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2	

Abstract 47	

 48	

Successful decision-making requires learning expectations based on 49	

experienced outcomes. This learning should be calibrated according to the 50	

surprise associated with an outcome, but also to the statistical context dictating 51	

the most likely source of surprise. For example, when occasional changepoints 52	

are expected, surprising outcomes should be weighted heavily, demanding 53	

increased learning. In contrast, when signal corruption is expected to occur 54	

occasionally, surprising outcomes can suggest a corrupt signal that should be 55	

ignored by learning systems. Here we dissociate surprising outcomes from the 56	

degree to which they demand learning using a predictive inference task and 57	

computational modeling. We show that the updating P300, a stimulus-locked 58	

electrophysiological response previously associated with adjustments in learning 59	

behavior, does so conditionally on the source of surprise. Larger P300 signals 60	

predicted greater learning in a changing context, but predicted less learning in a 61	

context where surprise was indicative of a one-off outlier (oddball). The 62	

conditional predictive relationship between the P300 and learning behavior was 63	

persistent even after adjusting for known sources of learning rate variability. Our 64	

results suggest that the P300 provides a surprise signal that is interpreted by 65	

downstream learning processes differentially according to statistical context in 66	

order to appropriately calibrate learning across complex environments.  67	

 68	

 69	

 70	

Introduction 71	

 72	

People are capable of rationally adjusting the degree to which they incorporate 73	

new information into their beliefs about the world (1-5). In environments that 74	

include discontinuous changes (changepoints) normative learning requires 75	

increasing learning when beliefs are uncertain or when observations are most 76	

surprising (2,6). Human participants display both of these tendencies, albeit to 77	

varying degrees (2,6,7). 78	

 79	

A major open question in the learning domain is how the brain achieves such 80	

apparent adjustments in learning rate. This question has fueled a number of 81	

recent studies that have identified neural correlates of surprise in functional 82	

magnetic resonance imaging (fMRI) (8), electroencephalography (EEG) (9,10), 83	

and pupil signals (6) that predict subsequent learning behavior. These signals 84	

might reflect candidate mechanisms for a general system to adjust learning rate 85	

(1,11,12), yet the generality has yet to be established outside of discontinuously 86	

changing environments, where surprise and learning are tightly coupled.   87	

 88	

The relationship between surprise and learning is complex and depends critically 89	

on the overarching statistical context. We refer to learning as the degree to which 90	
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3	

an observed prediction error promotes measurable behavioral updating. While 91	

changing environments require increased learning in the face of surprising 92	

information, stable environments with outliers (“oddballs”), dictate less learning 93	

from surprising information (4). People are capable of this type of robust learning 94	

rate adjustment that deemphasizes surprising information (3,4,13), yet the 95	

learning signals measured under such conditions do not correspond directly to 96	

those observed in changing environments. Most notably, a number of candidate 97	

learning signals measured through fMRI do not reflect learning rate when 98	

considering a broader set of statistical contexts (4). 99	

 100	

However, prior studies on EEG correlates of learning seem to favor the idea that 101	

a late, stimulus-locked positivity referred to as the P300, tracks learning in a 102	

broader range of statistical contexts. The central parietal component of the P300 103	

(P3b) reflects surprise (14) and relates to learning (15) even after controlling for 104	

the degree of surprise in changing environments (9,10). In a stationary 105	

environment where integration of sequential samples is required to make a 106	

subsequent decision, a late posterior positivity, reminiscent of the P300, predicts 107	

the degree to which a particular sample influences the subsequent decision (16). 108	

Interestingly, within this particular task, more surprising outcomes tended to exert 109	

less influence on decisions (3,13), suggesting that this late positivity might 110	

provide a general learning or updating signal, irrespective of statistical context. 111	

This idea would be in line with a prominent theory of P3b function, which 112	

emphasizes its role in updating context representations – sometimes defined in 113	

terms of items stored in working memory (17-20). 114	

 115	

Here we tested the idea that the P3b provides a general learning signal that is 116	

independent of the statistical context. In particular, we measured learning 117	

behavior using a modified predictive inference task and normative learning model 118	

and examined how learning behavior and surprise related to evoked potentials 119	

measured through EEG. We found that people are capable of contextually 120	

adjusting learning in response to surprise: they tended to learn more from 121	

surprising outcomes when those outcomes were indicative of changepoints, but 122	

learned less from surprising outcomes when those outcomes were indicative of 123	

an oddball. Outcome evoked potentials reminiscent of a parietal P300 were 124	

related to surprising events irrespective of context. The magnitude of this P300 125	

response on a given trial positively predicted learning in the presence of 126	

changepoints, but negatively predicted learning in the presence of oddballs. 127	

These relationships persisted even when controlling for variability in learning 128	

behavior that could be explained by the best behavioral model. Taken together 129	

these findings suggest that the P300 does not naively reflect increased 130	

behavioral updating, but may play a role in adaptively increasing or decreasing 131	

learning in response to surprising information, depending on the statistical 132	

context.  133	

 134	
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 135	

Results 136	

 137	

We used EEG to measure electrophysiological signatures of feedback 138	

processing while participants performed a modified predictive inference task (2) 139	

designed to dissociate surprise from learning. Predictions were made in the 140	

context of a video game that required participants to place a shield at a location 141	

on a circle in order to block cannonballs that would be fired from a cannon 142	

located at the center of the circle (Fig 1A). Surprise and learning were 143	

manipulated independently using two different task conditions. In the oddball 144	

condition, the aim of the cannon drifted slowly from one trial to the next (Fig 1B, 145	

dotted line) and cannonball locations were distributed around the point of cannon 146	

aim (Fig 1B, green points nearby dotted line) or, occasionally and unpredictably, 147	

uniformly distributed around the circle (oddballs; see green point on trial 11 of Fig 148	

1B for example). In the changepoint condition, the cannon aim remained constant 149	

for an unpredictable duration, and was then re-aimed at a new location on the 150	

circle at random (changepoints; Fig 1C, dotted line). Cannonball locations were 151	

always distributed around the point of cannon aim in this condition (Fig 1C, green 152	

points).  153	

 154	

Behavior of human participants and normative model   155	

 156	

In both conditions, participants were instructed to place a shield on each trial in 157	

order to maximize the chances of blocking the upcoming cannonball (Figure 158	

1B&C, orange line). However, behavior differed qualitatively in these two 159	

conditions, which can be observed clearly in the example participant data in 160	

Figure 1. In particular, shield placements were not updated in response to 161	

extreme outcomes in the oddball condition (oddballs; Fig 1B) but were updated 162	

dramatically in response to extreme outcomes in the changepoint condition 163	

(changepoints; Fig 1C).  164	

 165	

 166	
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5	

 167	
Figure 1: Measuring learning in different statistical contexts with a predictive inference task. A) 168	

Participants were trained to place the center of a shield (green tick; prediction phase [left]) at the 169	

aim location of a cannon (training task; top) in order to block a cannonball shot from it (outcome 170	

phase [top middle]) with a shield that varied in size from trial to trial and was revealed at the end 171	

of the trial (shield phase [top right]). After training, participants were asked to complete the same 172	

task, but without a visual depiction of the cannon, which required them to infer the aim of the 173	

cannon based on the sequence of previously observed cannonballs (test task; [bottom]). B) In 174	

oddball blocks, cannon aim (dotted black line) followed a random walk and cannonball locations 175	

were typically drawn from a Von Mises distribution centered on the true cannon aim (green 176	

points), but occasionally drawn from a uniform distribution across the entire circle (oddball trials). 177	

Participants placed their shield on each trial (brown line) providing information about their 178	

inference about the cannon aim. C) In changepoint blocks, cannon aim was stationary for most 179	

trials but was occasionally resampled uniformly from possible angles (changepoint) and 180	

cannonball locations were always drawn from a Von Mises distribution centered on the true 181	

cannon aim (green points). D&E) Optimal inference could be approximated in both generative 182	

environments by tracking and adjusting learning according to relative uncertainty and the 183	

probability of an unlikely event (oddball or changepoint). 184	

 185	

 186	
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6	

To quantitatively analyze the differences between the two task conditions, we 187	

extended a previously developed normative learning model (2,7). The model 188	

approximates optimal inference using an error-driven learning rule by adjusting 189	

learning from trial to trial according to two latent variables. The first latent variable 190	

tracks the probability with which the most recent outcome was generated from an 191	

unexpected generative process (oddball probability in Fig 1D; changepoint 192	

probability in Fig 1E), whereas the second latent variable tracks the model’s 193	

uncertainty about the true cannon aim (Fig 1D&E; uncertainty). Critically, the 194	

model stipulates that surprising events in the oddball condition, which is tracked 195	

through the model’s estimate of oddball probability, should reduce learning, as 196	

oddballs are unrelated to future cannonball locations (4). In contrast, the model 197	

stipulates that surprising events in the changepoint condition, which are tracked 198	

through the model’s estimate of changepoint probability, should amplify learning, 199	

as changepoints render prior cannonballs (and thus prior beliefs) irrelevant to the 200	

problem of predicting future ones (21,22). Qualitatively, behavior from the 201	

example participant seems to follow these prescriptions, with adjustments in 202	

shield position fairly minimal on trials that include a spike in oddball probability 203	

(Fig 1 B,D), but fairly large on trials that include a spike in changepoint probability 204	

(Fig 1 C,E). 205	

 206	

The normative model also makes quantitative prescriptions for how learning 207	

should be adjusted according to surprise differentially in the changepoint and 208	

oddball conditions. The surprise of a given outcome can be measured crudely 209	

through the degree to which a cannonball location differed from that which was 210	

predicted (e.g., the shield position). Larger absolute prediction errors indicate a 211	

higher degree of surprise, and higher oddball or changepoint probabilities 212	

depending on the task condition. Learning in this task can be measured through 213	

the degree to which a participant adjusts the shield position in response to a 214	

given prediction error (2), and a fixed rate of learning would correspond to a 215	

straight line mapping each prediction error onto a corresponding shield update, 216	

where the slope of the line can be thought of as the learning rate (Fig 2C, gray 217	

lines). The normative learning model does not prescribe a fixed learning rate 218	

across all levels of surprise; instead it prescribes higher learning rates for more 219	

surprising outcomes in the changepoint condition (Fig 2C, orange) and lower 220	

learning rates for more surprising outcomes in the oddball condition (Fig 2C, 221	

blue).  222	

 223	

 224	

 225	

 226	

 227	
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7	

228	
Figure 2: Participants scale learning according to surprise differently in changepoint and oddball 229	

contexts as would be expected for normative learning rate adjustment. A) In the changepoint 230	

condition, surprising events (change points) signaled a transition in the aim of the cannon 231	

whereas B) in the oddball condition, surprising events (oddballs) were unrelated to the process 232	

through which the aim of the cannon transitioned. C) Learning rate in the cannon task can be 233	

described by the slope of the relationship between prediction error (signed distance between 234	
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8	

cannonball and shield; abscissa) and update (signed change in shield position after observing 235	

new cannonball location; ordinate). Fixed learning rate updating corresponds to a line in this 236	

space whose slope is uniform across prediction errors and reflects the learning rate (gray lines). 237	

In contrast, normative learning dictates that the slope should decrease for extreme prediction 238	

errors in the oddball condition (blue) but increase for extreme prediction errors in the changepoint 239	

condition (orange). D) Prediction error (abscissa) and update (ordinate) for each trial (points) in 240	

each condition (designated by color) completed by a single example participant. E) Trial updates 241	

for each subject were fit with a regression model that included prediction errors (to measure fixed 242	

learning rate) as well as several interaction terms to assess how learning depended on various 243	

factors. F) Coefficients from regression model fit to individual subjects (points) revealed an overall 244	

tendency to update toward recent cannonball locations (red, t = 3.5, dof = 36, p = 10
-15

), and a 245	

tendency to do so more in the changepoint condition (green, t = 13.5, dof = 36, p = 0.001), when 246	

uncertain (yellow, t = 7.2, dof = 36, p = 2x10
-8

), and on trials where the cannonball was not 247	

blocked by the shield (pink, t = -3.3, dof = 36, p = 0.002). The model revealed that there was no 248	

consistent effect of surprise on learning across both conditions (blue, t = 1.5, dof = 36, p = 0.15), 249	

but that there was a strong interaction between surprise and condition (orange, t = 8.8, dof = 36, 250	

p = 2x10
-10

) whereby surprise tended to increase learning in the changepoint condition but 251	

decrease learning in the oddball condition.  252	

 253	

 254	

Participants adjusted learning behavior in accordance with normative predictions, 255	

albeit with considerable heterogeneity across trials and participants. Shield 256	

updating behavior and corresponding prediction errors for an example participant 257	

reveal the basic trend predicted by the normative model, although exact updates 258	

were variable from one trial to the next (Fig 2D). To summarize the degree to 259	

which updating behavior of individual subjects was contingent on key task 260	

variables, we constructed a linear regression model that described trial-by-trial 261	

updates in terms of prediction errors as well as key task variables thought to 262	

modulate the degree to which prediction errors are translated into updates (Fig 263	

2E) including condition (changepoint versus oddball block), surprise (as 264	

measured by changepoint or oddball probability estimates from normative 265	

model), and their multiplicative interaction (capturing the degree to which learning 266	

is increased for surprising outcomes in the changepoint context, but decreased 267	

for surprising outcomes in the oddball context). As expected, prediction error 268	

coefficients were positive, capturing a tendency for participants to update shield 269	

position toward the most recent cannonball position (Fig 1F, red; mean/SEM beta 270	

= 0.58/0.04, t = 13.5392, dof = 36, p = 10-15 ). Furthermore, participants 271	

systematically adjusted the degree to which they did so according to condition 272	

(Fig 1F, green; mean/SEM beta = 0.1/0.03, t = 3.5, dof = 36, p = 0.001), but not 273	

significantly according to surprise (Fig 1F,blue; mean/SEM beta = 0.05/0.03, t = 274	

1.5, dof = 36, p = 0.15). Critically, surprise robustly impacted learning in opposite 275	

directions for the two conditions, as indicated by the interaction between surprise 276	

and condition (Fig 1F, orange; mean/SEM beta = 0.66/0.07, t = 8.8, dof = 36, p = 277	

1.5 x 10-10). Specifically, positive coefficients indicate that sensitivity to prediction 278	

errors was increased for surprising outcomes in the changepoint condition and 279	

decreased for surprising outcomes in the oddball condition, as predicted by the 280	

normative model.  281	
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9	

 282	

Electrophysiological signatures of feedback processing 283	

 284	

We took a data driven approach to identify electrophysiological signatures of 285	

feedback processing. First we regressed feedback-locked EEG data collected 286	

simultaneously with task performance onto an explanatory matrix that included 287	

separate binary variables reflecting changepoint and oddball trials, amongst other 288	

terms (Fig 3A, left). Spatiotemporal maps for changepoint and oddball 289	

coefficients were combined to create a surprise contrast (changepoint + oddball) 290	

and a learning contrast (changepoint – oddball) for each subject. Contrasts were 291	

aggregated across subjects to create a map of t-statistics (Fig 3A, right), and 292	

spatiotemporal clusters of electrode/timepoints exceeding a cluster-forming 293	

threshold were tested against a permutation distribution of cluster mass to 294	

spatially and temporally organized fluctuations in voltage that related to task 295	

variables.  296	

 297	

When applied to the surprise contrast, this procedure yielded a large number of 298	

significant clusters distributed across electrodes and timepoints (Fig 3C). Two 299	

clusters of positive coefficients occurring 350 to 700 ms after onset of the 300	

cannonball location were of particular interest, given the consistency of their 301	

timing and direction with the canonical p300 response. Examining the spatial 302	

distribution of coefficients during this period reveals an early frontocentral locus 303	

of positive coefficients (350 ms; Fig 3B, left) that moves posterior and hits a peak 304	

t-statistic at 494 ms (Fig 3b, middle). Later on, the positive coefficients spread 305	

laterally and reach a second peak at 670ms (Fig 3B, right). The clustering 306	

procedure divides the positive coefficients observed from 350ms to 700ms into 307	

two clusters peaking at 494 and 670 ms.  308	

 309	

The time course of positive coefficients within anterior and posterior central 310	

electrodes suggests that these clusters are picking up on P3a and P3b 311	

components of a P300 response to the outcome delivery. Average outcome-312	

locked event related potentials in a frontocentral electrode (FCz) reveal a positive 313	

deflection from 300-500 ms (Fig 3D, black). This deflection is enhanced on both 314	

changepoint and oddball trials (Fig 3D,E, orange and blue), reminiscent of the 315	

P3a component, also referred to as the novelty P300. Posterior electrode (Pz) 316	

event-related potentials (ERPs) reveal a later and longer lasting positive 317	

deflection in response to a new outcome (Fig 3F, black). This positive deflection 318	

is enhanced on both changepoint and oddball trials (Fig 3F,G, orange and blue), 319	

reminiscent of the P3b, or updating component of the P300. Since the spatial and 320	

temporal profiles of our clusters were consistent with what has been referred to in 321	

previous literature as the P300, we will refer to the clusters peaking at 494 and 322	

670 ms as early and late components of the P300, respectively.  323	

 324	
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10	

In contrast to the EEG signature of surprise, which included a robust and 325	

extended P300 response, the only signals identified by the learning contrast 326	

(changepoint-oddball) were early (peak at 158 ms) and transient (Fig S3-1). 327	

 328	
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 329	
Figure 3: Outcome-locked central positivity reflects surprise irrespective of context. A) Trial-330	

series of EEG data for a given electrode and timepoint was regressed onto an explanatory matrix 331	

that contained separate binary regressors for changepoint and oddball trials (left). A t-statistic 332	
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12	

map was created for each electrode and time point on the surprise coefficient contrast (right). 333	

B&C) T-statistic map for surprise contrast across time (abscissa; C) and channel (ordinate; C) 334	

along with corresponding topoplots B. Separate spatiotemporal clusters that survived multiple 335	

comparisons correction via permutation testing are depicted in different colors (C; above heat 336	

plot). The time and channel corresponding to the maximum absolute t-statistic for each such 337	

cluster are depicted with a white circle (C). D&F) Mean/SEM (line/shading) event related 338	

potentials (microvolts) sorted by trial type (orange=changepoint, blue=oddball, black=other trials) 339	

for frontocentral (C; FZc) and central posterior (F; Pz) electrodes. E&G) Mean/SEM (line/shading) 340	

event related difference waveforms computed by subtracting the ERP for typical trials from the 341	

average ERP for change-point and oddball trials at frontocentral (E; FZc) and central posterior (G; 342	

Pz) electrodes.  343	

 344	

Behavioral relevance of the P300 345	

 346	

Competing theories posit different functional roles for the signal underlying the 347	

P300. In particular, some theories suggest that the P300 reflects a general 348	

surprise signal, whereas others attribute a more specific role in accumulating 349	

information, for example about the current state of the world. To test how early 350	

and late P300 components may relate to learning behavior in our task we 351	

extracted trial-to-trial measures of these components by taking the dot product of 352	

the cluster t-map and each single trial ERP (Fig 4A, (23)). The dot product 353	

indexes the degree to which a single trial ERP displays the profile of a given 354	

spatiotemporal cluster, thereby allowing us to test the degree to which the 355	

measured signal on any given trial might relate to behavior. We then examined 356	

how trial-to-trial behavioral updates in shield position related to these single trial 357	

EEG signal strengths using a regression model similar to that employed in the 358	

behavioral analysis (Fig 4B). The regression model included two key terms to 359	

characterize the influence of 1) the multiplicative interaction of prediction error 360	

with the EEG signal strength, and 2) the interaction between prediction error, 361	

EEG signal strength and condition. The first EEG-based term provided a 362	

measure of the relationship between learning and the P300 that was independent 363	

of condition, and thus allowed us to test the prediction that the P300 reflects a 364	

direct learning signal (Fig 4C). The second EEG-based term provided a measure 365	

of the relationship between learning and the P300 that depended on condition 366	

(conditional learning), and thus allowed us to test the prediction that any learning 367	

impact of the P300 is bidirectionally sensitive to the source of surprise (Fig 4D).  368	

 369	

 370	
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 371	
Figure 4: Central positivity predicts learning in opposite directions for changepoint and oddball 372	

contexts. A) T-maps corresponding to significant spatiotemporal clusters were used as templates 373	

to estimate trial-by-trial signal strength. B) Single trial updates for each participant were fit with a 374	

regression model that included additional terms to describe 1) the degree to which learning was 375	

increased on trials in which the EEG signal was stronger (PE times EEG signal) as would be 376	

expected for a canonical learning signal and 2) the degree to which learning was conditionally 377	

modulated by the EEG signal (PE times condition times EEG signal) as would be expected for a 378	

surprise signal that influenced downstream learning computations. C) Hypothetically, the learning 379	

rate (slope of the relationship between updates and prediction errors) might increase for stronger 380	

EEG signals (left) which would be captured by the PE times EEG direct learning regressor. 381	

Alternatively, the learning rate may increase for stronger EEG signals in the changepoint 382	

condition and decrease for stronger EEG signals in the oddball condition, as measured by the 383	

conditional learning regressor. D) Individual subject coefficients revealed no significant main 384	

effect of either early (494 ms; green) or late (674 ms; yellow) P300 signals on direct learning 385	

(left), but a strong positive interaction (conditional learning) effect at both time points (right), 386	

indicating that the signals were differentially predictive of learning in the changepoint and oddball 387	

conditions. E) Learning rates predicted by the regression model (ordinate) increased as a function 388	
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of signal strength (abscissa) for each P300 cluster (left=494ms; right=674ms) in the changepoint 389	

condition (orange) but decreased as a function of signal strength in the oddball condition (blue). 390	

 391	

 392	

Indeed, participant learning behavior systematically related to trial-by-trial 393	

measures of the P300, but only in a manner that depended critically on task 394	

condition. Direct learning coefficients from the model revealed that neither early 395	

(mean/SEM = -0.012/0.01, dof = 24, t = 1.6, p = 0.12) nor late (mean/SEM = -396	

0.001/0.009, dof = 24, t = -0.12, p = 0.90) components of the P300 were 397	

systematically related to learning in the same manner across both conditions (Fig 398	

4D, left). In contrast, conditional learning coefficients from both clusters tended to 399	

be positive across subjects (mean/SEM for 494,670ms cluster = 0.07/0.02, 400	

0.069/0.02, dof = 24,24, t = 3.2, 4.5, p = 0.004, 0.0002). Learning rate predictions 401	

derived from the regression model show that higher P300 signal strength predicts 402	

more learning in the changepoint condition (Fig 4E, orange), but less learning in 403	

the oddball condition (Fig 4E, blue). Thus, there was a systematic relationship 404	

between P300 and learning, but that relationship was oppositely modulated by 405	

the task condition and hence the inferred source of surprise.   406	

 407	

The relationship between the P300 and participant learning behavior persisted 408	

even after controlling for all known sources of variability in learning behavior. In a 409	

model of shield updating behavior that included predictions from the behavioral 410	

model described previously (Fig 2E) conditional learning coefficients for the late 411	

P300 component were reduced relative to the previous regression model, but still 412	

greater than zero (Fig 5B, yellow; mean/SEM for 670ms cluster = 0.03/.01 dof = 413	

24, t = 2.5, p = 0.02). Conditional learning coefficients for the earlier P300 cluster 414	

were inconclusive (Fig 5B, green; mean/SEM for 494 ms cluster = 0.02/0.01, dof 415	

= 24, t = 1.6, p = 0.11). However, the participants who showed the greatest 416	

behavioral modulation of learning according to surprise and condition tended to 417	

also have the highest conditional learning coefficients indicating the degree to 418	

which P300 conditionally predicted learning beyond what could be achieved with 419	

our best behavioral model (Fig 5C; r = 0.42, p = 0.04). Thus, the magnitude of the 420	

P300 signal predicted learning increases in changepoint contexts and learning 421	

decreases in oddball contexts and did so beyond what could be predicted with 422	

behavioral modeling alone.  423	

 424	

We applied the same trial-by-trial behavioral analysis to the spatiotemporal 425	

clusters identified in our learning (changepoint-oddball) contrast and did not find 426	

systematic relationships between EEG signals and learning behavior (ps for all 427	

coefficients and spatiotemporal clusters > 0.07; Fig S4-1) even when predictions 428	

from our behavioral model (Fig 2E) were not included in the analysis. 	429	

 430	

 431	

 432	
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 433	
Figure 5: Central positivity explains trial-to-trial learning behavior that could not be otherwise 434	

captured through behavioral modeling. A) Single trial updates for each participant were fit with a 435	

regression model that included the best estimates of learning rate provided by our behavioral 436	

regression model (β times PE times pred(LR)) as well as additional terms to describe the degree 437	

to which learning was increased on trials in which an EEG signal was present or the degree to 438	

which learning was contextually modulated by the EEG signal. B) Direct learning (left) and 439	

conditional learning (right) coefficients for EEG terms in the regression model are plotted for early 440	

(494 ms) and late (670 ms) components of the P300 response for each subject (colored points). 441	

Gray rectangle/lines indicate group mean/SEM. Conditional learning coefficients were significantly 442	

greater than zero for the late P300 component (mean/SEM for 670ms cluster = 0.03/.01, dof = 24, 443	

t = 2.5, p = 0.02) indicating that this signal predicted learning in a contextual manner even after 444	

accounting for behavioral variability that could be captured by our computational model (Figure 2). 445	

C) Conditional learning coefficients for early P300 component (494 ms; ordinate) were positively 446	

related to the behavioral index of conditional surprise sensitivity (abscissa) as measured through 447	

our behavioral regression (r = 0.42, p = 0.04).  448	
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Discussion 468	

 469	

  470	

The brain receives a steady stream of sensory inputs, but these inputs differ 471	

dramatically from moment to moment in the degree to which they should affect 472	

ongoing inferences about the world. People and animals do not treat each datum 473	

in this stream the same, and instead tend to rely more heavily on some pieces of 474	

information than others. Identifying the mechanisms through which these 475	

adjustments occur could be an important step toward understanding why learning 476	

occurs more rapidly in some domains or for some people, yet our understanding 477	

of these mechanisms has been heavily conditioned on specific statistical 478	

contexts, namely changing environments in which the degree to which one 479	

should learn from information is closely coupled to the surprise associated with it. 480	

Here we examined how relationships between learning and a specific brain 481	

signal, the P300 evoked EEG potential, depend on the statistical context that 482	

they are measured in.  483	

 484	

We show that the P300 relates systematically to learning, but that the direction of 485	

this relationship depends critically on the statistical context. In a context where 486	

surprising events indicated changepoints (Fig 1C,E) and participants learned 487	

more from surprising information (Fig 2), larger P300 responses predicted 488	

increased learning (Fig 4). In contrast, in a context where surprising events 489	

indicated oddballs (Fig 1B,D) and participants deemphasized surprising 490	

information (Fig 2), larger P300 responses predicted reduced learning (Fig 4). 491	

These context-dependent predictive relationships explained variance in learning 492	

beyond what could be captured through computational modeling of behavior 493	

alone (Fig 5), suggesting that the P300 signal may be involved in adjustments of 494	

learning rate, but does so by mediating the subjective response to surprise, 495	

rather than translating surprise into a conditionally appropriate learning signal.  496	

 497	

Implications for theories of P300 function 498	

 499	

Our findings are consistent with a number of studies that have suggested the 500	

P300 is related to surprise (9,14,17,24), but extend them by demonstrating the 501	

role of the signal in controlling the degree to which new information affects 502	

updated beliefs. In contrast, our results are inconsistent with standard 503	

interpretations of the context updating interpretation of the P300 (17-20). If the 504	

P300 signal controlled the degree to which new information was loaded into 505	

working memory one would expect a consistent positive relationship between the 506	

P300 and learning across conditions (Fig 4C), but our results reveal that this 507	

relationship differed markedly depending on the statistical context (Fig 4F,G).  508	

 509	

However, as is the case with many verbal theories, predictions offered by the 510	

context updating theory depend critically on the how specific concepts are linked 511	
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to actual mechanistic processes. If the definition of context were changed to 512	

reflect the process that gave rise to the outcome (e.g., normal, changepoint, or 513	

oddball), for example, and we assume that participants expected each trial to be 514	

normal, then a context updating signal could account for our data (as recognizing 515	

more confident recognition of changepoints should lead to more learning, but 516	

more confident recognition of oddballs should lead to less learning). Thus, our 517	

results constrain potential interpretations of the context updating theory, although 518	

they do not falsify the theory altogether.  519	

 520	

Similarly our results could also be viewed as constraining more recent theories 521	

about P300 signaling. One more recent theory posits that the event locked 522	

central parietal positivity reflects accumulated evidence for a particular decision 523	

or course of action (25,26). When accumulated evidence is framed in terms of 524	

the action ultimately executed (e.g., shield placement) one might extrapolate to 525	

predict that P300 would predict higher learning in both contexts, which is not 526	

what we observed (Fig 4F&G). Nonetheless, it is difficult to extrapolate decision 527	

variables to our continuous task, and there are other mechanistic schemes in 528	

which an evidence accumulation signal over a binary decision categorizing 529	

outcome type (normal versus oddball or changepoint) might give rise to our 530	

observed results. Such an explanation would also call for response inhibition to 531	

prevent premature responding before the default category (e.g., non-oddball trial) 532	

was overturned, offering a potential link to another prominent theory of P300 533	

function (24,27). Nonetheless, our data do not arbitrate between these theories, 534	

and instead highlight their implications for learning when mechanistic 535	

interpretations are refined and applied to our task and data.  536	

 537	

Neural representations of surprise and updating 538	

 539	

A key question that has motivated a number of recent studies is how does the 540	

brain represent surprise differently than the belief updating it sometimes 541	

prescribes. Under most conditions, the degree of surprise is tightly linked to the 542	

update that is required. However, recent fMRI studies have exploited cued 543	

updating paradigms (11), irrelevant stimulus dimensions (28,29), and 544	

complementary statistical contexts (4) in order to tease apart neural 545	

representations of surprise and updating. While there are trends that seem to 546	

generalize across task boundaries (for example, dorsal anterior cingulate cortex 547	

(dACC) reflecting updating in cued updating and irrelevant stimulus dimension 548	

paradigms (11,29)) there is also a good deal of inconsistency across different 549	

tasks in terms of the roles of specific signals. For example, even though BOLD 550	

responses in dACC were identified as reflecting updating in two studies, they 551	

were shown to represent surprise in another (4) and manipulations of statistical 552	

context failed to reveal any brain regions that provide a pure updating signal (4). 553	

 554	
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One possible explanation for this discrepancy is that the component processes of 555	

updating and non-updating might overlap in some specific paradigms. For 556	

example, the oddball outcomes that led to reduced learning in our paradigm and 557	

that of d’Acremont & Bossaerts were dissimilar to all previous outcomes and 558	

indistinguishable on other feature dimensions (in contrast to (11)). Thus, while 559	

these outcomes do not contain information pertinent to ongoing beliefs about 560	

future outcomes, they did contain information critical for perception, namely that 561	

prior expectations should not be used to bias their perceptual representations 562	

(30). Interestingly, recent work has suggested that people dynamically adjust the 563	

degree to which percepts are biased using systems, including the pupil linked 564	

arousal system , that are closely linked to the systems implicated in adjusting 565	

learning rate (6,30-34). Thus, one possible explanation for the inconsistency in 566	

previous studies attempting to dissociate surprise from updating is that these 567	

studies have differed in the degree to which they inadvertently manipulated 568	

systems for controlling perceptual biases.  569	

 570	

Like in the previous fMRI study relying on statistical context to dissociate learning 571	

from surprise (4), our EEG results revealed a large number of signals related to 572	

surprise and no signals that convincingly reflected learning rate in a context 573	

independent manner. This comes as somewhat of a surprise given previous work 574	

identifying EEG signals analogous to a late P300 component reflecting surprise, 575	

predicting learning and influence on choice even in paradigms where this 576	

influence was unrelated to surprise (3,9,10,15,16). In line with previous work from 577	

fMRI studies, we interpret the differences in our results from what might have 578	

been predicted based on previous work as pertaining to unique strategy we 579	

employed for dissociating learning from surprise through the use of different 580	

statistical contexts. 581	

 582	

 583	

Mechanisms of learning rate adjustment 584	

 585	

Our results, particularly when taken in the context of previous studies examining 586	

how the brain adjusts learning in accordance with surprise, constrain possible 587	

models of learning rate adjustment in the brain. We show that that the updating 588	

P300 signal, which positively predicts learning in changing environments (Fig 589	

4E), also negatively predicts learning in a context with infrequent statistical 590	

outliers (Fig. 4E). Thus, in a most basic sense, our results suggest that the P300 591	

signals reflects an early contribution to learning rate adjustment, and that this 592	

signal is untangled according to statistical context at some downstream stage of 593	

processing. The lack of robust ERP correlates of direct learning signals (Fig S3-1 594	

& S4-1) suggests that this downstream process does not have a task-locked 595	

electrophysiological signature.  596	

 597	
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One potential mechanism for learning rate adjustment that fits well with these 598	

constraints is the notion that adjustments in learning might be implemented 599	

through flexible replacement of state representations (35-37). Learning rate 600	

adjustment is adaptive in changing environments because it can effectively 601	

partition data relevant to the current predictive context from data that are no 602	

longer relevant to prediction (21,22). One possible implementation of this 603	

partitioning would be to change the active state representations that serve as the 604	

substrate for contextual associations. Recent work has identified signals in OFC, 605	

a region implicated in representations of latent states (38), that change more 606	

rapidly during periods of rapid learning (39). If this is indeed the implementation 607	

through which learning rate adjustments occur, observed learning rate signals 608	

might actually signal the need to adjust the representation of the latent state.  609	

 610	

Interestingly, replacement of the active latent state, or partitioning of data more 611	

generally, might also be an effective way to implement the decreased learning 612	

observed in response to surprising observations in the oddball condition of our 613	

task. In the case of an oddball, one strategy would be to recognize the oddball as 614	

having been generated by an alternative causal process (e.g., oddball 615	

distribution) and to attribute learning to a latent representation of this process 616	

(40). Under such conditions, implementation would require a surprise signal that 617	

reflects the relevance of this oddball latent state. After the new observation is 618	

attributed to the oddball context, the system would require a transition back into 619	

the original “non-oddball” state in order to make a prediction that is unaffected by 620	

the most recent oddball outcome. The more effectively surprise is recognized and 621	

responded to through state changes (e.g., the stronger the surprise signal) the 622	

more effectively this implementation would partition an oddball observation from 623	

ongoing beliefs about the standard generative process, and therefore the smaller 624	

learning rates would be. Thus, one mechanistic interpretation of the P300 results 625	

might be that it is providing a partitioning signal that results in transitions in the 626	

internal state representation, which can either increase or decrease learning 627	

depending on the statistical context.  628	

 629	

Confirming our proposed mechanistic interpretation of these results would require 630	

future studies more closely relating P300 signals to purported state 631	

representations (39). Furthermore, given that our study relied completely on 632	

computational modeling and correlations with behavior, our results  633	

raise important questions as to whether the observed associations could be 634	

manipulated directly pharmacologically or through biofeedback paradigms. Thus, 635	

our work provides new insight into the underlying mechanisms of learning rate 636	

adjustment and the role of the P300 in this process, but leaves many 637	

unanswered questions to be addressed in future research.  638	

 639	

 640	

Methods 641	
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 642	

Participants 643	

 644	

Participants were recruited from the Brown University community: n = 37, 21 645	

female, mean age = 20.2 (SD = 3.1, range = 18-36). Behavioral data from all 646	

participants was included in behavioral analyses. Data from 12 participants were 647	

excluded from EEG analysis due to low data quality (> 25% of epochs rejected 648	

during preprocessing). Thus, 37 participants were included in the behavioral 649	

analyses and 25 participants were included in the EEG analyses. All human 650	

subject procedures were approved by the Brown University Institutional Review 651	

Board and conducted in agreement with the Declaration of Helsinki. 652	

 653	

Cannon Task 654	

 655	

Participants performed a modified predictive inference task programmed in 656	

Matlab (The Mathworks, Natick, MA), using the Psychtoolbox-2 657	

(http://psychtoolbox.org/) package. The task was based on predictive inference 658	

tasks in which participants are asked to predict the next in a series of outcomes 659	

(2,6,7), but differed from previous such tasks the following ways: 1) the outcomes 660	

were generated from both changepoint and oddball processes to dissociate 661	

learning from surprise, 2) information necessary for performance evaluation was 662	

not available at time of outcome so that signals related to belief updating could 663	

be dissociated from valenced performance evaluation signals, 3) the task space 664	

was circular, and 4) the generative process was cast in terms of a cannon 665	

shooting cannonballs.  666	

 667	

Participants were instructed to place a shield at some position along a circle 668	

subtending 5 degrees of visual angle in order to maximize the chances of 669	

catching a cannonball that would be shot on that trial (Fig 1a). During an 670	

instructional training period, the generative process that gave rise to cannonball 671	

locations was made explicit to participants. During this phase, participants were 672	

shown a cannon in the center of the screen. On each trial, a cannonball would be 673	

“shot” from that cannon with some angular variability (Von Mises distributed 674	

“Noise”, concentration = 10 degrees). A key manipulation in our design was how 675	

the aim of the cannon evolved from one trial to the next. The cannon would either 676	

1) remain stationary on the majority of trials and re-aim to a random angle with an 677	

average hazard rate of 0.14 (changepoint condition) or 2) change position slightly 678	

from one trial to the next according to a Von Mises distributed random walk with 679	

mean zero and concentration 30 degrees (oddball condition). In the changepoint 680	

condition, all cannonballs were displayed as originating at the cannon in the 681	

center of the circle, whereas in the oddball condition a small fraction (0.14) of 682	

trials were oddballs, in which the cannonball location was sampled uniformly 683	

across the entire circle and the cannonball appeared without a trajectory.  684	

 685	
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After completing the instructional training, in which the generative process was 686	

fully observable, participants were asked to perform the same basic task without 687	

being able to see the cannon. In this experimental phase participants were forced 688	

to use knowledge of the generative structure gained during training, along with 689	

the sequence of prior cannonball locations, in order to infer the aim of the cannon 690	

and to inform shield placement. Participants completed four blocks of 60 trials for 691	

each task condition (changepoint and oddball) in order randomized across 692	

participants. The 240 experimental trials for each condition always followed the 693	

instructional training period for that condition in order to minimize ambiguity over 694	

which generative structure was giving rise to the experimental outcomes.  695	

 696	

On each trial of the experimental task, participants would adjust the position of 697	

the shield through key presses (starting at the shield position from the previous 698	

trial) until they were satisfied with its location (Fig 1a; prediction phase). After 699	

participants locked in their prediction (through a key press) there was a 500 ms 700	

delay and then the cannonball location was revealed for 500 ms (Fig 1A; 701	

outcome phase). The cannonball then disappeared for 1000 ms before it 702	

reappeared, along with a full depiction of the participants shield (Fig 1A; shield 703	

phase). The shield was always centered on the position indicated by the 704	

participant during the prediction phase, but differed in size from one trial to the 705	

next in a random and unpredictable fashion that ensured subjects could not 706	

predict whether they would successfully “catch” the cannonball during the 707	

outcome phase. Thus, information provided during the outcome phase provided 708	

all necessary information to update beliefs about the cannon aim, but did not 709	

contain sufficient information to determine whether the cannonball would be 710	

successfully caught on the trial. In addition to trial feedback provided during the 711	

shield phase, participants were also provided information about their 712	

performance at the end of each block that included the fraction of cannonballs 713	

that were caught. Participants were paid an incentive bonus at task completion 714	

that was based on the number of cannonballs that were caught.  715	

 716	

 717	

Computational Model 718	

 719	

Optimal inference in the changepoint condition would require considering all 720	

possible durations of stable cannon position (21,22) but can be approximated by 721	

collapsing the mixture of predictive distributions expected to arise from this 722	

optimal solution into a single Gaussian distribution, which approximates the 723	

posterior probability distribution over cannon locations, achieves near optimal 724	

inference, reduces to an error driven learning rule in which learning rate is 725	

adjusted from moment to moment according to environmental statistics, and 726	

provides a detailed account of human behavior (2,7). Similarly, the ideal observer 727	

for the oddball generative process would require tracking the predictive 728	

distributions and posterior probabilities associated with each possible sequence 729	
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of oddball/non oddball trials that could have preceded the time step of interest. 730	

Like in the changepoint condition, this algorithm can be simplified by 731	

approximating the set of all possible predictive distributions with a single 732	

Gaussian distribution, leading to an error driven learning rule in which learning 733	

rate is adjusted dynamically from trial to trial, allowing us to derive normative 734	

prescriptions for learning for both conditions.  735	

 736	

While the normative model for the changepoint condition has been described 737	

elsewhere (7) the analogous model for the oddball condition is not, and thus we 738	

describe the normative account of oddball learning in full detail. In order to 739	

minimize the differences between experienced and modeled latent variables, we 740	

formulate our model in terms of the prediction errors made by participants on 741	

each trial (rather than those that would have been made by the model) (7). On 742	

each trial of the oddball condition, the normative model: 1) updated its 743	

representation of uncertainty, 2) observed a prediction error and computed the 744	

probability that the prediction error reflects an oddball, 3) computed the normative 745	

learning rate by combining uncertainty (step 1) and oddball probability (step 2), 4) 746	

adjusted prediction about cannon position according learning rate and prediction 747	

error.  748	

 749	

Relative uncertainty, which reflects the fraction of uncertainty about an upcoming 750	

cannonball location that is due to imperfect knowledge of the cannon aim and is 751	

analogous to the Kalman gain, was updated on each trial according to the most 752	

recent observation (which should decrease uncertainty about cannon position) 753	

and the expected drift in the aim of the cannon occurring between trials (which 754	

should increase uncertainty about cannon position). Given that relative 755	

uncertainty is expressed as a fraction of total uncertainty, it is useful to think of 756	

the numerator of the fraction, or the estimation uncertainty over possible cannon 757	

aims, which is the variance on a gaussian mixture distribution and is updated as 758	

follows: 759	

 760	

𝜎!
!
=   Ω!

𝜎!
!
𝜏!

1− 𝜏!

 + 1− Ω! 𝜎!
!
𝜏! +  Ω! 1− Ω! (𝛿!𝜏!)

!
+  𝜎!"#$%

!
   

 761	

 762	

where Ω! is the probability that an oddball occurred on trial t, 𝜎!
! reflects the 763	

variance on the distribution of cannonball locations around the true cannon aim 764	

(noise), 𝜏! reflects the relative uncertainty on trial t, 𝛿! is the prediction error made 765	

in predicting the outcome on trial t, and 𝜎!"#$%
!

  reflects the degree to which the 766	

cannon position drifts from one trial to the next. The first two terms in the model 767	

reflect the oddball and non-oddball contributions to the updated uncertainty, the 768	

third term reflects uncertainty resulting from the difference between predictions 769	

for trial t+1 conditioned on an oddball or non-oddball having occurred on trial t, 770	

and the last term reflects uncertainty resulting from the expected drift of the 771	
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cannon position between trials. Relative uncertainty for trial t+1 is then updated 772	

as the updated fraction of uncertainty about the upcoming outcome that is 773	

attributable to imprecise knowledge of the true cannon position, rather than to 774	

noise in the distribution of exact cannonballs around that position: 775	

 776	

𝜏!!! =
𝜎!
!

𝜎!
!+𝜎

!

!
 

 777	

 778	

The updated relative uncertainty, along with assumed knowledge of the overall 779	

noise and hazard rate, were used to calibrate the oddball probability associated 780	

with each new prediction error: 781	

 782	

 Ω!!! =   

𝐻

2𝜋

𝐻

2𝜋
+ 1− 𝐻  𝒩 𝛿!!!; 0,

𝜎
!

!

1−  𝜏!!!
 

 

 783	

 784	

Where H is the average hazard of an oddball (0.14) and 𝛿!!! is the new 785	

prediction error, and the second term in the denominator reflects the probability 786	

density on a normal distribution centered on the predicted location and with 787	

variance derived from relative uncertainty. The model’s prediction about cannon 788	

aim was then updated according to a fraction of the prediction error 𝛿!!! with the 789	

exact fraction, or learning rate, determined according to the updated uncertainty 790	

and oddball probability: 791	

 792	

α!!! =   𝜏!!! −  Ω!!!𝜏!!! 

 793	

 794	

Note that relative uncertainty (𝜏!!!) contributes positively to the learning rate, 795	

whereas oddball probability ( Ω!!!) reduces the learning that would otherwise be 796	

dictated by the current level of uncertainty.  797	

 798	

Behavioral analysis 799	

 800	

Two key behavioral measures were extracted from each trial. First, the prediction 801	

error on a trial was defined as the circular distance between the cannonball 802	

location and the shield position for that trial. Second, the update on a given trial 803	

was defined as the circular distance between the shield position on that trial and 804	

the shield position on the subsequent trial (e.g., the updated shield position). In 805	

order to better understand the computational factors governing adjustments in 806	

shield position, we fit updates with a linear model that included an intercept term 807	

to model overall biases in learning along with a prediction error term to capture 808	

general tendencies to adjust the shield towards the most recent cannonball 809	
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location. The model also included additional terms to model how the influence of 810	

recent cannonball locations changed dynamically according to task context. 811	

These terms included: 1) prediction error times uncertainty interaction (to model 812	

how much more participants updated shield position under conditions of 813	

uncertainty – as assessed by the computational model), 2) prediction error times 814	

surprise (where surprise was indexed by changepoint probability or oddball 815	

probability from computational model depending on the context), 3) prediction 816	

error times surprise times condition (where condition was +1 for changepoint 817	

blocks and -1 for oddball conditions), 4) prediction error times block (a categorical 818	

variable indicating whether the shield “blocked” the most recent cannonball. The 819	

regression model was fit to each participant and t-tests were performed on the 820	

regression coefficients across participants to test for significant contributions of 821	

each term to update behavior.  822	

 823	

 824	

EEG Acquisition 825	

 826	

EEG was recorded from a 64-channel Synamps2 system (0.1–100 Hz bandpass; 827	

500 Hz sampling rate). Continuous EEG data was epoched with respect to the 828	

outcome presentation for each trial. Preprocessing was done manually in Matlab 829	

(Mathworks, Natick MA) using the EEGLAB toolbox 830	

(https://sccn.ucsd.edu/eeglab/index.php) as described previously (23) and 831	

included the following steps: 1) epoching and alignment to outcome onset, 2) 832	

epoch rejection by inspection, 3) channel removal and interpolation by inspection, 833	

4) bandpass filtering [.5-50 hz], 5) removal of blink and eye movement 834	

components using ICA. Participants for whom more than 25 percent of epochs 835	

were rejected were not included in analyses of EEG data.  836	

 837	

 838	

EEG Analysis 839	

 840	

EEG Data for individual participants were analyzed using a mass univariate 841	

approach. Specifically, the trial series EEG data for a given participant, channel, 842	

and time relative to outcome onset was regressed onto an explanatory matrix 843	

that included the following explanatory variables: 1) intercept, 2) changepoint, 3) 844	

oddball, 4) condition, 5) catch . Explanatory variables 2 & 3 were binary variables 845	

marking trials in which a surprising event occurred (i.e. changepoint or oddball) 846	

whereas 4 reflected the overall task context (i.e. whether oddballs or 847	

changepoints were present in the current statistical context), and 5 conveyed 848	

whether the participant successfully “caught” the cannonball on each trial. 849	

Surprise and learning contrasts were created as the sum and difference of the 850	

changepoint and oddball coefficients, respectively. T-statistics were computed 851	

across subjects to assess the consistency of contrasts at each electrode and 852	

timepoint.  853	
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 854	

T-statistic maps were thresholded (cluster forming threshold of p=0.001, 2 tailed) 855	

and spatiotemporal clusters were identified as temporally and/or spatially 856	

contiguous signals that shared a common sign of effect and exceeded the 857	

cluster-forming threshold. Cluster mass was computed as the average absolute t-858	

statistic within a cluster times its size (number of electrode timepoints contained 859	

within it). Cluster mass for each spatiotemporal cluster was compared to a 860	

permutation distribution for cluster mass generated using sign flipping to correct 861	

for multiple comparisons (41). 862	

 863	

Trial-to-trial EEG analyses were conducted by computing the dot product of the t-864	

statistic map for a given spatiotemporal cluster and the ERP measured on a 865	

given trial. The resulting measure of EEG signal strength was then z-scored 866	

across all trials and included in a behavioral regression model to explain trial-to-867	

trial updating behavior. Like for the behavioral analyses, trial-to-trial updates were 868	

regressed onto an explanatory matrix that included intercept and prediction error 869	

terms to capture updating biases and static tendencies to update toward recent 870	

cannonball locations. In addition, EEG informed regression models included 1) 871	

the interaction between the EEG signal strength computed above and prediction 872	

error (direct learning), and 2) the three-way interaction between EEG signal 873	

strength, prediction error, and condition (conditional learning). Positive direct 874	

learning coefficients indicated an unconditional increase in learning for trials in 875	

which EEG signal strength was greater, whereas positive conditional learning 876	

coefficients indicated a positive relationship between EEG signal strength and 877	

learning in the changepoint condition but a negative relationship between EEG 878	

signal strength in the oddball condition. In order to test the degree to which EEG-879	

updating relationships persisted after accounting for variability in behavior that 880	

could be captured by our computational model, we also used a version of the 881	

EEG informed regression that additionally included the predicted update from the 882	

behavioral model (y-hat) as an explanatory variable (Fig 5). 883	

 884	

 885	

 886	

 887	

 888	

 889	

 890	
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 891	
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Figure S3-1: Early frontal, but not late central, positivity is greater in changepoint than oddball 893	

trials. A) Trial-series of EEG data for a given electrode and timepoint was regressed onto an 894	

explanatory matrix that contained separate binary regressors for changepoint and oddball trials 895	

(left). A t-statistic map was created for each electrode and time point on the learning contrast 896	

(right). B&C) T-statistic map for learning contrast across time (abscissa; C) and channel 897	

(ordinate; C) along with corresponding topoplots (B). Separate spatiotemporal clusters that 898	

survived multiple comparisons correction via permutation testing are depicted in different colors 899	

(C; above heat plot). D&F) Mean/SEM (line/shading) event related potentials (microvolts) sorted 900	

by trial type (orange=changepoint, blue=oddball, black=other trials) for frontal (C; AFz) and 901	

posterior (F; P5) electrodes that distinguish between changepoints and oddballs. E&G) 902	

Mean/SEM (line/shading) event related difference waveforms computed by subtracting the ERP 903	

for typical trials from the average ERP for change-point and oddball trials at frontocentral (E; AFz) 904	

and central posterior (G; P5) electrodes.  905	

 906	

 907	

 908	

 909	
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 910	

 911	

 912	

Figure S4-1: Weak direct relationships between EEG signals and learning. A) T-maps 913	

corresponding to significant spatiotemporal clusters were used as templates to estimate trial-by-914	

trial signal strength (as the cosine product of the template with the outcome locked EEG data 915	

recorded on each trial). B) Single trial updates for each participant were fit with a regression 916	

model that included additional terms to describe 1) the degree to which learning was increased on 917	

trials in which the EEG signal was stronger (PE times EEG signal) as would be expected for a 918	

canonical learning signal and 2) the degree to which learning was contextually modulated by the 919	

EEG signal (PE times condition times EEG signal) as would be expected for a surprise signal that 920	

influenced downstream learning computations. C) Hypothetically, the learning rate (slope of the 921	

relationship between updates and prediction errors) might increase for stronger EEG signals (left) 922	

which would be captured by the (PE times EEG signal) regressor (direct learning). Alternatively, 923	

the learning rate may increase for stronger EEG signals in the changepoint condition and 924	

decrease for stronger EEG signals in the oddball condition, consistent with conditional learning 925	

signal. D) Individual subject coefficients from the changepoint-oddball spatiotemporal clusters 926	

(figure S3-1) revealed no systematic direct learning effect of either positive (158 +; green) or 927	

negative (158 -; yellow) EEG signals (left) (mean[SEM] coefficient = 0.01[0.008],  0.01[0.01], p = 928	

0.08, 0.25). Nor did coefficients reveal conditional learning effect (right) (mean[SEM] coefficient = 929	

-0.01[0.02],  0.02[0.02], p = 0.67, 0.32). E) Learning rates predicted by the regression model 930	

(ordinate) tended to increase as a function of signal strength (abscissa) for both clusters 931	

(left=158+; right=158-) in the changepoint condition (orange) but were less consistent in the 932	

oddball condition (blue). 933	
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