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Abstract

With the advent of dense sensor arrays~64–256 channels! in electroencephalography and magnetoencephalography
studies, the probability increases that some recording channels are contaminated by artifact. If all channels are required
to be artifact free, the number of acceptable trials may be unacceptably low. Precise artifact screening is necessary for
accurate spatial mapping, for current density measures, for source analysis, and for accurate temporal analysis based on
single-trial methods. Precise screening presents a number of problems given the large datasets. We propose a procedure
for statistical correction of artifacts in dense array studies~SCADS!, which~1! detects individual channel artifacts using
the recording reference,~2! detects global artifacts using the average reference,~3! replaces artifact-contaminated
sensors with spherical interpolation statistically weighted on the basis of all sensors, and~4! computes the variance of
the signal across trials to document the stability of the averaged waveform. Examples from 128-channel recordings and
from numerical simulations illustrate the importance of careful artifact review in the avoidance of analysis errors.

Descriptors: Multichannel, EEG, MEG, Event-related potentials, Averaging, CSD

In recent years it has become evident that accurate recording of
electrical or magnetic brain fields often requires adequate spatial
sampling to avoid spatial aliasing~Tucker, Liotti, Potts, Russell, &
Posner, 1994; Wikswo, Gevins, & Williamson, 1993!. Dense sen-
sor array electroencephalogram~EEG! systems~64–256 channels!
are now used in many laboratories. Estimates of the spatial Nyquist
frequency1 of the human EEG and averaged event-related poten-
tial ~ERP! suggest that an intersensor distance of 2–3 cm is re-
quired to achieve adequate spatial sampling~Spitzer, Cohen,
Fabrikant, & Hallett, 1989; Srinivasan, Tucker, & Murias, 1998!.
With an even distribution of sensors across the head surface, a
sampling density of less than 3 cm requires 128 sensors, and a
density of less than 2 cm requires 256 sensors~Tucker, 1993!.
Similarly, magnetoencephalogram~MEG! systems have been scaled
to whole-head coverage, and may now measure from 122 to 148
sensors at a time and twice as many in the near future. Both the

correctness of the scalp topography and the localization of neural
generators depend on a sufficient spatial resolution~Junghöfer,
Elbert, Leiderer, Berg, & Rockstroh, 1997; Tucker, 1993!.

However, recording from dense arrays presents new prob-
lems for data acquisition. Although many creative theoretical
approaches and some empirical studies have been advanced for
the problem of electrical or magnetic source analysis, there has
been little attention to the problems of statistical management of
data quality in multichannel EEG and MEG systems. The results
of topographical analysis as well as source analysis depend
strongly on the quality of the data of each sensor that enters the
analysis. The likelihood of errors due to noise or other artifacts
increases with the number of sensors. If, in a given trial, arti-
facts are restricted to a few sensors, the trial still contains valu-
able information. However, simply removing the artifact-
contaminated sensors from the average will introduce a specific
class of errors. We propose a method for averaging multichannel
event-related electromagnetic data that~1! optimizes data intake
in high-resolution data acquisition,~2! minimizes errors of to-
pography, current density analysis, or source localization due to
missing sensors, and~3! provides statistical information about
the data quality for each channel in the array.

ERP analysis typically begins with a three-dimensional matrix
~trial 3 sensor3 time! EEGn,s, t with n denoting the number of
trials or recording epochs,s the number of sensors, andt the
number of time samples within a trial. Although we focus on
electrical recordings in the present report, a similar structure is
used for event-related MEG analysis. Data processing then com-
prises the following steps:
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twice the highest-appearing frequency in the measurement. In the case of
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• First, the influence of extraneous noise resulting from movement
or sensor~electrode! artifacts is controlled by rejecting epochs
with large amplitudes. A criterion is set such that within a given
epochn and for a given sensors the range of data points EEGn,s, t

for all time pointst does not exceed a predefined absolute am-
plitude ~for the EEG, for instance, a range of 100mV is sug-
gested; Elbert, Lutzenberger, Rockstroh, & Birbaumer, 1985!. In
case of violation of this requirement, the data recorded from a
particular sensor will be declared as artifact contaminated for
that particular trial.2 If this problem recurs frequently in a given
data set, the rejection strategy may be elaborated as follows:~a!
If data of one or several identified sensors turn out to be of poor
quality throughout a significant portion of theN trials, these
sensors will be rejected completely from further analyses~from
all trials!. ~b! Alternatively, an EEGn, epoch is rejected entirely
if a significant portion of theS sensors turns out to be artifact
contaminated.

• Second, artifacts from eye movements and blinks, as determined
by periorbital electrooculogram~EOG! channels, are detected.
Trials with artifacts may be rejected, or algorithms may be used
to subtract the ocular artifact from the EEG channels~as de-
scribed, for instance, by Berg & Scherg, 1991; Elbert et al.,
1985!.

• Third, the remaining trials are averaged for each sensor and the
resulting averaged ERP is then analyzed further.

Although this procedure is commonly used, the selective elim-
ination of artifactual trials or channels has significant drawbacks,
particularly when applied to dense array data:

• First, if a sensor is noise contaminated in some but not all trials,
the experimenter has to decide whether the rejection of that
particular sensor, or the rejection of the noisy trials, will be
appropriate. Often this decision is based on a rule of thumb that
is not tailored to the specific data set: For example, if more than
20% of the sensors on a trial are noisy reject the trial, otherwise
reject the data from individual sensors. Both trial and individual
sensor data rejections result in a loss of signal information, and
both actions may introduce a bias into the results.

• Second, according to the “all or none” excessive amplitude rule,
that is, that a given amplitude range should not be exceeded at any
sensor during a trial, all trials for which this criterion is not met
will be rejected irrespective of how many sensors are problem-
atic. Furthermore, because they have different positions in rela-
tion to skull conductivity and brain sources, different EEG sensors
have different EEG signal amplitudes. This will result in different
background EEG amplitudes, depending on their distance from
the reference sensor, and this background EEG is considered the
“noise” in ERP averaging. Artifactual amplitudes thus summate
with different EEG amplitudes for different channels.

• Third, once averaging has been accomplished, no statistical in-
formation about the noise level for particular sensors, or about
the set of measurements as a whole, is available. As a conse-
quence, data sets with different noise levels are compared within
one statistical procedure. The lack of noise information limits the
power of inverse source modeling methods such as the least
squares~Press, Flannery, Teukolsky, & Vetterling, 1986!, chi-
square, maximum-likelihood~Sikihara, Ogura, & Hotta, 1992!,
or minimum-norm methods~Hämäläinen & Ilmoniemi, 1984!.
All these techniques can make good use of information on noise
heterogeneity.

The crudeness of artifact screening and signal averaging con-
trasts with the effort that is invested in further data analysis, such
as MRI-constrained source modeling with realistic head models.
Empirical research~Braun, Kaiser, Kinces, & Elbert, 1997! has
shown that the accuracy of current source modeling is highly de-
pendent on the noise level of the data.

Overview

Therefore, we propose the following method for statistical control
of artifacts in dense array studies~SCADS!. The analysis requires
two passes at the data, the first with the data kept in the recording
reference, and the second with the data transformed to the average
reference.

The first pass detects and rejects artifactual channels, in the
recording reference~e.g., vertex referenced!, to avoid contamina-
tion of all channels by the artifacts when transforming EEG data to
the average reference. The average reference is computed by sub-
tracting the potential average across allS sensors at one point of
time from each single sensor potential at this point of time. There-
fore artifacts of single sensors will contaminate the average refer-
ence~and thus all other sensors! by a factor of 10S.3 Once this pass
is complete, the average reference may be computed to allow
accurate topographic mapping and topographic waveform plots.
An accurate average reference is unique to dense array studies. It
requires a minimum of 64 channels, distributed to the inferior head
surface as well as the top of the head~Junghöfer, Elbert, Tucker,
& Braun, 1999; Tucker et al., 1994!.

Some EEG analysis methods, such as source localization pro-
cedures, do not require transformation to the average reference
~because the reference site may be modeled explicitly!. In these
cases, or in case of MEG data~which does not require a reference!,
the first stage can be omitted as it will be repeated in the second
pass.

In the second pass, based on the average reference, global
artifacts may be more clearly identified because the reference
bias has been removed. Individual artifactual sensors that were
identified in the first pass may be interpolated and replaced to
complete the dataset and avoid the biases introduced by missing
data.

2For the sake of clarity, the termsensorwill be used from here on,
referring to SQUID~superconducting quantum interference device! sen-
sors in MEG and electrodes in EEG recordings. For EEG recordings, it is
important to remember that each channel is comprised of the scalp poten-
tial fields assessed by two sensors, one typically considered to be the
reference, and that there are no privileged reference sites on the head where
the potential remains constant across time. In this discussion, we assume
the recording is with a common reference~rather than different bipolar
electrodes for each channel!.

3Sensors with artifactually attenuated signals, such as #114 in Figure 1,
would be hard to detect after the transformation to averaged reference, as
they then would include the signal at the reference location~appropriately
estimated as zero minus the average reference! in addition to their own small
signal. If such a sensor is distant from the reference, as in the present ex-
ample, it is easily detected as artifact contaminated because its signal dis-
tribution differs from those of the neighboring sensors. If, however, a sensor
is positioned adjacent to the reference, its signal deviation may go undetected,
while still generating distortions of the spatial potential distribution.

524 M. Junghöfer et al.



Procedure

After outlining the steps of the analysis procedure, we will de-
scribe each in detail.

1. First Pass—Based on the Recording Reference:

1.1. Filter, thereby attenuating or removing artifacts in frequency
bands that are not of interest for the analysis;

1.2. Construct editing data matrices;

1.3. Detect and reject consistently contaminated sensors~i.e., sen-
sors exceeding a criterion of contamination throughout the
experimental session!;

1.4. Reject contaminated sensors in specific trials~to avoid the
contamination of entire epochs when transforming to average
reference!;

1.5. Transform the edited data to average reference~to minimize
the dependence of signal and noise amplitudes on the distance
between the sensor and the chosen reference site!.

2. Second Pass—Based on the Average Reference:

2.1. Construct editing data matrices~as step 1.2!;

2.2. Determine and reject contaminated sensors in specific trials
~based on the given editing matrices!;

2.3. Reject contaminated trials;

2.4. Average the remaining epochs, using interpolated values for
distinct contaminated sensors~to avoid a different number of
averaged epochs for different sensors!;

2.5. Compute the standard deviation across all trials included in the
average.

1. First Pass Based on the Recording Reference

1.1. Filter
The decision to reject a given trial from the average should pro-
ceed after bandpass filtering within the frequency band of interest.
For ERP studies, retention of near-DC variation is usually pre-
ferred because slow brain potential changes may be meaningful,
and higher frequency information related to sensory potentials may
also be important. It is therefore best to record with a broad band-
pass~e.g., 0.01–100 Hz!, then filter digitally, such as with a band-
stop or notch to filter out the 50- or 60-Hz main power line.

The filter can be applied before segmentation of the ongoing
stream of data into trials. If trials are filtered, any artifact produced
by a fixed filter length must be minimized or subtracted from the
beginning of the trial. Stimulus artifacts, such as from an electrical
stimulus, must be removed before filtering. Otherwise, digital fil-
tering will temporally smear the artifact, making its removal more
difficult.

1.2. Construct Editing Matrices
Editing data matrices are constructed to remove or correct sensors
that are artifact contaminated. For this matrix construction, the
maximum absolute value over time, the standard deviation over
time and the maximum of the gradient of values over time~first
derivative! are determined for every epoch. These three parameters
display different sensitivities for specific artifacts. For instance, a

sensor that is noisy throughout the entire epoch may produce nor-
mal amplitude values, whereas the noise contamination would be
apparent in the standard deviation. Furthermore, transient artifacts
may become obvious only from examining the first derivative.

ThreeN 3 S data matricesM are produced with elementsmns

for thenth epoch or trial at thesth sensor. The elementsmns of the
first matrix contain the maximal absolute value of the sensors and
the trial n over time. The second matrix comprises the standard
deviations across the trial time interval. The third matrix describes
the maximal temporal gradient. If the time interval of interest does
not correspond to the entire trial interval, for example, the analysis
targets only the first part of a recorded epoch, the calculation of the
elementsmnsshould be based on the targeted time interval to avoid
rejection of trials or sensors because of artifacts occurring in non-
targeted time segments. Moreover, it might be necessary to ex-
clude a distinct time segment with obvious stimulus-induced or
other experiment-specific artifacts from this calculation to avoid
rejection of trials or sensors just because of this specific artifact.
The editing matrices thus allow a focused screening of the data for
the unique conditions of the experiment.

Additional criteria and matrices can be created. Coherent bio-
logical noise, such as from alpha waves, often poses a problem for
ERP source modeling. Therefore, alpha power might be specified
in a further editing matrix in order to identify trials with large-
amplitude alpha waves.

1.3. Detect and Reject Consistently Contaminated Sensors
The parameter~ p! matrices computed in step 1.2~absolute max-
imum, standard deviation, and first derivative! are used to deter-
mine contaminated sensors by creating a statistical measure of the
degree and consistency of the artifactual values. A confidence
coefficient is introduced to weight this measure. Medians are used
to avoid the influence of extreme values.

We first calculate the corresponding boundary values for
Lim6~ p! for each parameter matrixp ~Figure 1B!:

Lim6~ p,l! 5 medS~medN
s~ ps,n!!

6 lp{!(
s51

S

~medN
s~ ps,n! 2 medS~medN

s~ ps,n!!!2

S

m Lim6~ p,l! 5 [a 6 lp{!(
s51

S

~as 2 [a!2

S

ps,n: value of sensors, trial n, and parameterp ~absolute maxi-

mum across time; standard deviation across time; absolute maxi-
mum of first derivative across time!

medN : median across all trialsN;

medS: median across all sensorsS;

lp: confidence coefficient has to be chosen by the user.

Sincea 5 medN
s~ ps,n! is the median across all trials for a given

sensor, then [a 5 medS~medN
s~ ps,n!! is the grand median across

theseS medians~a fixed value for each of the three param-
eter typesp!. Therefore, the root-part of the given equation
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! (
s51

S

~as 2 [a!2

S
is similar to a standard deviation except that[a is

the median and not the mean across allS median values. The
general form of the equation as a whole resembles a robust~be-
cause it is based on medians! confidence interval, with the confi-
dence coefficient replaced bylp and theSEreplaced by a median-
basedSEequivalent.

In computing the confidence intervals for each sensor, a phys-
ical property of the data recorded with respect to a common ref-
erence site must be considered. This property is illustrated in
Figure 1A: the sensors close to the reference will measure only a

small potential difference from the reference site~because there is
only a small amount of brain tissue generating a voltage difference
between the index sensor site and the reference site!. In the present
example, the vertex sensor~Cz! served as reference. Figure 1A
plots the amplitude~medium of absolute maximum! at each sensor
site as a function of its polar angle from the Cz reference, which
was defined as zero~the pole!. A larger polar angle means more
brain tissue contributing to the potential difference, and thus a
larger channel amplitude~sensor site minus reference site poten-
tial!. This reference-dependence effect occurs with any~e.g., nose,
mastoid, noncephalic! reference, and the effect can vary in a com-
plex fashion between subjects and experimental conditions~Jung-
höfer et al., in press!.

Figure 1. Removal of artifact contaminated channels based on SCADS step 1.3.~A! Each asterisk corresponds to an electrode,
sorted according to their polar~theta! angle on the abscissa. Thez-axis points from the center of the head through the reference
electrode~in this case the vertex!. The ordinate indicates the noise level computed as the median across trials of the maximum of
absolute values within a sensor epoch. The dashed line shows the least square regression of second degree.~B! After subtraction
of the regression function, data from sensors that lie above or below the calculated confidence interval with boundary values
Lim6~ p! ~upper and lower dashed line! can easily be identified and removed.
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To remove this effect, and thus equate the confidence intervals
across the recording channels, the sensors are arranged according
to their polar angular distance from Cz and the resulting function
a~s! is interpolated using a second degree polynomial least square
regression. The original dataa~s! are corrected toc~s! by the
resulting spatial dependencyb~s!, such thatc~s! 5 a~s! 2 b~s!
~see Figure 1B!. Now the final confidence interval for each pa-
rameterp can be calculated:

Lim6~ p,l! 5 [c 6 lp{!(
s51

S

~cs 2 [c!2

S

If the spatial corrected median across all trials for a given
sensorc~s! exceeds the confidence intervals for any of the three
parameters, it would be rejected from the analysis. Based on the
analysis of a large assortment of data sets ap independent value of
l 5 2 seems to be a good choice to reject consistently noisy
sensors while keeping data from sensors that show large signals
that may be just large amplitude ERPs.

Figure 1B illustrates the confidence interval for an analysis
based on the absolute amplitude maximum~first parameter!. Sen-
sors 91 and 114 can be seen to be contaminated by artifacts through-
out the measurement interval, and are thus candidates for rejection
and replacement by interpolation.

Figure 2A illustrates a data set from which only sensor #82
~bottom of sensor array! was rejected completely.

1.4. Detect and Reject Contaminated Sensor Epochs
In the next step, the individual sensor epochs~i.e., a single sensor
channels for a single trialn! are removed if the value of one of the
three parameters for the sensor epochps, n exceeds the following
confidence interval~calculated across all trials for that sensor
channel!:

Lim6~ ps! 5 medN
s~ ps,n!

6 mp{!(
n51

N

~ ps,n 2 medN~ ps,n!!2

N

5 Zd 6 mp!(
n51

N

~d 2 Zd!2

N

medN
s: median across all trialsN of sensors;

mp: confidence coefficient has to be chosen by the user;

Again ap independent value ofm 5 2 is a good choice to select
sensor epochs with excessive noise content.

1.5. Transform the Edited Data to Average Reference
Trials for which the resulting number of sensors with adequate data
is less than a specified threshold are removed from further analy-
sis. This threshold varies from experiment to experiment. For a
clinical study of dementia it may be necessary to accept data with

80 of 128 sensor channels with acceptable data; for a normal study
with well-trained volunteers it may be possible to require 128 of
128 sensor channels . At this point, the accepted data are trans-
formed to the average reference.

2. Second Pass Based on Average Reference

2.1 Construct the Average-Referenced Editing Matrices
If step 1.2 is repeated using the average reference data, artifacts
produced by the reference sensor can be taken into account. Fur-

Figure 2. ~A! Histogram of the maximum absolute values of single sensor
epochs calculated for each sensor. The user must define interactively the
upper boundary of the amplitude range that is accepted. A total of 480 trials
was distributed among 12 conditions, 40 trials each. The upper limit was
determined individually per channel~the distribution marked in gray indi-
cates data from the acquisition reference Cz@129# !. Note that data from
sensor 82 was removed in step 1.3 of the data processing. The histograms
for the standard deviation and for the largest gradient are typically similar
to those of the largest amplitudes.~B! Frequency distribution magnified for
a single channel. Of the 480 original trials, 29 are rejected and 451~94%!
are accepted for further analysis.
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thermore, the dependency of signal and noise power on the dis-
tance from the reference is no longer relevant. All calculations up
to this step are accomplished by an automatic computer algorithm
without necessity of interactive control.

2.2 Detect and Reject Artifact-Contaminated Sensor Epochs
Identifying distinct sensors from particular trials should be based
on visual inspection—in contrast to the automated detection of the
first stage—for the following reasons: Because the noise may not
be normally distributed and signal amplitude may not be constant
across the trial, the contour of the frequency distribution of a
sensor does not clearly indicate its noise. However, trials with
abnormal amplitudes can be identified—as illustrated in Figure 2B
for one sensor selected from the whole-head array in Figure 2A.
Outliers in the distribution typically result from artifacts such as
eye blinks, eye movements, or body movement. The probability of
such artifacts, as well as those resulting from marked drifts, in-
creases with the number of channels and with the duration of the
data acquisition period.

Figure 2B illustrates a frequency distribution of amplitude max-
ima ~amplitude histogram! for a given sensor. These are created by
selecting the data point in each trial with the largest absolute
deviation from zero. The critical upper limit for the amplitude
maxima was chosen based on inspection of the histogram. All trials
with values above this limit~indicated by the dashed line in Fig-
ure 2B! are removed—in the given example this number amounts
to 29, so that 451~94%! trials remain for further analysis.

The removal of individual sensor epochs is illustrated in Fig-
ure 2A. The maximum absolute amplitudes across trials are log
normally distributed, that is, they are skewed toward lower ampli-
tudes. In an interactive manner, the experimenter must determine
the upper and lower boundaries between which the data are ac-
ceptable. If a distribution is extremely broad or exhibits multiple
peaks, the sensor may be removed completely~although such sen-
sors should have been already removed when applying step 1.2 of
the suggested first pass data processing!. Under certain circum-
stances, bimodal distributions for some sensors may be observed.
In general, this bimodality could indicate that a sensor—for in-
stance due to movement—has lost its skin contact in the course of
the acquisition period. This disruption will produce an abrupt in-
crease in noise amplitude. In such cases a good strategy is to define
the boundary amplitudes just above the distribution with the lower
signal amplitudes.4

Boundaries have to be determined for each of the three param-
eters~absolute maximum, largest standard deviation, largest gra-
dient!. We have observed that the standard deviation and temporal
gradient distributions resemble the distribution of the maximum
amplitudes illustrated in Figure 2. Sensor epochs for which one or
more of the three measures is outside of the respective predefined
boundaries are removed from further analysis, whereas all others
are included in the average.

A computerized automatic processing of this outlined step would
be desirable, particularly to standardize the described criteria for
rejection. Automatic processing would also be complex, because

the distributions of the three editing matricesM depend on the
unique characteristics of the signals.5

2.3. Reject Contaminated Trials
To identify trials contaminated by artifacts at many or all sensors,
a histogram of the distribution of artifact-contaminated trials per
sensor is constructed~Figure 3!. On the basis of the histogram, the
experimenter determines a lower boundary for trial rejection. This
procedure improves the accuracy of the subsequent sensor epoch
interpolation.6

With 118 selected as the minimum number of good sensors per
trial, of all trials showing more than 10 bad sensors within one trial
are rejected from further data analysis. In the present example, 90
~23%! of the 480 trials are rejected due to artifacts that affect at
least 11 sensors. Even if the boundary for trial rejection is lowered—
for instance to 110 good sensors per trial—only a few more trials
would have been saved for further analysis, all of them with in-

4Inspection of Figure 2A points to yet another noteworthy effect: sen-
sors in the center of the sensor configuration show narrower distributions
and smaller amplitudes than sensors in more inferior regions. This differ-
ence is a consequence of the inadequate sampling from the inferior head
surfaces~face and neck! that does not meet the criteria for determining the
average reference. The effects of this “polar average reference effect” are
discussed in Junghöfer et al.~1998!.

5Though the authors recommend visual inspection to guide data screen-
ing, the following calculation provides reasonable default values for the
upper threshold for each sensors and parameterp: Lim1~ ps,v! 5

max1
#N

S!
ELim2 ~ ps!
Lim1 ~ ps,v! ~ ps2 [ps!

2

Lim1~ ps,v!2Lim2~ ps!
Dm 2 ~In most casesLim2~ ps! is the

simply the minimum ofps.! The root expression in the denominator de-
scribes the standard deviation of the given parameterp for one sensors
within the interval from the lower to the upper threshold. Because the
signal-to-noise ratio~S0N! of the final average increases with the square
root of the contributing number of trialsN, this ratio increases with ex-
pansion of the threshold interval. However, the extension of the upper
threshold also leads to a reduction in S0N, because dissimilarity of trials
will increase. The inverse standard deviation function of the parameter
distribution depending on the threshold interval can be used to quantify this
S0N decrease. The aim of the overall function is, therefore, to determine
the thresholds that maximize S0N depending on the number of trials with
consideration of trial likelihood. The coefficient exponentm weights the
importance of trial likelihood in comparison to the number of trials and has
to be chosen by the user. We found 0.5 to be a reasonable value to account
for an appropriate trial variance.

In order to take into account the spatial scalp distribution of the final
upper thresholds~i.e., neighboring sensors should show similar thresholds!,
we calculate a “threshold deviation value” for each sensor. This value is the
sum of the “nonlinearly weighted” differences between each sensor thresh-
old and all other thresholds. The weighting corresponds roughly to the
inverse of the spatial distance~the spherical angle distance!. However,
using spherical spline interpolation this weighting is not linear.

Finally, the program suggests rejecting all sensors for which threshold
deviations fall beyond two standard deviations of the median over all
threshold sensor deviations. If based on a large number of trials~i.e., .
100!, this procedure does not require additional manual editing and could
be used to standardize sensor and trial rejection criteria.

6The simple choice of a minimum number of intact channels per trial
~also used in SCADS step 1.5! does not take into account the spatial
arrangement of the rejected sensors. If they are all in the same region, then
interpolation will be inadequate for that region. To solve this problem we
would like to have a parameter that describes the overall accuracy of
interpolation. Using nearest neighbor interpolation, this parameter could be
the averaged spherical angle distance from the index sensor~the one to be
interpolated! to the neighboring sensors used for interpolation~see, e.g.,
Nunez, 1981!. This is actually the average across all interpolation weights
~decreasing linearly with increasing angular distance in the case of the
nearest neighbor method!. However, using spherical spline interpolation,
the sensors are not linearly weighted. In this case an elegant solution is the
interpolation of given spatial test functions~actually the spherical spline
functions themselves based on the given configuration of intact and re-
jected channels using the same spherical spline functions chosen for the
following average procedure!. The accuracy of this interpolation depends
not only on the number of rejected channels but also on their spatial
relations.
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complete sensor sets. In experiments with many trials per condi-
tion, it is desirable to choose a high boundary, because the loss of
trials will then have a tolerable effect on the signal-to-noise ratio.
If a distribution with a clear peak, like the one in Figure 3, is not
obtained, the choice of the lower boundary may be based on the
number of remaining trials.

2.4. Average the Artifact-Free Trials with Interpolated Values
for the Artificial Sensor Sites
Before averaging the remaining trials~i.e., all trials with a suffi-
cient number of intact sensors remaining at this step!, all sensor
epochs that have been identified above as artifact contaminated are
replaced by interpolation. The interpolation is achieved with
weighted spherical splines fit to the intact sensors. In contrast to
nearest neighbor interpolation, spherical splines are fit to all re-
maining sensors, such that the influence of each sensor is weighted
nonlinearly by the inverse of its distance to the missing sensor and
by the specific noise level~i.e., more distant and0or noisier sensors
are weighted less than closer and0or cleaner sensors!. This esti-
mation and reconstruction of rejected sensor epochs is of particular
importance to maintaining the accuracy of the dense array repre-
sentation. The complete dataset, including the estimated inter-
polated data, may be computed and stored if single-trial analyses
~such as spectral, latency-adjusted averaging, or nonlinear analy-
ses! are desirable. Otherwise, the estimation and reconstruction
can proceed with the averaged ERP epochs.

Accurate surface potential distributions are particularly impor-
tant for estimating radial current source density~CSD! from the
two-dimensional~2D! Laplacian of the potential. Assuming no
sources in the scalp, the 2D~surface! Laplacian is proportional to
the radial current flow in or out of the skull at the computed point.
The estimation of CSD based on spherical spline interpolation of
EEG scalp potentials was first developed by Perrin, Pernier, Ber-
trand, and Echallier~1989!. The calculation of the weighted spher-

ical spline interpolation and the algorithms for calculating both
CSD and intracranial potential maps were described by Junghöfer
et al. ~1997!. Using spherical splines, data for a rejected sensor
may be interpolated accepting all valid sensors, with the contribu-
tion of each weighted according to its noise level. This interpola-
tion allows estimates for sensor sites for which one or several
neighbors are missing. In addition, the global noise level of the
remaining sensor epochs is used to calculate the regularization or
“smoothing” factor. As described by Whaba~1981! or Freeden
~1981!, larger values of the regularization or smoothing factor
indicate a smaller contribution of a single sensor’s data relative to
the other remaining sensors. A sufficient number of remaining
sensors for accurate is guaranteed by the minimum threshold~as
described in steps 1.5, and 2.3!; otherwise the trial would have
been rejected before this point. Each sensor is weighted according

Figure 3. Histogram of a typical distribution of channels that result from
SCADS step 2.3. With the given minimum number of good sensors per trial
of 118, all trials—90 of the total 480~23%!—showing 11 or more bad
sensors within one trial are rejected from further data analysis.

Figure 4. Results for a typical noise-weighted interpolation of single
sensor epochs. The rejected sensors are marked with an asterisk.~A!
The original data set and~B! the marked detail view of~A! after single
trial correction.~Channel 91 exhibits the consequences of a reset, occur-
ring during the trial, in which a sensor with a large electrochemical
offset exceeds the input range of the amplifier, and the input capacitor
of the AC coupling is reset to zero.!
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Figure 5. Results for a typical averaged event-related potential with and
without single trial interpolation. The solid line presents the “clean” aver-
aged data set using all epochs of all sensors~no interpolation!. In the
artificial case of single trial interpolation~dashed line!, the four neighbor-
ing sensors marked with an asterisk were totally rejected.~B! presents the
marked detail view of~A!. Differences are minor but important because
they are equivalent to the amount of additional spatial information using
high spatial sampling electroencephalography.
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to its signal-to-noise ratio, which is deduced from the histogram
distributions in the editing matrices in step 2.2.

Figure 4 illustrates a typical interpolation for missing sensor
epochs. The noise-contaminated sensor epochs~marked with an
asterisk! were interpolated trial-by-trial. A trial before~A! and after
~B, detail view! single trial interpolation was chosen to illustrate
the effect of channel resetting~channel 91 in this example!. This
example illustrates how an artifact-contaminated sensor could in-
fluence all other sensors in the average reference transformation.

2.5. Calculate the Standard Deviation Across All
Included Trials
Finally, the standard deviation is computed~for each time point!
across all of the trials included in the average. In this matrix each
element roughly describes the quality of each time sample in the
average waveform. The standard deviation allows a comparison of
signal quality between differing time points or differing sensors.
This comparison could provide a cautionary note for further analy-
sis.7 This caution is of crucial significance whenever the topo-
graphical distribution of averaged data is mapped using weighted
spline interpolations. It also allows comparison between different
data sets. Finally, this information on noise levels may help im-
prove the accuracy of source modeling.

Finally, artifacts from subtle yet systematic eye movements
may survive the artifact rejection process and thus contaminate the
averaged ERP. Therefore, specific artifact correction procedures

should also be implemented, such as subtractive correction proce-
dures~e.g., Elbert et al., 1985! or modeling approaches~Berg &
Scherg, 1991!.

To test the accuracy of interpolation against measured data, we
selected four adjacent sensors with good data~no rejected trials! in
a 200-trial visual ERP experiment. We then treated them as if they
were artifactual, interpolated them according to the SCADS meth-
odology described above, and compared the interpolations to the
actual data. The overplot of interpolated vs. actual data are shown
for the four sensors~marked with asterisks! in Figure 5A, and in
detail in Figure 5B. Although the interpolation was not perfect,
Figure 5B shows that the waveform was fairly well reconstructed
even for this large missing region. The fact that the interpolation is
only approximate indicates that sampling with lower sensor den-
sity ~e.g., 64 or 32 channels! would not accurately reflect the
spatial frequency of the scalp fields~Srinivasan et al., 1998!.

The major advantage of the interpolation method of SCADS
can be emphasized at this point: Averaging of trials without sub-
stituting the rejected sensor epochs by interpolated values will
result in different numbers of trials per sensor site in the averages.
This method would produce a temporal and spatial correlation of
signal and noise, which would not be equally distributed across
trials.

Conclusion

By interpolating the artifactual sensors in individual~raw EEG and
MEG! trials of the ERP, the SCADS methodology maximizes the
data yield in dense array ERP and MEG studies. Furthermore,
SCADS avoids analysis artifacts caused by correlated signal and
noise. However, this methodology requires both extensive com-
puting and the attention of the experimenter, requiring on the order
of 5–10 min per condition per recording session. This interactive
processing might be automated if a large amount of data of the
same kind are to be analyzed. However, the SCADS methodology
clearly requires more experimenter time and computing resources
than the conventional averaging method. This methodology may
not be necessary for experiments such as from university subjects,
most of whom can provide data with minimal artifacts. However,
for experiments that are valuable and difficult to collect without
artifacts, such as from children or clinical populations, the addi-
tional investment may be justified.

Another benefit of SCADS is the statistical information about
data quality, which provides objective criteria for rejection or in-
clusion of the data from a subject. Finally, in the subsequent steps
of surface field mapping and electrical and magnetic source analy-
sis, the SCADS methodology may provide substantial information
on the noise and the variance of the average as well as the average
signal represented by the ERP.
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