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Abstract
The notion of statistical convergence was defined by Fast (Colloq. Math. 2:241-244,
1951) and over the years was further studied by many authors in different setups. In
this paper, we define and study statistical τ -convergence, statistically τ -Cauchy and
S∗(τ )-convergence through de la Vallée-Poussin mean in a locally solid Riesz space.
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1 Introduction and preliminaries
Since , when Steinhaus [] and Fast [] defined statistical convergence for sequences
of real numbers, several generalizations and applications of this notion have been inves-
tigated. For more detail and related concepts, we refer to [–] and references therein.
Quite recently, Di Maio and Kǒcinac [] studied this notion in topological and uniform
spaces and Albayrak and Pehlivan [], and Mohiuddine and Alghamdi [] for real and
lacunary sequences, respectively, in locally solid Riesz spaces. Afterward, the idea was ex-
tended to double sequences by Mohiuddine et al. [] in the framework of locally solid
Riesz spaces.
Let K be a subset of N, the set of natural numbers. Then the asymptotic density of K

denoted by δ(K) is defined as

δ(K) = lim
n→∞


n

∣∣{k ≤ n : k ∈ K}∣∣,

where the vertical bars denote the cardinality of the enclosed set.
The number sequence x = (xj) is said to be statistically convergent to the number � if for

each ε > ,

lim
n→∞


n

∣∣{j ≤ n : |xj – �| ≥ ε
}∣∣ = .

In this case, we write st-limxj = �.
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Remark . It is well known that every statistically convergent sequence is convergent,
but the converse is not true. For example, suppose that the sequence x = (xn) is defined as

x = (xn) =

⎧⎨
⎩

√
n if n is a square,

 otherwise.

It is clear that the sequence x = (xn) is statistically convergent to , but it is not convergent.

Now we recall some definitions related to the notion of a locally solid Riesz space. Let
X be a real vector space and ≤ be a partial order on this space. Then X is said to be an
ordered vector space if it satisfies the following properties:

(i) If x, y ∈ X and y≤ x, then y + z ≤ x + z for each z ∈ X .
(ii) If x, y ∈ X and y≤ x, then λy≤ λx for each λ ≥ .
If in addition X is a lattice with respect to the partial order ≤, then X is said to be a Riesz

space (or a vector lattice) [].
For an element x of a Riesz space X, the positive part of x is defined by x+ = x ∨ θ =

sup{x, θ}, the negative part of x by x– = (–x)∨θ and the absolute value of x by |x| = x∨ (–x),
where θ is the zero element of X.
A subset S of a Riesz space X is said to be solid if y ∈ S and |x| ≤ |y| imply x ∈ S.
A topological vector space (X, τ ) is a vector space X which has a (linear) topology τ such

that the algebraic operations of addition and scalar multiplication in X are continuous.
The continuity of addition means that the function f : X×X → X defined by f (x, y) = x+ y
is continuous onX×X, and the continuity of scalarmultiplicationmeans that the function
f :R×X → X defined by f (λ,x) = λx is continuous on R×X.
Every linear topology τ on a vector space X has a base N for the neighborhoods of θ

satisfying the following properties:

(C) Each Y ∈N is a balanced set, that is, λx ∈ Y holds for all x ∈ Y and every λ ∈ R with
|λ| ≤ .

(C) Each Y ∈ N is an absorbing set, that is, for every x ∈ X , there exists λ >  such that
λx ∈ Y .

(C) For each Y ∈N , there exists some E ∈N with E + E ⊆ Y .

A linear topology τ on a Riesz space X is said to be locally solid (cf. [, ]) if τ has
a base at zero consisting of solid sets. A locally solid Riesz space (X, τ ) is a Riesz space
equipped with a locally solid topology τ .
In this paper, we define and study statistical τ -convergence, statistically τ -Cauchy and

S∗(τ )-convergence through de la Vallée-Poussin mean in a locally solid Riesz space.

2 Generalized statistical τ -convergence
Throughout the text, we write Nsol for any base at zero consisting of solid sets and satis-
fying the conditions (C), (C) and (C) in a locally solid topology. The following idea of
λ-statistical convergence was introduced in [] and further studied in [–].
Let λ = (λn) be a non-decreasing sequence of positive numbers tending to ∞ such that

λn+ ≤ λn + , λ = .
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The generalized de la Vallée-Poussin mean is defined by

tn(x) =:

λn

∑
j∈In

xj,

where In = [n – λn + ,n].
A sequence x = (xj) is said to be (V ,λ)-summable to a number � if

tn(x)→ � as n→ ∞.

A sequence x = (xj) is said to be strongly (V ,λ)-summable to a number � if


λn

∑
j∈In

|xj – �| →  as n → ∞.

We denote it by xj → �[V ,λ] as j → ∞.
Let K ⊆N be a set of positive integers, then

δλ(K) = lim
n→∞


λn

∣∣{n – λn +  ≤ j ≤ n : j ∈ K}∣∣

is said to be the λ-density of K .
In case λn = n, the λ-density reduces to the natural density.
The number sequence x = (xj) is said to be λ-statistically convergent to the number � if

for each ε > , δλ(Kε) = , where Kε = {j ∈N : |xj – �| > ε}, i.e.,

lim
n→∞


λn

∣∣{j ∈ In : |xj – �| > ε
}∣∣ = .

In this case, we write stλ-limj xj = � and we denote the set of all λ-statistically convergent
sequences by Sλ. This notion was extended to double sequences in [, ].

Remark . As in Remark ., we observe that if a sequence is (V ,λ)-summable to a num-
ber �, then it is also λ-statistically convergent to the same number �, but the converse need
not be true. For example, let the sequence z = (zk) be defined by

zk =

⎧⎨
⎩
k if n – [

√
λn] +  ≤ k ≤ n,

 otherwise,

where [a] denotes the integer part of a ∈ R. Then x is λ-statistically convergent to  but
not (V ,λ)-summable.

Definition . Let (X, τ ) be a locally solid Riesz space. Then a sequence x = (xj) in X is
said to be generalized statistically τ -convergent (or Sλ(τ )-convergent) to the number ξ ∈ X
if for every τ -neighborhood U of zero,

lim
n→∞


λn

∣∣{j ∈ In : xj – ξ /∈U}∣∣ = .

In this case, we write Sλ(τ )-limx = ξ or xj
Sλ(τ )–→ ξ .
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Definition . Let (X, τ ) be a locally solid Riesz space. We say that a sequence x = (xj)
in X is generalized statistically τ -bounded if for every τ -neighborhood U of zero, there
exists some λ >  such that the set

{j ∈N : λxj /∈U}

has λ-density zero.

Theorem . Let (X, τ ) be a Hausdorff locally solid Riesz space and x = (xj) and y = (yk)
be two sequences in X. Then the following hold:

(i) If Sλ(τ )-limj xj = ξ and Sλ(τ )-limj xj = ξ, then ξ = ξ.
(ii) If Sλ(τ )-limj xj = ξ , then Sλ(τ )-limj αxj = αξ , α ∈ R.
(iii) If Sλ(τ )-limj xj = ξ and Sλ(τ )-limj yj = η, then Sλ(τ )-limj(xj + yj) = ξ + η.

Proof (i) Suppose that Sλ(τ )-limj xj = ξ and Sλ(τ )-limj xj = ξ. Let U be any τ -neighbor-
hood of zero. Then there exists Y ∈ Nsol such that Y ⊆ U . Choose any E ∈ Nsol such that
E + E ⊆ Y . We define the following sets:

K = {j ∈N : xj – ξ ∈ E},
K = {j ∈N : xj – ξ ∈ E}.

Since Sλ(τ )-limj xj = ξ and Sλ(τ )-limj xj = ξ, we have δλ(K) = δλ(K) = . Thus δ(K∩K) =
 and, in particular, K ∩K �= ∅. Now, let j ∈ K ∩K. Then

ξ – ξ = ξ – xj + xj – ξ ∈ E + E ⊆ Y ⊆U .

Hence, for every τ -neighborhoodU of zero, we have ξ – ξ ∈U . Since (X, τ ) is Hausdorff,
the intersection of all τ -neighborhoods U of zero is the singleton set {θ}. Thus, we get
ξ – ξ = θ , i.e., ξ = ξ.
(ii) LetU be an arbitrary τ -neighborhood of zero and Sλ(τ )-limj xj = ξ . Then there exists

Y ∈Nsol such that Y ⊆U and also

lim
n→∞


λn

∣∣{j ∈ In : xj – ξ ∈ Y }∣∣ = .

Since Y is balanced, xj – ξ ∈ Y implies α(xj – ξ ) ∈ Y for every α ∈ R with |α| ≤ . Hence,
for every n ∈N, we get

{j ∈ In : xj – ξ ∈ Y } ⊆ {j ∈ In : αxj – αξ ∈ Y }
⊆ {j ∈ In : αxj – αξ ∈U}.

Thus, we obtain

lim
n→∞


λn

∣∣{j ∈ In : αxj – αξ ∈ U}∣∣ = 

for each τ -neighborhoodU of zero. Now let |α| >  and [|α|] be the smallest integer greater
than or equal to |α|. There exists E ∈Nsol such that [|α|]E ⊆ Y . Since Sλ(τ )-limj xj = ξ , the
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set

K = {j ∈N : xj – ξ ∈ E}

has λ-density zero. Therefore, for all n ∈N and j ∈ K ∩ In, we have

|αξ – αxj| = |α||ξ – xj| ≤
[|α|]|ξ – xj| ∈

[|α|]E ⊆ Y ⊆U .

Since the set Y is solid, we have αξ – αxj ∈ Y . This implies that αξ – αxj ∈U . Thus,

lim
n→∞


λn

∣∣{j ∈ In : αxj – αξ ∈ U}∣∣ = 

for each τ -neighborhood U of zero. Hence Sλ(τ )-limj αxj = αξ .
(iii) Let U be an arbitrary τ -neighborhood of zero. Then there exists Y ∈Nsol such that

Y ⊆ U . Choose E inNsol such that E + E ⊆ Y . Since Sλ(τ )-limj xj = ξ and Sλ(τ )-limj yj = η,
we have δλ(H) =  = δλ(H), where

H = {j ∈ N : xj – ξ ∈ E},
H = {j ∈N : yj – η ∈ E}.

Let H =H ∩H. Hence, we have δλ(H) = . For all n ∈N and j ∈ H ∩ In, we get

(xj + yj) – (ξ + η) = (xj – ξ ) + (yj – η) ∈ E + E ⊆ Y ⊆U .

Therefore,

lim
n→∞


λn

∣∣{j ∈ In : (xj + yj) – (ξ + η) ∈U
}∣∣ = .

Since U is arbitrary, we have Sλ(τ )-limj(xj + yj) = ξ + η. �

Theorem . Let (X, τ ) be a locally solid Riesz space. If a sequence x = (xj) is generalized
statistically τ -convergent, then it is generalized statistically τ -bounded.

Proof Suppose x = (xj) is generalized statistically τ -convergent to the point ξ ∈ X and let
U be an arbitrary τ -neighborhood of zero. Then there exists Y ∈ Nsol such that Y ⊆ U .
Let us choose E ∈Nsol such that E + E ⊆ Y . Since Sλ(τ )-limj→∞ xj = ξ , the set

K = {j ∈N : xj – ξ /∈ E}

has λ-density zero. Since E is absorbing, there exists λ >  such that λξ ∈ E. Let α ∈
(,min{,λ}). SinceE is solid and |αξ | ≤ |λx|, we have αξ ∈ E. Since E is balanced, xj–ξ ∈ E
implies α(xj – ξ ) ∈ E. Then, for each n ∈N and j ∈ (N \K)∩ In, we have

αxj = α(xj – ξ ) + αξ ∈ E + E ⊆ Y ⊆U .

http://www.advancesindifferenceequations.com/content/2013/1/66
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Thus

lim
n→∞


λn

∣∣{j ∈ In : αxj /∈U}∣∣ = .

Hence, (xj) is generalized statistically τ -bounded. �

Theorem. Let (X, τ ) be a locally solid Riesz space. If (xj), (yj) and (zj) are three sequences
such that

(i) xj ≤ yj ≤ zj for all j ∈ N,
(ii) Sλ(τ )-limj xj = ξ = Sλ(τ )-limj zj,

then Sλ(τ )-limj yj = ξ .

Proof Let U be an arbitrary τ -neighborhood of zero, there exists Y ∈ Nsol such that
Y ⊆U . Choose E ∈Nsol such that E+E ⊆ Y . Fromcondition (ii), we have δλ(A) =  = δλ(B),
where

A = {j ∈N : xj – ξ ∈ E},
B = {j ∈N : xj – ξ ∈ E}.

Also, we get δλ(A∩ B) = , and from (i) we have

xj – ξ ≤ yj – ξ ≤ zj – ξ

for all j ∈N. This implies that for all n ∈N and j ∈ A∩ B∩ In, we get

|yj – ξ | ≤ |xj – ξ | + |zj – ξ | ∈ E + E ⊆ Y .

Since Y is solid, we have yj – ξ ∈ Y ⊆U . Thus,

lim
n→∞


λn

∣∣{j ∈ In : yj – ξ ∈ U}∣∣ = 

for each τ -neighborhood U of zero. Hence Sλ(τ )-limj yj = ξ . �

3 Generalized statistically τ -Cauchy and S∗
λ(τ )-convergence

Definition . Let (X, τ ) be a locally solid Riesz space. A sequence x = (xj) in X is general-
ized statistically τ -Cauchy if for every τ -neighborhood U of zero there exists p ∈ N such
that the set

{j ∈N : xj – xp /∈U}

has λ-density zero.

Theorem . Let (X, τ ) be a locally solid Riesz space. If a sequence x = (xj) is generalized
statistically τ -convergent, then it is generalized statistically τ -Cauchy.

http://www.advancesindifferenceequations.com/content/2013/1/66
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Proof Suppose that Sλ(τ )-limj xj = ξ . Let U be an arbitrary τ -neighborhood of zero, there
exists Y ∈ Nsol such that Y ⊆ U . Choose E ∈ Nsol such that E + E ⊆ Y . By generalized
statistical τ -convergence to ξ , there is p ∈N with ξ – xp ∈ E and

lim
n→∞


λn

∣∣{j ∈ In : xj – ξ /∈ E}∣∣ = .

Also, for all n ∈N and j ∈ (N \K)∩ In, where

K = {j ∈N : xj – ξ /∈ E},

we have

xj – xp = xj – ξ + ξ – xp ∈ E + E ⊆ Y ⊆U

and δλ(K) = . Therefore the set

{j ∈N : xj – xp /∈U} ⊆ K ∩ In

for all n ∈ N. For every τ -neighborhood U of zero there exists p ∈ N such that the set
{j ∈ N : xj – xp /∈ U} has λ-density zero. Hence (xj) is generalized statistically τ -Cauchy.

�

Now we define another type of convergence in locally solid Riesz spaces.

Definition . A sequence (xj) in a locally solid Riesz space (X, τ ) is said to be S∗
λ(τ )-

convergent to ξ ∈ X if there exists an index set K = {jn} ⊆ N, n = , , . . . , with δλ(K) = 
such that limn→∞ xjn = ξ . In this case, we write ξ = S∗

λ(τ )-limx.

Theorem . A sequence x = (xj) in a locally solid Riesz space (X, τ ) is generalized statis-
tically τ -convergent to a number ξ if it is S∗

λ(τ )-convergent to ξ .

Proof Let U be an arbitrary τ -neighborhood of ξ . Since x = (xj) is S∗
λ(τ )-convergent to ξ ,

there is an index set K = {jn} ⊆N, n = , , . . . , with δλ(K) =  and j = j(U), such that j ≥ j
and j ∈ K imply xj – ξ ∈U . Then

KU = {j ∈N : xj – ξ /∈U} ⊆N – {jN+, jN+, . . .}.

Therefore δλ(KU ) = . Hence x is generalized statistically τ -convergent to ξ . �

Note that the converse holds for a first countable space.
Recall that a topological space is first countable if each point has a countable (decreasing)

local base.

Theorem . Let (X, τ ) be a first countable locally solid Riesz space. If a sequence x = (xj)
is generalized statistically τ -convergent to a number ξ , then it is S∗

λ(τ )-convergent to ξ .
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Proof Let x be generalized statistically τ -convergent to a number ξ . Fix a countable local
base U ⊃U ⊃U ⊃ · · · at ξ . For each i ∈N, put

Ki = {j ∈N : xj – ξ /∈Ui}.

By hypothesis, δλ(Ki) =  for each i. Since the ideal I of all subsets of N having λ-density
zero is a P-ideal (see, for instance, []), then there exists a sequence of sets (Ji)i such that
the symmetric difference Ki�Ji is a finite set for any i ∈ N and J :=

⋃∞
i= Ji ∈ I .

Let K = N \ J , then δλ(K) = . In order to prove the theorem, it is enough to check that
limj∈K xj = ξ .
Let i ∈ N. Since Ki�Ji is finite, there is ji ∈N, without loss of generality, with ji ∈ K , ji > i,

such that

(N \ Ji)∩ {j ∈N : j ≥ ji} = (N \Ki)∩ {j ∈N : j ≥ ji}. ()

If j ∈ K and j ≥ ji, then j /∈ Ji, and by (), j /∈ Ki. Thus xj – ξ ∈ Ui. So, we have proved that
for all i ∈ N, there is ji ∈ K , ji > i, with xj – ξ ∈Ui for every j ≥ ji: without loss of generality,
we can suppose ji+ > ji for every i ∈ N. The assertion follows taking into account that the
Ui’s form a countable local base at ξ . �

4 Conclusion
Recently, statistical convergence has been established as a better option than ordinary con-
vergence. It is found very interesting that some results on sequences, series and summa-
bility can be proved by replacing the ordinary convergence by statistical convergence; and
further, through some examples, where some efforts are required, we can show that the
results for statistical convergence happen to be stronger than those proved for ordinary
convergence (e.g., [–]). This notion has also been defined and studied in different se-
tups. In this paper, we have studied this notion through de la Vallée-Poussin mean in a
locally solid Riesz space to deal with the convergence problems in a broader sense.
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38. Çolak, R, Bektaş, CA: λ-statistical convergence of order α . Acta Math. Sci., Ser. B 31(3), 953-959 (2011)
39. Edely, OHH, Mohiuddine, SA, Noman, AK: Korovkin type approximation theorems obtained through generalized

statistical convergence. Appl. Math. Lett. 23, 1382-1387 (2010)
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