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Statistical Considerations in the Estimation of Enzyme Kinetic Parameters by
the Direct Linear Plot and Other Methods
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The statistical implications of the direct linear plot for enzyme kinetic data, described in
the preceding paper (Eisenthal & Cornish-Bowden, 1974), are discussed for the case of
the Michaelis—-Menten equation. The plot is shown to lead directly to non-parametric
confidence limits for the kinetic parameters, V and K, which depend on far less sweeping
assumptions about the nature of experimental error than those implicit in the method of
least squares. Median estimates of ¥ and K, can also be defined, which are shown to be
more robust than the least-squares estimates in a wide variety of experimental situations.

The problem of how best to fit experimental obser-
vations to the Michaelis-Menten equation is an old
one. Michaelis & Menten (1913) estimated the
maximum velocity, ¥, and the Michaelis constant,
K,,, from a plot of the observed velocity, v, against
log s, the logarithm of the substrate concentration,
but most workers have preferred to obtain a least-
squares fit to a linear transformation of the Michaelis~
Menten equation. The objections to such methods
have been thoroughly discussed elsewhere (Johansen
& Lumry, 1961; Wilkinson, 1961; Dowd & Riggs,
1965; Colquhoun, 1971), and we shall not rehearse
them here. A much sounder procedure is to minimize
the sum of squares of errors SSE, defined by

_ n Vsi \2
SSE = igl Wi (v, Km+s’) (1)

where s; and v, are theith of 7 substrate concentrations
and velocities respectively and w, is a weighting
factor.

An important but often neglected aspect of eqn. (1)
is the necessity to define w;. It is usual to assume
w; =1 for every observation, an assumption which
implies that the errors in all of the velocities are of
equal variance. Reich (1970) has cogently argued that
this assumption is frequently unjustified in practice,
and recommends that the statistical fluctuations in
the data be carefully studied before any decision about
weights is made. Although this is certainly sound
advice, it is not always easy to follow, and there are
additional difficulties inherent in the use of eqn. (1),
and, indeed, all other least-squares criteria of close-
ness of fit. These stem from the fact that to demon-
strate that a least-squares criterion is valid it is neces-
sary to assume (i) that the errors are normally
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distributed; (ii) that the independent variable (s in
the case of the Michaelis—-Menten equation) is known
exactly; and (iii) that the correct weights are known.
In practice, it is unlikely that these assumptions can
be justifiably maintained. Some of them may approxi-
mate to the truth, but in most experiments little infor-
mation is available about any of them. Tests of nor-
mality exist, but they require many more observations
than are generally made in enzyme kinetic experi-
ments. Even when ample data are available it is
most unusual for any tests of normality to be applied.
Again, although there may be some experiments
where it is reasonable to assume that one variable is
largely free from error, there are others where such an
assumption is manifestly absurd, as in the determina-
tion of dissociation constants from the Scatchard
plot (Scatchard, 1949), in which both variables are
calculated from the same observations. Finally,
there is rarely sufficient information to permit a
definitive assignment of weights, and any such assign-
ment must depend on the system studied and the
method used.

The main deviation from normality that seems to
occur in enzyme kinetics in practice is a high incidence
of outliers, i.e. observations with a much higher error
than expected from the distribution of the majority of
errors. An observation can sometimes be identified
as an outlier and rejected from the analysis on inde-
pendent evidence, e.g. because it was obtained under
different experimental conditions from the other
observations. More often there is no reason to reject
it other than its failure to lie close to the fitted line.
In such a case it may still be rejected after an appro-
priate statistical test is carried out (see, e.g., Bliss,
1967). However, many experimenters are reluctant
to reject data on internal evidence alone, since this
apparently introduces an unwelcome subjective



722

element into the analysis. In any case, such a rejection
requires a tacit admission that the experimental errors
are not normally distributed, and so discredits the
least-squares analysis. One may also note that rules
for rejecting outliers have been received with very
little enthusiasm by leading statisticians. Forexample,
Anscombe (1960) states that ‘all published proposals
for rejection criteria, based on any kind of mathe-
matical reasoning, from Pierce’s (1852) onwards,
have an unexplained starting point or objective,
presented as though it were the only obvious one and
in fact utterly obscure.” The problem is made
particularly acute by the fact that the least-squares
criterion is highly sensitive to outliers, and often
produces a paradoxical situation where the obser-
vation recognized to be the worst makes the greatest
contribution to the estimates of the parameters.

Distributions of errors with more numerous outliers
than expected for a normal distribution are called
leptokurtic or long-tailed distributions. They are by
no means confined to enzyme kinetics, and Tukey &
McLaughlin (1963) have suggested that the ‘normal’
distribution is actually so rare that it might more
instructively be termed the ‘pathological’ distribution.
They state that ‘the typical distribution of errors and
fluctuations has a shape whose tails are longer than
that of a Gaussian distribution’.

Classical (or ‘parametric’) statistical methods rest
heavily on assumptions about the distribution of
errors, and recognition of the unreliable nature of
these has led to the development of non-parametric
statistics, in which as few assumptions as possible are
made. The principal one that remains after discarding
normality, uniform variance etc. is that the error in
any observation is as likely to be positive as to be
negative. Even this may of course be false in practice,
but it is far less sweeping than the assumptions of
parametric methods. If the classical assumptions are
true, then parametric methods are appropriate, and
provide more efficient tests than the corresponding
non-parametric methods. However, this is scarcely
a real disadvantage of non-parametric methods,
since there is rarely any clear evidence of the validity
of the classical assumptions.

Non-parametric methods have been most widely
used in the analysis of multiple observations of a
single variable, such as the effectiveness of a drug,
where the distribution of results is unlikely to be
normal, or where the quantification of results is
somewhat arbitrary. In such cases the sample median
is regarded as a more reliable estimate of the popu-
lation (or ‘average’) value than the sample mean
(Edgeworth, 1887). Many years ago, Edgeworth
(1888) showed that the concept of a median could
usefully be generalized into two or more dimensions,
and that it could be applied to linear-regression pro-
blems. But his methods have not been widely used,
and there appears to have been no previous attempt
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to apply non-parametric methods to the Michaelis-
Menten equation, or indeed to any other problem in
enzyme kinetics. The purpose of this paper is to show
that the direct linear plot described in the preceding
paper (Eisenthal & Cornish-Bowden, 1974) can be
used to define rigorous non-parametric confidence
limits for ¥ and K,, in the Michaelis-Menten equation,
and to obtain median estimates of V and K,,. These
estimates prove to be almost as reliable as those
derived from the least-squares criterion when the
classical assumptions are true, and considerably
more reliable when they are not.

Theoretical

For any observation (s, v,), the Michaelis—Menten
equation

VS,
Km + 5

vy = 2
can be rearranged to show that all values of ¥ and
K., which agree exactly with the observation are
related according to

V=n+2K, 3)
Si

i.e. they lie on a straight line through the points
(—sy, 0) and (0, v;). But if v, and s, are subject to error,
eqn. (2) should be written

_ 'VS,
K+ 5

where ¥ and X', are the true (but unknown) values
of Vand K,, and ¢ is the difference between the
observed and true velocities. Note that this equation
does not imply that error is confined to v,, since, if 5;
is subject to error and v, is exactly correct, v, still
differs from ¥ s,/(X +s;) by an amount which can
be represented as &,. The same is true if both s; and
v; are subject to error.

If & is positive, the true parameters ¥" and X, are
given by a point which lies below the line defined by
egn. (3). Similarly, if ¢, is negative, (X ,, ¥") liesabove
this line. In the absence of any other information, it
is reasonable to suppose that ¢, is as likely to be posi-
tive as to be negative. (This assumption is of course
included among the profusion of assumptions re-
quired by the least-squares treatment; it is unfor-
tunately not possible to dispense with assumptions
altogether.) So, if an infinite number of independent
observations were made, half of the lines drawn
according to eqn. (3) would pass below (X, ).
In a finite experiment of n observations, n lines can be
drawn according to eqn. (3), which intersect to divide
the graph into 3(#*+n+2) different regions, as illus-
trated in Fig. 1 for an experiment with »= 5. Each
region corresponds to a different permutation of signs
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S5 -S4 ~S3 52 51 0 Ky

Fig. 1. Direct linear plot of kinetic results with errors

Observations of v at five different values of s are plotted
as described by Eisenthal & Cornish-Bowden (1974).
Each observation (s;, v,) is represented by a straight line
through the points (—s;, 0) and (0, v,). The lines divide
the graph into sixteen regions, each of which corresponds
to a different permutation of signs among the calculated
errors, as explained in the text.

among the ¢, values: for example, in Fig. 1 the region
labelled 27 includes all values that X, and ¥ might
have such that &;, &, & and & were positive and &,
negative. This permutation of signs is conveniently
expressed by the binary number 11011, which is
27 in decimal. The other labels in Fig. 1 can be
understood similarly, after conversion into binary.
For n observations, 2" regions, labelled 0 to (2"—1),
can be defined, though only #(n*+n+2) appear in
any single experiment. For example, Fig. 1 contains
no region 14 (binary 01110); this indicates that for the
data illustrated X", and ¥ cannot have values such
that g, and & are negative, and &,, £; and &4 positive.

If every g, value has a median expectation of zero,
and all &, values are independent, it follows that all
possible permutations of signs among the g, values
are equally likely. Since there are 2" possible permu-
tations of n signs, each permutation has a probability
of 2-*, For n =5, there is only one permutation with
all g negative, and thus there is a 1/32 chance that all
&, are negative. But there are (3), using the common
mathematical convention (,") to represent n!/
[m¥(n—m)!], ie. 10, permutations containing two
positive g, and 10 more with three positive ¢,. Thus
there is a 20/32 chance that there will be either two
or three positive ¢ values in an experiment of five
observations. This result provides a very simple way
of defining a 20/32 (i.e. 62.5 %) confidence region for
X' and 7 in such an experiment, comprising those
regions of the graph that predict two or three positive
& values. In Fig. 1, this confidence region would con-
sist of the regions labelled 3, 7, 9, 11, 24, 25 and 28.
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Similarly, a 30/32 (i.e. 93.75 %) confidence region can
be defined by including regions for one or four
positive & values. In Fig. 1 this would include every
region except 0 and 31.

Confidenceregions as just defined are quite rigorous
(much more so than those calculated from the sum of
squares, since they depend on fewer assumptions)
but they are not very convenient, because they extend
to infinity, and include estimates of X’,, and ¥~ that
common sense would reject as absurd. This objection
can be removed by considering the number of ‘runs’
of positive and negative signs in the series of errors,
instead of the total numbers of positive and negative
signs. For example, a sequence of signs +{+—++
contains three runs, whereas —++ contains two.
The numbers of runs in random sequences of binary
digits obey the binomial distribution (Ising, 1925),
and for »n digits there are 2(,_, "') permutations with
m runs. So the probability that there are m runs in
n digits is 2(,_y "*)/2", Or (s "~*)/2"1. For example,
with n =5 there are two permutations with one run,
eight with two, 12 with three, eight with four and two
with five. So there is a 10/32 chance of at least four
runs, 22/32 of at least three, etc. In Fig. 1 the regions
with at least three runs are shaded, i.e. those labelled
8, 9, 11, 25, 27 and 29, to give a 22/32 (i.e. 68.75%)
confidence region. This is just as rigorous as the
20/32 region defined previously, but is much more
convenient and useful, since it is enclosed and
relatively small in extent.

Confidence limits based on the numbers of runs of
signs can be defined in this way for any value of n.
If nisatleast9, it is possible to define an enclosed 95 %
confidence region, and if » is at least 12 it is also
possible to define an enclosed 99 % confidence region.
Table 1 defines 959, and 99 9 confidence regions for
up to 25 observations. If n =9, 10 or 11, it is a simple
matter to find the 959 confidence limits, since they
enclose all finite regions. For n greater than 11, it is
rather more laborious to locate the exact 959 limits,
though it is a simple matter to determine whether any
given point lies within them.

As well as determining joint confidence regions for
X mand ¥, it is also desirable to define best-fit values.
As mentioned in the introduction, the non-para-
metric analogue of the arithmetic mean is the median,
which has the important advantage that its reliability
is not seriously dependent on the form of the distri-
bution curve. It has the second major advantage that
estimation of a population median does not require
accurate knowledge of the appropriate weights,
i.e. an unweighted median is usually a good approxi-
mation to a correctly weighted median (Bowley,
1928). It is appropriate therefore to define median
estimates of %", and ¥". But, as Haldane (1948) has
pointed out, there are two quite different ways of
defining a median, which are equivalent in the uni-
variate case, but nom-equivalent in multivariate
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Table 1. 95% and 99°% confidence regions

For an experiment of n observations, the Table shows the
probability p that there are at least m runs of positive and
negative signs among the errors.

p>95% p>99%;

n m P m P

3 3 25.0*

4 3 50.0*

5 3 68.8*

6 3 81.3*

7 3 89.1*

8 3 93.8*

9 3 96.5
10 3 98.1
11 3 98.9
12 4 96.7 3 99.4
13 4 98.1 3 99.7
14 5 95.4 3 99.8
15 5 97.4 4 9.4
16 5 98.2 4 99.6
17 6 96.2 4 99.8
18 ° 6 975 5 99.4
19 7 95.2 5 99.6
20 7 9.8 6 99.0
21 7 979 6 99.4
22 8 96.1 6 99.6
23 8 97.4 7 99.2
24 9 95.3 7 99.5
25 9 96.8 7 99.7

*If n is less than 9, there is no enclosed confidence
region with p>95%;. In these cases the values of p for
m>3 are given.

cases. Thus the median of a univariate population is
usually taken to be the estimate that divides the
population into two equal portions, but it can equally
well be defined by the fact that the sum of absolute (i.e.
unsigned) deviations from any point is a minimum if
the deviations are measured from the median (Laplace,
1798). Haldane (1948) refers to these as arithmetic
and geometric medians respectively, and points out
that both definitions provide difficulties when applied
to multivariate populations. However, since the
difficulties can be removed by precise definition, we
shall not discuss them here.

The simplest way of defining median estimates of
¥ and X, for the Michaelis—-Menten equation results
from the fact that every pair of lines drawn according
to eqn. (3) intersect to provide estimates of the para-
meters given by

=8

Vi = 5
S ®
v Uy
U=
K=
Ui ©
S 8
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for the ith and jth observations. Some of the inter-
sections may be at infinity, if the lines are parallel, or
indefinite, if they are coincident, but this is of little
consequence in defining medians, provided that such
intersections are few in number. For n observations,
there are in(n—1) intersections altogether, which
provide 4n(n—1) pairs of estimates. The estimates are
not all independent, since there cannot be more than »
independent functions of n observations, but there is
no bias, and each observation is treated in the same
manner. Consequently, the median estimate of ¥” can
be taken as the sample median of all the ¥V, and the
median estimate of ¢, as the sample median of all
the KX,,. Since the ¥;; and K, are treated as separate
univariate samples in this definition the resulting
estimates ¥ and K, are arithmetic medians in
Haldane’s terminology.

An alternative approach, corresponding to a special
case of Haldane’s geometric median, is to define the
median estimates of ¥~ and X, as those values which
minimize the sum of absolute errors in v, SAE,
defined by

VS(
Km+S(

SAE=3
i=1

)

Uy—

The minimization of the sum of absolute deviations
has been recommended by other authors (Davies,
1967; Reich, 1970) as a criterion of closeness of
fit, which greatly decreases the effect of bad obser-
vations, and is much less dependent on correct
weighting than the least-squares criterion. But it has
rarely if ever been used in practice because of practical
difficulties. The partial derivatives of SAE, unlike
those of SSE [defined by eqn. (1)] with respect to
¥ and K,,, are not continuous functions, but contain
saltuses, or jumps, at which the derivatives change
abruptly from one value to another. The second
partial derivatives are infinite at each saltus, and zero
or very small at other points. Since most of the
methods used for minimizing SSE depend on simple
and continuous properties of the derivatives, they
cannot be used for minimizing SAE. One exception is
the robust and elegant method of Nelder & Mead
(1965), but although this method can be used success-
fully it is normally very slow. For the Michaelis—
Menten equation, the minimization of SAE is actu-
ally surprisingly simple, and requires somewhat less
computational time than the minimization of SSE
by the method of Wilkinson (1961). This simplicity
results from the fact that the solution must lie on a
line plotted according to eqn. (3), and is virtually
certain to lie on a second line, i.e. at an intersection.
Thus the infinite search in two dimensions that one
might expect is decreased to a finite search of
4n(n—1) possibilities, and in fact far fewer than
4n(n—1) need be tested if the information obtained
during the search is fully used. The validity of this
approach depends on the fact, noted by Fisher (1961),
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that for linear models of p parameters there must
exist estimates of the parameters that minimize SAE
and also satisfy p observations exactly. Now, although
the Michaelis—Menten equation is non-linear in X,,,
the method of Wilkinson (1961) for minimizing SSE
depends on the fact that the equation can be accur-
ately represented by a linear approximation over finite
ranges of K,,. Thus the approach described for mini-
mizing SAE is likely to be correct in all but a small
proportion of experiments. Moreover, in these few
experiments the difference in SAE between the true
minimum and the putative minimum is likely to be
insignificant.

It remains to be considered whether standard errors
for the median estimates of ¥~ and X, can usefully
be defined. In view of the ease with which joint
confidence regions can be found, there is very little
point in considering the precision of each parameter
separately. The very high correlation that always
exists between estimates of ¥” and X, (Oliver, 1970)
indicates that the error in either parameter is very
heavily dependent on the error in the other, and that
separation of the two is likely to be more misleading
than helpful. Moreover, a standard error is strictly
valid only if the statistic in question is normally
distributed, and it is dangerous to ignore this point
(Kendall & Stuart, 1969); but, as we shall show,
estimates of ¥~ and X, are generally skewed, even
when the errors in v are normally distributed. None-
theless, if it is felt that these arguments are without
merit, and that no analytical method is complete
without standard errors, the formulae given by
Wilkinson (1961) for the standard errors of the least-
squares estimates can be used. Under conditions where

these are valid for the least-squares estimates they will

also be valid for other unbiased estimates.

Methods

Simulated experiments were carried out on an
International Computers Ltd. 1906A computer,
by using programs written in FORTRAN.

In all cases the true parameters ¥~ and X', were
taken as 1.0 by definition. This involved no loss of
generality because the numerical values are arbitrarily
determined by the units of measurement.

Experimental errors were simulated by the use of a
library routine which generated pseudo-random num-
bers uniformly distributed in the range 0 to 1. These
were converted into normally distributed numbers
by the method of Box & Muller (1958). The occurrence
of outliers was simulated by selecting errors at
random from two different normally distributed
populations, in the following way: suppose that it is
required that each number have a chance p of being
drawn from a normal distribution with standard
deviation g4, and a chance (1 —p) of being drawn from
a normal distribution with standard deviation o,
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where o,/0, =q. Then, first a uniformly distributed
random number r is generated and compared with p.
If r<p, then a normally distributed number with
standard deviation o, is generated; but if r>p, then
a normally distributed number with standard devi-
ation o, is generated. In the experiments described, p
was usually 0.8, but other values were also tested to
a limited extent, to confirm that the value of p was of
no great importance in determining the results, g was
in the range 1-8, and o, and o, were chosen such
that the population standard deviation, given by

Vpo2+(1—p)o7?, assumed a convenient value, such
as 0.01 or 0.02.

The errors, ¢, were introduced into the data in
various ways, as follows: (i) simple errors in v, where
v =Y s/(X n+s5)+te; (ii) relative errors in v, where
v=Y"s(14+&)/(H n+s); (iii) simple errors in s, where
v =Y (s—&)/(X n+5—¢); and (iv) relative errors in s,
where v = ¥s/[H (1 +€)+s].

To compare the efficiencies of the various criteria
of closeness of fit, 1000 experiments were simulated
for each set of assumptions about the nature of experi-
mental error. For each set of data, three pairs of
estimates of ¥" and X, were found, and compared to
determine which approximated to the true values
best. The least-squares estimates were defined as those
that minimized the sum of squares, SSE, as defined
by eqn. (1) with every w; = 1, and were found by the
iterative procedure of Wilkinson (1961). The process
was terminated after the fifth iteration, or after an
iteration in which the estimate of X", was altered
by less than 0.019;, whichever was the sooner.
Arithmetic-median estimates were defined as the
sample medians of the 4n(n—1) estimates ¥V, given
by eqn. (5) and the 4n(n—1) estimates K,; given by
eqn. (6). An efficient routine for determining sample
medians with only partial sorting was written.
This routine used about 60 % less time than the fastest
published sorting routine (Singleton, 1969), and so
permitted a considerable gain in speed. It is available
on request to A. C.-B. Finally, geometric-median
estimates were defined as those that minimized the
sum of absolute errors, SAE, as defined by eqn. (7).
These were found by searching the pairs of estimates
defined by eqns. (5) and (6).

Results

One of the most striking characteristics of non-
parametric statistical methods is their insensitivity
to outliers, or highly aberrant observations. This is
illustrated in Fig. 2, which shows the results of a series
of determinations of K, for sets of data in which the
velocities at ten substrate concentrations from 0.2 to
2.0 were assigned errors from a normal population
with standard deviation 0.005, except for the velocity
at s =0.6, which was assigned an error, &, which
varied from —0.03 to +0.03. The three types of esti-
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Fig. 2. Variation of R,, with individual errors

The plots show how the values of K,, found by two methods vary with &, the error in the velocity for s = 0.6. The errors in
the other nine velocities were drawn randomly from a normal population with standard deviation 0.005 and mean zero.
The true parameters ¥~ and ", were both set equal to 1.0. The broken line shows the value of K,, found by the least-squares
method; the solid line shows the value of K,, found by the arithmetic-median method; the value for the geometric median
varied in a similar way to the arithmetic median, but is omitted for the sake of clarity. Inset: A plot of v against s shows the
data used in the test. The error bars for v; show the range of values used for &;. The line is drawn for the true values of the

kinetic parameters.

mate behaved very differently in this experiment.
The least-squares estimate was relatively insensitive
to small errors in a single point, and so tended to be
the most reliable estimate when outliers were absent.
But in general the least-squares estimate of X,
deviates without limit from the true value as the error
in any single point increases. By contrast, the
arithmetic-median estimate responded in a rather
irregular way to individual errors, and was very sensi-
tive to small errors. The geometric-median estimate
(omitted from Fig. 2, for clarity) was similar, but the
variation with small errors was less irregular. In both
cases the variation was strictly limited, and in general
the median estimates of both parameters became more
reliable than the least-squares estimates when out-
liers are present. The latitude of response of the
median estimates to any one observation is deter-
mined by the precision of the other observations: in
this example, if the other nine observations had been
exactly correct, the median estimates of ¢, would
not have responded at all to variation of the aberrant
observation; but if their standard deviation had been
0.01 instead of 0.05, the variation would have been
about twice as great as it was.

The results shown in Fig. 2 are typical of a large
number of similar tests. Estimates of ¥~ varied in a
similar way, but the variation was less with all three
methods, because ¥~ can generally be estimated more
precisely than X, With all three methods, the

variability of both parameters was much greater for
aberrant observations near the ends of the range
than for observations in the middle. This is of con-
siderable practical importance, because it is often
more difficult to measure velocities accurately at the
extreme values of s than in the middle of the range.
So one may well expect to find outliers in that part of
the experiment where they will do most damage to
the estimates of ¥~ and o¢",,.. In contradiction of these
results, Cleland (1967) has stated that ‘it is the veloci-
ties obtained at substrate levels around K that are
more important than either the higher or lower ones
in determining K’. This is not correct in any of the
examples that we have examined, and it seems
unlikely to have any general validity.

The main series of simulated experiments was
designed to compare the efficiencies of the three
methods of estimating ¥ and X", over a wide range
of assumptions about the nature of experimental
error. Fortunately it is not necessary to describe the
properties of all three methods in detail, because the
two types of median proved to be so similar on aver-
age that it is possible to summarize the results for the
geometric-median estimates very briefly. It was
found that whatever type of error distribution was
assumed they were slightly inferior to the arithmetic-
median estimates, and in one case, when the standard
deviation of v was assumed to be proportional to v,
they were greatly inferior. So in the remainder of this
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Table 2. Results of 56000 simulated experiments

The terminology for type of error is defined in the Methods section.

Standard
deviation
Type of error n s/ A, range of e*
Simple errors in v 5 0.3-1.5 0.01¥"
10 0.1-1.0 0.017
‘ 10 0.2-2.0 0.0057"
10 0.2-2.0 0.017
10 0.2-2.0 0.027
10 1.0-10.0 0.017
25 0.1-2.5 0.017
Relativeerrorsin v 5 0.3-1.5 0.02
10 0.1-1.0 0.02
10 0.2-2.0 0.02
10 1.0-10.0 0.02
25 0.1-2.5 0.02
Simple errors in s 10 0.2-2.0 0.02X",,
Relative errorsin s 10 0.2-2.0 0.02

Number of experiments (out of 1000) in which the least-
squares estimate of X", was closer to 2", than the arith-
metic-median estimate, for various distributions of et

-~ ~

g=1 q=2 g=4 q=38
563 554 500 388
609 571 469 308
586 545 442 258
612 502 426 302
582 534 444 317
549 527 462 330
588 536 386 219
444 405 381 348
371 354 322 239
360 347 316 216
613 562 444 287
327 311 276 164
486 511 428 321
503 477 379 282

* Except in lines 3 and 5, the values were chosen so that a point with s = X", would have the same standard deviation in

each experiment.

t g = 6,/01, as defined in the Methods section. Each error had an 802/ chance of being drawn from a normal population

with standard deviation &,. The column for ¢ = 1 corresponds

to normally distributed errors.

glo

Fig. 3. Leptokurtic distribution curve

A distribution curve for g = 4, as defined in the Methods
section (solid line) is shown with a normal curve (broken
line) for comparison.

paper the least-squares estimates will be compared
solely with the arithmetic-median estimates, which
will be referred to simply as median estimates.

The results of the comparison under various differ-
ent conditions are shown in Table 2. Although only
the results for K, are shown, the results for ¥ and for
V/K, were almost identical. Two very striking facts
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are apparent : first, although the least-squares method
is superior when all of its assumptions are true, as one
would expect, the degree of superiority is remarkably
slight. Even at best, it provides better estimates in only
about 609, of experiments. Secondly, if any of the
assumptions is incorrect, this slight superiority evap-
orates. Moreover, these conclusions are largely
independent of the number of observations and the
range of substrate concentrations. The distribution of
errors does not have to deviate greatly from the nor-
mal curve for the least-squares method to be inferior.
This may be judged from Fig. 3, which shows a normal
curve of error and a curve withg=4.

One objection may perhaps be made to the way the
results are presented in Table 2. It might be argued
that, although the median estimates of ¥, might
sometimes be better than the least-squares estimates,
their distribution about X", might be much more
scattered. This can be checked by examining the
actual distributions of estimates. Fig. 4(q) shows
cumulative probability (probit) plots for the two
estimates of ¢, in a series of 1000 experiments in
which all of the least-squares assumptions were
true. Both plots show a positive curvature, indicating
that in neither case are the estimates of X", normally
distributed, but that both are positively skewed.
Both plots pass very close to the true value of X,
1.0, at their midpoints, indicating that both types of
estimate are unbiased. Finally, the median estimate
shows a somewhat greater scatter, in accordance with



728

Probits
3 4 5 6 7
'*2 T T T T L
(a)
L i
1.F 4
. L 4
0
1.0} -
0.9 4
1 1tt L 1. A 1 1 1 1 1 111 1
12 510 20 50 80 90 95 9899
Percentage
Probits
3 4 5 6 7
l'2 T ) ] T ]
L (<) J
]
(WIS 3
. | J
N
1.0 -
0.9 R
L1l 1 i | S I N | 1 1 [T
12 510 20 50 80 90 95 9899
Percentage

A. CORNISH-BOWDEN AND R. EISENTHAL

Probits

11ty ) J WS SO S N S | [ A

12 510 20 50 80 90 95 9899

Percentage
Probits
254 7
L (d)

1411 3 Lo L1 » 1 | 1113

12 510 20 50 80 90 95 9899

Percentage

Fig. 4. Cumulative distribution of K.

Cumulative distribution (probit) plots are shown for the values of K, found by two methods for simulated experiments in
which the true value X, was 1.0, with ten values of s in the range 0.2-2.0. The abscissa shows the percentage of experiments
(out of 1000) in which the value of K,, was less than the value shown on the ordinate. The scale of the abscissa is designed so
that the points would lie on a straight line if K,, were normally distributed. Four different assumptions were made about the
nature of experimental error, i.e. (@) simple errors in v, normally distributed with standard deviation 0.01; (b) simpleerrors in
v, 8094 drawn from a normal population with standard deviation 0.005, 209/ from a normal population with standard
deviation 0.02; (c) relative errors in v, normally distributed with standard deviation 0.02; (d) simple errors in s, normally
distributed with standard deviation 0.02. @, Values estimated by the least-squares method; O, values estimated by the

arithmetic-median method.

the finding in Table 2 that it came closer to the true
value in about 409, of experiments. Similar plots
are shown in the remainder of Fig. 4 for some of the
other situations considered in Table 2. If the pro-
portion of outliers is increased beyond the normal
expectation (Fig. 4b), the least-squares estimate
deteriorates, but the median estimate improves,

not only in relation to the least-squares estimate,
but also absolutely. Both curves are leptokurtic,
i.e. the relative frequency of very poor estimates is
high, but this is much more pronounced for the least-
squares estimates. If the wrong weights are used
(Fig. 4¢), the distribution of the median estimates is
again much better than that of the least-squares.
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Finally, if s rather than v is subject to error (Fig.
4d), the distributions are almost identical. All of
these results are in excellent agreement with what
would be expected from Table 2, and indicate that
Table 2 does provide a realistic and informative
picture.

The distributions of estimates of ¥~ have also been
examined, with similar results, but less variability
in all cases. The absolute variability of estimates
shown in Fig. 4 is a function of the arbitrary value
assumed for the population standard deviation of the
errors, and so has no general applicability. However,
the relative variability of the two types of estimate
should be generally applicable.

Discussion

The results of the simulated experiments indicate
that the method that we have described for finding
median estimates of ¥~ and X, is a very competitive
alternative to any of the usual methods. In terms of
reliability, it has some very important advantages, as
it is far less dependent on assumptions about the
nature of experimental error. Even if all of the usual
assumptions are correct, the least-squares estimates
are better than the median estimates in only a small
majority of experiments. But it would be a bold
experimenter who would claim that the distribution
of errors was precisely normal, that the proper
weights were precisely known, and that the values of
s were precisely correct. So in practice even the slight
advantage for the least-squares method under ideal
conditions may be illusory. Certainly it is the
experience of many workers in enzyme kinetics that
outliers occur disconcertingly often, and it is precisely

in such circumstances that the advantages of the
median estimates are most pronounced. Similarly,
the assumption that all observations should be
weighted equally is one that is very difficult to justify
in practice. Failure to use the correct weights gave
the most striking results in experiments with a low
range of s, a fairly common situation in practice, if
the substrate is of limited solubility or availability.

It may be argued that the ill effects of outliers and
incorrect weighting can be avoided by discarding
outliers and using correct weights. Although this
may be true, it is unrealistic because it presupposes
reliable methods of recognizing outliers and of
determining the correct weights. Now it is still
common practice to display results in the form of
a double-reciprocal plot, even when the best-fitting
line is determined independently. On such a plot,
a seriously aberrant point at high s may easily pass
unnoticed, and so never even be considered for
rejection, whereas a perfectly acceptable point at low
s may appear to be so aberrant that it is wrongly
rejected. This is illustrated in Fig. 5(a), which
shows a double-reciprocal plot for a simulated
experiment in which the velocities were assigned
errors from a normal population of standard devia-
tion 0.01, except for the point at 1/s=10.5, which
was assigned an error of +0.05. The line is a least-
squares line calculated by the method of Wilkinson
(1961), i.e. it minimizes the sum of squares as
defined by eqn. (1) with all w, = 1. It is not at all evi-
dent from the plot that the point at 1/s = 0.5 is highly
aberrant, whereas the point at 1/s= 5.0 appears to
be aberrant, but in fact the error in v is 0.018, well
within normal expectation. Contrast this with Fig.
5(b), which shows the same results plotted according

(a)

1/v
o

1/s

(b)

Fig. 5. Ineffectiveness of the double-reciprocal plot for identifying outliers

(a) Each velocity was assigned an error from a normal population with standard deviation 0.01, except for the one at 1/s =
0.5, where the error was +0.05. The line minimizes the sum of squares of errors in v, and was calculated by the method of
Wilkinson (1961). (b) The same results plotted according to the direct linear plot.
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to the direct linear plot: here it is quite clear that the
observation for s = 0.2 is in good agreement with the
majority of observations, and that the observation for
s = 2.0 is severely aberrant.

In addition to its greater reliability under non-ideal
conditions, the method proposed in this paper has
certain other advantages over the more usual methods.
The most obvious of these is that it is the simplest
method of estimating ¥ and X, that has ever been
proposed, since it requires no calculation at all.
The only other method that does not require calcu-
lation (apart from a single division by 2) is the esti-
mation of ¥ and X, from a plot of v against s. But
this requires the ability to draw a rectangular
hyperbola accurately and to judge the location of
its asymptotes, and is even less reliable than the
double-reciprocal plot method. For small numbers of
observations it is very easy to find the medians of the
Vi; and K;; on a graph, and, although the problem
becomes more difficult with larger numbers of obser-
vations, it is still much easier to estimate the medians
on a graph than it is to estimate the least-squares
solutions on any plot. For routine analysis of large
amounts of data, computation is more convenient,
however, and we have incorporated the methods
described in this paper into a computer program.
This is written in FORTRAN, and is available on
request from A. C.-B.

Another advantage of the method proposed here
is that it focuses attention directly on ¥ and K.,
rather than treating them as by-products of a
plot whose main effect is to display the relationship
between v and s. In practice, the purpose of
measuring v at various values of s is almost always
to obtain information about ¥~ and X", It is rare for
the values of v to have any interest except as means to
this end. So a plot that displays more information
about V and K, and their variability, is preferable
to one that does not.

Finally it is worth remarking that the theory of the
median method is extremely simple, and permits the
setting up of joint confidence regions for the kinetic
parameters with the use of no more statistical know-
ledge than is required for an understanding of coin-
tossing experiments. This may be contrasted with the
recondite nature of the theory of least squares. Indeed
the uncritical acceptance of the least-squares method

A. CORNISH-BOWDEN AND R. EISENTHAL

by many scientists owes far more to its mystique
than to any real belief in its premises.

Although we have been concerned in this paper
exclusively with the Michaelis—Menten equation,
there does not seem a priori to be any reason why a
similar approach should not profitably be made to
other problems of interest to the biochemist.
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