-label genomic segmentation
of hESC using Segway (Hoffman et al. 2012, 2013). See Supplemental Figure 9 for plots with complete lists of labels for both segmentation methods.
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High-confidence contacts reside in topological domains

We also tested whether our confidence estimates are consistent

with recent models that suggest chromatin is organized into

megabase-sized topological domains (Dixon et al. 2012; Nora et al.

2012). We first calculated the percentage of high-confidence mid-

range contacts that link intra-domain loci rather than inter-

domain loci using Hi-C data and domain calls for the mESC,

mCortex, hESC, and hIMR90 cell lines (Dixon et al. 2012). To ac-

count for the enrichment that is due to genomic distance rather

than three-dimensional distance, we designed a null model that

preserves the scaling of contact probability with genomic distance

(Methods). Figure 6A, plotting the ratio R of intra- to inter-domain

contacts as a function of FDR threshold, shows that the more sig-

nificant a contact is, the more it tends to lie within domain

boundaries for all four cell lines and that a great proportion of this

enrichment is due to nonrandom chromatin organization. The

ratio R is as high as four to seven times larger for real libraries

compared to the nullmodel at very stringent FDR thresholds and is

at least three times larger for all FDR up to 1%.

More strikingly, despite having ;403 fewer mid-range reads

per cell line compared to the Dixon et al. (2012) data sets, we ob-

serve an enrichment in intra-domain contacts for previously

published Hi-C data sets (Lieberman-Aiden et al. 2009) using the

domain calls fromDixon et al. Figure 6B plots the contact ratio R at

an FDR of 0.1% from three Hi-C data sets on two human cell lines

(GM06990, a normal lymphoblastoid cell line, and K562, an

erythroleukemia cell line with an aberrant karyotype) using do-

main coordinates from hESC and hIMR90 cell lines. These results

suggest a considerable degree of conservation of domain structure

across different cell lines, consistent with the findings of Dixon

et al. and argue that our confidence estimates help reveal this

conservation even with limited-coverage Hi-C data.

Synchronously replicating regions are linked

by high-confidence chromatin contacts

We also investigate the link between chromatin architecture and

another genomic feature that has been shown to exhibit domain

structure, namely, replication timing. Previously, Ryba et al. (2010)

observed a striking correlation between replication domains and

chromatin compartments, suggesting the nonrandom colocaliza-

tion of synchronously replicating loci at a large scale. Here we

analyze this correlation at a finer scale by leveraging both data

types at their intrinsic resolution without depending on com-

partment or domain calls. Specifically, we test whether pairs of loci

with high-confidence contacts tend to exhibit more similar repli-

cation timing compared to pairs without high-confidence con-

tacts. We also compare the resulting timing differences to those

from differences generated by a null model that circularly shuffles

replication timingmeasurements while preserving the positions of

significant contacts to measure the extent to which the observed

replication timing similarities are due to autocorrelation of the

replication timing measurements along the genome (Methods).

For both hESC (Fig. 6C; Supplemental Fig. 11A) and mESC (Sup-

plemental Fig. 11B,C) and across a range of genomic distances, in-

contact locus pairs exhibitmore similar replication times than null

pairs or pairs that are not in contact. Beyond a certain genomic

distance, this high level of similarity cannot be attributed simply to

the autocorrelation of timing measurements which is preserved

both in our null model and for pairs that are not in contact. In-

terestingly, the genomic distance at which the replication timing

similarity deviates from random expectation is around 750 kb for

human ESCs and around 1Mb formouse ESCs, consistent with the

larger replication domains in mouse ESCs (Hiratani et al. 2008;

Ryba et al. 2011). Overall, our results suggest that local chromatin

architecture preferentially brings together loci with similar repli-

cation timing, even at a scale that is much finer than chromatin

compartments which span multiple megabases (Ryba et al. 2010).

Discussion

Our results suggest that systematic and unbiased assignment of

confidence estimates to Hi-C contact maps can reveal links be-

tween genomic regions containing predicted or validated en-

hancers and promoters. For a set of enhancer predictions based

solely on histone modification and protein binding patterns in

human embryonic stem cells, our confidence estimates preferen-

tially link active enhancer regions to promoters of highly expressed

Figure 6. Locus pairs with high-confidence contacts lie within the same topological domain and have similar replication times. (A) Ratio of the number
of significant contacts within topological domain boundaries (intra-domain) to the number of contacts across domain boundaries (inter-domain) at
varying FDR thresholds for four different cell lines from Dixon et al. (2012). The black line represents the average of this ratio for the shuffled domains (null
model) over all four cell lines. (B) Ratio defined in A for Hi-C data from Lieberman-Aiden et al. (2009) for which no topological domains were defined.
We use domain annotations for two human cell lines from Dixon et al. (2012) to compute this ratio for three libraries of Lieberman-Aiden et al. (2009) on
two different cell lines at FDR 0.1%. Each legend labeled with a star represents the ratio for the null model (shuffled domains) corresponding to that library.
(C ) Mean and standard errors of the absolute difference between replication timing values for pairs of loci (rti, rtj) that have a contact at FDR 1% for hESC
(Hiratani et al. 2008). We plot the means and standard errors for the distributions of replication timing differences for each 250-kb genomic distance bin
up to 5 Mb, for the significant contacts using observed and randomized replication timing (RT) measurements as well as for nonsignificant contacts
(FDR >1%) using observed measurements.
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genes. This enrichment is consistent with many examples where

strong chromatin contact between an enhancer and a promoter is

a determinant of gene expression (Tolhuis et al. 2002; Shen et al.

2012). Our results further suggest that not only contacts with el-

ements from the repertoire of predicted enhancers but also with so

far unannotated regions have an effect on transcriptional activity

of a gene. Finally, more than half of the genes with promoters that

are not involved in even a moderate-confidence contact beyond

the 50-kb range showed no detectable expression (RPKM < 1),

consistent with the idea that these genes might be isolated and

silenced by formation of a chromatin loop regulated by insulator

elements such as shown by Ferraiuolo et al. (2010) forHox clusters.

In addition, our results suggest an additional level of colo-

calization among loci that replicate at similar times (Ryba et al.

2010). We observe that replication timing similarity is much

higher for locus pairs with high-confidence contacts that are <500

kb apart compared to >500 kb. The similarity in the former group

can be completely captured by an appropriate null model, whereas

for the latter group, the similarity is significantly higher than can

be explained by the same null model, suggesting 3D colocalization

of distal loci that replicate at similar times. Furthermore, our

analysis suggests that the genomic distance range of replication

timing similarity that can be explained by autocorrelation is larger

for mouse ESCs, whichmay be related to the larger domain sizes in

mouse compared to human ESCs. Currently, we use human and

mouse embryonic stem cells for which both high coverage Hi-C

data and high resolution replication profiles are available. Repli-

cation data is also available for different stages of embryonic de-

velopment as well as for neural precursor cells in mouse (Hiratani

et al. 2008, 2010). Comparative analysis of these data sets revealed

‘‘switching domains’’ that change replication timing preferences

from one cell type to the other. Our method provides a useful tool

to analyze how such changes in local chromatin organization re-

late to replication timing changes in the course of development or

cellular differentiation.

Our technique for assigning statistical confidence estimates

to mid-range contacts can be trivially extended to handle all

contacts rather than focusing on a specific distance range. Because

distal intra-chromosomal and inter-chromosomal contacts do not

exhibit a distance-dependent effect, the significance of these in-

teractions can be captured using just the binomial component of

the Fit-Hi-C model. Also, in this work we performed confidence

estimation by applying a single step of refinement to the null

model; however, in principle, our method can be extended to ap-

ply this refinement iteratively (Supplemental Fig. 12).

Our method is designed to work either at the native resolu-

tion of the data (i.e., single restriction fragment) or at the level of

metafragments or fixed-width windows. Not surprisingly, larger

metafragments provide increased statistical power and result in

a larger percentage of mid-range contacts deemed significant at

a given FDR threshold (Supplemental Fig. 13A). The total number

of significant contacts, however, first increases with the meta-

fragment size and then decreases (Supplemental Fig. 13B). This

tradeoff between metafragment size and number of significant

contacts may help to select an appropriate resolution for a partic-

ular analysis, given the amount of sequencing data available, or

may help decide how much sequencing is necessary to test a par-

ticular hypothesis.

A natural direction to pursue is replacement of the non-

parametric spline fitting procedure used by Fit-Hi-C with a para-

metric model derived from biophysical models of DNA looping.

Doing this, however, may be challenging because the probability

of self-looping depends not only on the local properties of theDNA

but also on factors such as the length of the chromosome, the size

of the nucleus, and the density of the DNA therein. In practice, our

analysis suggests that a simple power law model only applies

within a limited distance range and that the appropriate exponent

varies by organism and possibly even by cell type (Fig. 2).

We argue that, irrespective of the statistical methodology, the

application of statistical confidence estimation to Hi-C data will be

critical for assessing candidate hypotheses and selecting particular

hypotheses for targeted validation. Even in the context of a study

that aims to characterize the frequency or strength of a contact,

a statistical confidence estimate must first establish the existence

of the contact. We also argue that using a confidence estimation

method that accounts for the random polymer looping effect is

crucial in order to characterize association of chromatin contacts

with other genomic features that relate pairs of loci, such as the two

ends of a somatic copy number alteration (SCNA). Two in-

dependent studies have shown enrichment of chromatin contacts

between SCNA ends (De andMichor 2011; Fudenberg et al. 2011).

These studies explicitly control for SCNA length and other po-

tential biases. An alternative method to assess whether two SCNA

ends significantly colocalize in 3D is to simply use the Fit-Hi-C

confidence estimate, which already accounts for SCNA length and

other potential biases. Furthermore, statistical methods such as

ours provide a systematic way to compare chromatin architecture

sets to one another, facilitating, for example, analysis of changes in

chromatin organization during development or between healthy

and cancer cells. Finally, another direction in which such a sys-

tematic method will prove useful is in generating high-confidence

contact networks and analyzing the graph or colocalization

properties of these networks (Witten and Noble 2012; Paulsen

et al. 2013).

Methods

Data sets

Hi-C data

We use publicly available genome-wide genome architecture data

sets from budding yeast (Duan et al. 2010), four human cell lines

(Lieberman-Aiden et al. 2009; Dixon et al. 2012), and two mouse

cell lines (Dixon et al. 2012).We process raw paired-end reads from
each publication using a pipeline that maps the reads to the ap-

propriate reference genome, extracts the read pairs for which each

end maps uniquely, and removes potential PCR duplicates. We

then count the number of qualified read pairs for each possible
restriction enzyme fragment pair, considering only pairs separated

by a genomic distancewithin a range of interest. In order to process

the contact maps at different resolutions, we combine multiple
consecutive fragments to obtainmetafragments.We then calculate

the number of contacts per metafragment pair as the sum of con-

tacts between each fragment pair among the two metafragments.

Supplemental Table 1 summarizes the genomic distance ranges on
which we focus, as well as the different resolutions at which we

process each data set.

RNAPII-mediated chromatin interactions for mouse ESC

cell line from ChIA-PET

We download the Supplemental Table 2 of Zhang et al. (2013) that

lists all RNAPII interactions for mouse ESCs identified in the same
work at a false discovery threshold of 5% (16,574 interactions in

total). We then extract the subset of interactions that are intra-
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chromosomal and have a genomic distance between 50 kb and
5 Mb (2494 interactions). We use the list of enhancers in Supple-

mental Table 5 and list of promoters in Supplemental Table 6 to

identify the interactions that link an enhancer to a promoter (1007

interactions). We then use the extracted set of all ChIA-PET in-
teractions and the subset with only enhancer-promoter inter-

actions in our analysis as positive sets of high-confidence contacts

in mouse ESCs.

Enhancer predictions and gene expression for H1-hESC cell line

We use the enhancer predictions for human embryonic stem cells

(hESC) identified using the presence of chromatin regulators,

histone modifications, and nucleosome density (Rada-Iglesias
et al. 2011). Predicted enhancers were segregated into two classes:

Class I consists of 5118 regions annotated as active enhancers that

have acetylation at histone H3 at lysine 27 (H3K27ac); Class II
consists of 2287 regions annotated as poised enhancers that have

trimethylation at histoneH3 at lysine 27 (H3K27me3).We also use

RNA-seq gene expression data from Rada-Iglesias et al. (2011) for

all human Ensembl genes.We extract the RPKM (reads per kilobase
per million mapped reads) value for each gene and assign it to the

transcription start site (TSS) of the corresponding gene for further

analysis. We use various RPKM thresholds to identify expressed

genes among 20,688 genes with reported expression values for
hESC.

Cell-line-specific 3C validated enhancer-promoter contacts

We extract enhancer-promoter pairs that are tested for chromatin
contacts in two different mouse cell lines using 3C from Supple-

mental Table 8 of Shen et al. (2012). Out of seven pairs listed, we

extract six that are within our distance range of interest (50 kb,

5 Mb]. Out of these six, two are confirmed to not have contacts in
either mESC or mCortex cells. The remaining four are all shown to

yield 3C contacts in mCortex but not in mESC. For each of the six

pairs, we assign each participating locus to the window used in
confidence estimation with which it has the most overlap at

a resolution of 10 RE fragments.We then report theQ-value for the

contact between the pair of assigned windows as the contact sig-

nificance for the enhancer-promoter pair that is tested by 3C.

Genome annotations for the H1-hESC cell line from ChromHMM and Segway

We download the annotation labels that cover the whole human

genome from two different semiautomated genomic annota-

tion methods for the H1-ESC cell line. We use the link http://
hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeBroadHmm/wgEncodeBroadHmmH1hescHMM.bed.gz

to download the 15-label ChromHMM annotations and the link
http://noble.gs.washington.edu/proj/segway/2012/segway_h1hesc.

bed.gz to download the 25-label Segway annotations.

For Figure 5A, we extract six labels from the full 15-label an-

notations and rename them to combine multiple labels with
similar functional annotations when appropriate. Three of the six

groups we show in Figure 5A correspond to one exact label in

Supplemental Figure 9A, namely ‘‘Active Promoter,’’ ‘‘Insulator,’’

and ‘‘Heterochromatin.’’ For the other three groups, there are two
corresponding labels each in Supplemental Figure 9A, and we take

the average of the number of contacts for these two corresponding

labels. We similarly combine multiple labels when necessary for
each group displayed in Figure 5B among the 25 labels plotted in

Supplemental Figure 9B.

Transcription factor binding peaks for human cell lines

We use the ENCODE Analysis Hub in the UCSC Genome Browser
in order to gather regions of transcription factor (TF) binding peaks

for the two human cell lines with Hi-C data from Dixon et al.
(2012). From the link http://hgdownload-test.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered, we use

the file named ‘‘wgEncodeRegTfbsClusteredWithCellsV3.bed.gz’’

that lists TF binding site clusters identified by combining data
from 91 cell types and 189 transcription-factor targeting anti-

bodies. From this full list, we extract the peaks for H1-ESC and

IMR90 cells which have 50 and 5 TFs, and 579,539 and 207,461
total peaks, respectively.

Topological domain coordinates

Weuse the coordinates of topological domains that were identified

using a hiddenMarkovmodel based on the observed directionality

bias of the contacts for each 40-kb window (Dixon et al. 2012). We
use the domain calls that are based on contact maps aggregated

among replicate experiments which we download from http://

chromosome.sdsc.edu/mouse/hi-c/download.html. The number
of domains for four available cell lines are 3127 for hESC, 2349 for

hIMR90, 2200 for mESC, and 1519 for mCortex.

Replication timing data

Wedownload the replication timing data sets for hESC (cell lineH1

[Ryba et al. 2011]) and mESC (cell line 46C [Hiratani et al. 2008])
from http://replicationdomain.com. The probes for measuring

replication timing have a median interval spacing of 1169 bp for

hESC and 5782 bp for mESC. For each probe, the replication tim-

ing value is reported as the log ratio of the early replicating
fraction of DNA to the late replicating fraction (i.e., log2[Early/

Late]). These data sets provided a total of 2,161,679 and 384,849

probes with replication timingmeasurements for hESC andmESC,
respectively.

The discrete binning approach

Because the method proposed by Duan et al. (2010) serves as the

starting point for ourmethod, we begin by describing thatmethod

in detail. To calculate statistical confidence estimates for inter-

chromosomal contacts, Duan et al. (2010) used a uniform proba-
bility model to evaluate the probability of observing a contact

count of k‘1 ;‘2 for loci ‘1 and ‘2. The calculation requires, in addition

to the contact count, two values:

• the number M of distinct inter-chromosomal locus pairs, and

• the total number N of observed contact counts between inter-

chromosomal locus pairs.

Assuming that a single observed contact (i.e., paired-end read)

is equally likely to come fromany of theM possible pairs of loci, the

null probability of this contact being between a specific locus pair

is P = 1/M. Duan et al. (2010) use this assumption to calculate the
probability that a given pair (‘1, ‘2) has a contact count of exactly k

via the binomial distribution:

Pr K ¼ kð Þ ¼
N
k

� �

pk 1� pð ÞN�k
: ð1Þ

The P-value is the corresponding cumulative probability of

observing at least k contacts:

p K $ kð Þ ¼ +
N

i¼k

Pr K ¼ ið Þ: ð2Þ

Switching to the case of intra-chromosomal contacts requires
taking into account the increased probability, due to random self-

looping of the DNA, of observing an intra-chromosomal contact

Fit-Hi-C: confidence estimation for Hi-C data
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between a pair of loci separated by a small distance compared to
a pair of loci separated by a larger distance. To account for this

distance effect, Duan et al. (2010) subdivide the contacts into

discrete bins of size 5 kb based on the genomic distance between

the two loci. Because randomcontacts among very close locus pairs
are common, the first four such bins (0- to 20-kb range) are simply

discarded. After this binning, binomial P-values are calculated

separately within each bin. Thus, for bin i, corresponding to a ge-
nomic distance range of [si, eiæ, the two values needed for the

P-value calculation are now:

• the numberMi of distinct pairs of loci with genomic distances in
the range [si, eiæ, and

• the total number Ni of observed contact counts with genomic

distances in the range [si, eiæ.

These values are then substituted into Equations 1 and 2 to
compute the P-value. Note that the P-values from different bins, as

well as the P-values corresponding to inter-chromosomal contacts,

are calibrated and therefore can be used to induce a single ranking
of the entire set of observed contacts.

Finally, the combined collection of P-valuesmust be corrected

for multiple testing. This is done by estimating, for a given P-value

threshold, the proportion of false positive interactions with
P-values below (i.e., better than) the threshold. This proportion is

known as the false discovery rate (FDR), which can be estimated

using standard methods (Benjamini and Hochberg 1995). In

practice, the statistical confidence associated with a given contact
is reported as a Q-value, which is defined as the minimum FDR

threshold at which the interaction is deemed significant (Storey

2002). The Q-value is thus an analog of the P-value that takes into
account multiple testing correction.

Initial spline fit

In this work, wemodify the binned binomial method in two ways.

First, we replace the binning procedure with a spline-fitting pro-

cedure that yields a more precise estimate of the probability of

observing a contact (i.e., contact probability) with a specified ge-
nomic distance (spline-1). Specifically, we aim to replace in Equa-

tion 1 the contact probability p that a randomly sampled contact is

between a specific locus pair (‘1, ‘2) with a function f (1)(d), where
d ¼ d‘1 ;‘2 is the genomic distance separating the two loci. We

compute this function using a spline fit to the observed contact

probabilities of locus pairs given their genomic distances. To

achieve a smooth spline fit, we first segregate the locus pairs into
b equal-occupancy bins (b = 200 in this work). This procedure in-

volves enumerating all possible locus pairs within the distance

range of interest (including pairs that have a contact count of zero),

sorting the pairs in increasing order according to their genomic
distances, and then segregating the resulting list into b quantiles.

The smallest distances in bin i and bin i + 1 define the lower and

upper genomic distance boundaries, si and ei, respectively, for bin i.
Then, for each bin i, we compute three values: (1) the average

number ĥi of contact counts per locus pair; (2) the prior contact

probability that a given mid-range read comes from one specific

locus pair in this bin ĥi
N, where N is the total number of mid-range

reads; and (3) the average interaction distance d̂i over all locus pairs

in the bin, including pairs that have a contact count of zero. We

then fit a univariate spline to the resulting b points ((d̂1,
ĥ1
N ), . . ., (d̂b,

ĥb

N )) using the ‘‘UnivariateSpline’’ function from the SciPy package
in Python.We set the smoothing factor, the only parameter that is

needed, for the spline fit to the square of the minimum contact

probability among all b bins, for each library. This parameter
choice guarantees that the spline will never take negative values

and also provides visually smooth splines (Supplemental Fig. 2).

We ensure that the estimated contact probabilities from the spline
are monotonically nonincreasing with the increasing genomic

distance by post-processing the spline using anti-tonic regression

(reverse order isotonic regression). We then use the value from the

resulting spline at distance d, f (1)(d), to provide a better estimate of
p in Equation 1 for a locus pair separated by distance d. Using this

contact probability, the contact count k‘1 ;‘2 , and N as the total

number of all mid-range reads, we compute a P-value and then
a Q-value for each locus pair (‘1, ‘2), as was done for the case of

discrete binning.

Refining the null model

Our second modification of the binning method involves pro-

ducing a more accurate estimate of the null distribution by ex-

cluding contacts that are likely to be real, i.e., interactions not due
to random looping of the chromatin fiber. Accordingly, we adopt

a two-phase spline fitting procedure. In the first phase, we use all of

the observations from the data to fit the initial spline, f (1)(d), as

described above. Thereafter, we exclude (i.e., set the contact count
to zero) all locus pairs whose P-values are <1/M (i.e., outliers),

where M is the total number of possible locus pairs (Fig. 1; Sup-

plemental Fig. 2A). This P-value threshold is conservative (i.e.,

calculated from the nonrefined null) and ensures that even if the
original null model were correct, the procedure would erroneously

exclude only ;1 null locus pair (i.e., non-outlier) on average. We

then repeat the entire equal-occupancy binning and spline fitting
procedure on this reduced set of contacts (spline-2). This resulting

spline f (2)(d) defines our actual estimate of the null distribution

(i.e., refined null), and is used to compute P-values andQ-values for

all locus pairs including the outliers that were excluded from the
calculation of the refined null.

Incorporating biases learned from Hi-C data

in confidence estimation

Methods that correct for biases in Hi-C data produce a corrected
contact countmatrix from the raw contact counts (Yaffe and Tanay

2011; Cournac et al. 2012; Hu et al. 2012; Imakaev et al. 2012). The

method of Yaffe and Tanay (2011) computes a correction factor for
each locus and locus pair that incorporates information about

mappability, GC content, number of RE sites, etc. On the other

hand, the method by Imakaev et al. (2012) (ICE) learns a bias

vector, one correction factor per locus. The outer product of this
bias vector with itself yields a bias matrix that is of the same size as

the input contact map. Despite the differences in methodologies,

Imakaev et al. (2012) demonstrate that the two methods produce

almost equivalent results.
Our confidence estimation procedure incorporates biases

learned by ICE into the contact probability calculation. This ap-

proach eliminates the need to use corrected contact counts, which
are fractional, in the binomial model. To compute confidence es-

timates, we first infer a spline fit from the raw contact counts. In

parallel, we apply ICE to the raw contact counts and learn biases

associated with each locus. We then eliminate all loci whose total
number of contacts is less than half (bias < 0.5) or more than twice

(bias > 2) the average number of total contacts per locus. Then,

when calculating the prior probability of contact for a locus pair

(‘1, ‘2) with distance d, we not only do a look-up for that contact
probability from the spline (praw = f (d)) but also multiply praw
by the corresponding bias values (b1, b2) for (‘1, ‘2), yielding

pcorrected = f (d) 3 (b1 3 b2). This process results in higher prior
contact probabilities for loci with overall high counts and, in

turn, less significant confidence estimates for contacts involving
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such loci relative to contacts that involve loci with low marginal
contact counts.

Quantifying binning artifacts

To quantify the effect of the binning artifacts in the calculation of
confidence estimates for a given method, we (1) extract the set of

all locus pairs within the distance range we are interested in (mid-

range contacts), (2) identify all mid-range contacts at 1% FDR
threshold, (3) for each contact, divide the corresponding genomic

distance by 5 kb (50 kb for human and mouse) and call the re-

mainder the ‘‘offset from the left edge of bin,’’ and (4) compute the

histogram of contacts as a function of offset by dividing the 5-kb
bin into 10 equally sized windows. For a set of locus pairs with no

bias, we expect to see 10% of pairs to fall in each of the 10 equally

sizedwindows, as we observe for the set of allmid-range locus pairs

(black) in Figure 3B. If a set of contacts identified by a particular
method has a distribution of offsets over the 10 equally sized

windows that is significantly different than the distribution for all

possible locus pairs (or we could use a uniform distribution of 10%

for eachwindow), then the confidence estimates from thismethod
are biased. To measure this bias, we compare distributions for the

set of contacts identified by binning, by spline-1 and by only one

of these methods (i.e., unique to one method) to the distribution
for the set of all mid-range locus pairs. To quantify the significance

of difference between the distributions gathered from a set with no

bias and a contact set identified by a specific method (either bin-

ning or spline-1), we divide the contacts into two groups (<2.5 kb
left side, $2.5 kb right side) for each set and apply Fisher’s exact

test. We repeat the same procedure for contacts that are uniquely

found by only one method (either binning or spline-1).

Analyzing enhancer-promoter contacts

The labeling scheme used for generating Figure 4B is as follows.We

begin with a set of enhancers, divided into ‘‘active’’ (5118) and

‘‘poised’’ (2287). We also use a range of RNA-seq RPKM thresholds

to divide a set of 20,689 genes into a series of sets of ‘‘expressed’’
and ‘‘not expressed’’ genes (Rada-Iglesias et al. 2011). In this study,

we use RPKM thresholds in the range [0, ..., 10].We then define our

set of ‘‘positive’’ locus pairs as interactions that connect an active

enhancer to an expressed gene, andwe define our set of ‘‘negative’’
locus pairs as interactions in which at least one of the two loci has

no overlap with either an enhancer (‘‘active’’ or ‘‘poised’’) or a gene

(‘‘expressed’’ or ‘‘not expressed’’). All locus pairs that do not meet
either of these two sets of criteria are unlabeled and do not enter

into the further analysis. The motivation behind this labeling is to

avoid placing pairs of loci that might correspond to contacts in-

volving uncharacterized regulatory elements into the negative
group. Also, note that this labeling assumes that most of the re-

gions identified as enhancers by Rada-Iglesias et al. (2011) function

as activating rather than repressive enhancers. We rank all the la-

beled locus pairs from the hESC Hi-C data with genomic distances
in the range 50–150 kb by increasing P-value. We then test, using

the Mann-Whitney U-test, the null hypothesis that the two pop-

ulations (positive vs. negative) are the same against the alternative
hypothesis that the positive class has smaller P-values than the

negative class. We normalize the U statistic by dividing it to the

maximum value attainable for the given sample sizes n1 and n2,

which is n1 3 n2. We compute the normalized U statistic for dif-
ferent parameter settings, such as active or poised enhancers and

varying RPKM thresholds.

For Figure 4C, we calculate the average expression values and

associated standard errors for genes that are segregated into five
nonoverlapping groups. The first group contains only the genes

that have a significant contact at an FDR of 1%with both an active
and a poised enhancer. The second and third groups contain genes

with a significant contact at an FDR of 1% for either only active or

only poised enhancers. To account for possible uncharacterized

enhancers or other regulatory elements that may be missed by the
current annotation, we further divide the remaining genes into

two groups ‘‘Non-enh’’ and ‘‘No contacts.’’ The group labeled as

‘‘No contacts’’ contains the genes that do not have any significant
contact at an FDR of 10% between its promoter and any other loci

(annotated or nonannotated). All the remaining genes fall into

‘‘Non-enh,’’ which are the genes that do not have high-confidence

contacts with enhancer elements but have some contact at an
FDR of 10% with some distal locus (>50 kb). We compute the

statistical significance of the difference between distributions

of expression values for pairs of groups using a two-sample

Kolmogorov–Smirnov (KS) test.

Computing the enrichment of intra-domain interactions

For Hi-C data sets taken from Dixon et al. (2012), we use the to-

pological domain coordinates from the same publication that are

reported separately for each cell line (hESC, hIMR90 from human;

mESC,mCortex frommouse).We compute the ratio R between the
number of contacts that have both ends within one topological

domain (intra-domain) to the number of contacts that occur across

two different domains (inter-domain) at varying FDR thresholds
using metafragments that span 10 consecutive restriction frag-

ments. At an FDR of 1 (i.e., 100%), this ratio simply represents the

ratio when contact maps are used without any confidence as-

signment. To estimate the significance of the ratio R, we randomly
shuffle topological domains by preserving the distribution of the

domain lengths for each chromosome. We achieve this as follows.

Let ai ¼ ai1; a
i
2; ::; a

i
n

� �

be the set of all topological domain lengths

and bi ¼ bi1; b
i
2; ::; b

i
m

� �

be the set of all lengths for the boundary
regions that separate the domains for chromosome i. Excluding

unmappable chromosome ends, if there are n domains for a chro-

mosome, then there will bem = n � 1 boundaries. While shuffling

domains to construct our null model, for each chromosome we
first randomly select one domain length aij from ai and create our

first randomdomain that starts from the firstmappable region and

extends by length aij. We then select a length bik from the boundary
set bi and create a randomboundary starting from the last base pair

of the first random domain and extending by length bik. We repeat

this process to decorate the whole chromosome by random do-

mains followed by random boundary regions. We do this ran-
domization for each chromosome and repeat the process 100 times

to create a null model for each set of topological domain calls and

compute the average and standard deviation of R over all ran-

domizations. For Figure 6A, we combine null models of all four
different cell lines from Dixon et al. (2012) to create one aggregate

null model.

Previously published data sets from a human lymphoblastoid
cell line (GM06990; two replicates with different restriction en-

zymes) and an erythroleukemia cell line (K562; one replicate)

provide limited sequencing depth Hi-C data without topological

domain coordinates (Lieberman-Aiden et al. 2009). For these cell
lines, we use the domains identified for hESC and hIMR90 cell

lines by Dixon et al. (2012) to compute R and use the random

shuffling described above to create a corresponding null model.

We process the three libraries from Lieberman-Aiden et al. (2009)
using 50 consecutive restriction fragments per metafragment,

which is a coarser resolution compared to 10 that were used for the

Dixon et al. (2012) data. We plot the ratio R for each topological
domain/Hi-C data combination and their corresponding null

models at FDR 0.1%.
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Characterizing the relationship between assigned contact

significance and replication timing

We use replication timing data for human (Ryba et al. 2011) and
mouse embryonic stem cells (Hiratani et al. 2008) together with

the Hi-C data for these cell lines (Dixon et al. 2012) to investigate

the relationship between chromatin organization and replication.
We process the Hi-C data at the resolution of metafragments, each

of which spans 10 consecutive restriction fragments. For each lo-

cus, we assign a replication timing value using the probe nearest to

the locus midpoint. We compute the difference between replica-
tion times of two loci by taking the absolute value of the difference

between their replication timing values. We compute the distri-

bution of replication timing differences for mid-range contacts at

a fixed FDR, binned by 250-kb bins according to their genomic
distances (x-axis). We also compute these distributions by aggre-

gating all genomic distance bins and using varying FDR thresholds

(x-axis) to determine sets of significant and nonsignificant con-
tacts. We do this analysis for both observed replication timing

measurements (observed RT) and a set of randomly shuffled

measurements (random RT). To create the random set, we imple-

ment a circular shuffling technique that preserves the adjacency of
similar replication measurements coming from adjacent probes as

follows. Let t i be the set of all probes with replication timing

measurements for chromosome i, |t i| be its cardinality, and p be

the percentage by which the replication values will be shifted cir-
cularly while preserving the exact probe coordinates. Then, a shift

of p percent will move the replication value of the jth probe, t ij , to

the j + (p/100) 3 |t i| (mod |t i|)th probe. Shifts of 0% and 100% will

simply preserve the original measurements. Using this scheme, we
create nine shuffled replication profiles (10%, . . ., 90% shift) for

each experiment.

Source code availability

We provide our Fit-Hi-C implementation in Python in the online

Supplemental Material and on the companion web site of this

article (http://noble.gs.washington.edu/proj/fit-hi-c). This pro-

gram takes as input a list of locus pairs and associated counts and
produces as output the same list annotated with P-values and

Q-values. Optionally, the program can operate on corrected con-

tact maps, using as input a bias vector generated using a method
such as ICE (Imakaev et al. 2012).
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