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Statistical Considerations in Network Design

by

Paul Switzer

Abstract.  Following some general remarks on the importance and
unimportance of optimization in spatial network design we take up, inmodest detail, how one might exploit spatial autocorrelations andcovariate information.  We point out that spatial autocorrelations,themselves, require care in their estimation and then proceed with twoillustrations to show how probabilistic error calculations are made for
mapping problems using network station data.  One illustration uses aquantitative mapping variable and the other uses a qualitative mappingvariable.

Remarks

There must be many different hydrological network design problems
about which statisticians might have something to say. I will confinemy remarks to problems in which the spatial or geographic aspects arethe main feature.  Such problems typically involve a set of fixed sta-
tions, called monitoring stations, which record one or more measurementsmore or less continuously over time.

Consider the problem of estimation of a space average for a fixed time
period, e.g., number of acre-feet of water falling as precipitation ona given drainage basin during a given day or a given year. We assumethat the data collection system consists of fixed-site monitoring sta-
tions measuring precipitation.  As well, we may have covariate databeing collected at the monitoring network such as air temperature and
also covariate data not related to the monitoring network such as atopographic map, barometric pressure maps, etc.  A feature of this prob-
lem which distinguishes it from some others we will consider is the
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fact that we are estimating a spatial aggregate--as opposed to problems
in which we attempt to interpolate or contour the precipitation field.

The network design considerations for such problems depend on whether
a network is being desi ned de nouveau or whether it is an existing
network which will be expanded or contracted. Tlze number of monitoring
stations needed to meet whatever statistical estimation criteria will
depend mainly on factors intrinsic to the variability of precipitation
in the given basin and much less on the statistician's cunning in using
the data. Of course, if relevant covariate data, such as topography,
is ignored by the statistician, then the presumed required network
density may be appreciably overstated.

A statistical estimation criterion such as expected root-mean-squared-
error (rmse) is a calculation derived from a probability model.  Statis-
ticians who do such calculations believe that if true root-mean-squared-
errors could be measured then they would on average be equal to their
calculated values. Since space averages for rainfall can never be
measured the justification of the statistician's faith in probability-
based calculations may be drawn from use of the same probability models
for spatial interpolation where actual mean-squared-errors could be
compared with calculations.

The reasonable assessment of the magnitude of errors of estimation
is the statistician's main job.  The probability methods he uses serve
in lieu of actual measurement of errors where these are never available
or are available only at a later time.  Probability-error calculations
can be grossly inaccurate if the probability model is poorly chosen;
for example, this may happen if spatial autocorrelation of data is
ignored.

A statistical criterion such as expected rmse may be used to compare
different methods of estimating a spatial average from the same avail-
able data and even perhaps to suggest an "optimum" estimation method.
For example, if we use only the monitoring station data for the time
period of interest, how good is an area-weighted estimate versus some
other data-weighting scheme?  In the context of any probability model,
the area-weighted rmse is always suboptimal; however, its rmse is
almost always within an epsilon of the optimum.  In any event, finding
the optimum weighting is a highly model-dependent procedure and it is
usually a wasteful exercise.  The important exercise is the calculation
of the rmse, for whatever data-weighting scheme one has, as I have
previsouly emphasized.

The rmse criterion might also be used to resolve certain network
design questions, for example finding the bptimum configuration of a
given number  n  of monitoring stations. In typical situations the
rmse is insensitive to the configuration, provided one avoids cluster-
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ing of stations and is somewhat careful to allocate more stations to

that part of the basin whose rainfall is thought to be less predict-

able.  To try to optimize the configuration is another one of those

wasteful exercises because of the insensitivity of the rmse, the mathe-

matical difficulty of the problem, and the strong model dependence.

Another design problem is the choice of the number n  of monitoring
stations needed to meet an rmse·requirement for the estimation of a

spatial average.  The required  n  will depend on the availability and

usefulness of covariate data as well as on the size, variability, and

autocorrelation properties of the precipitation field itself.  So this

design problem cannot be solved without first having data--a common
statistical conundrum.  The usual resolution is to implement a network

in stages.  The first-stage network is used to estimate the gross sta-
tistical properties needed to determine how many, if any, additional

stations are needed to meet the rmse requirement.  If a second-stage

network is implemented, the additional data provided can be used for
more refined statistical model building.

The deletion of a station from a network is a simpler design problem

inasmuch as the configuration is already fixed and we need only calcu-
late which deleted station will result in the smallest increase in rmse.
The addition of a station to a network is not generally proposed in

order to reduce the rmse of an estimated spatial average; rather, it is

proposed in order to have specific information about a particular site

and the siting problem is therefore not completely statistical.

Of course, estimation of spatial averages is not likely to be the only

task of the data network. In particular one may wish to estimate other

functionals  o f the spatial frequency function   (over a given   time
interval) such as its median or its quartiles:  one-half of the basin

area has a rainfall exceeding the spatial median, and quartiles are

defined similarly.  For an evenly-spaced monitoring network, the usual

sample median and quartiles of the station data are reasonable esti-
mates. However, assessing the magnitude of possible estimation errors

does require some sophistication because of autocorrelation introduced

through spatial continuity.

We now turn to the problem of interpolating a map of the spatial pre-

cipitation field using the station data.  At each location the map will

be in error and the magnitude of this error will, on average, be larger

at locations far from a station and at locations of lesser spatial con-
tinuity.  As an overall statistical criterion of error, we may take the

root-mean-squared interpolation error averaged over the basin
(rmseA)

or else the maximum rmse over the.basin (rmseM)' for example.  The
statistician's usual approach to the estimation of these error criteria

for any given or putative network will again involve modelling a spatial
autocovariance function.
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The number of stati6ns needed to satisfy the error criterion should

depend slightly, if at all, on their geometric configuration provided

reasonable good sense prevails.  That is, one puts more stations in

areas of higher variability and avoids clustering of stations.  The

criterion rmseM will be mord sensitive to the network configuration

than rmseA

We suppose that interpolation is done by forming weighted averages

of nearby station measurements.  Provided stations are not clustered,
simple weighting schemes based on distances to stations will be nearly

optimal. An estimated "optimal" weighting scheme may be calculated
from the estimated autocovariance function. Since the autocovariance

function is needed anyway for rmse calculations, it may as well be used

also for optimizing the data weighting scheme. If there is some trend
or other obvious structure in the mean precipitation function, this

should become part of the spatial model:  it will affect the method

of estimation of autocovariances and it will raise questions of bias
avoidance for the map interpolation problem.  Fortunately, interpola-

tion bias may be more or less eliminated by imposing appropriate con-

straints on the choice of data-weighting schemes.  This point will be

taken up further in the illustrations which follow.  For the map inter-

polation problem we are in the fortunate position that the estimated

interpolation errors calculated from the statistician's probability
models can be checked against reality to some extent.  This is achieved

by interpolating the station values themselves as though they were

unknown, an exercise worth carrying out routinely as a check on the

probability calculations.

It is a mathematical feature of interpolated maps that they are

smoother than reality even when "optimally" constructed. One aspect

of this extra smoothness is the suppression of precipitation peaks
and valleys; for example, it is unusual to interpolate values which

exceed the maximum station precipitation.  One should be careful,

therefore, when using interpolated maps as spatial simulations and,

in particular, the spatial frequency function of an interpolated map

will be a biased estimator of the true spatial frequency function.

Also, the autocovariance function of an interpolated map will be con-
siderably flatter than the autocovariance function estimated from

station data only.

A data network may be used to interpolate maps of a qualitative

(as opPosed to numerical) variable, for example the presence-absence

pattern of rainfall on a given day or something like a geologic map
based on rock type or soil type.  Here a reasonable statistical esti-

mation criterion might be the proportion of the map area colored incor-

rectly.  This criterion is equivalent to a spatially averaged mean-

squared-error based on a zero-one error measure.  The estimation of

such error criteria, in the context of models of probabilistic parti-
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If we denote the space-time precipitation field by Z(x;t) then we

F

tions of the basin, requires fitting spatial autocovariance functions
for dichotomous variables, which in turn may be used for deciding upon

an appropriate network density.

Estimation of Spatial Variability

All network design problems require a probabilistic assessment of
error which in turn requires specification of a spatial autocovariance
function (SAF) or a spatial variogram (SV). [In principle we may have
different SAF's operating during different time periods.  It is conve-

nient, but not always essential, that the SAF be made time-invariant.]

model  it  as a random process  with mean function    m(x; t) and "residual"
field  E(x;t) = Z(x;t)-m(x;t) . Its SAF is given by

C(x',x") = E[€(x';t)�€(x";t)]

where   x',x"   are two points  in the basin and the expectation operator
E  is taken with respect to the generating random process.  Suppose the
n  stations in the network are positioned at  xl'x2'...'xn .  It is not
straightforward to estimate the spatial autocovariance even between
station pairs, viz.  C(xi,x.) , contrary to what is sometimes supposed.
For example the "usual" empirical covariance calculation between the
two time series of a station-pair does not estimate the spatial C, but
instead something complicated involving the mean function and the tem-
poral autocorrelations and temporal crosscorrelations as well as the
spatial C. ·On the other hand, one may first try to estimate the mean
function and then calculate the empirical covariance between the two
time series of empirical residuals.  This is better but still not right.

Rather than estimate the SAF we may estimate a closely related func-
tion  called the spatial variogram  (SV).    It is defined  as

7(x',x")  =  [E(x';t)-E(x";t)]2  .

A reasonable method to estimate the SV will now be described; it is
adapted from a method used by Pierre Delfiner and others. Suppose the
mean function at time t is modeled to be a linear function of the
values of time  t  of a set of K measured covariates  {v }, i.e.,j

K

m(x;t) -     bjt vj(xit) + bot .                    (1)

The measured covariates may be elevation above sea level, geographic
coordinates, air temperature, etc., and the coefficlents bot'blt'""
bKt  may vary with time.  Suppose the station rainfall measurements

5



Z(xlit) '..., Z(xnit)  are used to obtain an ordinary least-squares
estimate of the mean function  m , i.e., we do a linear regression of

rainfall  Z  on the covariates  {v }  separately at each fixed time  t .We obtain calculated residuals
D.   at each station  i   f the

network at each time period  t .  Now i tcan be shown that  E[D  ]  is
it

a quantity which does not involve the unknown  b's  and which cln be

computed directly from the spatial variogram y .  Hence the  D.t may
be used to estimate the SV without becoming involved in tempora  auto-
correlations.  This method shows that even for a class of time-varying

mean functions we may estimate simple combinations of the purely spatial,
variogram using historical time series.  The next step is to fit values

of the SV parameters.

To illustrate we use a simple class of spatial variograms depending

on two parameters  cl' c2  which will be estimated from station data
records:.

27(x",x") = E{E(x';t)-€(x";t)}2

= Icl   |  a'-a"   c2] 0 |Ix'-x"11         (2)

where   || x'-x"||  is the spatial distance between position  x'   and  x"
and

||  a'-a"||      is    the   difference    in   altitude   covariate.

Hence residuals which are further apart spatially are more likely to be
different, and residuals corresponding to large altitude disparities are

more likely to be different.  Suppose further we take the mean function

to depend linearly on the altitude covariate, i.e.,

m(x;t) = b +  b          a (x) , (30Ot 1t

and that we have a four-station network as shown in Figure 1, with
station-to-station distances as indicated. The rainfall at each station
for each of five time periods is shown in Table 1.  This table also

shows the altitude of each station.  Then the ordinary least-squares

regression of rainfall on altitude, at each time  t, produces calculated

residuals at stations  x2  and  x3  which are linearly independent and
proportional, respectively, to

D2t = Z(xlit) - 3Z(x2;t) + Z(X3;t) + 2(x4;t)

D3t = Z(xl;t) + Z(x2;t) - 3Z(xjit) + Z(x4;t)

6
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Figure 1.

Station No. Elevation Rainfall.during five different time periods

1                  -1                     5          7         4         4          10

2           0            4     10     4     4     12

3                    0                      6          9          4          3          13

4           +1             8     12      6      5      16

Table 1.
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With the variogram (2), it.may be shown that D estimates 14c -4c

2t 1   2
2

for any time period  t , whereas D estimates  30cl-12c2  for any  t.3t
Therefore, solving for the parameters, we get

2  = (3D2 - D2 ) /12
lt     2t    3t

2   = (15D2  - 7D2 )/24 .
2t 2 t    3t

Taking the median of each of these parameter estimates over time, using

the data of Table 1, provides the final values

8  = 0.67
1

c  = 1.33
2

In this example the covariate, altitude, does not change with time.

This is convenient but not essential; we might have used an air tempera-

covariate  and  used the difference    || a'-a" ||   in the variogram model  (2).
Similarly we might have used a multivaFiaEe time-varying covariate.  The

fitted SV now allows us to calculate autocovariances of rainfall for any

pair of points in the basin and thereby we may assess probabilistically
the magnitudes of errors (mse) in various estimation problems using a

spatial data network.  The use of the SAF for this purpose is demon-

strated in the next section.

Illustrations of Error Calculations

As before,  Z(x;t)  is used to denote the precipitation variable at

position  x  in the basin at time  t .  The data network consists of

stations at positions  xl' x2' ...' x  which record  Z , possibly with

error,   at all times     t   . For purpose2 of estimation error calculations,
Z  is modeled probabilistically as a space-time random process with mean

function  m(x;t) .  We consider examples of probabilistic error calcula-
tions for mapping (i.e., spatial interpolation) problems based on sta-

tion network data.

If we construct an estimate of rainfall for an unobserved position

x   at time  t  , using a linear weighting of the network data at time

t  , then the mean-squared-error of the estimator is

8
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E[Z(xlit) - Iwi Z(xi;t)]2 E mse(w) ,-

where  y = (wl'
W2 ..., W) are the station weights.  These weights

should depend on the posit on of  x   relative to the stations; for

example, if  x   is very close' to  xi  then we may expect  wi  to be
nearly  1  and all other weights to be nearly zero.  In general, it is

reasonable to assign weight zero to all stations except a handful in the

vicinity of  x  , a procedure common to contouring programs.

A little manipulation shows that

mse (w)   =  IEwiwj. [Y(ki,xl)   +  Y(xj,x )   -  Y(xi,xj)]   +  82,          (4)

where

B = m(xlit) - Iwi m(xi;t) .

For any arbitrary weighting scheme, the mse calculation depends on the

mean function through its  B  term.  However, when we postulate a simple
enough mean function then we may choose weights  y  so that  B  is

guaranteed to vanish, and only the variogram  y  is needed for the mse

estimate. Such estimates are called "unbiased". For example, using
the mean function  (1)  we have an unbiased estimate of  Z(x ;t) at any
time period  t  by choosing station weights to satisfy

Iw. = 1
1

as well· as

Iwi  vj (x; t)   =   vj. (x ; t) (5)

for each

j = 1, 2, ..., K .

9



It is easily conceivable that unbiased interpolation will have larger
average estimation errors than biased interpolation, but having an mse
depending only on the spatial variogram is a distinct advantage.  It
seems that the main disadvantage of unbiased methods is that the restric-

tion  (5)  depends on the position of  x  .  And one must not forget
that the unbiasedness property is relative to the postulated form of
the mean function.  To illustrate using the station network of Figure 1
and mean function  (3) , if we wish to interpolate-rainfall at position

x   having altitude  a(x ) =0, then the unbiased weighting require-ment is  w  = w4  (as well as  Iwi = 1) .  Now suppose the position of
x   is sucA that it forms a square with the three stations  xl'x3'xz,

of Figure 1.  Among unbiased interpolations, there is one which mini-
mizes the mse  (4)  with the variogram  (2)  estimated from the data of

Table 1.  The minimization may be accomplished by elementary methods
g6ving so-called optimum weights  wl = w4 = -0.4 , w2 = 2.0 , and
w3 = -0:2 , with minimum rmse(w ) = 1.46 .  For comparison, equal weight-
ing of all four stations gives  rmse = 1.89 ; putting all weight at the
station  x2  gives  rmse = 1.63 .

Once we have some idea of the rainfall spatial variogram we may begin
to answer simple design questions.  Suppose a square-grid network is
planned so that the maximum interpolation rmse does not exceed a
specified  aM .  For interpolation at some  x   we will use only thefour station values forming the grid square in which x is found and
suppose that we make no use of covariate information.   hen the maximum

rmse for optimum unbiased interpolation occurs at the center of any grid
square.  If the variogram is given by  y(x',x") = c||x'-x"|| , then withgrid spacing  A  the maximum rmse for interpolation is approximately

0.75/KE . There fore, the required    8  =  1.33  02/c
. where the parameter

M      '.c  of the spatial variogram has presumably been estimated somehow.  For
the problem of estimating spatial averages the rmse calculations are
more complicated and involve integration of the variogram.

The mapping of spatially varying qualitative variables, such as
presence-absence patterns, presents somewhat different statistical
problems.  The network of  n  stations may be used to partition the
basin into station-polygons  Rl,

Rl,
..., R  based on a nearest-point

rule. The estimated map at time may th2n be constructed by shading
each of these station-polygons according to the station observation at
time  t .  Such nearest-point rules produce qualitative maps with
improbably jagged boundaries, but the jaggedness may be a virtue since
it clearly reflects the density of the data network.

Some portions of the estimated map (for a fixed time  t) will be
incorrectly colored or labeled. The total Area of that portion of the

map which is incorrectly labeled may serve as an error criterion  L
If we utilize a probability model as a generator of the true map paEtern
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then we·may calculate expected values of this error criterion as a func-

tion of network design and of the probability model parameters.  We have

E{Lt    =   I          Pt(x,xi)  d11(x)                            (6)
i=l J

xeR.
1

where

pt(x,xi) = Prob{Z(xit)  Z(xi;t)}

To illustrate, suppose we have a square-grid data network and a prob-

ability model for which

pt(x,,x':) = bt| x'-x"  (7)

is valid for small values of the inter-point distance ||x'-x"|| .  The
p  function is used in the calculation of the error criterion only for

inter-point distances less than  0.7& where  A  is the network grid

spacing, so we do not need to specify the behavior of  p  at larger

distances.  By performing the integration in (6) we get

E{Lt  = 0.383(Abt)

assuming distances are scaled so that the total map area is  1 .  We see

that mapping errors are proportional to the station grid spacing and

hence inversely proportional to the square of the number of stations,

within the context of the probability model (7).

We may use the station data to estimate the  p  function of (7)

directly for the distance  || x'-x"|| =8, the grid spacing, by finding
the proportion of adjacent station-pairs with different observed

Z-values.  For the estimated three-color map ,of Figure 2 we find·

$t(x',x") i 0.13  for  || x'-x"|| = 8  and our estimate of the model

parameter  is    bt  6  0.13/8 . Therefore, the estimated error  in  the

Figure 2 map is  E{L   = 0.383(.13) = 5%  of the t6tal map area.  This

map was based on a network of 625 stations. If we would be content with

11



a 20% error on three-color maps of similar complexity, then we could do

with a network of about 625/16 = 40 stations.
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Figure 2

The crucial b parameter reflects the average patchiness of the

underlying patte n at time  t  and it seems reasonable that more sta-

tions are needed for the accurate mapping of patchier phenomena.  How-

ever, patchiness may vary from one time period to another so a given

network will sometimes produce more accurate and less accurate maps.
It is therefore reasonable that our error estimates should vary from

one time period to another and that  bt  should be estimated anew at
each time period.
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