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Preface 

The following book is a guide to the practical application of statistics in data 

analysis as typically encountered in the physical sciences, and in particular 

in high energy particle physics. Students entering this field do not usually go 

through a formal course in probability and statistics, despite having been ex

posed to many other advanced mathematical techniques. Statistical methods 

are invariably needed, however, in order to extract meaningful information from 

experimental data. 

The book originally developed out of work with graduate students at the 

European Organization for Nuclear Research (CERN). It is primarily aimed at 

graduate or advanced undergraduate students in the physical sciences, especially 

those engaged in research or laboratory courses which involve data analysis. A 

number of the methods are widely used but less widely understood, and it is 

therefore hoped that more advanced researchers will also be able to profit from 

the material. Although most of the examples come from high energy particle 

physics, an attempt has been made to present the material in a reasonably general 

way so that the book can be useful to people in most branches of physics and 

astronomy. 

It is assumed that the reader has an understanding of linear algebra, multi

variable calculus and som; knowledge of complex analysis. No prior knowledge 

of probability and statistics, however, is assumed. Roughly speaking, the present 

book is somewhat less theoretically oriented than that of Eadie et al. [Ead71]' 

and somewhat more so than those of Lyons [Ly086] and Barlow [Bar89]. 

The first part of the book, Chapters 1 through 8, covers basic concepts of 

probability and random variables, Monte Carlo techniques, statistical tests, and 

methods of parameter estimation. The concept of probability plays, of course, 

a fundamental role. In addition to its interpretation as a relative frequency as 

used in classical statistics, the Bayesian approach using subjective probability is 

discussed as well. Although the frequency interpretation tends to dominate in 

most of the commonly applied methods, it was felt that certain applications can 

be better handled with Bayesian statistics, and that a brief discussion of this 

approach was therefore justified. 

The last three chapters are somewhat more advanced than those preceding. 

Chapter 9 covers interval estimation, including the setting of limits on parame

ters. The characteristic function is introduced in Chapter 10 and used to derive 

a number of results which are stated without proof earlier in the book. Finally, 

Chapter 11 covers the problem of unfolding, i.e. the correcting of distributions 

for effects of measurement errors. This topic in particular is somewhat special-
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ized, but since it is not treated in many other books it was felt that a discussion 

of the concepts would be found useful. 

An attempt has been made to present the most important concepts and 

tools in a manageably short space. As a consequence, many results are given 

without proof and the reader is often referred to the literature for more detailed 

explanations. It is thus considerably more compact than several other works on 

similar topics, e.g. those by Brandt [Bra92] and Frodeson et aJ. [Fr079]. Most 

chapters employ concepts introduced in previous ones. Since the book is relatively 

short, however, it is hoped that readers will look at least briefly at the earlier 

chapters before skipping to the topic needed. A possible exception is Chapter 4 

on statistical tests; this could by skipped without a serious loss of continuity by 

those mainly interested in parameter estimation. 

The choice of and relative weights given to the various topics reflect the type 

of analysis usually encountered in particle physics. Here the data usually consist 

of a set of observed events, e.g. particle collisions or decays, as opposed to the data 

of a radio astronomer, who deals with a signal measured as a function of time. 

The topic of time series analysis is therefore omitted, as is analysis of variance. 

The important topic of numerical minimization is not treated, since computer 

routines that perform this task are widely available in program libraries. 

At various points in the book, reference is made to the CERN program li

brary (CERNLIB) [CER97], as this is the collection of computer sofware most 

accessible to particle physicists. The short tables of values included in the book 

have been computed using CERNLIB routines. Other useful sources of statistics 

software include the program libraries provided with the books by Press et al. 

[Pre92] and Brandt [Bra92]. 

Part of the material here was presented as a half-semester course at the 

University of Siegen in 1995. Given the topics added since then, most of the book 

could be covered in 30 one-hour lectures. Although no exercises are included, 

an evolving set of problems and additional related material can be found on 

the book's World Wide Web site. The link to this site can be located via the 

catalogue of the Oxford University Press home page at: 

http://www.oup.co.uk/ 

The reader interested in practicing the techniques of this book is encouraged 

to implement the examples on a computer. By modifying the various parameters 

and the input data, one can gain experience with the methods presented. This is 

particularly instructive in conjunction with the Monte Carlo method (Chapter 

3), which allows one to generate simulated data sets with known properties. 

These can then be used as input to test the various statistical techniques. 

Thanks are due above all to Sonke Adlung of Oxford University Press for 

encouraging me to write this book as well as for his many suggestions on its con

tent. In addition I am grateful to Professors Sigmund Brandt and Claus Grupen 

of the University of Siegen for their support of this project and their feedback 

on the text. Significant improvements were suggested by Robert Cousins, as 
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well as by many of my colleagues in the ALEPH collaboration, including Klaus 

Aftbolderbach, Paul Bright-Thomas, Volker Buscher, Gunther Dissertori, Ian 

Knowles, Ramon Miquel, Ian Tomalin, Stefan Schael, Michael Schmelling and 

Steven Wasserbaech. Last but not least I would like to thank my wife Cheryl for 

her patient support. 

Geneva 

August 1997 G.D.C. 
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Notation 

Throughout this book, logx refers to the natural (base e) logarithm. Frequent 

use is made of the Kronecker delta symbol, 

{

Ii = j, 
tSij = 

o otherwise. 

Although there are occasional exceptions, an attempt. has been made to adhere 

to the following notational conventions. 

P(A) probability of A 

P(AIB) conditional probability of A given B 

x, y, t, . .. continuous (scalar) random variables 

x = (Xl, ••• , X n ) vector of random variables 

f ( X ), 9 ( x), . . . pro babili ty densities for X 

F(x), G(x),... cumulative distributions corresponding to p.d.f.s 

f(x,y) 

f(xly) 

n 

v 

(},o:,f3,~,r, ... 

8={fh, ... ,On) 

f(x; 0) 

E[x] 

V[x] 

COV[Xi, Xj] 

O,~, ... 

f(x),g(x), ... 

joint probability density for x, y 

conditional probability density for x given y 

discrete (e.g. integer) random variable 

expectation value of n (often, Greek letter = expectation 

value of corresponding Latin letter) 

(scalar) parameters 

vector of parameters 

probability density of x, depending on the parameter 0 

expectation value of x (often denoted by J.L) 

variance of x (often denoted by (1"2) 

covariance of Xi, x j (often denoted by matrices Vij, Uij, ... ) 

estimators for 0, (1"2, •.. 
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Bobs an observed value of the estimator B 

x arithmetic mean of a sample Xl, ... , Xn 

J.l~ nth algebraic moment 

J.ln nth central moment 

Xa a-point, quantile of order a 

rp(x) standard Gaussian p.d.f. 

<I>(X) 

¢(k) 

L((}), L(x/(}) 

11"( (}) 

p((}/x) 

cumulative distribution of the standard Gaussian 

characteristic function 

likelihood function 

prior probability density 

posterior probability density for () given data x 
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Fundamental concepts 

1.1 Probability and random variables 

The aim of this book is to present the most important concepts and methods 

of statistical data analysis. A central concept is that of uncertainty, which can 

manifest itself in a number of different ways. For example, one is often faced 

with a situation where the outcome of a measurement varies unpredictably upon 

repetition of the experiment. Such behavior can result from errors related to the 

measuring device, or it could be the consequence of a more fundamental (e.g. 

quantum mechanical) unpredictability of the system. The uncertainty might stem 

from various undetermined factors which in principle could be known but in fact 

are not. A characteristic of a system is said to be random when it is not known 

or cannot be predicted with complete certainty. 

The degree of randomness can be quantified with the concept of probability. 

The mathematical theory of probability has a history dating back at least to the 

17th century, and several different definitions of probability have been developed. 

We will use the definition in terms of set theory as formulated in 1933 by Kol

mogorov [KoI33]. Consider a set S called the sample space consisting of a certain 

number of elements, the interpretation of which is left open for the moment. To 

each subset A of S one assigns a real number P(A) called a probability, defined 

by the following three axioms: 1 

(1) For every subset A in S, P(A) 2: o. 
(2) For any two subsets A and B that are disjoint (i.e. mutually exclusive, 

An B = 0) the probability assigned to the union of A and B is the sum of 

the two corresponding probabilities, P(A U B) = P(A) + P(B). 

(3) The probability assigned to the sample space is one, P(S) = 1. 

From these axioms further properties of probability functions can be derived, 

e.g. 

1 The axioms here are somewhat simplified with respect to those found in more rigorous 

texts, such as [Gri92]' but are sufficient for our purposes. More precisely, the set of subsets to 

which probabilities are assigned must constitute a so-called (I-field. 
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P(A) = 1 - P(A) where A is the complement of A 

P(AUA) = 1 

o ::; P(A) ::; 1 

P(0) = 0 

if A C B, then P(A) ::; P(B) 

P(A U B) = P(A) + P(B) - P(A n B). 

For proofs and further properties see e.g. [Bra92, Gri86, Gri92]. 

(1.1) 

A variable that takes on a specific value for each element of the set S is called 

a random variable. The individual elements may each be characterized by several 

quantities, in which case the random variable is a multicomponent vector. 

Suppose one has a sample space S which contains subsets A and B. Provided 

P(B) # 0, one defines the conditional probability P(AIB) (read P of A given 

B) as 

P(AIB) = P(A n B) 
P(B) . 

(1.2) 

Figure 1.1 shows the relationship between the sets A, Band S. One can easily 

show that conditional probabilities themselves satisfy the axioms of probabil

ity. Note that the usual probability P(A) can be regarded as the conditional 

probability for A given S: P(A) = P(AIS). 

AnB 

A 

s Fig. 1.1 Relationship between the 

sets A, Band S in the definition of 

conditional probability. 

Two subsets A and B are said to be independent if 

P(A n B) = P(A) P(B). (1.3) 

For A and B independent, it follows from the definition of conditional probability 

that P(AIB) = P(A) and P(BIA) = P(B). (Do not confuse independent subsets 

according to (1.3) with disjoint subsets, i.e. An B = 0.) 
From the definition of conditional probability one also has the probability of 

B given A (assuming P(A) # 0), 

P(BIA) = P(B n A) . 
P(A) 

(1.4) 
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Since An B is the same as B n A, by combining equations (1.2) and (1.4) one 

has 

P(B n A) = P(AIB) P(B) = P(BIA) P(A), (1.5 ) 

or 

(AI ) 
= P(BIA) P(A) 

P B P(B). (1.6) 

Equation (1.6), which relates the conditional probabilities P(AIB) and P(BIA), 

is called Bayes' theorem [Bay63]. 

Suppose the sample space 5 can be broken into disjoint subsets Ai, i.e. 5 = 

UiAi with Ai n Aj = 0 for i f:- j. Assume further that P(Ad f:- 0 for all i. An 

arbitrary subset B can be expressed as B = B n 5 = B n (uiAd = Ui(B n Ai). 

Since the subsets B n Ai are disjoint, their probabilities add, giving 

P(B) = P(Ui(B n Ad) = L P(B n Ad 

L P(BIAi)P(Ai). (1.7) 

The last line comes from the definition (1.4) for the case A = Ai. Equation (1.7) 

is called the law of total probability. it is useful, for example, if one can break 

the sample space into subsets Ai for which the probabilities are easy to calculate. 

It is often combined with Bayes' theorem (1.6) to give 

P(AIB) = P(BIA) P(A) . 
Li P(BIAi)P(Ai ) 

(1.8) 

Here A can be any subset of 5, including, for example, one of the Ai. 

As an exam pie, consider a disease which is known to be carried by 0.1 % of 

the population, i.e. the prior probabilities to have the disease or not are 

P(disease) = 0.001, 

P(no disease) = 0.999. 

A test is developed which yields a positive result with a probability of 98% given 

that the person carries the disease, i.e. 

P( +Idisease) = 0.98, 

P( -Idisease) = 0.02. 

Suppose there is also a 3% probability, however, to obtain a positive result for a 

person without the disease, 
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P(+lno disease) = 0.03, 

P( -Ino disease) = 0.97. 

What is the probability that you have the disease if your test result is positive? 

According to Bayes' theorem (in the form of equation (1.8)) this is given by 

P (disease 1+ ) 
P ( + I disease) P ( disease) 

P(+ldisease) P(disease) + P(+lno disease) P(no disease) 

0.98 x 0.001 

0.98 x 0.001 + 0.03 x 0.999 

0.032. 

The probability that you have the disease given a positive test result is only 

3.2%. This may be surprising, since the probability of having a wrong result is 

only 2% if you carry the disease and 3% if you do not. But the prior probability is 

very low, 0.1 %, which leads to a posterior probability of only 3.2%. An important 

point that we have skipped over is what it means when we say P(diseasel+) = 
0.032, i.e. how exactly the probability should be interpreted. This question is 

examined in the next section. 

1.2 Interpretation of probability 

Although any function satisfying the axioms above can be called by definition 

a probability function, one must still specify how to interpret the elements of 

the sample space and how to assign and interpret the probability values. There 

are two main interpretations of probability commonly used in data analysis. 

The most important is that of relative frequency, used among other things for 

assigning statistical errors to measurements. Another interpretation called sub

jective probability is also used, e.g. to quantify systematic uncertainties. These 

two interpretations are described in more detail below. 

1.2.1 Probability as a relative frequency 

In data analysis, probability is most commonly interpreted as a limiting relative 

frequency. Here the elements of the set S correspond to the possible outcomes of 

a measurement, assumed to be (at least hypothetically) repeatable. A subset A 

of S corresponds to the occurrence of any of the outcomes in the subset. Such a 

subset is called an event, which is said to occur if the outcome of a measurement 

is in the subset. 

A subset of S consisting of only one element denote~ a single elementary 

outcome. One assigns for the probability of an elementary outcome A the fraction 

of times that A occurs in the limit that the measurement is repeated an infinite 

number of times: 
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number of occurrences of outcome A in n measurements 
P(A) = lim . (1.9) 

n-+oo n 

The probabilities for the occurrence of anyone of several outcomes (i.e. for a 

non-elementary subset A) are determined from those for individual outcomes by 

the addition rule given in the axioms of probability. These correspond in turn to 

relative frequencies of occurrence. 

The relative frequency interpretation is consistent with the axioms of prob

ability, since the fraction of occurrences is always greater than or equal to zero, 

the frequency of any out of a disjoint set of outcomes is the sum of the indi

vidual frequencies, and the measurement must by definition yield some outcome 

(i.e. P(S) = 1). The conditional probability P(AIB) is thus the number of cases 

where both A and B occur divided by the number of cases in which B occurs, 

regardless of whether A occurs. That is, P(AIB) gives the frequency of A with 

the subset B taken as the sample space. 

Clearly the probabilities based on such a model can never be determined 

experimentally with perfect precision. The basic tasks of classical statistics are 

to estimate the probabilities (assumed to have some definite but unknown values) 

given a finite amount of experimental data, and to test to what extent a particular 

model or theory that predicts probabilities is compatible with the observed data. 

The relative frequency interpretation is straightforward when studying phys

icallaws, which are assumed to act the same way in repeated experiments. The 

validity of the assigned probability values can be experimentally tested. This 

point of view is appropriate, for example, in particle physics, where repeated 

collisions of particles constitute repetitions of an experiment. The concept of 

relative frequency is more problematic for unique phenomena such as the big 

bang. Here one can attempt to rescue the frequency interpretation by imagining 

a large number of similar universes, in some fraction of which a certain event 

occurs. Since, however, this is not even in principle realizable, the frequency here 

must be considered as a mental construct to assist in expressing a degree of belief 

about the single universe in which we live. 

The frequency interpretation is the approach usually taken in standard texts 

on probability and statistics, such as those of Fisher [Fis90], Stuart and Ord 

[Stu91] and Cramer [Cra46]. The philosophy of probability as a frequency is 

discussed in the books by von Mises [Mis51, Mis64]. 

1.2.2 Subjective probability 

Another probability interpretation is that of subjective (also called Bayesian) 

probability. Here the elements of the sample space correspond to hypotheses or 

propositions, i.e. statements that are either true or false. (When using subjective 

probability the sample space is often called the hypothesis space.) One interprets 

the probability associated with a hypothesis as a measure of degree of belief: 

P(A) = degree of belief that hypothesis A is true. (1.10) 
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The sample space S must be constructed such that the elementary hypotheses 

are mutually exclusive, i.e. only one of them is true. A subset consisting of 

more than one hypothesis is true if any of the hypotheses in the subset is true. 

That is, the union of sets corresponds to the Boolean OR operation and the 

intersection corresponds to AND. One of the hypotheses must necessarily be true, 

i.e. P(S) = l. 
The statement that a measurement will yield a given outcome a certain frac

tion of the time can be regarded as a hypothesis, so the framework of subjective 

probability includes the relative frequency interpretation. In addition, however, 

subjective probability can be associated with, for example, the value of an un

known constant; this reflects one's confidence that its value lies in a certain fixed 

interval. A probability for an unknown constant is not meaningful with the fre

quency interpretation, since if we repeat an experiment depending on a physical 

parameter whose exact value is not certain (e.g. the mass of the electron), then 

its value is either never or always in a given fixed interval. The correspond

ing probability would be either zero or one, but we do not know which. With 

subjective probability, however, a probability of 95% that the electron mass is 

contained in a given interval is a reflection of one's state of knowledge. 

The use of subjective probability is closely related to Bayes' theorem and 

forms the basis of Bayesian (as opposed to classical) statistics. The subset A 

appearing in Bayes' theorem (equation (1.6)) can be interpreted as the hypothesis 

that a certain theory is true, and the subset B can be the hypothesis that an 

experiment will yield a particular result (i.e. data). Bayes' theorem then takes 

on the form 

P(theoryldata) ex P{dataltheory) . P{theory). 

Here P{theory) represents the prior probability that the theory is true, and 

P{dataltheory), called the likelihood, is the probability, under the assumption 

of the theory, to observe the data which were actually obtained. The posterior 

probability that the theory is correct after seeing the result of the experiment is 

then given by P{theoryldata). Here the prior probability for the data P(data) 

does not appear explicitly, and the equation is expressed as, a proportionality. 

Bayesian statistics provides no fundamental rule for assigning the prior proba

bility to a theory, but once this has been done, it says how one's degree of belief 

should change in the light of experimental data. 

Consider again the probability to have a disease given a positive test result. 

From the standpoint of someone studying a large number of potential carriers 

of the disease, the probabilities in this problem can be interpreted as relative 

frequencies. The prior probability P( disease) is the overall fraction of people who 

carry the disease, and the posterior probability P (disease 1+) gives the fraction of 

people who are carriers out of those with a positive test result. A central problem 

of classical statistics is to estimate the probabilities that are assumed to describe 

the population as a whole by examining a finite sample of data. i.e. a subsample 

of the population. 
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A specific individual, however, may be interested in the subjective probability 

that he or she has the disease given a positive test result. If no other informa

tion is available, one would usually take the prior probability P(disease) to be 

equal to the overall fraction of carriers, i.e. the same as in the relative frequency 

interpretation. Here, however, it is taken to mean the degree of belief that one 

has the disease before taking the test. If other information is available, different 

prior probabilities could be assigned; this aspect of Bayesian statistics is nec

essarily subjective, as the name of the probability interpretation implies. Once 

P(disease) has been assigned, however, Bayes' theorem then tells how the prob

ability to have the disease, i.e. the degree of belief in this hypothesis, changes in 

light of a positive test result. 

The use of subjective probability is discussed further in Sections 6.13, 9.8 

and 11.5.3. There exists a vast literature on subjective probability; of particular 

interest are the books by Jeffreys [Jef48]' Savage [Sav72], de Finetti [Fin74] and 

the paper by Cox [Cox46]. Applications of Bayesian methods are discussed in 

the books by Lindley [Lin65], O'hagan [Oha94], Lee [Lee89] and Sivia [Siv96]. 

1.3 Probability density functions 

Consider an experiment whose outcome is characterized by a single continuous 

variable x. The sample space corresponds to the set of possible values that x 

can assume, and one can ask for the probability of observing a value within an 

infinitesimal interval [x, x+dx]. 2 This is given by the probability density fllllction 

(p.d.f.) f( x): 

probability to observe x in the interval [x, x + dx] = f(x)dx. (1.11) 

In the relative frequency interpretation, f(x)dx gives the fraction of times that 

x is observed in the interval [x, x + dx] in the limit that the total number of 

observations is infinitely large. The p.d.f. f(x) is normalized such that the total 

probability (probability of some outcome) is one, 

is J(x)dx = 1, (1.12) 

where the region of integration S refers to the entire range of x, i.e. to the entire 

sample space. 

Although finite data samples will be dealt with more thoroughly in Chapter 

5, it is illustrative here to point out the relationship between a p.d.f. f( x) and a 

set of n observations of x, Xl, ... , x n • A set of SUGh observations can be displayed 

graphically as a histogram as shown in Fig. 1.2. The x axis of the histogram is 

2 A possible confusion can arise from the notation used here, since x refers both to the 

random variable and also to a value that can be assumed by the variable. Many authors use 

upper case for the random variable, and lower case for the value, i.e. one speaks of X taking on 

a value in the interval [x, x + dx]. This notation is avoided here for simplicity; the distinction 

between variables and their values should be clear from context. 
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divided into m subintervals or bins of width ~Xi, i = 1, ... , m, where ~Xi is 

usually but not necessarily the same for each bin. The number of occurrences 

ni of x in subinterval i, i.e. the number of entries in the bin, is given on the 

vertical axis. The area under the histogram is equal to the total number of 

entries n multiplied by ~x (or for unequal bin widths, area = L:~1 ni . ~Xi). 

Thus the histogram can be normalized to unit area by dividing each ni by the 

corresponding bin width ~Xi and by the total number of entries in the histogram 

n. The p.d.f. f(x) corresponds to a histogram of x normalized to unit area in 

the limit of zero bin width and an infinitely large total number of entries, as 

illustrated in Fig. 1.2(d). 
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Fig. 1.2 Histograms of various numbers of observations of a random variable x based on the 

same p.d.f. (a) n = 100 observations and a bin width of f1x = 0.5. (b) n = 1000 observations, 

f1x = 0.2. (c) n = 10000 observations, f1x = 0.1. (d) The same histogram as in (c), but 

normalized to unit area. Also shown as a smooth curve is the p.d.f. according to which the 

observations are distributed. For (a-c), the vertical axis N(x) gives the number of entries in a 

bin containing x. For (d), the vertical axis is f(x) = N(x)/(nf1x). 

One can consider cases where the variable x only takes on discrete values Xi, 

for i = 1, ... , N, where N can be infinite. The corresponding probabilities can 

be expressed as 



Probability density functions 9 

0.3 
(a) (b) 

0.75 

0.2 

0.5 

0.1 
0.25 

o o 
o 2 4 6 8 10 o 2 4 6 8 10 

x x 

Fig. 1.3 (a) A probability density function f(x). (b) The corresponding cumulative distri

bution function F(x). 

probability to observe value Xi = P(xd = fi, 

where i = 1, ... ,N and the normalization condition is 

N 

LA = 1. 
i=l 

(1.13) 

(1.14) 

Although most of the examples in the following are done with continuous vari

ables, the transformation to the discrete case is a straightforward correspondence 

between integrals and sums. 

The cumulative distribution F(x) is related to the p.d.f. f(x) by 

F(x) = lXoo f(x')dx', (1.15) 

i.e. F(x) is the probability for the random variable to take on a value less than or 

equal to x.3 In fact, F(x) is usually defined as the probability to obtain an out

come less than or equal to X, and the p.d.f. f(x) is then defined as of/ox. For 

the 'well-behaved' distributions (i.e. F(x) everywhere differentiable) typically 

encountered in data analysis, the two approaches are equivalent. Figure 1.3 illus

trates the relationship between the probability density f (x) and the cumulative 

distri bu tion F (x) . 
For a discrete random variable Xi with probabilities P(xd the cumulative 

distribution is defined to be the probability to observe values less than or equal 

to the value x, 

3Mathematicians call F(x) the 'distribution' function, while physicists often use the word 

distribution to refer to the probability density function. To avoid confusion we will use the 

terms cumulative distribution and probability density (or p.d.f.). 
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F(x) = L P(xd· (1.16) 

A useful concept related to the cumulative distribution is the so-called quan

tile of order a or a-point. The quantile Xa is defined as the value of the random 

variable x such that F(xa) = 0', with 0 ::; 0' ::; 1. That is, the quantile is simply 

the inverse function of the cumulative distribution, 

(1.17) 

A commonly used special case is xl/2, called the median of x. This is often used 

as a measure of the typical 'location' of the random variable, in the sense that 

there are equal probabilities for x to be observed greater or less than xl/2. 

Another commonly used measure of location is the mode, which is defined 

as the value of the random variable at which the p.d.f. is a maximum. A p.d.f. 

may, of course, have local maxima. By f~r the most commonly used location 

parameter is the expectation value, which will be introduced in Section 1.5. 

Consider now the case where the result of a measurement is characterized not 

by one but by several quantities, which may be regarded as a multidimensional 

random vector. If one is studying people, for example, one might measure for each 

person their height, weight, age, etc. Suppose a measurement is characterized by 

two continuous random variables x and y. Let the event A be 'x observed in 

[x, x + dx] and y observed anywhere', and let B be 'y observed in [y, y + dy] and 

x observed anywhere', as indicated in Fig. 1.4. 

y 
10 

",I--- event A 

8 

4 i~~~;:{~; ~(~:.'}~ ... ~: .. 1' . '\ ~vent B 
:~::i~: •. -. .. ... dy 
~:~.,~: ~~~: ~ .' .. '. . 

2 ... '~: ' .. 

... : . -7 E- dx 

o 
o 2 4 6 8 

x 

The joint p.d.f. f(x, y) is defined by 

10 

Fig. 1.4 A scatter plot of two ran

dom variables x and y based on 1000 

observations. The probability for a 

point to be observed in the square 

given by the intersection of the two 

bands (the event A n B) is given by 

the joint p.d.f. times the area element, 

f(x, y)dxdy. 

P(A n B) probability of x in [x, x + dx] and y in [y, y + dy] 

f(x, y)dxdy. (1.18) 
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The joint p.d.f. f(x, y) thus corresponds to the density of points on a scatter 

plot of x and y in the limit of infinitely many points. Since x and y must take 

on some values, one has the normalization condition 

J is f(x, y)dxdy = 1. (1.19) 

Suppose a joint p.d.f. f(x, y) is known, and one would like to have the p.d.f. 

for x regardless of the value of y, i.e. corresponding to event A in Fig. 1.4. If one 

regards the 'event A' column as consisting of squares of area dx dy, each labeled 

by an index i, then the probability for A is obtained simply by summing the 

probabilities corresponding to the individual squares, 

P(A) = L f(x, yddydx = fx(x) dx. (1.20) 

The corresponding probability density, called the marginal p.d.f. for x, is then 

given by the function fx (x). In the limit of infinitesimal dy, the sum becomes an 

integral, so that the marginal and joint p.d.f.s are related by 

fx(x) = L: f(x, y)dy. (1.21) 

Similarly, one obtains the marginal p.d.f. fy(y) by integrating f(x, y) over x, 

fy(y) = 1: f(x, y)dx. (1.22) 

The marginal p.d .f.s fx (x) and fy (y) correspond to the normalized histograms 

obtained by projecting a scatter plot of x and y onto the respective axes. The 

relationship between the marginal and joint p.d.f.s is illustrated in Fig. 1.5. 

From the definition of conditional probability (1.2), the probability for y to 

be in [y, y + dy] with any x (event B) given that x is in [x, x + dx] with any y 

(event A) is 

P(BIA) = P(A n B) = f(x, y)dxdy 
P(A) fx(x)dx 

(1.23) 

The conditional p.d.f. for y given x, h(ylx), is thus defined as 

h(ylx) = f(x, y) = f(x, y) . 
fx(x) f f(x,y')dy' 

(1.24) 

This is a p.d.f. of the single random variable y; x is treated as a constant pa

rameter. Starting from f(x, y), one can simply think of holding x constant, and 

then renormalizing the function such that its area is unity when integrated over 

yalone. 

The conditional p.d.f. h(ylx) corresponds to the normalized histogram of y 

obtained from the projection onto the y axis of a thin band in x (i.e. with in

finitesimal width dx) from an (x, y) scatter plot. This is illustrated in Fig. 1.6 for 
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Fig. 1.5 (a) The density of points on the scatter plot is given by the joint p.d.f. f(x,y). 
(b) Normalized histogram from projecting the points onto the y axis with the corresponding 

marginal p.d.f. fy(y). (c) Projection onto the x axis giving fx(x). 

two values of x, leading to two different conditional p.d.f.s, h(ylxI} and h(ylx2). 
Note that h(ylxd and h(ylx2) in Fig. 1.6(b) are both normalized to unit area, 

as required by the definition of a probability density. 

Similarly, the conditional p.d.f. for x given y is 

g(xly) = f(x, y) = f(x, y) . 
fy(y) f f(x', y)dx' 

(1.25) 

Combining equations (1.24) and (1.25) gives the relationship between g(xly) and 

h(ylx), 

( I ) 
- h(ylx)fx(x) 

9 x y - fy(y) , (l.26) 

which is Bayes' theorem for the case of continuous variables (cf. equation (l.6)). 

By using f(x, y) = h(ylx) fx(x) = g(xly) fy(y), one can express the marginal 

p.d.f.s as 
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Fig. 1.6 (a) A scatter plot of random variables x and y indicating two infinitesimal bands 

in x of width dx at Xl (solid band) and X2 (dashed band). (b) The conditional p.d.f.s h(ylxt) 

and h(ylx2) corresponding to the projections of the bands onto the y axis. 

I: g(xly)fy(y)dy, 

I: h(Ylx)fx(x)dx. 

(1.27) 

(1.28) 

These correspond to the law of total probability given by equation (1.7), gener

alized to the case of continuous random variables. 

If 'x in [x,x+dx] with any y' (event A) and 'y in [y+dy] with any x' (event 

B) are independent, i.e. P(A n B) = P(A) P(B), then the corresponding joint 

p.d.f. for x and y factorizes: 

f(x, y) = fx(x) fy(y)· (1.29) 

From equations (1.24) and (1.25), one sees that for independent random variables 

x and y the conditional p.d.f. g(xly) is the same for all y, and similarly h(ylx) 

does not depend on x. In other words, having knowledge of one of the variables 

does not change the probabilities for the other. The variables x and y shown in 

Fig. 1.6, for example, are not independent, as can be seen from the fact that 

h(ylx) depends on x. 

1.4 Functions of random variables 

Functions of random variables are themselves random variables. Suppose a(x) is 

a continuous function of a continuous random variable x, where x is distributed 

according to the p.d.f. f(x). What is the p.d.f. g(a) that describes the distribution 

of a? This is determined by requiring that the probability for x to occur between 
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Fig. 1.7 Transformation of variables for (a) a function q( x) with a single-valued inverse x( a) 
and (b) a function for which the interval da corresponds to two intervals dXl and dX2' 

x and x + dx be equal to the probability for a to be between a and a + da. That 

IS, 

g(a')da' = 1 J(x)dx, 
dS 

(1.30) 

where the integral is carried out over the infinitesimal element dS defined by the 

region in x-space between a (x) = a' and a (x) = a' + da', as shown in Fig. 1. 7 ( a) . 

If the function a(x) can be inverted to obtain x(a), equation (1.30) gives 

1
1

x
(a+da) I l x (a

H,
*,da 

g(a)da = J(x')dx' = J(x')dx', 
x(a) x(a) 

(1.31) 

or 

g(a) = f(x(a)) 1 ~: I· (1.32) 

The absolute value of dx/da ensures that the integral is positive. If the function 

a(x) does not have a unique inverse, one must include in dS contributions from all 

regions in x-space between a(x) = a' and a(x) = a' +da', as shown in Fig. 1.7(b). 

The p.d.f. g(a) of a function a(xl, ... , xn) of n random variables Xl, ... , Xn 

with the joint p.d.f. J(XI,.'" xn) is determined by 

g(a')da' = J .. ·15 J(XI, ... , Xn)dXI ... dxn, (1.33) 

where the infinitesimal volume element dS is the region in Xl, ... ,xn-space be

tween the two (hyper)surfaces defined by a(xI, ... , xn) = a' and a(xI, ... , xn) = 

a' + da'. 
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Fig. 1.8 The region of integration 

dB contained between the two curves 

xy = z and xy = z + dz. Occurrence 

of (x, y) values between the two curves 

results in occurrence of z values in the 

corresponding interval [z, z + dz]. 

As an example, consider two independent random variables, x and y, dis

tributed according to g(x) and h(y), and suppose we would like to find the p.d.f. 

of their product z = xy. Since x and yare assumed to be independent, their 

joint p.d.f. is given by g(x)h(y). Equation (1.33) then gives for the p.d.f. of z, 

J(z), 

J(z)dz = J 1 g(x)h(y)dxdy = 100 

g(x)dx l(z+dZ)/'X' h(y)dy, 
dS -00 z/lxl 

(1.34) 

where dS is given by the region between xy = z and xy = z + dz, as shown in 

Fig. 1.8. This yields --

J(z) 1
00 dx 

-00 g(x)h(z/x)j;i 

1
00 dy 

-00 g(z/y)h{y) iYf' (1.35) 

where the second equivalent expression is obtained by reversing the order of 

integration. Equation (1.35) is often written J = 9 ® h, and the function J is 
called the Mellin convolution of 9 and h. 

Similarly, the p.d.f. J(z) of the sum z = x + y is found to be 

J(z) 1: g(x)h(z - x)dx 

1: g(z - y)h(y)dy. (1.36) 

Equation (1.36) is also often written f 9 ® h, and J is called the Fourier 
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convolution of 9 and h. In the literature the names Fourier and Mellin are often 

dropped and one must infer from context what kind of convolution is meant. 

Starting from n random variables, x = (Xl, ... , xn), the following technique 

can be used to determine the joint p.d.f of n linearly independent functions 

ai(x), with i = 1, ... ,n. Assuming the functions al, ... ,an can be inverted to 

give xi(al, . .. , an), i = 1, ... , n, the joint p.d.f. for the ai is given by 

(1.37) 

where PI is the absolute value of the Jacobian determinant for the transforma

tion, 

~ ~ E.E..J.. 
oal oa2 oa n 

fu ~ ~ 
oal oa2 oa n 

J= (1.38) 

~ 
oa n 

To determine the marginal p.d.f. for one of the functions (say gl (ad) the joint 

p.d.f. g(al, ... , an) must be integrated over the remaining ai. 

In many cases the techniques given above are too difficult to solve analytically. 

For example, if one is interested in a single function of n random variables, where 

n is some large and itself possibly variable number, it is rarely practical to come 

up with n -1 additional functions and then integrate the transformed joint p.d.f. 

overthe unwanted ones. In such cases a numerical solution can usually be found 

using the Monte Carlo techniques discussed in Chapter 3. If only the mean and 

variance of a function are needed, the so-called 'error propagation' procedures 

described in Section 1.6 can be applied. 

For certain cases the p.d.f. of a function of random variables can be found 

using integral transform techniques, specifically, Fourier transforms of the p.d.f.s 

for sums of random variables and Mellin transforms for products. The basic 

idea is to take the Mellin or Fourier transform of equation (1.35) or (1.36), 

respectively. The equation f = 9 ® h is then converted into the product of the 

transformed density functions, j = 9 . h. The p.d.f. f is obtained by finding the 

inverse transform of j. A complete discussion of these methods is beyond the 

scope of this book; see e.g. [Spr79]. Some examples of sums of random variables 

using Fourier transforms (characteristic functions) are given in Chapter 10. 

1.5 Expectation values 

The expectation value E[x] of a random variable X distributed according to the 

p.d.f. f{x) is defined as 

E[x] = I: xf{x)dx = /1. (1.39) 
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The expectation value of x (also called the population mean or simply the mean 

of x) is often denoted by J1.. Note that E[ x] is not a function of x, but depends 

rather on the form of the p.d.f. f(x). If the p.d.f. f(x) is concentrated mostly in 

one region, then E[x] represents a measure of where values of x are likely to be 

observed. It can be, however, that f(x) consists of two widely separated peaks, 

such that E[x] is in the middle where x is seldom (or never) observed. 

For a function a(x), the expectation value is 

E[a] = 1: ag(a)da = 1: a(x)f(x)dx, (lAO) 

where g(a) is the p.d.f. of a and f(x) is the p.d.f. of x. The second integral is 

equivalent; this can be seen by mUltiplying both sides of equation (1.30) by a 

and integrating over the entire space. 

Some more expectation values of interest are: 

(1.41) 

called the nth algebraic moment of x, for which J1. = J1.~ is a special case, and 

(1.42) 

called the nth central moment of x. In particular, the second central moment, 

(1.43) 

is called the population variance (or simply the variance) of x, written u 2 or 

V[x]. Note that E[(x - E[x])2] = E[x2] - J1.2. The variance is a measure of how 

widely x is spread about its mean value. The square root of the variance u is 

called the standard deviation of x, which is often useful because it has the same 

units as x. 

For the case of a function a of more than one random variable x = (Xl, ... , xn ), 

the expectation value is 

E[a(x)] 1: ag(a)da 

1: .. ·1: a(x)f(x)dxI ... dxn = J1.a, (1.44) 

where g(a) is the p.d.f. for a and f(x) is thejoint p.d.f. for the Xi. In the following, 

the notation J1.a = E[a] will often be used. As in the single-variable case, the two 

integrals in (1.44) are equivalent, as can be seen by multiplying both sides of 

equation (1.33) by a and integrating over the entire space. The variance of a is 
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V[a] E[(a - J-la)2] 

L: ... L: (a(x) - J-la)2 f(X)dxI ... dXn = u~, (1.45) 

and is denoted by u~ or V[a]. The covariance of two random variables x and y 

is defined as 

Vxy E[(x - J-lx)(Y - J-ly)] = E[xy] - J-lxJ-ly 

L: L: x y f(x, y) dx dy - J-lxJ-ly, (1.46) 

where J-lx = E[x] and J-ly = E[y]. The covariance matrix Vxy , also called the error 

matrix, is sometimes denoted by cov[x, y]. More generally, for two functions a 

and b of n random variables x = (Xl, ... , xn), the covariance cov[a, b] is given by 

cov[a, b] E[(a - J-la)(b - J-lb)] 

E[ab] - J-laJ-lb 

= l:L:abg(a,b)dadb-J-laJ-lb 

= L:··· L: a(x) b(x) f(X)dxl ... dXn - J-laJ-lb, (1.47) 

where g(a, b) is the joint p.d.f. for a and band f(x) is the joint, p.d.f. for the Xi. 

As in equation (1.44), the two integral expressions for Vab are equivalent. Note 

that by construction the covariance matrix Vab is symmetric in a and b and that 

the diagonal elements Vaa = u~ (i.e. the variances) are positive. 

In order to give a dimensionless measure of the level of correlation between 

two random variables X and y, one often uses the correlation coefficient, defined 

by 

(1.48) 

One can show (see e.g. [Fro79, Bra92]) that the correlation coefficient lies in the 

range -1 ::; Pxy ::; 1. 

One can roughly understand the covariance of two random variables X and 

y in the following way. Vxy is the expectation value of (x - J-l:r.)(y - J-lyL the 

product of the deviations of X and y from their means, J-lx and J-ly. Suppose that 
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Fig. 1.9 Scatter plots of random variables x and y with (a) a positive correlation, p = 0.75, 

(b) a negative correlation, p = -0.75, (c) p = 0.95, and (d) p = 0.25. For all four cases the 

standard deviations of x and yare cr x = cry = 1. 

having x greater than JJx enhances the probability to find y greater than JJy, and 

x less than JJx gives an enhanced probability to have y less than JJy. Then Vxy 

is greater than zero, and the variables are said to be positively correlated. Such 

a situation is illustrated in Figs 1.9 (a), (c) and (d), for which the correlation 

coefficients Pxy are 0.75, 0.95 and 0.25, respectively. Similarly, Vxy < 0 is called a 

negative correlation: having x > JJx increases the probability to observe y < JJy. 

An example is shown in Fig. 1.9(b), for which Pxy = -0.75. 

From equations (1.29) and (1.44), it follows that for independent random 

variables x and y, 

E[xy] = E[x]E[y] = JJxJJy, (1.49) 

(and hence by equation (1.46), Vxy = 0) although the converse is not necessarily 

true. Figure 1.10, for example, shows a two-dimensional scatter plot of a p.d.f. 

for which Vxy = 0, but where x and yare not independent. That is, f(x, y) does 

not factorize according to equation (1.29), and hence knowledge of one of the 
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Fig. 1.10 Scatter plot of random 

variables x and y which are not inde

pendent (i.e. f(x, y) =P fx(x)fy(y)) but 

for which Vxy = 0 because of the par

ticular symmetry of the distribution. 

variables affects the conditional p.d.f. of the other. The covariance Vxy vanishes, 

however, because f(x, y) is symmetric in x about the mean /lx' 

1.6 Error propagation 

Suppose one has a set of n random variables x = (Xl, ... , xn) distributed accord

ing to some joint p.d.f. f(x). Suppose that the p.d.f. is not completely known, 

but the mean values of the Xi, I.L = (/ll, ... , /In), and the covariance matrix, Vij, 
are known or have at least been estimated. (Methods for doing this are described 

in Chapter 5.) 

Now consider a function of the n variables y(x). To determine the p.d.f. for 

y, one must in principle follow a procedure such as those described in Section 

1.4 (e.g. equations (1.33) or (1.37)). We have assumed, however, that f(x) is not 

completely known, only the means p, and the covariance matrix Vij, so this is 

not possible. One can, however, approximate the expectation value of y and the 

variance V[y] by first expanding the function y(x) to first order about the mean 

values of the Xi, 

Y(X) '" Y(I-') + t, [::.1 X=/L (X; - 1';). (1.50) 

The expectation value of y is to first order 

E[y(x)] ~ y(p,), (1.51) 

since E[Xi - /ld = O. The expectation value of y2 is 
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+ 

2 ~ [Oy oy 1 
y (IL) + i~l OXi OXj x=,.,. Vij, 

(1.52) 

so that the variance 0"; = E[y2] - (E[y])2 is given by 

(1.53) 

Similarly, one obtains for a set of m functions Yl (x), ... , Ym(x) the covariance 

matrix 

(1.54) 

This can be expressed in matrix notation as 

(1.55) 

where the matrix of derivatives A is 

(1.56) 

and AT is the transpose of A. Equations (1.53)-(1.56) form the basis of error 

propagation (i.e. the variances, which are used as measures of statistical uncer

tainties, are propagated from the Xi to the functions Yl, Y2, etc.). (The term 

'error' will often be used to refer to the uncertainty of a measurement, which 

in most cases is given by the standard deviation of the corresponding random 

variable.) 

For the case where the Xi are not correlated, i.e. Vii = (J-[ and Vij = 0 for 

if j, equations (1.53) and (1.54) become 

(1.57) 

and 
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Equation (1.53) leads to the following special cases. If Y 

variance of Y is then 

For the product Y = XIX2 one obtains 

'? 
J 

(1.58) 

(1.59) 

(1.60) 

If the variables Xl and X2 are not correlated (V12 = 0), the relations above state 

that errors (i.e. standard deviations) add quadratically for the sum Y = Xl + X2, 

and that the relative errors add quadratically for the product Y = XlX2. 

In deriving the error propagation formulas we have assumed that the means 

and covariances of the original set of variables Xl, ... , X n are known (or at least 

estimated) and that the desired functions of these variables can be approximated 

by the first-order Taylor expansion around the means /11, ... , /1n. The latter 

assumption is of course only exact for a linear function. The approximation 

breaks down if the function y(x) (or functions y(x)) are significantly nonlinear 

in a region around the means I-' of a size comparable to the standard deviations 

of the Xi, 0"1, ... , O"n. Care must be taken, for example, with functions like y(x) = 
l/x when E[x] = /1 is comparable to or smaller than the standard deviation of x. 

Such situations can be better treated with the Monte Carlo techniques described 

in Chapter 3, or using confidence intervals as described in Section 9.2. 

1. 7 Orthogonal transformation of random variables 

Suppose one has a set of n random variables Xl, ... , Xn and their covariance 

matrix \lij = COV[Xi, Xj], for which the off-diagonal elements are not necessarily 

zero. Often it can be useful to define n new variables Yl, ... , Yn that are not 

correlated, i.e. for which the new covariance matrix Uij = COV[Yi, Yj] is diagonal. 

We will show that this is always possible with a linear transformation, 

n 

Yi = LAijxj. 

j=l 

(1.61) 

Assuming such a transformation, the covariance matrix for the new variables is 
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n 

L: AikAjl COV[Xk, xL] 

k,l=1 

n 

L: Aik Vkl Al; . (1.62) 

k,l=1 

This is simply a special case of the error propagation formula (1.54); here it is 

exact, since the function (1.61) is linear. 

The problem thus consists of finding a matrix A such that U = AV AT is 

diagonal. This is simply the diagonalization of a real, symmetric matrix, a well

known problem oflinear algebra (cf. [Arf95]). The solution can be found by first 

determining the eigenvectors ri, i = 1, ... , n, of the covariance matrix V. That 

is, one must solve the equation 

(1.63) 

where in the matrix equations the vector r should be understood as a column 

vector. The eigenvectors ri are only determined up to a multiplicative factor, 

which can be chosen such that they all have unit length. Furthermore, one can 

easily show that since the covariance matrix is symmetric, the eigenvectors are 

orthogonal, i.e. 

n 

r! . ri = L rlr{ = dij. (1.64) 
k=1 

If two or more of the eigenvalues Ai, Aj, ... are equal, then the directions of 

the corresponding eigenvectors ri, ri , ... are not uniquely determined, but can 

nevertheless be chosen such that the eigenvectors are orthogonal. 

The n rows of the transformation matrix A are then given by the n eigen

vectors ri (in any order), i.e. Aij = r}, and the transpose matrix thus has the 

eigenvectors as its columns, A'[j = r{. That this matrix has the desired property 

can be shown explicitly by substituting it into equation (1.62), 

n 

Uij = L Aik Vkl Al; 
k,l=1 

n 

L r1 Vklr! 
k,l=1 

n 

L rl Ajr{ 
k=1 

Ajri 
. ri 

Ajdij. (1.65) 
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Thus the variances of the transformed variables YI, ... ,Yn are given by the 

eigenvalues of the original covariance matrix V, and all off-diagonal elements of 

U are zero. Since the eigenvectors are orthonormal (equation (1.64)), one has 

the property 

(1.66) 

or as a matrix equation AAT == 1, and hence AT == A-I. Such a transformation 

is said to be orthogonal, i.e. it corresponds to a rotation of the vector x into y 

such that the norm remains constant, since lyl2 == yT Y == x T AT Ax == Ix12. 
In order to find the eigenvectors of V, the standard techniques of linear 

algebra can used (see e.g. [Arf95]). For more than three variables, the problem 

becomes impractical to solve analytically, and numerical techniques such as the 

singular value decomposition are necessary (see e.g. [Bra92, Pre92]). 

In two dimensions, for example, the covariance matrix for the variables x == 
(x I, X2) can be expressed as 

v= ( (1.67) 

The eigenvalue equation (V - fA)r == 0 (where f is the 2 x 2 unit matrix) is 

solved by requiring that the determinant of the matrix of coefficients be equal 

to zero, 

det(V - fA) == o. (1.68) 

The two eigenvalues A± are found to be 

A± == t [ui + u~ ± j( ur + u~)2 - 4(1 - p2)urO"~ ]. (1.69) 

The two orthonormal eigenvectors r± can be parametrized by an angle e, 

_ ( cos e ) 
r+ -

sin e 
_ ( - sin e ) 

r_ - . 
cose 

(1. 70) 

Substituting the eigenvalues (1.69) back into the eigenvalue equation determines 

the angle e, 

(1.71) 

The rows of the desired transformation matrix are thus given by the two 

eigenvectors, 
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(

COS e sin e ) 
A= 

- sin e cos e 
(1.72) 

This corresponds to a rotation of the vector (Xl, X2) by an angle e. An example 

is shown in Fig. 1.11 where the original two variables have 0'"1 = 1.5, 0'"2 = 1.0, 

and a correlation coefficient of p = 0.7. 
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Yl 

Fig. 1.11 Scatter plot of (a) two correlated random variables (Xl, X2) and (b) the transformed 

variables (YI, Y2) for which the covariance matrix is diagonal. 

Although uncorrelated v~riables are often easier to deal with, the transformed 

variables may not have as direct an interpretation as the original ones. Exam

ples where this procedure could be used will arise in Chapters 6 through 8 on 

parameter estimation, where the estimators for a set of parameters will often be 

correlated. 



2 

Examples of probability 
functions 

In this chapter a number of commonly used probability distributions and density 

functions are presented. Properties such as mean and variance are given, mostly 

without proof; the moments can be found by using characteristic functions in

troduced in Chapter 10. Additional p.d.f.s can be found in [Fr079] Chapter 4, 

[Ead71] Chapter 4, [Bra92] Chapter 5. 

2.1 Binomial and multinomial distributions 

Consider a series of N independent trials or observations, each having two possi

ble outcomes, here called 'success' and 'failure', where the probability for success 

is some constant value, p. The set of trials can be regarded as a single measure

ment and is characterized by a discrete random variable n, defined to be the total 

number of successes. That is, the sample space is defined to be the set of possi

ble values of n successes given N observations. If one were to repeat the entire 

experiment many times with N trials each time, the resulting values of n would 

occur with relative frequencies given by the so-called binomial distribution. 

The form of the binomial distribution can be derived in the following way. 

We have assumed that the probability of success in a single observation is p and 

the probability of failure is 1 - p. Since the individual trials are assumed to be 

independent, the probability for a series of successes and failures in a particular 

order is equal to the product of the individual probabilities. For example, the 

probability in five trials to have success, success, failure, success, failure in that 

order is p . p . (1 - p) . p . (1 - p) = p3(1 - p)2. In general the probability for a 

particular sequence of n successes and N - n failures is pn (1 - p)N-n. We are 

not interested in the order, however, only in the final number of successes n. The 

number of sequences having n successes in N events is 

N! 
(2.1) 

n!(N - n)!' 

so the total probability to have n successes in N events is 

f( NT) N! n( )N-n 
n', ,p = pIp 

n!(N - n)! - , 
(2.2) 
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for n = 0, ... , N. Note that f(n; N, p) is itself a probability, not a probability 

density. The notation used is that the random variable (or variables) are listed as 

arguments of the probability function (or p.d.f.) to the left of the semicolon, and 

any parameters (in this case Nand p) are listed to the right. The expectation 

value of n is 

ex> N! n N-n 

E[n] = ~ n n!(N _ n)! p (1 - p) Np, (2.3) 

and variance is 

V[n] E[n2] - (E[n])2 

Np(l - p). (2.4) 

These can be computed by using the characteristic function of the binomial 

distri bu tion, cf. Chapter 10. 

Recall that expectation values are not functions of the random variable, but 

they depend on the parameters of the probability function, in this case p and 

N. The binomial probability distribution is shown in Fig. 2.1 and Fig. 2.2 for 

various values of p and N. 
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Fig. 2.1 The binomial distribution for 

p = 0.5 and various values of N. 
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Fig. 2.2 The binomial distribution for 

N = 20 and various values of p. 

The multinomial distribution is the generalization of the binomial distribu

tion to the case where there are not only two outcomes ('success' and 'failure') 
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but rather m different possible outcomes. For a particular trial the probability 

of outcome i is Pi, and since one of the outcomes must be realized, one has the 

constraint 2::1 Pi = 1. 

Now consider a measurement consisting of N trials, each of which yields one of 

the possible m outcomes. The probability for a particular sequence of outcomes, 

e.g. i on the first trial, j on the second, and so on, in a particular order, is the 

product of the N corresponding probabilities, PiPj .. . Pk. The number of such 

sequences that will lead to ni outcomes of type 1, n2 outcomes of type 2, etc., is 

N! 
(2.5) 

n1!n2! ... n m !· 

If we are not interested in the order of the outcomes, but only in the total 

numbers of each type, then the joint probability for n1 outcomes of type 1, n2 

of type 2, etc .. is given by the multinomial distribution, 

N' 
f(n . N P p) - . nl n2 n Tn 

1 , ... , n m , , I,"" m - " ,PI P2 .,. Pm . 
nl·n2· ... n m · 

(2.6) 

Suppose one breaks the m possible outcomes into two categories: outcome i 

('success') and not outcome i ('failure'). Since this is the same as the binomial 

process presented above, the number of occurrences of outcome i, ni, must be 

binomially distributed. This is of course true for all i. From equations (2.3) and 

(2.4) one has that the expectation value of ni is E[nd = N Pi and the variance 

is V[ni] = Npi(l - pd. 
Consider now the three possible outcomes: i, j and everything else. The 

probability to have ni outcomes of type i, nj of type j and N - ni - nj of 

everything else is 

so that the covariance Vij = cov [ni , n j] is 

-NPiPj (2.8) 

for i ::p j, otherwise Vii = err = N Pi (1 - Pi)' 

An example of the multinomial distribution is the probability to obtain a 

particular result for a histogram constructed from N independent observations 

ofa random variable, i.e. n1 entries in bin 1, n2 entries in bin 2, etc., with m bins 

and N total entries. Note from equation (2.8) that the numbers of entries in any 

two bins are negatively correlated. That is, if in N trials bin i contains a larger 

than average number of entries (ni > Npi) then the probability is increased that 

a different bin j will contain a smaller than average number. 
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2.2 Poisson distribution 

Consider the binomial distribution of Section 2.1 in the limit that N becomes 

very large, p becomes very small, but the product N p (i.e. the expectation value 

of the number of successes) remains equal to some finite value v. It can be shown 

that equation (2.2) leads in this limit to (see Section 10.2) 

vn 

f(n; v) = - e- v (2.9) 
n! 

which is called the Poisson distribution for the integer random variable n, where 

n = 0,1, ... ,00. The p.d.f. has one parameter, v. Figure 2.3 shows the Poisson 

distribution for v = 2,5,10. 
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The expectation value of the Poisson random variable n is 

E[n] = f n :~ e-
v = v, 

n=O 

and the variance is given by 

00 n 

V[n] = L (n - v)2 ; e- V = v. 
n. 

n=O 

(2.10) 

(2.11) 

Although a Poisson variable is discrete, it can be treated as a continuous 

variable x as long as this is integrated over a range ~x which is large compared 

to unity. We will show in Chapter 10 that for large mean value v, a Poisson 

variable can be treated as a continuous variable following a Gaussian distribution, 

cf. Section 2.5. 
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An example of a Poisson random variable is the number of decays of a certain 

amount of radioactive material in a fixed time period, in the limit that the 

total number of possible decays (i.e. the total number of radioactive atoms) is 

very large and the probability for an individual decay within the time period is 

very small. Another example is the number of events of a certain type observed 

in a particle scattering experiment with a given integrated luminosity L. The 

expectation value of the number of events is 

v = U L€, (2.12) 

where u is the cross section for the event and € is the efficiency, i.e. the probability 

for the event to be observed in the detector. 

2.3 Uniform distribution 

The uniform p.d.f. for the continuous variable x (-00 < x < 00) ts defined by 

!(X; n, f3) = { ~~o 
otherwise, 

(2.13) 

i.e. x is equally likely to be found anywhere between a and f3. The mean and 

variance of x are given by 

l
i3 x . 

E[x] = a f3 _ a dx = Ha + f3), (2.14) 

l
i3 1 

V[x] = a [x - Ha + f3)]2 f3 _ a dx = -l2(f3 - a)2. (2.15) 

An important feature of the uniform distribution is that any continuous ran

dom variable x with p.d.f. f(x) and cumulative distribution F(x) can easily be 

transformed to a new variable y which is uniformly distributed between zero and 

one. The transformed variable y is simply given by 

y = F(x), (2.16) 

i.e. it is the cumulative distribution function of the original variable x. For any 

cumulative distribution y = F(x) one has 

dy d jX (')' () 
dx = dx -00 f x dx = f x , (2.17) 

and hence from equation (1.32) one finds the p.d.f. of y to be 

g(y) = !(x) 1 ~: 1 = !(x) 1 ~~ 1-' = 1, (0 ~ y ~ 1). (2.18) 

This property of the uniform distribution will be used in Chapter 3 in connection 

with Monte Carlo techniques. 
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An example of a uniformly distributed variable is the energy of a photon 

(,) from the decay of a neutral pion, 7r
0 

4- ". The laboratory-frame energy 

E, of either photon is uniformly distributed between Emin = tE7r(1 - f3) and 

Emax = tE7r(1+f3), where E7r is the energy of the pion and f3 == vic is the pion's 

velocity divided by the velocity of light. 

2.4 Exponential distribution 

The exponential probability density of the continuous variable x (0 ~ x < 00) is 

defined by 

(2.19) 

The p.d.f. is characterized by a single parameter e. The expectation value of x 

is 

E[x] = - xe-X/~dx = e, 1100 

e ° 
(2.20) 

and the variance of x is given by 

(2.21) 

An example of an exponentjal random variable is the decay time of an unstable 

particle measured in its rest frame. The parameter e then corresponds to the 

mean lifetime, usually denoted by T. The exponential distribution is shown in 

Fig. 2.4 for different values of e. 
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2.5 Gaussian distribution 

The Gaussian (or normal) p.d.f. of the continuous random variable x (with -00 < 

x < 00) is defined by 

(2.22) 

which has two parameters, /-L and 17
2

• The names of the parameters are clearly 

motivated by the values of the mean and variance of x. These are found to be 

1
00 1 (-(x - /-L)2) 

E[x] = x r.;--;; exp 2 2 dx = /-L, 
-00 V 2rru2 

(J' 

(2.23) 

(2.24) 

Recall that /-L and 17
2 are often used to denote the mean and variance of any 

p.d.f. as defined by equations (1.39) and (1.43), not only those of a Gaussian. 

Note also that one may equivalently regard either 17 or 17
2 as the parameter. The 

Gaussian p.d.f. is shown in Fig. 2.5 for different combinations of the parameters 

/-L and u. 
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Fig. 2.5 The Gaussian probability 

density for various values of the param

eters J.l and a. 

A special case of the Gaussian p.d.f. is sufficiently important to merit its own 

notation. Using /-L = 0 and 17 = 1, one defines the standard Gaussian p.d.f. <p(x) 
as 

1 
<p(x) = ~exp(-x2 /2), 

v2rr 

with the corresponding cumulative distribution cI>( x), 

(2.25) 
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(2.26) 

One can easily show that if y is distributed according to a Gaussian p.d.f. with 

mean J-l and variance (7
2

) then the variable 

Y-J-l 
X=--

17 
(2.27) 

is distributed according to the standard Gaussian <p( x), and the cumulative dis

tributions are related by F(y) = <I>(x). The cumulative distribution <I>(x) cannot 

be expressed analytically and must be evaluated numerically. Values of <I>(x) as 

well as the quantiles Xo: = <I>-1 (Q) are tabulated in many reference books (e.g. 

[Bra92, Fro79, Dud88]) and are also available from computer program libraries, 

e.g. the routines FREQ and GAUSIN in [CER97]. 

The importance of the Gaussian distribution stems from the central limit 

theorem. The theorem states that the sum of n independent continuous random 

variables Xi with means J-li and variances U[ becomes a Gaussian random vari

able with mean J-l = 2:7=1 J-li and variance 17
2 = 2:7=lU[ in the limit that n 

approaches infinity. This holds (under fairly general conditions) regardless of the 

form of the individual p.d J.s of the Xi. This is the formal justification for treating 

measurement errors as Gaussian randqm variables, and holds to the extent that 

the total error is the sum of a large number of small contributions. The theorem 

can be proven using characteristic functions as described in Section 10.3. 

The N -dimensional genE~ralization of the Gaussian distribution is defined by 

(2.28) 

where x and p, are column vectors containing Xl, ... , XN and J-l1, •.• , J-lN, x T 

and p,T are the corresponding row vectors, and IVI is the determinant of a 

symmetric N x N matrix V, thus containing N (N + 1) /2 free parameters. For 

now regard V as a label for the parameters of the Gaussian, although as with 

the one-dimensional case, the notation is motivated by what one obtains for the 

covariance matrix. The expectation values and (co)variances can be computed 

to be 

(2.29) 

For two dimensions the p.d.f. becomes 
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f(Xl,X2;/-Ll,/-L2,0"1,0"2,P) = 1 
27rala2~ 

xexp{-2(1~P2) [(~)2 + (~)2 -2p(~) (~)l}, 
(2.30) 

where P = COV[Xl, X2]/(0"10"2) is the correlation coefficient. 

2.6 Log-normal distribution 

If a continuous variable y is Gaussian with mean /-L and variance 0"2, then x = eY 

follows the log-normal distribution. This is given by 

f(x; /-L, 0"2) = _1_ ..!:. exp (-(lOg x - /-L)2) . 
J27r0"2 X 20"2 

(2.31) 

The expectation value and variance are given in terms of the two parameters 

/-L and 0"2 as 

(2.32) 

(2.33) 

As in the case of the Gaussian p.dJ., one may consider either 0"2 or 0" as the 

parameter. Note that here, however, /-L and 0"2 are not the mean and variance 

of x, but rather the parameters of the corresponding Gaussian distribution for 

logx. The log-normal p.d.f. is shown in Fig. 2.6 for several combinations of /-L 

and 0". 
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Recall from the central limit theorem, introduced in the previous section, 

that if a random variable y is the sum of a large number of small contributions, 
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then it will be distributed according to a Gaussian p.d.f. From this it follows 

that if a variable x is given by the product of many factors then it will follow 

a log-normal distribution. It can thus be used to model random errors which 

change a result by a multiplicative factor. 

2.7 Chi-square distribution 

The X 2 (chi-square) distribution of the continuous variable z (0 :::; z < 00) IS 

defined by 

f() 1 n/2-1 -z/2 - 1 2 
z; n = 2n / 2 f ( n /2) z e , n - , , ... , (2.34) 

where the parameter n is called the number of degrees of freedom, and the 

gamma function f(x) is defined by 

f(x) = 10
00 

e- t t x
-

1 dt. (2.35) 

For the purposes of computing the X2 distribution, one only needs to know that 

f(n) = (n - 1)! for integer n, f(x + 1) = xf(x), and r(1/2) = ft. The mean 

and variance of z are found to be 

E[z] = z zn/2-1 e- z / 2 dz = n, 1
00 1 

D 2n
/

2 f(n/2) 
(2.36) 

1
00 f 

V[z] = (z - n)2 zn/2-1 e- z / 2 dz = 2n. 
D 2n

/
2 f(n/2) 

(2.37) 

The X2 distribution is shown in Fig. 2'.7 for several values of the parameter n. 

~ 0.5 

N 

~ 
0.4 

0.3 

0.2 

0.1 

0 
0 5 10 

z 

n=1 

n=2 

n=5 

n = 10 

15 20 

Fig. 2.7 The X2 probability density 

for various values of the parameter n. 

The X2 distribution derives its importance from its relation to the sum of 

squares of Gaussian distributed variables. Given N independent Gaussian ran

dom variables Xi with known mean /li and variance a}, the variable 
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(2.38) 

is distributed according to the X2 distribution for N degrees of freedom (see 

Section 10.2). More generally, if the Xi are not independent but are described by 

an N-dimensional Gaussian p.d.f. (equation (2.28)), the variable 

(2.39) 

is a X2 random variable for N degrees of freedom. Variables following the X2 

distribution play an important role in tests of goodness-of-fit (Sections 4.5, 4.7), 

especially in conjunction with the method of least squares (Section 7.5). 

2.8 Cauchy (Breit-Wigner) distribution 

The Cauchy or Breit-Wigner p.d.f. of the continuous variable X (-00 < x < 00) 
is defined by 

1 1 
f(x) = ---. 

IT 1 + x 2 
(2.40) 

This is a special case of the Breit-Wigner distribution encountered in particle 

physics, 

1 r/2 
f(x;r,xo) =;: r 2/4+(x-xo)2' (2.41) 

where the parameters Xo and r correspond to the mass and width of a resonance 

particle. This is shown in Fig. 2.8 for several values of the parameters. 
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Fig. 2.8 The Cauchy (Breit-Wigner) 

probability density for various values 

of the parameters Xo and r. 

The expectation value of the Cauchy distribution is not well defined, since 

although the p.d.f. is symmetric about zero (or Xo for (2.41)) the integrals 
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I~oo xf(x)dx and Iooo xf(x)dx are individually divergent. The variance and higher 

moments are also divergent. The parameters Xo and r can nevertheless be used 

to give information about the position and width of the p.d.f., as can be seen 

from the figure; Xo is the peak position (i.e. the mode) and r is the full-width of 

the peak at half of the maximum height. 1 

2.9 Landau distribution 

In nuclear and particle physics one often encounters the probability density 

f(tl; (3) for the energy loss tl of a charged particle when traversing a layer of 

matter of a given thickness. This was first derived by Landau [Lan44], and is 

given by 

1 
f(tl; (3) == ~ 4>(-\), 0 ~ tl < 00, (2.42) 

where ~ is a parameter related to the properties of the material and the velocity 

of the particle, {3 = vic, (measured in units of the velocity of light c) and 4>(-\) 
is the p.d.f. of the dimensionless random variable -\. The variable -\ is related 

to the properties of the material, the velocity {3, and the energy loss tl. These 

quantities are given by 

2rrNA e4 z 2 p L Z d 

~ = mec~ LA {32 ' 
(2.43) 

-\ == ~ [tl - ~ (log ~ + 1 -IE) 1 ' (2.44) 

I 12 exp({32) 
c = , 

2mec2 (32/2 
(2.45) 

where NA is Avagadro's number, me and e are the mass and charge of the 

electron, z is the charge of the incident particle in units of the electron's charge, 

L Z and L A are the sums of the atomic numbers and atomic weights of the 

molecular substance, p is its density, d is the thickness of the l~yer, I = IoZ 

with 10 ~ 13.5 eV is an ionization energy characteristic of the material, I = 
1/ VI=7fi, and IE = 0.5772 ... is Euler's constant. The function 4>(-\) is given 

by 

1 jt+iOO 
4>(-\) = -. . exp( u log u + -\u)du, 

2rrz E-ioo 
(2.46) 

where c is infinitesimal and positive, or equivalently after a variable transforma

tion by 

I The definition used here is standard in high energy physics where r is interpreted as the 

decay rate of a particle. In some references, e.g. [Ead71, Fro79], the parameter r is defined as 

the half-width at half maximum, i.e. the p.d.£. is given by equation (2.41) with the replacement 

r -+ 2r. 
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1100 

4>(A) = - exp( -u log u - AU) sin 1ru duo 
7r 0 

(2.47) 

The integral must be evaluated numerically, e.g. with the routine LANDAU [CER97, 

Koe84]. The energy loss distribution is shown in Fig. 2.9(a) for several values of 

the velocity f3 = vic. Because of the long tail extending to high values of ~, the 

mean and higher moments of the Landau distribution do not exist, i.e. the inte

gral fooo 
~n f(~)d~ diverges for n 2:: 1. As can be seen from the figure, however, 

the most probable value (mode) ~mp is sensitive to the particle's velocity. This 

has been computed numerically in [Mac69] to be 

~mp = e [log(e/t') + 0.198]' 

and is shown in Fig. 2.9(b).2 

(2.48) 
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Fig. 2.9 (a) The Landau probabil

ity density for the energy loss ~ of 

a charged particle traversing a 4 mm 

thick layer of argon gas at standard 

temperature and pressure for various 

values of the velocity {3. (b) The peak 

position (mode) of the distributions in 

(a) as a function of {3"Y as given by 

equation (2.4S). 

Although the mean and higher moments do not exist for the Breit-Wigner 

and Landau distributions, the probability densities actually describing physical 

processes must have finite moments. If, for example, one were to measure the 

energy loss ~ of a particle in a particular system many times, the average would 

eventually converge to some value, since ~ cannot exceed the energy of the 

incoming particle. Similarly, the mass of a resonance particle cannot be less than 

the sum of the rest masses of its decay products, and it cannot be more than the 

center-of-mass energy of the reaction in which it was created. The problem arises 

because the Cauchy and Landau distributions are only approximate models of 

2Equation (2.4S) (the 'Bethe-Bloch formula') forms the basis for identification of charged 

particles by measurement of ionization energy loss, d. [AliSO]. 
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hysical system. The models break down in the tails of the distributions, 

l IS the part of the p.d.f. that causes the mean and higher moments to 

~e. 
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The Monte Carlo method 

The Monte Carlo method is a numerical technique for calculating probabilities 

and related quantities by using sequences of random numbers. For the case of a 

single random variable, the procedure can be broken into the following stages. 

First, a series of random values rl, r2 ... is generated according to a uniform 

distribution in the interval 0 < r < 1. That is, the p.d.f. g(r) is given by 

g(r) = { ~ 0< r < 1, 
otherwise. 

(3.1) 

Next, the sequence rl, r2, ... is used to determine another sequence Xl, X2··· 

such that the x values are distributed according to a p.d.f. f(x) in which one 

is interested. The values of x can then be treated as simulated measurements, 

and from them the probabilities for X to take on values in a certain region can 

be estimated. In this way one effectively computes an integral of f(x). This 

may seem like a trivial exercise, since the function f(x) was available to begin 

with, and could simply have been integrated over the region of interest. The 

true usefulness of the technique, however, becomes apparent in multidimensional 

problems, where integration of a joint p.d.f. f(x, y, z, ... ) over a complicated 

region may not be feasible by other methods. 

3.1 Uniformly distributed random numbers 

In order to generate a sequence of uniformly distributed random numbers, one 

could in principle make use of a random physical process such as the repeated 

tossing of a coin. In practice, however, this task is almost always accomplished by 

a computer algorithm called a random munber generator. Many such algorithms 

have been implemented as user-callable subprograms (e.g. the routines RANMAR 

[Mar91] or RANLUX [Liis94, Jam94], both in [CER97]). A detailed discussion of 

random number generators is beyond the scope of this book and the interested 

reader is referred to the more complete treatments in [Bra92, Jam90]. Here a 

simple but effective algorithm will be presented in order to illustrate the general 

idea. 

A commonly used type of random number generator is based on the multi

plicative linear congruential algorithm. Starting from an initial integer value no 

(called the seed), one generates a sequence of integers nl. n2 •... according to the 

rule 
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ni+l = (and modm. (3.2) 

Here the multiplier a and modulus m are integer constants and the mod (modulo) 

operator means that one takes the remainder of ani divided by m. The values 

ni follow a periodic sequence in the range [1, m - 1]. In order to obtain values 

uniformly distributed in (0,1), one uses the transformation 

(3.3) 

Note that this excludes 0 and 1; in some other algorithms these values can be 

included. The initial value no and the two constants a and m determine the 

entire sequence, which, of course, is not truly random, but rather strictly deter

mined. The resulting values are therefore more correctly called pseudorandom. 

For essentially all applications these can be treated as equivalent to true ran

dom numbers, with the exception of being reproducible, e.g. if one repeats the 

procedure with the same seed. 

The values of m and a are chosen such that the generated numbers perform 

well with respect to various tests of randomness. Most important among these 

is a long period before the sequence repeats, since after this occurs the numbers 

can clearly no longer be regarded as random. In addition, one tries to attain the 

smallest possible correlations between pairs of generated numbers. For a 32-bit 

integer representation, for example, m = 2147483399 and a = 40692 have been 

shown to give good results, and with these one attains the maximum period of 

m - 1 ~ 2 X 109 [Lec88]. More sophisticated algorithms allow for much longer 

periods, e.g. approximately 1043 for the RANMAR generator [Mar91, CER97]. 

3.2 The transformation method 

Given a sequence of random numbers rl, r2, ... uniformly distributed in [0,1], 

the next step is to determine a sequence Xl, X2, ... distributed according to the 

p.d.f. f(x) in which one is interested. In the transformation method this is ac

complished by finding a suitable function x(r) which directly yields the desired 

sequence when evaluated with the uniformly generated r values. The problem is 

clearly related to the transformation of variables discussed in Section 1.4. There, 

an original p.d.f. f(x) for a random variable X and a function a(x) were specified, 

and the p.d.f. g( a) for the function a was then found. Here the task is to find 

a function x(r) that is distributed according to a specified f(x), given that r 

follows a uniform distribution between 0 and 1. 

The probability to obtain a value of r in the interval [r, r+ dr] is g(r)dr, and 

this should be equal to the probability to obtain a value of x in the corresponding 

interval [x(r), x(r)+dx{r)]' which is f(x)dx. In order to determine x{r) such that 

this is true, one can require that the probability that r is less than some value r' 

be equal to the probability that x is less than x(r'). (We will see in the following 

example that this prescription is not unique.) That is~ one must find a function 

x(r) such that F(x(r)) = G(r), where F and G are the cumulative distributions 
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corresponding to the p.d.f.s f and g. Since the cumulative distribution for the 

uniform p.d.f. is G(r) = r with 0:::; r ~ 1, one has 

l
x (r) 

F(x(r)) = -00 f(x')dx' 

r. (3.4) 

Equation (3.4) says in effect that the cumulative distribution F(x), treated as a 

random variable, is uniformly distributed between 0 and 1 (cf. equation (2.18)). 

Depending on the f(x) in question, it mayor may not be possible to solve 

for x(r) using equation (3.4). Consider the exponential distribution discussed in 

Section 2.4. Equation (3.4) becomes 

{x(r) 1 I 

10 ~e-x /f.dx' = r. (3.5) 

Integrating and solving for x gives 

x(r) = -~ 10g(1 - r). (3.6) 

If the variable r is uniformly distributed between 0 and 1 then r' = 1 - r clearly 

is too, so that the function 

x(r) = -~ log r (3.7) 

also has the desired property. That is, if r follows a uniform distribution between 

o and 1, then x(r) = -~logr will follow an exponential distribution with mean 

~. 

3.3 The acceptance-rejection method 

It turns out to be too difficult in many practical applications to solve equation 

(3.4) for x(r) analytically. A useful alternative is von Neumann's acceptance

rejection technique [Neu51]. Consider a p.d.f. f(x) which can be completely sur

rounded by a box between Xmin and Xmax and having height fmax, as shown in 

Fig. 3.1. One can generate a series of numbers distributed according to f(x) with 

the following algorithm: 

(1) Generate a random number x, uniformly distributed between Xmin and xmax , 

i.e. x = Xmin + rl(Xmax - Xmin) where rl is uniformly distributed between 0 

and 1. 

(2) Generate a second independent random number u uniformly distributed 

between 0 and fmax, i.e. u = r2fmax. 

(3) Ifu < f(x), then accept x. If not, reject x and repeat. 
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Fig. 3.1 A probability density f(x) 
enclosed by a box to generate ran

dom numbers using the acceptance-re

jection technique. 

The accepted x values will be distributed according to f(x), since for each value 

of x obtained from step (1) above, the probability to be accepted is proportional 

to f(x). 
As an example consider the p.d.f. 1 

(3.8) 

At x = ±1 the p.d.f. has a maximum value of fmax = 3/4. Figure 3.2(a) shows 

a scatter plot of the random numbers u and x generated according to the al

gorithm given above. The x'values of the points that lie below the curve are 

accepted. Figure 3.2(b) shows a normalized histogram constructed from the ac

cepted points. 

The efficiency of the algorithm (i.e. the fraction of x values accepted) is the 

ratio of the areas of the p.d.f. (unity) to that of the enclosing box fmax . (xmax -

Xmin). For a highly peaked density function the efficiency may be quite low, and 

the algorithm may be too slow to be practical. In cases such as these, one can 

improve the efficiency by enclosing the p.d.f. f(x) in any other curve g(x) for 

which random numbers can be generated according to g(x)/ f g(x')dx', using, 

for example, the transformation method. 

The more general algorithm is then: 

(1) Generate a random number x according to the p.d.f. g(x)/ f g(x')dx'. 

(2) Generate a second random number u uniformly distributed between 0 and 

g(x). 

(3) If u < f(x), then accept x. If not, reject x and repeat. 

1 Equation (3.8) gives the distribution of the scattering angle 0 in the reaction e+ e- --? J.l+ J.L

with x = cosO (see e.g. [Per87]). 
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Fig. 3.2 (a) Scatter plot of pairs of 

numbers (u,x), where x is uniformly 

distributed in -1 :<::; x :<::; 1, and u is 

uniform in 0 :<::; u :<::; fmax. The x val

ues of the points below the curve are 

accepted. (b) Normalized histogram of 

the accepted x values with the corre

sponding p.d.£. 

Here the probability to generate a value x in step (1) is proportional to g( x), 
and the probability to be retained after step (3) is equal to f(x)/g(x), so that 

the total probability to obtain x is proportional to f(x) as required. 

3.4 Applications of the Monte Carlo method 

The Monte Carlo method can be applied whenever the solution to a problem can 

be related to a parameter of a probability distribution. This could be either an 

explicit parameter in a p.d.f., or the integral of the distribution over some region. 

A sequence of Monte Carlo generated values is used to evaluate an estimator 

for the parameter (or integral), just as is done with real data. Techniques for 

constructing estimators are discussed in Chapters 5-8. 

An important feature of properly constructed estimators is that their sta

tistical accuracy improves as the number of values n in the data sample (from 

Monte Carlo or otherwise) increases. One can show that under fairly general 

conditions, the standard deviation of an estimator is inversely proportional to 

fo (see Section 6.6). The Monte Carlo method thus represents a numerical in

tegration technique for which the accuracy increases as 1/ fo. 
This scaling behavior with the number of generated values can be compared 

to the number of points necessary to compute an integral using the trapezoidal 

rule. Here the accuracy improves as l/n 2
, i.e. much faster than by Monte Carlo. 

For an integral of dimension d, however, this is changed to l/n 2
/

d
, whereas 

for Monte Carlo integration one has 1/ fo for any dimension. So for d > 4, 

the dependence of the accuracy on n is better for the Monte Carlo method. For 

other integration methods, such as Gaussian quadrature, a somewhat better rate 

of convergence can be achieved than for the trapezoidal rule. For a large enough 
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number of dimensions, however, the Monte Carlo method will always be superior. 

A more detailed discussion of these considerations can be found in (J am80]. 

The Monte Carlo technique provides a method for determining the p.d.f.s 

of functions of random variables. Suppose, for example, one has n independent 

random variables Xl, ... ,Xn distributed according to known p.d.f.s h(Xl), ... , 
fn(Xn), and one would like to compute the p.d.f. g(a) of some (possibly compli

cated) function a(xl, ... , xn). The techniques described in Section 1.4 are often 

only usable for relatively simple functions of a small number of variables. With 

the Monte Carlo method, a value for each Xi is generated according to the corre

sponding fi(Xi). The value of a(xl, ... , xn) is then computed and recorded (e.g. 

in a histogram). The procedure is repeated until one has enough values of a to 

estimate the properties of its p.d.f. g(a) (e.g. mean, variance) with the desired 

statistical precision. Examples of this technique will be used in the following 

chapters. 

The Monte Carlo method is often used to simulate experimental data. In 

particle physics, for example, this is typically done in two stages: event genera

tion and detector simulation. Consider, for example, an experiment in which an 

incoming particle such as an electron scatters off a target and is then detected. 

Suppose there exists a theory that predicts the probability for an event to occur 

as a function of the scattering angle (i.e. the differential cross section). First one 

constructs a Monte Carlo program to generate values of the scattering angles, 

and thus the momentum vectors, of the final state particles. Such a program is 

called an event generator. In high energy-physics, event generators are available 

to describe a wide variety of particle reactions. 

The output of the event generator, i.e. the momentum vectors of the gener

ated particles, is then used as- input for a detector simulation program. Since 

the response of a detector to the passage of the scattered particles also involves 

random processes such as the production of ionization, multiple Coulomb scat

tering, etc., the detector simulation program is also implemented using the Monte 

Carlo method. Programming packages such as GEANT [CER97] can be used to 

describe complicated detector configurations, and experimental collaborations 

typically spend considerable effort in achieving as complete a modeling of the 

detector as possible. This is especially important in order to optimize the detec

tor's design for investigating certain physical processes before investing time and 

money in constructing the apparatus. 

When the Monte Carlo method is used to simulate experimental data, one 

can most easily think of the procedure as a computer implementation of an 

intrinsically random process. Probabilities are naturally interpreted as relative 

frequencies of outcomes of a repeatable experiment, and the experiment is simply 

repeated many times on the computer. The Monte Carlo method can also be 

regarded, however, as providing a numerical solution to any problem that can 

be related to probabilities. The results are clearly independent of the probability 

interpretation. This is the case, for example, when the Monte Carlo method is 

used simply to carry out a transformation of variables or to compute integrals 

of functions which may not normally be interpreted as probability densities. 
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Statistical tests 

In this chapter some basic concepts of statistical test theory are presented. As 

this is a broad topic, after a general introduction we will limit the discussion 

to several aspects that are most relevant to particle physics. Here one could be 

interested, for example, in the particles resulting from an interaction (an event), 

or one might consider an individual particle within an event. An immediate ap

plication of statistical tests in this context is the selection of candidate particles 

or events which are then used for further analysis. Here one is concerned with 

distinguishing events of interest (signal) from other types (background). These 

questions are addressed in Sections 4.2-4.4. Another important aspect of statis

tical tests concerns goodness-of-fit; this is discussed in Sections 4.5-4.7. 

4.1 Hypotheses, test statistics, significance level, power 

The goal of a statistical test is to make a statement about how well the observed 

data stand in agreement with given predicted probabilities, i.e. a hypothesis. 

The hypothesis under consideration is traditionally called the null hypothesis, 

Ha, which could specify, for example, a probability density f(x) of a random 

variable x. If the hypothesis determines f(x) uniquely it is said to be simple; if 

the form of the p.d.f. is defined but not the values of at least one free parameter 

{}, then f(x; (}) is called a composite hypothesis. In such cases the unknown 

parameter or parameters are estimated from the data using, say, techniques 

discussed in Chapters 5-8. For now we will concentrate on simple hypotheses. 

A statement about the validity of Ha often involves a comparison with some 

alternative hypotheses, HI, H 2, .... Suppose one has data consisting of n mea

sured values x = (Xl, ... , x n ), and a set of hypotheses, Ha, HI, ... , each of which 

specifies a given joint p.d.f., f(xIHo), f(xIHd, ... .1 The values could, for exam

ple, represent n repeated observations of the same random variable, or a single 

observation of an n-dimensional variable. In order to investigate the measure 

of agreement between the observed data and a given hypothesis, one constructs 

a function of the measured variables called a test statistic t(x). Each of the 

hypotheses will imply a given p.d.f. for the statistic t, i.e. g(tIHa), g(tIHI), etc. 

1 For the p.d.f. of x given the hypothesis H the notation of conditional probability f(xIH) 
is used (Section 1.3), even though in the context of classical statistics a hypothesis H is only 

regarded as a random variable if it refers to the outcome of a repeatable experiment. In Bayesian 

statistics both x and H are random variables, so there the notation is in any event appropriate. 
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The test statistic t can be a multidimensional vector, t = (t l , ... , tm ). In fact, 

the original vector of data values x = (Xl, ... , xn) could be used. The point of 

constructing a statistic t of lower dimension (i.e. m < n) is to reduce the amount 

of data without losing the ability to discriminate between hypotheses. Let us 

suppose for the moment that we have chosen a scalar function t(x), which has 

the p.d.f. g(tIHo) if Ho is true, and g(tlHd if HI is true, as shown in Fig. 4.1. 

acceptHo 
1.5 

0.5 

o 
o 2 

reject Ho 

3 4 5 

Fig. 4.1 Probability densities for the 

test statistic t under assumption of the 

hypotheses Ho and Ht. Ho is rejected 

if t is observed in the critical region, 

here shown as t > tcut. 

Often one formulates the statement_ about the compatibility between the data 

and the various hypotheses in terms of a decision to accept or reject a given null 

hypothesis Ho. This is done by defining a critical region for t. Equivalently, one 

can use its complement, called the acceptance region. If the value of tactually 

observed is in the critical region, one rejects the hypothesis Ho; otherwise, Ho 

is accepted. The critical region is chosen such that the probability for t to be 

observed there, under assumption of the hypothesis Ho, is some value (x, called 

the significance level of the test. For example, the critical region could consist of 

values of t greater than a certain value tcut, called the cut or decision boundary, 

as shown in Fig. 4.1. The significance level is then 

(X = 100 

g(tIHo)dt. 
tcut 

(4.1 ) 

One would then accept (or, strictly speaking, not reject) the hypothesis H 0 if 

the value of t observed is less than tcut . There is thus a probability of ex to reject 

Ho if Ho is true. This is called an error of the first kind. An error of the second 

kind takes place if the hypothesis Ho is accepted (i.e. t is observed less than tcut) 

but the true hypothesis was not Ho but rather some alternative hypothesis HI. 

The probability for this is 

(4.2) 
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where 1 - j3 is called the power of the test to discriminate against the alternative 

hypothesis HI. 

4.2 An example with particle selection 

As an example, the test statistic t could represent the measured ionization cre

ated by a charged particle of a known momentum traversing a detector. The 

amount of ionization is subject to fluctuations from particle to particle, and de

pends (for a fixed momentum) on the particle's mass. Thus the p.d.f. g(tIHa) 
in Fig. 4.1 could correspond to the hypothesis that the particle is an electron, 

and the g(tlHd could be what one would obtain if the particle was a pion, i.e. 

Ha = e, HI = 71". 

Suppose the particles in question are all known to be either electrons or pions, 

and that one would like to select a sample of electrons by requiring t :S tcut . (The 

electrons are regarded as 'signal', and pions are considered as 'background'.) The 

probabilities to accept a particle of a given type, i.e. the selection efficiencies Ce 

and C-rr, are thus 

j
t cut 

Ce = -00 g(tle)dt = 1 - Q', (4.3) 

j
t cut 

C-rr = -00 g(t 1 71")dt = j3. ( 4.4) 

Individually these can be made arbitrarily close to zero or unity simply by 

an appropriate choice of the critical region, i.e. by making a looser or tighter cut 

on the ionization. The price one pays for a high efficiency for the signal is clearly 

an increased amount of contamination, i.e. the purity of the electron sample 

decreases because some pions are accepted as well. 

If the relative fractions of pions and electrons are not known, the problem 

becomes one of parameter estimation (Chapters 5-8). That is, the test statistic 

t will be distributed according to 

f (t; ae) = aeg (t 1 e) + (1 - ae) 9 (t 171" ) , (4.5) 

where ae and a-rr = 1 - ae are the fractions of electrons and pions, respectively. 

An estimate of ae then gives the total number of electrons Ne in the original 

sample of Ntot particles, Ne = aeNtot . 
Alternatively one may want to select a set of electron candidates by requiring 

t < tcut, leading to Nacc accepted out of the Ntot particles. One is then often 

interested in determining the total number of ~lectrons present before the cut on 

t was made. The number of accepted particles is given by2 

2S trictly speaking, equations (4.6) and (4.7) give expectation values of numbers of particles, 

not the numbers which would necessarily be found in an experiment with a finite data sample. 

The distinction will be dealt with in more detail in Chapter 5. 
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CeNe + c7r N 7r 

Ce Ne -i- C7r (Ntot - Ne), 

Nacc - C7r N tot 
Ne= ------

(4.6) 

(4.7) 

From (4.7) one sees that the number of accepted particles Nacc can only be 

used to determine the number of electrons Ne if the efficiencies Ce and C7r are 

different. If there are uncertainties in C7r and Ce, then these will translate into an 

uncertainty in Ne according to the error propagation techniques of Section 1.6. 

One would try to select the critical region (i.e. the cut value for the ionization) 

in such a way that the total error in Ne is a minimum. 

The probabilities that a particle with an observed value of t is an electron 

or a pion, h(elt) and h(7rlt), are obtained from the p.d.f.s g(tle) and g(tl7r) using 

Bayes' theorem (1.8), 

(4.8) 

(4.9) 

where a e and a 7r = 1 - ae are the prior probabilities for the hypotheses e and 7r. 

Thus in order to give the probability that a given selected particle is an electron, 

one needs the prior probabilities for all of the possible hypotheses as well as the 

p.d.f.s that they imply for the statistic t. 
Although this is essentially the Bayesian approach to the problem, equations 

(4.8) and (4.9) also make sense in the framework of classical statistics. If one is 

dealing with a large sample of particles, then the hypotheses H = e and H = 7r 

refer to a characteristic that changes randomly from particle to particle. Using 

the relative frequency interpretation in this case, h( elt) gives the fraction of 

times a particle with a given t will be an electron. In Bayesian statistics using 

subjective probability, one would say that h( elt) gives the degree of belief that 

a given particle with a measured value of t is an electron. 

Instead of the probability that an individual particle is an electron, one may 

be interested in the purity Pe of a sample of electron candidates selected by 

requiring t < tcut . This is given by 
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Pe 
number of electrons with t < tcut 

number of all particles with t < tcut 

(4.10) 

One can check using equation (4.8) that this is simply the mean electron prob

ability h( elt), averaged over the interval (-00, tcut]. That is, 

f~~t h(elt) f(t) dt 
Pe = 

f~:t f(t) dt 
(4.11) 

4.3 Choice of the critical region using the Neyman-Pearson 
lemma 

Up to now the exact choice of the critical region, i.e. the value of tcut, was left 

open. This will be chosen depending on the efficiency and purity of the selected 

particles (or events) desired in the further analysis. One way of defining an 

optimal placement of the cuts is to require that they give a maximum purity 

for a given efficiency. (The desired value of the efficiency is still left open.) With 

the one-dimensional test statistic of the previous example, this was achieved 

automatically. There only a single cut value tcut needed to be determined, and 

this determined both the efficiency and purity. 

Suppose, however, that a multidimensional test statistic t = (tI' ... , t m ) has 

been chosen. The definition of the critical (or acceptance) region is then not as 

obvious. Assume we wish to test a simple hypothesis Ho, say, in order to select 

events of a given type. We will allow for a simple alternative hypothesis HI' That 

is, in addition to the events of interest (signal) there are also background events, 

so that the signal purity in the selected sample will in general be less than 100%. 

The Neyman-Pearson lemma states that the acceptance region giving the 

highest power (and hence the highest signal purity) for a given significance level 

a (or selection efficiency c = 1 - a) is the region of t-space such that 

g(tIHo) 
g(tIHI) > c. 

(4.12) 

Here c is a constant which is determined by the desired efficiency. A proof can be 

found in [Bra92]. Note that a test based on the Neyman-Pearson acceptance re

gion for the vector statistic t is in fact equivalent to a test using a one-dimensional 

statistic given by the ratio on the left-hand side of (4.12), 

g(tIHo) 
r= . 

g(tIHI) 
(4.13) 
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This is called the likelihood ratio for simple hypotheses H 0 and HI. The corre

sponding acceptance region is given by r > c. 

4.4 Constructing a test statistic 

Suppose that we start with a vector of data x = (Xl, ... , xn), and we would like 

to construct out of this a one-dimensional test statistic t(x) so as to distinguish 

between two simple hypotheses H 0 and HI. As we have seen in the previous sec

tion, the best test statistic in the sense of maximum power (and hence maximum 

signal purity) for a given significance level (or selection efficiency) is given by 

the likelihood ratio, 

t(x) = f(xIHo) . 
f(xlHd 

( 4.14) 

In order to construct this, however, we need to know f(xIHo) and f(xIHd. Often 

these must be determined by a Monte Carlo simulation of the two types of events, 

where the probability densities are represented as multidimensional histograms. 

If one has M bins for each of the n components of x, then the total number of 

bins is Mn. This means in effect that M n parameters must be determined from 

the Monte Carlo data. For n too large, the method becomes impractical because 

of the prohibitively large number of events needed. 

Even if we cannot determine f(xIHo) and f(xlHd as n-dimensional his

tograms, we can nevertheless make a simpler Ansatz for the functional form of a 

test statistic t (x), and then choose the best ·function (according to some criteria) 

having this form. We will consider both linear and nonlinear functions of the Xi. 
In addition, we will need to address some practical considerations concerning the 

choice of the input variables. 

4.4.1 Linear test statistics, the Fisher discriminant function 

The simplest form for the statistic t(x) is a linear function, 

n 

t(x) = L aixi = aT x, 

i=l 

( 4.15) 

where aT = (a1, ... , an) is the transpose (i.e. row) vector of coefficients. The 

goal is to determine the ai so as to maximize the separation between the p.d.f.s 

g(tIHo) and g(tIHd. Different definitions of. the separation will lead to different 

rules for determining the coefficients. One approach, first developed by Fisher 

[Fis36], is based on the following considerations. The data x have the mean values 

and covariance matrix 

(J.lk)i J xi/(xIHk) dX1 ... dxn, 

J (x - J.lk)i (x - J.lk)j f(xIHk) dX1 ... dxn, 

(4.16) 
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where the indices i, j = 1, ... , n refer to the components of the vector x, and 

k = 0, 1 refers to hypotheses H 0 or HI. In a corresponding way, each hypothesis 

is characterized by a certain expectation value and variance for t, 

Tk = J tg(tIHk) dt = aT /-Lk, 

L~ J (t - Tk)2 g(tIHk) dt = aT Vk a. 

( 4.17) 

To increase the separation we should clearly try to maximize ITo-TIl. In addition, 

we want g(tIHo) and g(tIHI} to be as tightly concentrated as possible about TO 

and TI; this is determined by the variances E5 and Er. A measure of separation 

that takes both of these considerations into account is 

Expressing the numerator in terms of the ai, one finds 

where the matrix B, defined as 

n 

L aiaj (/-to - /-tdi (/-to - /-tdj 
i,j=I 

n 

L aiajBij = aT B a, . 

i,j=I 

(4.18) 

( 4.19) 

( 4.20) 

represents the separation 'between' the two classes corresponding to H 0 and HI. 

Similarly, the denominator of (4.18) becomes 

n 

L~ + LI = L aiaj(Vo + Vdij = aT Wa, 
i,j=I 

(4.21) 

where Wij = (Vo + Vdij represents the sum of the covariance matrices 'within' 

the classes. The measure of separation (4.18) thus becomes 

J(a) = aT B a. 
aTWa 

( 4.22) 

Setting the derivatives of J(a) with respect to the ai equal to zero to find 

the maximum separation gives 
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a ex W- 1 
(/Lo - /Lt). ( 4.23) 

The coefficients are only determined up to an arbitrflry scale factor. The test 

statistic based on (4.15) and (4.23) is called Fisher's linear discriminant func

tion. In order to determine the coefficients ai, one needs the matrix Wand the 

expectation values /L(O,I). These are usually estimated from a set of training data, 

e.g. from a Monte Carlo simulation. The important point is that one does not 

need to determine the full joint p.d.f.s f(xIHo) and f(xIHt) as n-dimensional 

histograms, but rather only the means and covariances (4.16) must be found. 

That is, the training data are used to determine only n(n + 1)/2 parameters. 

Functions used to estimate means and covariances from a data sample are given 

in Section 5.2. 

It is possible to change the scale of the variable t simply by multiplying a by 

a constant. By generalizing the definition of t to read 

n 

t(x) = ao + L aiXi, 

i::::1 

( 4.24) 

one can use the offset ao and the arbitrary scale to fix the expectation values TO 

and Tl to any desired values. Maximizing the class separation (4.18) with fixed 

TO and Tl is then equivalent to minimizing the sum of the variances within the 

classes, 

( 4.25) 

where Eo and El denote the expectation values under the hypotheses Ho and HI. 

Thus the criterion used to determine the coefficients a is similar to a minimum 

principle that we will encounter in Chapter 7 concerning parameter estimation, 

namely the principle of least squares. 

It is interesting to note a few properties of the Fisher discriminant for the 

case where the p.d.f.s f(xIHo) and f(xlHI) are both multidimensional Gaussians 

with common covariance matrices, Vo = VI = V, 

In this case the Fisher discriminant, including an offset as in equation (4.24), 

can be taken to be 

( 4.27) 

The likelihood ratio (4.14) becomes 
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( 4.28) 

That is, we have t ex: logr + const., and hence the test statistic (4.27) is given 

by a monotonic function of r. So for this case the Fisher discriminant function is 

just as good as the likelihood ratio. In addition, the multidimensional Gaussian 

with Vo = VI = V results in a simple expression for the posterior probabilities 

for the hypotheses. From Bayes' theorem we have for, say, the probability of Ho 
given the data x, 

P(Holx) 
1 

(4.29) 
1 + ...:!!.l...' 

7l"or 

where 1T"o and 1T"1 are the prior probabilities for Ho and H 1. Combi~ing this with 

the expression for r (4.28) gives 

P(Holx) = 

and for the offset one obtains 

1 
--- = s(t), 
1 + e- t 

( 4.30) 

( 4.31) 

The function s(t) is a special case of the sigmoid function. The form used here 

takes on values in the interval (0, 1), and is therefore called a logistic sigmoid. 

4.4.2 Nonlinear test statistics, neural networks 

If the joint p.d.f.s f(xIHo) and f(xIH 1 ) are not Gaussian or if they do not have a 

common covariance matrix, then the Fisher discriminant no longer has the opti

mal properties seen above. One can then try a more general parametrization for 

the test statistic t(x). Here we will consider a functional form which is a special 

case of an artificial neural network. The field of neural networks has developed a 

vast literature in recent years, especially for problems related to pattern recog

nition; here we will only sketch some of the main ideas. The interested reader 

is referred to more complete treatments such as [Bis95, Her91, Mii195]. Some 

applications of neural networks to problems in particle physics can be found in 

[Lon92, Pet92, Bab93]. 

Suppose we take t(x) to be of the form 

t(x) = s (ao + t aiXi) . 
1=1 

( 4.32) 
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(a) (b) 

t (X) t (x) 

Fig. 4.2 Architectures of two feed-forward neural networks: (a) a single-layer perceptron and 

(b) a two-layer perceptron. 

The function s(·) is in general called the activation function, which we will take 

to be a logistic sigmoid. Other activation functions such as a step function are 

also possible. The argument of the activation function is a linear function of the 

input variables, including the offset ao (often called a threshold). A test statistic 

of this form is called a single-layer perceptron. 

The structure of the single-layer perceptron is illustrated in Fig. 4.2(a). The 

input values x are represented as a set of nodes, which together constitute the 

input layer. The final test statistic t(x) is' given by the output node. In general 

we could consider multiple output nodes, corresponding to a vector test statistic. 

As in the preceding section we will restrict ourselves here to a single output node. 

Since the sigmoid function -is monotonic, the single-layer percept ron is equiv

alent to a linear test statistic. This can now be generalized, however, to the 

two-layer perceptron in the manner illustrated in Fig. 4.2(b). In addition to the 

input layer, one has a hidden layer with m nodes, (hI, . .. , hm ). The hi take over 

the role of the input variables of the single-layer perceptron, so that t is now 

given by 

( 4.33) 

The hi themselves are given as functions of the nodes in the previous layer (here, 

the input layer), 

hi(x) = S (WiD + t WiiXi) . 
1=1 

(4.34) 

This can easily be generalized to an arbitrary number of hidden layers (the 

multilayer perceptron). One usually restricts the connections so that the value 

of a given node only depends on the nodes in the previous layer, as indicated in 

Fig. 4.2; this is called a feed-forward network. The number of free parameters 
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for n input variables followed by layers containing ml, m2, m3, ... nodes is then 

given by (n + l)ml + (ml + 1)m2 + (m2 + 1)m3 + .... (Note that this includes 

the ao, WiQ, etc.) The parameters ai, Wij, etc., are called weights or connection 

strengths. 

By including a larger number of parameters, we are now able to better ap

proximate the optimal test statistic given by the likelihood ratio (4.14), or equiv

alently by a monotonic function of the likelihood ratio. The problem is now to 

adjust the parameters so that the resulting t(x) gives an optimal separation 

between the hypotheses. This is no longer as straightforward as in the linear 

case, where the parameters could be related to the means and covariances of x. 

The optimization of the parameters is typically based on minimizing an error 

function, such as 

(4.35) 

which is analogous to the sum of variances (4.25) minimized for the Fisher dis

criminant. Here, however, the values teO) and t(1) represent preassigned target 

values for the hypotheses H 0 and HI. For a logistic sigmoid activation function 

for the final layer, the target values are taken to be 0 and 1. 

In order to determine the parameters that minimize E, iterative numerical 

techniques must be used; this is called network training or learning. In practice, 

the adjustment of parameters involves replacing the expectation values in (4.35) 

with the mean values computed from samples of training data, e.g. from a Monte 

Carlo simulation. Learning algorithms often start with random initial values for 

the weights and proceed by evaluating the function using some or all of the 

training data. The weights are then adjusted to minimize E by one of a variety of 

methods. A popular procedure is known as error back-propagation. A description 

of these techniques is beyond the scope of this book; more information can be 

found in [Bis95, Her91, Mii195, Lon92, Pet94]. 

The choice of the number oflayers and number of nodes per layer (the network 

architecture) depends on the particular problem and on the amount of training 

data available. For more layers, and hence more parameters, one can achieve a 

better separation between the two classes. A larger number of parameters will 

be more difficult to optimize, however, given a finite amount of training data. 

One can show that a three-layer perceptron is sufficient to provide an arbitrarily 

good parametrization of any function [Bis95]. 

4.4.3 Selection of input variables 

Up to now we have constructed t(x) using as input variables the entire vector of 

data x = (Xl, .. . ,xn ) available for each event. The coefficients a = (al," .,an ), 

or the weights in the case of a neural network, will be determined in general 

from training data, e.g. from a Monte Carlo simulation, and will hence be known 

only with a finite statistical accuracy. In practice, it is preferable to use only 

a manageably small subset of the components of x, including only those which 

contain significant information on the hypotheses in question. It may be that 
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some components contain little or no discriminating power; they can safely be 

dropped. It may also be that two or more are highly correlated, and thus one does 

not gain much over using just one of them. By choosing a smaller subset of input 

variables, one can in general achieve a better determination of the parameters 

given a finite amount of training data. 

One must also keep in mind that the training data may differ in some sys

tematic way from the actual data, e.g. the Monte Carlo simulation will in

evitably contain approximations and imperfections. Variables which contribute 

only marginally to the discrimination between the classes may not in fact be well 

simulated. 

One strategy to choose a subset of the original input variables is to begin by 

constructing t from the single component of x which, by itself, gives the best 

separation between H 0 and HI. This will be measured for a Fisher discriminant 

by the value of J(a) (4.22), or in the case of a neural network by the error 

function E (4.35). Additional components can then be included one by one such 

that at each step one achieves the greatest increase in separation. A variation 

of this procedure would be to begin with the entire set and discard components 

stepwise such that each step gives the smallest decrease in the separation. Neither 

procedure guarantees optimality of the result. More on the practical aspects of 

choosing input variables can be found in [Bis95, Gna88, Her91). 

In choosing the input variables, it is important to consider that the original 

purpose of the statistical test is often to select objects (events, particles, etc.) 

belonging to a given class in order to study them further. This implies that the 

properties of these objects are not completely known, otherwise we would not 

have to carry out the measurement. In deciding which quantities to use as input, 

one must avoid variables that -are correlated with those that are to be studied 

in a later part of the analysis. This is often a serious constraint, especially since 

the correlations may not be well understood. 

4.5 Goodness-of-fit tests 

Frequently one wants to give a measure of how well a given null hypothesis Ho 

is compatible with the observed data without specific reference to any alter

native hypothesis. This is called a test of the go 0 dness-of-fit, and can be done 

by constructing a test statistic whose value itself reflects the level of agreement 

between the observed measurements and the predictions of Ho. Procedures for 

constructing appropriate test statistics will be discussed in Sections 4.7, 6.11 and 

7.5. Here we will give a short example to illustrate the main idea. 

Suppose one tosses a coin N times and obtains nh heads and nt = N - nh 

tails. To what extent are nh and nt consistent with the hypothesis that the coin 

is 'fair', i.e. that the probabilities for heads and tails are equal? As a test statistic 

one can simply use the number of heads nh, which for a fair coin is assumed to 

follow a binomial distribution (equation (2.2)) with the parameter p = 0.5. That 

is, the probability to observe heads nh times is 
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N! (_21)nh (_21)N-nh 
f(nh; N) = I(N )1 

nh· - nh . 
( 4.36) 

Suppose that N = 20 tosses are made and nh = 17 heads are observed. 

Since the expectation value of nh (equation (2.3)) is E[nh] = Np = 10, there 

is evidently a sizable discrepancy between the expected and actually observed 

outcomes. In order to quantify the significance of the difference one can give 

the probability of obtaining a result with the same level of discrepancy with 

the hypothesis or higher. In this case, this is the sum of the probabilities for 

nh = 0,1,2,3,17,18,19,20. Using equation (4.36) one obtains the probability 

P = 0.0026. 

The result of the goodness-of-fit test is thus given by stating the so-called 

P-value, i.e. the probability P, under assumption of the hypothesis in question 

Ho, of obtaining a result as compatible or less with Ho than the one actually 

observed. The P-value is sometimes also called the observed significance level 

or confidence level3 of the test. That is, if we had specified a critical region for 

the test statistic with a significance level Q' equal to the P-value obtained, then 

the value of the statistic would be at the boundary of this region. In a goodness

of-fit test, however, the P-value is a random variable. This is in contrast to the 

situation in Section 4.1, where the significance level Q' was a constant specified 

before carrying out the test. 

In the classical approach one stops here, and does not attempt to give a prob

ability for Ho to be true, since a hypothesis is not treated as a random variable. 

(The significance level or P-value is, however, often incorrectly interpreted as 

such a probability.) In Bayesian statistics one would use Bayes' theorem (1.6) to 

assign a probability to H 0, but this requires -giving a prior probability, i.e. the 

probability that the coin is fair before having seen the outcome of the experi

ment. In some cases this is a practical approach, in others not. For the present 

we will remain within the classical framework and simply give the P-value. 

The P-value is thus the fraction of times one would obtain data as compatible 

with Ho or less so ifthe experiment (i.e. 20 coin tosses) were repeated many times 

under similar circumstances. By 'similar circumstances' one means always with 

20 tosses, or in general with the same number of observations in each experiment. 

Suppose the experiment had been designed to toss the coin until at least three 

heads and three tails were observed and then to stop, and in the real experiment 

this happened to occur after the 20th toss. Assuming such a design, one can show 

that the probability to stop after the 20th toss or later (i.e. to have an outcome 

as compatible or less with Ho) is not 0.26% but rather 0.072%, which would seem 

to lead to a significantly different conclusion about the validity of Ho. Maybe we 

do not even know how the experimenter decided to toss the coin; we are merely 

presented with the results afterwards. One way to avoid difficulties with the so

called optional stopping problem is simply to interpret 'similar experiments' to 

always mean experiments with the same number of observations. Although this 

3This is related but not equal to the confidence level of a confidence interval, cf. Section 9.2. 
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is an arbitrary convention, it allows for a unique interpretation of a reported 

significance level. For further discussion of this problem see [Ber88, Oha94]. 

In the example with the coin tosses, the test statistic t = nh was reasonable 

since from the symmetry of the problem it was easy to identify the region of 

values oft that have an equal or lesser degree of compatibility with the hypothesis 

than the observed value. This is related to the fact that in the case of the coin, 

the set of all possible alternative hypotheses consists simply of all values of the 

parameter p not equal to 0.5, and all of these lead to an expected asymmetry 

between the number of heads and tails. 

4.6 The significance of an observed signal 

A simple type of goodness-of-fit test is often carried out to judge whether a 

discrepancy between data and expectation is sufficiently significant to merit a 

claim for a new discovery. Here one may see evidence for a special type of signal 

event, the number ns of which can be treated as a Poisson variable with mean Vs. 

In addition to the signal events, however, one will find in general a certain number 

of background events nb. Suppose this can also be treated as a Poisson variable 

with mean Vb, which we will assume for the moment to be known without error. 

The total number of events found, n = ns + nb, is therefore a Poisson variable 

with mean v = Vs + Vb. The probability to observe n events is thus 

( 4.37) 

Suppose we have carried out the experiment and found nobs events. In order 

to quantify our degree of confidence in the discovery of a new effect, i.e. Vs "# 0, 

we can compute how likely it is to find nobs events or more from background 

alone. This is given by 

·00 nobs- 1 

L f(n; Vs = 0, Vb) = 1 L f(n; Vs = 0, Vb) 
n=O 

1 ( 4.38) 

For example, if we expect Vb = 0.5 background events and we observe nobs = 
5, then the P-value from (4.38) is 1.7 x 10-4

• It should be emphasized that 

this is not the probability of the hypothesis Vs = 0. It is rather the probability, 

under the assumption Vs = 0, of obtaining as many events as observed or more. 

Despite this subtlety in its interpretation, the P-value is a useful number to 

consider when deciding whether a new effect has been found. 

Often the result of a measurement is given as the estimated value of a pa

rameter plus or minus one standard deviation (we will return to the question of 

reporting errors in Chapter 9). Since the standard deviation of a Poisson variable 
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is equal to the square root of its mean, we could take 5 ± y'5 for an estimate of v, 

or after subtracting the background, 4.5 ± 2.2 for our estimate of Vs. This would 

be misleading, however, since this is only two standard deviations from zero, 

and hence gives the impression that Vs is not very incompatible with zero. As we 

have seen from the P-value, however, this is not the case. Here we need to ask 

for the probability that a Poisson variable of mean Vb will fluctuate up to nobs or 

higher, not for the probability that a variable with mean nobs will fluctuate down 

to Vb or lower. The practice of displaying measured values of Poisson variables 

with an error bar given by the square root of the observed value unfortunately 

encourages the incorrect interpretation. 

An additional danger is that we have assumed Vb to be known without error. 

In the example above, if we had Vb = 0.8 rather than 0.5, the P-value would 

increase by almost an order of magnitude to 1.4 x 10-3
. It is therefore important 

to quantify the systematic uncertainty in the background when evaluating the 

significance of a new effect. This can be done by giving a range of P-values 

corresponding to a range of reasonable values of Vb. 

Suppose that in addition to counting the events, we measure for each one a 

variable x. For a first look at the data one typically constructs a histogram, such 

as the one shown in Fig. 4.3. The theoretical expectation (dashed histogram) can 

be normalized such that the value in each bin represents the expected number 

of entries. If all of the x values are independent, the number of entries in each 

bin is then a Poisson variable. Given the histogram shown in Fig. 4.3, one would 

naturally ask if the peak corresponds to a new discovery. 
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Fig. 4.3 Observed and expected his

tograms of a variable x. The data show 

a marginally significant peak. 

In principle we can simply apply the procedure above to the number of entries 

found in any given bin, or any subset of bins. In the two bins with the large peak 

in Fig. 4.3, there are nobs = 11 entries with an expected number of Vb = 3.2. The 

probability to observe 11 or more for a Poisson variable with a mean Vb = 3.2 is 

5.0 x 10-4
. 
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It is usually the case, however, that we do not know a priori where a peak 

might appear. If a histogram with a large number of bins is constructed from 

data then naturally some bins will exhibit discrepancies because of expected 

statistical fluctuations. So in order to give a more meaningful statement of how 

unexpected the peak is, one could give the probability of observing a discrepancy 

as improbable as the peak in any of the bins of the histogram. One could argue, 

however, that this is not sufficient, since we have probably looked at many dif

ferent histograms as well. But it is in any event more meaningful than reporting 

the significance level for a specific bin of a selected histogram. 

In situations where one is trying to establish the existence of a marginally 

significant effect, it is important that the event selection and analysis procedures 

remain fixed once the data have been examined. If they are modified to enhance 

the significance of the signal (and it is usually impossible to say whether such an 

enhancement was intentional), then the previous interpretation of the significance 

level no longer holds. One can, however, modify the analysis procedure and then 

apply it to a new set of data, and then compute the P-value for the particular 

bins where the peak was observed in the first data sample. This is of course only 

possible if additional data are available. 

The approach still has drawbacks, however, since the bins outside of the peak 

region in Fig. 4.3 also depart somewhat from the expected values - some higher, 

some lower - and this should somehow be taken into account in the evaluation 

of the overall level of agreement. In addition, the number of entries in the peak 

bin would change if a different bin size was chosen, which would lead to different 

values for a test statistic of the type described above. A typical practice is to 

define the width of the peak region to be at least several times the expected 

resolution for the variable x. 

4.7 Pearson's X2 test 

In this section we will examine a goodness-of-fit test that can be applied to the 

distribution of a variable x. As in Fig. 4.3, one begins with a histogram of the 

observed x values with N bins. Suppose the number of entries in bin i is ni, 

and the number of expected entries is Vi. We would like to construct a statistic 

which reflects the level of agreement between observed and expected histograms. 

No doubt the most commonly used goodness-of-fit test is based on Pearson's X2 

statistic, 

( 4.39) 

If the data n = (nl,"" nN) are Poisson distributed with mean values v = 
(VI, ... , VN), and if the number of entries in each bin is not too small (e.g. 

ni ~ 5) then one can show that the statistic (4.39) will follow a X2 distribution, 

equation (2.34), for N degrees of freedom. This holds regardless of the distribu

tion of the variable x; the X2 test is therefore said to be distribution free. The 
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restriction on the number of entries is equivalent to the requirement that the ni 

be approximately Gaussian distributed. 

Since the standard deviation of a Poisson variable with mean Vi is equal to 

fo, the X2 statistic gives the sum of squares of the deviations between observed 

and expected values, measured in units of the corresponding standard deviations. 

A larger X2 thus corresponds to a larger discrepancy between data and the 

hypothesis. The P-value or significance level is therefore given by the integral of 

the X2 distribution from the observed X2 to infinity, 

( 4.40) 

w here here the number of degrees of freedom is nd = N. 4 Recall that the expec

tation value of the X2 distribution is equal to the number of degrees of freedom. 

The ratio X2 / nd is therefore often quoted as a measure of agreement between 

data and hypothesis. This does not, however, convey as much information as do 

X2 and nd separately. For example, the P-value for X2 = 15 and nd = 10 is 0.13. 

For X2 = 150 and 100 degrees of freedom, however, one obtains a P-value of 

9.0 x 10-4 . 

For equation (4.39) we have assumed that the total number of entries ntot = 
E~l ni is itself a Poisson variable with a predicted mean value Vtot = E~l Vi. 

We can, however, regard ntot as fixed, so that the data ni are multinomially 

distributed with probabilities Pi = vi/ntot. Here one· does not test the agreement 

between the total numbers of expected and observed events, but rather only the 

distribution of the variable x. One can then construct the X2 statistic as 

(4.41 ) 

It can be shown that in the limit where there is a large number of entries in each 

bin, the statistic (4.41) follows a X2 distribution for N - 1 degrees of freedom. 

Here we have assumed that the probabilities Pi are known. In general, if m 

parameters are estimated from the data, the number of degrees of freedom is 

reduced by m. We will return to the X2 test in Chapter 7 in connection with the 

method of least squares. 

It might be that only a small amount of data is available, so the requirement 

of at least five entries per bin is not fulfilled. One can still construct the X2 

statistic, as long as all of the Vi are greater than zero. It will no longer follow 

the X2 distribution, however, and its distribution will depend on the p.d.f. of 

the variable x (i.e. the test is no longer distribution free). For the example of 

Fig. 4.3, for instance, one obtains X2 = 29.8 for nd = 20 degrees of freedom. 

Here, however, most of the bins have fewer than five entries, and therefore one 

4The cumulative X2 distribution, i.e. one minus the integral (4.40), can be computed with 

the routine PROS in [CER97]. 
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cannot regard this as an observation ofax2 distributed variable for purposes of 

computing the P-value. 

The correct P-value can be obtained by determining the distribution of the 

statistic with a Monte Carlo program. This is done by generating Poisson values 

ni for each bin based on the mean values Vi, and then computing and recording 

the X2 value. (Poisson distributed random numbers can be generated with the 

routine RNPSSN from [CER97].) The distribution resulting from a large number 

of such experiments is shown in Fig. 4.4 along with the usual X2 distribution 

from equation (2.34). If one were to assume the X2 distribution, a P-value of 

0.073 would be obtained. The Monte Carlo distribution shows that larger X2 

values are in fact more probable than this, and gives P = 0.11. Note that in this 

case the X2 test is not very sensitive to the presence of the peak, and does not 

provide significant evidence for rejecting the hypothesis of background with no 

additional signal. 
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Fig. 4.4 Distribution of the X2 

statistic from the example of Fig. 4.3 

as predicted by the X2 distribution 

and from repeated Monte Carlo exper

iments. 

An ambiguity of the X2 test is that one must choose a particular binning. For 

small data samples, a different choice will in general lead to a different P-value for 

the test. On the one hand the bins should be sufficiently large that each contains 

at least about five entries, so that the X2 distribution can be used to evaluate 

the significance level. On the other hand, too large bins throwaway information, 

i.e. the position of the x value within the bin is lost. If the distribution of the X2 

statistic can be determined by Monte Carlo, then the requirement of a minimum 

number of entries in each bin can be relaxed and the bin size reduced. 

Other tests valid for small data samples are based on the individual x values, 

i.e. without binning. Examples such as the Kolmogorov-Smirnov and Smirnov

Cramer-von Mises tests are discussed in [Ead71, Fr079]. 



5 

General concepts of 
parameter estimation 

In this chapter some general concepts of parameter estimation are examined 

which apply to all of the methods discussed in Chapters 6 through 8. In addition, 

prescriptions for estimating properties of p.d.f.s such as the mean and variance 

are given. 

5.1 Samples, estimators, bias 

Consider a random variable x described by a p.d.f. f(x). Here, the sample space 

is the set of all possible values of x. A set of n independent observations of 

x is called a sample of size n. A new sample space can be defined as the set 

of all possible values for the n-dimensional vector x = (Xl, ... , xn). That is, 

the entire experiment consisting of n measurements is considered to be a single 

random measurement, which is characterized by n quantities, Xl, ... , X n . Since it 

is assumed that the observations are all independent and that each Xi is described 

by the same p.d.f. f(x), the joint p.d.f. for the sample fsample(Xl, ... , xn) is given 

by 

(5.1) 

Although the dimension of the random vector (i.e. the number of measurements) 

can in practice be very large, the situation is simplified by the fact that the joint 

p.d.f. for the sample is the product of n p.d.f.s of identical form. 

Consider now the situation where one has made n measurements of a random 

variable X whose p.d.f. f(x) is not known. The central problem of statistics is 

to infer the properties of f(x) based on the observations Xl, ... , xn. Specifically, 

one would like to construct functions of the Xi to estimate the various properties 

of the p.d.f. f(x). Often one has a hypothesis for the p.d.f. f(x; 0) which depends 

on an unknown parameter 0 (or parameters () = (01 , ... , Om)). The goal is then 

to construct a function of the observed Xi to estimate the parameters. 

A function of the observed measurements Xl, ... ,Xn which contains no un

known parameters is called a statistic. In particular, a statistic used to estimate 

some property of a p.d.f. (e.g. its mean, variance or other parameters) is called 

an estimator. The estimator for a quantity 0 is usually written with a hat, 8, 
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to distinguish it from the true value () whose exact value is (and may forever 

remain) unknown. 

If 0 converges to () in the limit of large n, the estimator is said to be consistent. 

Here convergence is meant in the sense of probability, i.e. for any f. > 0, one has 

lim P (10 - () I > f.) = Q. 
n--+oo 

(5.2) 

Consistency is usually a minimum requirement for a useful estimator. In the 

following the limit of large n will be referred to as the 'large sample' or 'asymp

totic' limit. In situations where it is necessary to make the distinction, the term 

estimator will be used to refer to the function of the sample (i.e. its functional 

form) and an estimate will mean the value of the estimator evaluated with a 

particular sample. The procedure of estimating a parameter's value given the 

data Xl, ... ,Xn is called parameter fitting. 

Since an estimator O(XI' ... ,xn ) is a function of the measured values, it is 

itself a random variable. That is, if the entire experiment were repeated many 

times, each time with a new sample x = (Xl, ... , Xn) of size n, the estimator O(x) 

would take on different values, being distributed according to some p.d.f. g(O; ()), 
which depends in general on the true value of (). The probability distribution of 

a statistic is called a sampling distribution. Much of what follows in the next 

several chapters concerns sampling distributions and their properties, especially 

expectation value and variance. 

The expectation value of an estimator.O with the sampling p.d.f. g(O; ()) is 

E[O(x)] J Og(O; ())dO 

J ... J O(X)f(XI; ()) ... f(x n ; ())dXI ... dxn , (5.3) 

where equation (5.1) has been used for the joint p.d.f. of the sample. Recall 

that this is the expected mean value of 0 from an infinite number of similar 

experiments, each with a sample of size n. One defines the bias of an estimator 

o as 

b = E[O] - (). (5.4) 

Note that the bias does not depend on the measured values of the sample but 

rather on the sample size, the functional form of the estimator and on the true 

(and in general unknown) properties of the p.d.f. f(x), including the true value 

of (). A parameter for which the bias is zero independent of the sample size n is 

said to be unbiased; if the bias vanishes in the limit n -+ 00 then it is said to 

be asymptotically unbiased. Note also that an estimator 0 can be biased even 

if it is consistent. That is, even if 0 converges to the true value () in a single 

experiment with an infinitely large number of measurements, it does not follow 
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that the average of 0 from an infinite number of experiments, each with a finite 

number of measurements, will converge to the true value. Unbiased estimators 

are thus particularly valuable if one would like to combine the result with those 

of other experiments. In most practical cases, the bias is small compared to the 

statistical error (i.e. the standard deviation) and one does not usually reject using 

an estimator with a small bias if there are other characteristics (e.g. simplicity) 

in its favor. 

Another measure of the quality of an estimator is the mean squared error 

(MSE), defined as 

MSE E[(O - 0)2] = E[(O - E[O])2] + (E[O - 0])2 

= V[O] + b2
. (5.5) 

The MSE is the sum of the variance and the bias squared, and thus can be 

interpreted as the sum of squares of statistical and systematic errors. 

It should be emphasized that classical statistics provides no unique method 

for constructing estimators. Given an estimator, however, one can say to what 

extent it has desirable properties, such as small (or zero) bias, sqlall variance, 

small MSE, etc. We will see in Chapter 6 that there is a certain trade-off between 

bias and variance. For estimators with a given bias, there is a lower limit to 

the variance. Often an estimator is deemed 'optimal' if it has zero bias and 

minimum variance, although other measures of desirability such as the MSE 

could be considered (cf. Section 11.7). The methods presented in Chapters 6 

through 8 will allow us to construct estimators with optimal (or nearly optimal) 

characteristics in this sense for a wide range of practical cases. Biased estimators 

are important in inverse problems (unfolding); these are discussed in Chapter 11. 

5.2 Estimators for mean, variance, covariance 

Suppose one has a sample of size n of a random variable x: Xl, ... , X n . It is 

assumed that X is distributed according to some p.d.f. f(x) which is not known, 

not even as a parametrization. We would like to construct a function of the Xi to 

be an estimator for the expectation value of x, J.l. One possibility is the arithmetic 

mean of the Xi, defined by 

1 n 

x= - LXi. 

n i=l 

(5.6) 

The arithmetic mean of the elements of a sample is called the sample mean, and 

is denoted by a bar, e.g. X. This should not be confused with the expectation 

value (population mean) of x, denoted by J.l or E[x], for which x is an estimator. 

The first important property of the sample mean is given by the weak law of 

large numbers. This states that if the variance of X exists, then x is a consistent 

estimator for the population mean J.l. That is, for n ~ 00, x converges to J.l 
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in the sense of probability, cf. equation (5.2). A proof can be found in [Bra92]. 

The condition on the existence of the variance implies, for example, that the law 

does not hold if x follows the Cauchy distribution (2.40). In that case, in fact, 

one can show that x has the same p.d.f. as x for any sample size. In practice, 

however, the variances of random variables representing physical quantities are 

always finite (cf. Section 2.9) and the weak law of large numbers therefore holds. 

The expectation value of the sample mean E[x] is given by (see equation 

(5.3) ) 

[

1 n lIn 1 n 
E[x] = E ~ ~ Xi = -;; ~ E[Xi] = -;; ~ J.l = J.l, (5.7) 

sInce 

(5.8) 

for all i. One sees from equation (5.7) that the sample mean x is an unbiased 

estimator for the population mean J.l. 

The sample variance 8
2 is defined by 

2 1 L:n 

-2 n - 2 
8 = -- (Xi-X) = --(x 2 -x). 

n-l - n-l 
i=l 

(5.9) 

The expectation value of 8
2 can be computed just as was done for the sample 

mean x. The factor 1/( n - 1) is included in the definition of 8
2 so that its 

expectation value comes out equal to (T2, i.e. so that 8
2 is an unbiased estimator 

for the population variance. If the mean J.l is known, then the statistic 52 defined 

by 

(5.10) 

is an unbiased estimator of the variance (T2. In a similar way one can show that 

the quantity 

'" 1 Ln 

n Vxy = -- (Xi - X)(Yi - II) = -- (xy - xy) 
n-l n-l 

i=l 

(5.11) 

is an unbiased estimator for the covariance VIy of two random variables X and y 

of unknown mean. This can be normalized by the square root of the estimators 

for the sample variance to form an estimator r for the correlation coefficient p 

(see equation (1.48); in the following we will often drop the subscripts xy; i.e. 

here r = r xy ) : 
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Vxy 
r=-- = 

SxSy 

xy-xy 
(5.12) 

Given an estimator B one can compute its variance V[8] = E[82] - (E[8])2. 

Recall that V[8] (or equivalently its square root 0"8) is a measure of the variation 

of 8 about its mean in a large number of similar experiments each with sample 

size n, and as such is often quoted as the statistical error of B. For example, the 

variance of the sample mean x is 

(5.13) 

where 0"2 is the variance of f(x), and we have used the fact that E[XiXj] = /12 

for i =I j and E[xrJ = /1 2 + 0"2. This expresses the well-known result that the 

standard deviation of the mean of n measurements of x is equal to the standard 

deviation of f(x) itself divided by ...;n. 
In a similar way, the variance of the estimator s2 (5.9) can be computed to 

be 

2 1 ( n - 3 2) V[s ] = - /14 - --J.l2 , 
n n-1 

(5.14) 

where /1k is the kth central moment (1.42), e.g. /12 = 0"2. Using a simple gener

alization of (5.9), the /1k can be estimated by 

(5.15) 

The expectation value and variance of the estimator of the correlation coef

ficient r depend on higher moments of the joint p.d.f. f(x, y). For the case of 

the two-dimensional Gaussian p.d.f. (2.30) they are found to be (see [Mui82] and 

references therein) 
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(5.16) 

(5.17) 

Although the estimator r given by equation (5.12) is only asymptotically unbi

ased, it is nevertheless widely used because of its simplicity. Note that although 

VXy , s~ and s; are unbiased estimators of Vxy , 0-; and 0-;, the nonlinear function 

VXy/(sxSy) is not an unbiased estimator of Vxy/(o-xo-y) (cf. Section 6.2). One 

should be careful when applying equation (5.17) to evaluate the significance of 

an observed correlation (see Section 9.5). 
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The method of maximum 
likelihood 

6.1 ML estimators 

Consider a random variable x distributed according to a p.d.f. f(x; 0). Suppose 

the functional form of f(x; 0) is known, but the value of at least one parameter 

o (or parameters () = (Ol, ... , Om)) are not known. That is, f(x; 0) represents a 

composite hypothesis for the p.d.f. (cf. Section 4.1). The method of maximum 

likelihood is a technique for estimating the. values of the parameters given a 

finite sample of data. Suppose a measurement of the random variable x has been 

repeated n times, yielding the values Xl, ... ,Xn . Here, x could also represent a 

multidimensional random vector, i.e. the outcome of each individual observation 

could be characterized by several quantities. 

Under the assumption of the hypothesis f(x; 0), including the value of 0, 
the probability for the first measurement to be in the interval [Xl, Xl + dXI] 

is f(XI; O)dXI. Since the measurements are all assumed to be independent, the 

probability to have the first one in [Xl, Xl + dXIJ, the second in [X2' X2 + dX2], 

and so forth is given by 

n 

probability that Xi in [Xi, Xi + dXi] for all i = II /(Xi; O)dXi. (6.1) 
i=l 

If the hypothesized p.d.f. and parameter values are correct, one expects a high 

probability for the data that were actually measured. Conversely, a parameter 

value far away from the true value should yield a low probability for the mea

surements obtained. Since the dXi do not depend on the parameters, the same 

reasoning also applies to the following function L, 

n 

L(O) = II f(Xi; 0) (6.2) 

i=l 

called the likelihood function. Note that this is just the joint p.d.f. for the Xi, 

although it is treated here as a function of the parameter, o. The Xi, on the other 

hand, are treated as fixed (i.e. the experiment is over). 



log L=41.2 (ML fit) (a) 

log L=41.0 (true parameters) 

4 

2 

o 
-0.2 o 0.2 0.4 0.6 

x 

4 

2 

o 
-0.2 

log L=13.9 

log L=18.9 

o 

ML estimators 71 

(b) 

0.2 0.4 0.6 

x 

Fig. 6.1 A sample of 50 observations of a Gaussian random variable with mean J1. = 0.2 and 

standard deviation cr = 0.1. (a) The p.d.f. evaluated with the parameters that maximize the 

likelihood function and with the true parameters. (b) The p.d.f. evaluated with parameters far 

from the true values, giving a lower likelihood. 

With this motivation one defines the maximum likelihood (ML) estimators 

for the parameters to be those which maximize the likelihood function. As long as 

the likelihood function is a differentiable function of the parameters (}1, ... , (}m, 

and the maximum is not at the boundary of the parameter range, the estimators 

are given by the solutions to the equations, -. 

oL 
O(}i =_ 0, i = 1, ... , m. (6.3) 

If more than one local maximum exists, the highest one is taken. As with other 

types of estimators, they are usually written with hats, 8 = ({h, ... , 8m ), to dis

tinguish them from the true parameters (}i whose exact values remain unknown. 

The general idea of maximum likelihood is illustrated in Fig. 6.1. A sample 

of 50 measurements (shown as tick marks on the horizontal axis) was generated 

according to a Gaussian p.d.f. with parameters J.l = 0.2, (J' = 0.1. The solid 

curve in Fig. 6.1(a) was computed using the parameter values for which the 

likelihood function (and hence also its logarithm) are a maximum: fl = 0.204 and 

U = 0.106. Also shown as a dashed curve is the p.d.f. using the true parameter 

values. Because of random fluctuations, the estimates fl and u are not exactly 

equal to the true values J.l and (J'. The estimators fl and u and their variances, 

which reflect the size of the statistical errors, are derived below in Section 6.3. 

Figure 6.1(b) shows the p.d.f. for parameters far away from the true values, 

leading to lower values of the likelihood function. 

The motivation for the ML principle presented above does not necessarily 

guararitee any optimal properties for the resulting estimators. The ML method 

turns out to have many advantages, among them ease of use and the fact that 

no binning is necessary. In the following the desirability of ML estimators will 
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be investigated with respect to several criteria, most importantly variance and 

bias. 

6.2 Example of an ML estimator: an exponential distribution 

Suppose the proper decay times for unstable particles of a certain type have been 

measured for n decays, yielding values ti, ... , tn, and suppose one chooses as a 

hypothesis for the distribution of t an exponential p.d.f. with mean r: 

1 
f(t; r) = _e- t

/
T

• 

r 
(6.4) 

The task here is to estimate the val ue of the parameter r. Rather than using the 

likelihood function as defined in equation (6.2) it is usually more convenient to 

use its logarithm. Since the logarithm is a monotonically increasing function, the 

parameter value which maximizes L will also maximize log L. The logarithm has 

the advantage that the product in L is converted into a sum, and exponentials 

in f are converted into simple factors. The log-likelihood function is thus 

n n ( 1 t.) 
10gL(r) = Llogf(ti;r) = L log- - -.:. . 

i=l i=l r r 
(6.5) 

Maximizing log L with respect to r gives the ML estimator T, 

(6.6) 

In this case the ML estimator T is simply the sample mean of the measured time 

values. The expectation value of T is 

1 n 

- Lr= r, 
n i=l 

(6.7) 

so T is an unbiased estimator for To We could have concluded this from the results 

of Sections 2.4 and 5.2, where it was seen that r is the expectation value of the 

exponential p.d.f., and that the sample mean is an unbiased estimator of the 

expectation value for any p.d.f. (See Section 10.4 for a derivation of the p.d.f. of 

T.) 



Example of an ML estimator: an exponential distribution 73 

As an example consider a sample of 50 Monte Carlo generated decay times 

t distributed according to an exponential p.d.f. as shown in Fig. 6.2. The values 

were generated using a true lifetime T = 1.0. Equation (6.6) gives the ML esti

mate f = 1.062. The curve shows the exponential p.d.f. evaluated with the ML 

estimate. 
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Fig. 6.2 A sample of 50 Monte Carlo 

generated observations of an expo

nential random variable t with mean 

T = 1.0. The curve is the result 

of a maximum likelihood fit, giving 

T = 1.062. 

Suppose that one is interested not in the mean lifetime but in the decay 

constant A = l/T. How can we estimate A? -In general, given a function a(O) of 

some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . 

(6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 

is not the case, one obtains the ML estimator of a function simply by evaluating 

the function with the original ML estimator, i.e. a = a(O). The estimator for 

the decay constant is thus ~ = l/f = n/ 2:7=1 ti. The transformation invariance 

of ML estimators is a convenient property, but an unbiased estimator does not 

necessarily remain so under transformation. As will be derived in Section lOA, 

the expectation value of ~ is 

~ n 1 n 
E[A]=A-=--, 

n-1 Tn-1 
(6.9) 

so ~ l/f is an unbiased estimator of l/T only in the limit of large n, even 

though f is an unbiased estimator for T for any value of n. To summarize, the 

ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 

an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 

an unbiased estimator of a(O). It can be shown, however, that the bias of ML 

estimators goes to zero in the large sample limit for essentially all practical cases. 
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(An exception to this rule occurs if the allowed range of the random variable 

depends on the parameter; see [Ead71] Section 8.3.3.) 

6.3 Example of ML estimators: fJ and 0-
2 of a Gaussian 

Suppose one has n measurements of a random variable x assumed to be dis

tributed according to a Gaussian p.d.f. of unknown fJ and 0-2. The log-likelihood 

function is 

2 n 2 n ( 1 1 1 (Xi - fJ)2) 
log L(J.l, 0- ) = L log !(Xi; fJ, 0- ) = L log roc. + -log 2" - 2 . 

i=l i=l V 2rr 2 0- 20-

(6.10) 

Setting the derivative of log L with respect to fJ equal to zero and solving gives 

1 n 

it=-LXi. 
n i=l 

(6.11) 

Computing the expectation value as done in equatiol1 (6.7) gives E[it] = fJ, so it 
is unbiased. (As in the case of the mean lifetime estimator T, it here happens to 

be a sample mean, so one knows already from Sections 2.5 and 5.2 that it is an 

unbiased estimator for the mean fJ.) Repeating the procedure for 0-2 and using 

the result for it gives 

-- 1 ~ 2 
0-2 = - L)Xi - it) . 

n 
(6.12) 

i=l 

Com pu ting the expectation value of ;;2, however, gives 

(6.13) 

The ML estimator ;;2 is thus biased, but the bias vanishes in the limit of large 

n. 

Recall, however, from Section 5.1 that the sample variance 8
2 is an unbiased 

estimator for the variance of any p.dJ., so that 

2 1 I:
n 

( ~)2 8 = -- Xi-J.l 
n-1 

i=l 

(6.14) 

is an unbiased estimator for the parameter 0- 2 of the Gaussian. To summarize, 

equation (6.12) gives the ML estimator for the parameter 0- 2
, and it has a bias 

that goes to zero as n approaches infinity. The statistic 8
2 from equation (6.14) 

is not biased (which is good) but it is not the ML estimator. 
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6.4 Variance of ML estimators: analytic method 

Given a set of n measurements of a random variable x and a: hypothesis for the 

p.d.f. f(x; 0) we have seen how to estimate its parameters. The next task is to 

give some measure of the statistical uncertainty of the estimates. That is, if we 

repeated the entire experiment a large number of times (with n measurements 

each time) each experiment would give different estimated values for the param

eters. How widely spread will they be? One way of summarizing this is with the 

variance (or standard deviation) of the estimator. 

For certain cases one can compute the variances of the ML estimators ana

lytically. For the example of the exponential distribution with mean 7 estimated 

by f = ~ 2::7=1 ti, one has 

V[f] E[f2] - (E[f])2 

J J (1 ~ ) 2 1 -t IT 1 -t IT 
... ;; ~ti -:;.e 1 ••• -:;.e n dtl ... dtn 

t=1 

)

2 
1 1 _e-tl/T _e-tnITdt dt . .. 1 . .. n 
7 7 

n 
(6.15) 

This could have been guessed, since it was ~een in Section 5.2 that the variance 

of the sample mean is lin times the variance of the p.d.f. of t (the time of an 

individual measurement), for which in this case the variance is 7
2

, (Section 2.4) 

and the estimator f happens tol>e the sample mean. 

Remember that the variance of f computed in equation (6.15) is a function 

of the true (and unknown) parameter 7. So what do we report for the statistical 

error of the experiment? Because of the transformation invariance of ML estima

tors (equation (6.8)) we can obtain the ML estimate for the variance (J~ = 7
2/n 

simply by replacing 7 with its own ML estimator f, giving ~f = f2 In, or 

similarly for the standard deviation, fJ f = fifo. 
When an experimenter then reports a result like f = 7.82 ± 0.43, it is meant 

that the estimate (e.g. from ML) is 7.82, and if the experiment were repeated 

many times with the same number of measurements per experiment, one would 

expect the standard deviation of the distribution of the estimates to be 0.43. 

This is one possible interpretation of the 'statistical error' of a fitted parameter, 

and is independent of exactly how (according to what p.d.f.) the estimates are 

distributed. It is not, however, the standard interpretation in those cases where 

the distribution of estimates from many repeated experiments is not Gaussian. 

In such cases one usually gives the so-called 68.3% confidence interval, which 

will be discussed in Chapter 9. This is the same as plus or minus one standard 

deviation if the p.d.f. for the estimator is Gaussian. It can be shown (see e.g. 

[Stu91] Section 18.5) that in the large sample limit, ML estimates are in fact 
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distributed according to a Gaussian p.dJ., so in this case the two procedures 

lead to the same result. 

6.5 Variance of ML estimators: Monte Carlo method 

For cases that are too difficult to solve analytically, the distribution of the ML 

estimates can be investigated with the Monte Carlo method. To do this one must 

simulate a large number of experiments, compute the ML estimates each time 

and look at how the resulting values are distributed. For the 'true' parameter 

in the Monte Carlo program the estimated value from the real experiment can 

be used. As has been seen in the previous section, the quantity 8
2 defined by 

equation (5.9) is an unbiased estimator for the variance of a p.d.f. Thus one can 

compute 8 for the ML estimates obtained from the Monte Carlo experiments 

and give this as the statistical error of the parameter estimated from the real 

measurement. 

As an example of this technique, consider again the case of the mean life

time measurement with the exponential distribution (Section 6.2). Using a true 

lifetime of T = 1.0, a sample of n = 50 measurements gave the ML estimate 

f = 1.062 (see Fig. 6.2). Regarding the first Monte Carlo experiment as the 

'real' one, 1000 further experiments were simulated with 50 measurements each. 

For these, the true value of the parameter was taken to be T = 1.062, i.e. the 

ML estimate of the first experiment. 

Figure 6.3 shows a histogram of the resulting ML estimates. The sample mean 

of the estimates is f. = 1.059, which is close to the input value, as expected since 

the ML estimator f is unbiased. The sample standard deviation from the 1000 

experiments is 8 = 0.151. This gives essentially the same error value as what one 

would obtain from equation (6.15)' Crf = fifo = 1.062/J50 = 0.150. For the 

real measurement one would then report (for either method to estimate the error) 

f = 1.06 ± 0.15. Note that the distribution is approximately Gaussian in shape. 

This is a general property of ML estimators for the large sample limit, known as 

asymptotic normality. For a further discussion see, e.g., [Ead71] Chapter 7. 

6.6 Variance of ML estimators: the RCF bound 

It turns out in many applications to be too difficult to compute the variances ana

lytically, and a Monte Carlo study usually involves a significant amount of work. 

In such cases one typically uses the Rao-Cramer-Frechet (RCF) inequality, also 

called the information inequality, which gives a lower bound on an estimator's 

variance. This inequality applies to any estimator, not only those constructed 

from the ML principle. For the case of a single parameter () the limit is given by 

A ( ab)2j [ a2
log L] 

V[O] ~ 1 + ao E - a0 2 ' (6.16) 

where b is the bias as defined in equation (5.4) and L is the likelihood function. 

A proof can be found in [Bra92]. Equation (6.16) is not, in fact, the most general 

form of the RCF inequality, but the conditions under which the form presented 
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2 

Fig. 6.3 A histogram of the ML es

timate T from 1000 Monte Carlo ex

periments with 50 observations per ex

periment. For the Monte Carlo 'true' 

parameter T, the result of Fig. 6.2 was 

used. The sample standard deviation is 

s = 0.151. 

here holds are almost always met in practical situations (cf. [Ead71] Section 

7.4.5). In the case of equality (i.e. minimum variance) the estimator is said to be 

efficient. It can be shown that if efficient estimators exist for a given problem, 

the maximum likelihood method will find them. Furthermore it can be shown 

that ML estimators are always efficient in the large sample limit, except when 

the extent of the sample space depends on the estimated parameter. In practice, 

one often assumes efficiency and zero bias. In cases of doubt one should check 

the results with a Monte Carlo study. The -general conditions for efficiency are 

discussed in, for example, [Ead71] Section 7.4.5, [Stu91] Chapter 18. 

For the example of the exponential distribution with mean r one has from 

equation (6.5) 

o2logL =!!..- (1-~.!. ~ti) =!!..- (1- 2f) (6.17) 
or2 r2 r n ~ r2 r 

i=1 

and objor = 0 since b = 0 (see equation (6.7)). Thus the RCF bound for the 

variance (also called the minimum variance bound, or MVB) of T is 

A 1 

V[r]:2: E[-;2(1- 2:)] 
1 

n 
(6.18) 

where we have used equation (6.7) for E[ f]. Since r2 j n is also the variance 

obtained from the exact calculation (equation (6.15)) we see that equality holds 

and f = ~ 2::7=1 ti is an efficient estimator for the parameter T. 

For the case of more than one parameter, () = (()1, ... , Om), the correspond

ing formula for the inverse of the covariance matrix of their estimators Vij = 

cov [Oi , OJ] is (assuming efficiency and zero bias) 

(6.19) 
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Equation (6.19) can also be written as 

(6.20) 

where f(x; 6) is the p.d.f. for the random variable x, for which one has n mea

surements. That is, the inverse of the RCF bound for the covariance matrix 

(also called the Fisher information matrix, see [Ead71] Section 5.2 and [Bra92]) 

is proportional to the number of measurements in the sample, n. For V-I ex: n 

one has V ex: l/n, and thus equation (6.20) expresses the well-known result that 

~tatistical errors (i.e. the standard deviations) decrease in proportion to 1/ Vii 
(at least for efficient estimators). 

It turns out to be impractical in many situations to compute the RCF bound 

a.nalytically, since this requires the expectation value of the second de~ivative of 

the log-likelihood function (i.e. an integration over the variable x). In the case of 

a sufficiently large data sample, one can estimate V-I by evaluating the second 

:lerivative with the measured data and the ML estimates 6: 

(6.21) 

For a single parameter () this reduces to 

~. = (-1 /,P~;~L) 1.= •. (6.22) 

fhis is the usual method for estimating the covariance matrix when the likelihood 

'"unction is maximized numerically. I 

5.7 Variance of ML estimators: graphical method 

\. simple extension of the previously discussed method using the RCF bound 

eads to a graphical technique for obtaining the variance of ML estimators. Con

;ider the case of a single parameter (), and expand the log-likelihood function in 

t Taylor series about the ML estimate 0: 

log L(9) = log L(O) + [01;; L L. (9 - 0) + ~! [o'~;~ L L, (9 - 0)' + ... 

(6.23) 

1 For example, the routines IHGRAD and HESSE in the program MnUIT [Jam89, CER97] de
ermine numerically the matrix of second derivatives of log L using finite differences, evaluate 

t at the ML estimates, and invert to find the covariance matrix. 
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By definition of B we know that log L (B) = log Lmax and that the second term 

in the expansion is zero. Using equation (6.22) and ignoring higher order terms 

gIves 

(8 - 0)2 
log L(8) = log Lmax - __ , 

20-2 e 
(6.24) 

or 

A 1 
log L(8 ± O"e) = log Lmax - "2. (6.25) 

That is, a change in the parameter 8 of one standard deviation from its ML 

estimate leads to a decrease in the log-likelihood of 1/2 from its maximum value. 

It can be shown that the log-likelihood function becomes a parabola (i.e. 

the likelihood function becomes a Gaussian curve) in the large sample limit. 

Even if log L is not parabolic, one can nevertheless adopt equation (6.25) as the 

definition of the statistical error. The interpretation of such errors is discussed 

further in Chapter 9. 

As an example of the graphical method for determining the variance of an es

timator, consider again the examples of Sections 6.2 and 6.5 with the exponential 

distribution. Figure 6.4 shows the log-likelihood function log L( r) as a function 

of the parameter r for a Monte Carlo experiment consisting of 50 measurements. 

The standard deviation of f is estimated by changing r until log L( r) decreases 

by 1/2, giving Llf_ = 0.137, Llf+ = 0.165. In this case logL(r) is reasonably 

close to a parabola and one can approximate 0" f ~ Ll f _ ~ Ll f + ~ 0.15. This 

leads to approximately the same answer as from the exact standard deviation 

r /...;n evaluated with r = f. In Chapter 9 the interval [f - Ll f _ , f + Ll f +] will 

be reinterpreted as an approximation for the 68.3% central confidence interval 

(cf. Section 9.6). 
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Fig. 6.4 The log-likelihood function 

logL(T). In the large sample limit, the 

widths of the intervals [i-Lli-,il and 

[i,f + Llf+l correspond to one stan

dard deviation at. 
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6.8 Example of M L with two parameters 

As an example of the maximum likelihood method with two parameters, consider 

a particle reaction where each scattering event is characterized by a certain 

scattering angle () (or equivalently x = cos ()). Suppose a given theory predicts 

the angular distribution 

1 + ax + (3x 2 

f(x;a,{3) = 2+2{3/3 (6.26) 

(For example, a = 0 and (3 = 1 correspond to the reaction e+ e- -+ J.l+ p- in lowest 

order quantum electrodynamics [Per87].) Note that the denominator 2 + 2{3/3 is 

necessary for f(x; a, (3) to be normalized to one for -1 ~ x ~ 1. 

To make the problem slightly more complicated (and more realistic) assume 

that the measurement is only possible in a restricted range, say Xmin ~ X ~ X max · 

This requires a recalculation of the normalization constant, giving 

(6.27) 

Figure 6.5 shows a histogram of a Monte Carlo experiment where 2000 events 

were generated using a = 0.5, (3 = 0.5, Xmin = -0.95 and Xmax = 0.95. By 

numerically maximizing the log-likelihood function one obtains 

a 0.508 ± 0.052, 

(6.28) 

/3 0.47±0.11, 

where the statistical errors are the square roots of the variance. These have 

been estimated by computing (numerically) the matrix of second derivatives 

of the log-likelihood function with respect to the parameters, as described in 

Section 6.6, and then inverting to obtain the covariance matrix. From this one 

obtains as well an estimate of the covariance Co'V[a, /3] = 0.0026 or equivalently 

the correlation coefficient r = 0.46. One sees that the estimators a and /3 are 

positively correlated. Note that the histogram itself is not used in the procedure; 

the individual values of x are used to compute the likelihood function. 

To understand these results more intuitively, it is useful to look at a Monte 

Carlo study of 500 similar experiments, all with 2000 events with a = 0.5 and 

f3 = 0.5. A scatter plot of the ML estimates a and /3 are shown in Fig. 6.6(a). 

The density of points corresponds to the joint p.d.f. for a and /3. Also shown in 

Fig. 6.6 (b) and (c) are the normalized projected histograms for a and /3 sepa

rately, corresponding to the marginal p.d.f.s, i.e. the distribution of 6- integrated 

over all values of jJ, and vice versa. One sees that the marginal p.d.f.s for 6- and 

/3 are both approximately Gaussian in shape. 
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Fig. 6.5 Histogram based on 2000 

Monte Carlo generated values dis

tributed according to equation (6.27) 

with Cl' 0.5, (J 0.5. Also 

shown is the result of the ML fit, 

which gave a = 0.508 ± 0.052 and 

/3 = 0.466 ± 0.108. The errors were 

computed numerically using equation 

(6.21). 

o 0.25 0.5 0.75 

Fig. 6.6 Results of ML fits to 500 Monte Carlo generated data sets. (a) The fitted values of 

o and /3. (b) The marginal distribution of /3. (c) The marginal distribution of o. 
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The sample means, standard deviations, covariance and correlation coefficient 

(see Section 5.2) from the Monte Carlo experiments are: 

0.499 

0.051 

0.0024 

(3 

s~ 

r 

0.498 

0.111 

0.42. 

(6.29) 

Note that & and /3 are in good agreement with the 'true' values put into the 

Monte Carlo (0' = 0.5 and (3 = 0.5) and the sample (co)variances are close to 

the values estimated numerically from the ReF bound. 

The fact that a and /3 are correlated is seen from the fact that the band of 

points in the scatter plot is tilted. That is, if one required a > 0', this would lead 

to an enhanced probability to also find /3 > (3. In other words, the conditional 

p.d.f. for a given /3 > (3 is centered at a higher mean value and has a smaller 

variance than the marginal p.d.f. for a. 
Figure 6.7 shows the positions of the ML estimates in the parameter space 

along with a contour corresponding to log L = log Lmax - 1/2. 
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Fig. 6.7 The contour of constant 

likelihood logL = logLmax - 1/2 

shown with the true values for the par

ameters (a,.6) and the ML estimates 

(a,t1). In the large sample limit the 

tangents to the curve correspond to 

a ± u& and t1 ± uiJ. 

0.4 

i MLf", •• ," 

0.3 

·· .. ··········l· .. ·········· .. · .. ······ .. ··· .. · .. 

0.3 0.4 0.5 0.6 0.7 

<X 

In the large sample limit, the log-likelihood function takes on the form 

log L( 0', (3) = log Lmax 

-2(1~--=-:-P2) [C';'&)' + C'~t1)' -2P(";'&) (~~t1)] ,(6.30) 

where p = cov[a,/3]/(O"&O"{§) is the correlation coefficient for a and /3. The contour 

of log L (0', (3) = log Lmax - 1/2 is thus given by 
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(6.31) 

This is an ellipse centered at the ML estimates (ex,13) and has an angle ¢ with 

respect to the 0' axis given by 

2P(J'6:CT ~ 
tan 2¢ = (J'~ _ (J'~ . 

Q f3 

(6.32) 

Note in particular that the tangents to the ellipse are at 0' = ex ± (J' 6:, /3 = 13 ± (J' ~ 

(see Fig. 6.7). If the estimators are correlated, then changing a parameter by one 

standard deviation corresponds in general to a decrease in the log-likelihood of 

more than 1/2. If one of the parameters, say /3, were known, then the standard 

deviation of ex would be somewhat smaller, since this would then be given by 

a decrease of 1/2 in log L(O'). Similarly, if additional parameters (1,8, ... ) are 

included in the fit, and if their estimators are correlated with ex, then this will 

resul t in an increase in the standard deviation of ex. 

6.9 Extended maximum likelihood 

Consider a random variable x distributed according to a p.d.f. f(x; 6), with 

unknown parameters () = (01 , -... , Om), and suppose we have a data sample 

Xl, ... , X n . It is often the case that the number of observations n in the sample 

is itself a Poisson random variable with a mean value v. The result of the experi

ment can be defined as the number n and the n values Xl, ... , x n . The likelihood 

function is then the product of the Poisson probability to find n, equation (2.9)' 

and the usual likelihood function for the n values of x, 

(6.33) 

This is called the extended likelihood function. It is really the usual likelihood 

function, however, only now with the sample size n defined to be part of the 

result of the experiment. One can distinguish between two situations of interest, 

depending on whether the Poisson parameter v is given as a function of 6 or is 

treated as an independent parameter. 

First assume that v is given as a function of 6. The extended log-likelihood 

function is 
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n 

log L(6) n log v(6) - v(6) + L log f(Xi; 6) 
i=l 

n 

-v( 6) + L log(v( 6) f( Xi; 6)), (6.34) 

i=l 

where additive terms not depending on the parameters have been dropped. (This 

is allowed since the estimators depend only on derivatives oflog L.) By including 

the Poisson term, the resulting estimators {} exploit the information from n as 

well as from the variable x. This leads in general to smaller variances for {} than 

in the case where only the x values are used. 

In a particle scattering reaction, for example, the total cross section as well 

as the distribution of a variable that characterizes the events, e.g. angles of the 

outgoing particles, depend on parameters such as particle masses and coupling 

constants. The statistical errors of the estimated parameters will in general be 

smaller by including both the information from the cross section as well as from 

the angular distribution. The total cross section (J' is related to the Poisson 

parameter v by v = (J' Lc, where L is the integrated luminosity and c is the 

probability for an event to be detected (the efficiency). The standard deviations 

of the estimators correspond to the amount that the estimates would fluctuate 

if one were to repeat the experiment many times, each time with the same 

integrated luminosity, and not with the same number of events. 

The other situation of interest is where there is no functional relation between 

v and 6. Taking the logarithm of (6.33) and setting the derivative with respect 

to v equal to zero gives the estimator 

i) = n, (6.35) 

as one would expect. By setting the derivative of log L(v, 6) with respect to the Oi 

equal to zero, one obtains the same estimators Oi as in the usual ML case. So the 

situation is essentially the same as before, only now a quantity which depends 

on both nand 6 will contain an additional source of statistical fluctuation, since 

n is regarded as a random variable. 

In some problems of this type, however, it can still be helpful to use the 

extended likelihood function. Often the p.d.f. of a variable x is the superposition 

of several components, 

m 

f(x; 6) = L Oifi(X), (6.36) 

i=l 

and the goal is to estimate the Oi representing the relative contributions of each 

component. Suppose that the p.d.f.s fi(X) are all known. Here the parameters 

(}i are not all independent, but rather are constrained to sum to unity. In the 

usual case without the extended likelihood function, this can be implemented 

by replacing one of the coefficients, e.g. Om, by 1 - L~~ 1 Oi, so that the p.d.f. 
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contains only m - 1 parameters. One can then construct the likelihood function 

and from this find estimators for the Oi. 

The problem can be treated in an equivalent but more symmetric way using 

the extended likelihood function (6.33). Taking the logarithm and dropping terms 

not depending on the parameters gives 

log L(v, 9) = -v + t, log (t, vOjfj (X;)) (6.37) 

By defining Pi = Oi vas the expected number of events of type i, the log-likelihood 

function can be written as a function of the m parameters J-t = (PI, ... ,Pm), 

m n (m ) 
log L(J-t) = - t; Pj + ~ log t; Pj fJ(xd . (6.38) 

The parameters J-t are no longer subject to a constraint, as were the components 

of (J. The total number of events n is viewed as a sum of independent Poisson 

variables with means Pi. The estimators Pi give directly the estimated mean 

numbers of events of the different types. This is of course equivalent to using 

the ML estimators 8i for the fractions along with the estimator ii = n for the 

single Poisson parameter v. Now, however, all of the parameters are treated 

symmetrically. Furthermore, the parameters Pi are often more closely related to 

the desired final result, e.g. a production cross section for events of type i. 

If the different terms in (6.36) represent different types of events that can 

contribute to the sample, then one would assume that all of the Oi are greater 

than or equal to zero. That is,'-events of type i can contribute to the sample, 

but they cannot cause a systematic deficit of events to occur in some region 

of the distribution of x. One could also consider a function of the form (6.36) 

where some of the Oi could be negative, e.g. where some of the fi(X) represent 

quantum mechanical interference effects. For now, however, let us consider the 

case where all of the Oi are a priori positive or zero. Even in such a case, because 

of statistical fluctuations in the data it can happen that the likelihood function 

is maximum when some of the Oi, and hence the corresponding Pi, are negative. 

One must then decide what to report for the estimate. 

As an example, consider a data sample consisting of two types of events, 

e.g. signal and background, where each event is characterized by a continuous 

variable x. Suppose that for the signal events, fs(x) is Gaussian distributed, and 

for the background, fb(X) is an exponential distribution. The number of signal 

events ns is distributed according to a Poisson distribution with mean Ps, and 

the number of background events nb is Poisson distributed with a mean value 

Pb· 
The p.d.f. for x is thus 

f(x) = ps fs(x) + ': /b(x), 
ps + Pb ps Pb 

(6.39) 
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Fig. 6.8 Extended ML fits to two data samples distributed according to a superposition of 

Gaussian and exponential probability densities. Because of statistical fluctuations in the data, 

the estimated amplitude of the Gaussian component can turn out positive as in (a), or negative 

as in (b). 

where the forms of the p.d.f.s fs(x) and fb(X) are assumed known, and are 

normalized to unit area within a fixed range, in this example taken to be 0 :::; 

x :::; 2. Suppose we are given n = ns+nb values of x, and we would like to estimate 

J-ls. In some cases, the expected background J-lb'may be known; in others it may 

also be determined from the data. In the example here, both J-ls and J-lb are 

fitted. Figure 6.8 shows two possible data samples generated by Monte Carlo 

using J-ls = 6 and J-lb = 60, along with the results of the extended ML fit. In 

Fig. 6.8(a), the estimated signal is {is = 8.7, and the standard deviation of {is 

estimated from the second derivative of the log-likelihood function is 5.5. Since 

the standard deviation is comparable to the estimated value, one should not be 

surprised if such an experiment resulted in a negative estimate. This is in fact 

what happens in Fig. 6.8(b), which yields {is = -1.8. 

In cases where a negative estimate is physically meaningless, one might choose 

to take the fitted value if it is positive, but to report zero otherwise. The problem 

with such an estimator is that it is biased. If one were to perform many similar 

experiments, some of the ML estimates will be negative and some positive, but 

the average will converge to the true value. (In principle, ML estimators can 

still have a bias, but this will be small if the data samples of the individual 

experiments are sufficiently large, and should be in any event much smaller than 

the bias introduced by shifting all negative estimates to zero.) 

Figure 6.9, for example, shows the estimates {is from 200 Monte Carlo experi

ments of the type above. The average value of {is is 6.1, close to the true value 

of 6. The sample standard deviation of the 200 experiments is 5.3, similar to 

that estimated above from the log-likelihood function. The standard deviation 

of the average of the {is values is thus 5.3/V200 = 0.37. If the negative estimates 

are shifted to zero, then the average becomes 6.4. In this example, the bias of 
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6.4 - 6 = 0.4 is small compared to the standard deviation of 5.3, but it could 

become significant compared to the standard deviation of an average of many 

experiments . 
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Fig. 6.9 Histogram of estimates P-s 
from 200 Monte Carlo experiments 

based on the true value I-Ls = 6. The av

erage value of the estimates is 6.1 ±O.4. 

Approximately 10% of the estimates 

are negative (see text). 

Thus if one intends to average a result with that of other experiments, it is 

important that an unbiased estimate be reported, even if it is in an unphysical 

region. In addition, one may wish to give an upper limit on the parameter. 

Methods for this are discussed in Section '9.8. 

6.10 Maximum likelihood with binned data 

Consider ntot observations of a random variable x distributed according to a 

p.d.f. f(x; 6) for which we would like to estimate the unknown parameter 6 = 
(01 , • .• , Om). For very large data samples, the log-likelihood function becomes 

difficult to compute since one must sum logf(xi; 6) for each value Xi. In such 

cases, instead of recording the value of each measurement one usually makes a 

histogram, yielding a certain number of entries n = (nl' ... , nN) in N bins. The 

expectation values v = (VI, ... , VN) of the numbers of entries are given by 

vi(6) = ntot lx~"" f(x; 6)dx, 
x~ln 

(6.40) 

where xr in and xiax are the bin limits. One can regard the histogram as a single 

measurement of an N-dimensional random vector for which the joint p.d.f. is 

given by a multinomial distribution, equation (2.6), 

, ( )nl ( )nN ntot· VI VN 
/joint(n; v) =, , -- ...--

nl· ... nN· ntot ntot 
(6.41 ) 

The probability to be in bin i has been expressed as the expectation value Vi 

divided by the total number of entries ntot. Taking the logarithm of the joint 

p.d.f. gives the log-likelihood function, 
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N 

logL(8) = I: ni log vi(8), (6.42) 

i=I 

where additive terms not depending on the parameters have been dropped. The 

estimators {j are found by maximizing log L by whatever means available, e.g. 

numerically. In the limit that the bin size is very small (i.e. N very large) the 

likelihood function becomes the same as that of the ML method without bin

ning (equation (6.2)). Thus the binned ML technique does not encounter any 

difficulties if some of the bins have few or no entries. This is in contrast to an 

alternative technique using the method of least squares discussed in Section 7.5. 

As an example consider again the sample of 50 measured particle decay times 

that we examined in Section 6.2, for which the ML result without binning is 

shown in Fig. 6.2. Figure 6.10 shows the same sample displayed as a histogram 

with a bin width of i}..t = 0.5. Also shown is the fit result obtained from maximiz

ing the log-likelihood function based on equation (6.42). The result is T = 1.067, 

in good agreement with the unbinned result of T = 1.062. Estimating the stan

dard deviation from the curvature of the log-likelihood at its maximum (equation 

(6.22)) results in U'f = 0.171, slightly larger than that obtained without binning. 
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Fig. 6.10 Histogram of the data 

sample of 50 particle decay times from 

Section 6.2 with the ML fit result. 

As discussed in Section 6.9, in many problems one may want to regard the 

total number of entries ntot as a random variable from a Poisson distribution 

with mean Vtot. That is, the measurement is defined to consist of first deter

mining ntot from a Poisson distribution and then distributing ntot observations 

of x in a histogram with N bins, giving n = (nI, ... , nN). The joint p.d.f. for 

ntot and nI, ... , nN is the product of a Poisson distribution and a multinomial 

distribution, 



Testing goodness-of-fit with maximum likelihood 89 

(6.43) 

where one has Vtot = L~lVi and ntot = L~l ni· Using these in equation (6.43) 

gIves 

N V~' 
/joint (n; v) = II _1_, e- v

, 

i=l ni· 

(6.44) 

where the expected number of entries in each bin Vi now depends on the param

eters 0 and Vtot, 

(6.45) 

From the joint p.d.f. (6.44) one sees that the problem is equivalent to treating 

the number of entries in each bin as an independent Poisson random variable ni 

with mean value Vi. Taking the logarithm of the joint p.d.f. and dropping terms 

that do not depend on the parameters gives 

N 

log L (Vtot, 0) = -Vtot + L ni log Vi (Vtot, 0). 

i=l 

(6.46) 

This is the extended log-likelihood function:, cf. equations (6.33), (6.37), now for 

the case of binned data. 

The previously discussed considerations on the dependence between Vtot and 

the other parameters 0 apply In the same way here. That is, if there is no 

functional relation between Vtot and 0, then one obtains Vtot = ntot, and the 

estimates {j come out the same as when the Poisson term for ntot is not included. 

If Vtot is given as a function of 0, then the variances of the estimators {j are in 

general reduced by including the information from ntot. 

6.11 Testing goodness-of-fit with maximum likelihood 

While the principle of maximum likelihood provides a method to estimate pa

rameters, it does not directly suggest a method of testing goodness-of-fit. One 

possibility is to use the value of the likelihood function at its maximum, L max , 

as a goodness-of-fit statistic. This is not so simple, however, since one does not 

know a priori how Lmax is distributed assuming that the form of the p.d.f. is 

correct. 

The p.d.f. of Lmax can be determined by means of a Monte Carlo study. For 

the 'true' Monte Carlo parameters used to generate the data, the ML estimates 

from the real experiment can be used. This was done for the example of the 

scattering experiment discussed in Section 6.8, and the distribution of log Lmax 

is shown in Fig. 6.11. The original example (the data set shown in Fig. 6.5) gave 

log Lmax = 2436.4. From this one can compute an observed significance level 
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(P-value), as described in Section 4.5, as a measure of the goodness-of-fit. For 

the example here one obtains P = 0.63, and so there would not be any evidence 

against the form of the p.d.f. used in the fit. 
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Fig. 6.11 Normalized histogram of 

the values of the maximized log-like

lihood function log Lmax from 500 

Monte Carlo experiments. The vert i

cal line shows the value of log Lmax ob

tained using the data shown in Fig. 6.5 

(see text). 

Another approach is to construct a histogram n = (nI, ... , nN) with N bins 

from the ntot measured values. The estimates of the mean values v = (VI, ... , VN) 

from the ML fit are 

(6.47) 

where the parameters e are evaluated with their ML estimates. This can of course 

be computed even if the ML fit was done without binning. The histogram offers 

the advantage that it can be displayed graphically, and as a first step, a visual 

comparison of the data and fit result can be made. At a more quantitative level, 

the data n and the estimates D (or other hypothesized values v) can be used to 

construct a goodness-of-fit statistic. 

An example of such a statistic is based on the likelihood function from the 

binned ML fit in Section 6.10. This is given by the multinomial p.d.f. (6.41) for 

fixed sam pIe size ntot, or by the product of Poisson probabilities (6.44) if ntot is 

treated as a Poisson variable with mean Vtot. Consider first the ratio 

L(nlv) 

L(nln) 

/joint (n; v) 

/joindn; n) , 
(6.48) 

where here the likelihood function L(nlv) = /joint (n; v) is written to emphasize 

the dependence on both the data n and the parameters v. That is, in the de

nominator of (6.48) the Vi are set equal to the data values ni. For multinomially 

distributed data this becomes 
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(6.49) 

and for Poisson distributed data one obtains 

(6.50) 

If m parameters have been estimated from the data, then v can be replaced by 

the estimates v. If the hypothesis is correct, then in the large sample limit with 

multinomially distributed data, the statistic 

(6.51) 

follows a X2 distribution for N - m - 1 degrees of freedom (see [Bak84, Ead71] 

and references therein). For Poisson distributed data, the statistic 

(6.52) 

follows a X2 distribution for N - m degrees of freedom. These quantities appear 

not to be defined if any ni are equal to zero, but in such a case the factor n7' in 

>. is taken to be unity, and the corresponding terms do not contribute in (6.51) 

and (6.52). 

The quantity >.(v) = L(nlv)/ L(nln) only differs from the likelihood function 

by the factor L(nln), which does not depend on the parameters. The parameters 

that maximize >.(v) are therefore equal to the ML estimators. One can thus use 

>.(v) both for constructin'g estimators as well as for testing goodness-of-fit. 

Alternatively, one can use one of the X2 statistics from Section 4.7. If ntot is 

treated as a Poisson variable, one has 

(6.53) 

from equation (4.39), or if ntot is fixed, then one can use 

(6.54) 

from equation (4.41). Here Pi = Vi / Vtot is the estimated probability for a mea

surement to be found in bin i. In the large sample limit these follow X2 distri

butions with the number of degrees of freedom equal to N - m for (6.53) and 

N - m - 1 for (6.54). 
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For finite data samples, none of the statistics given above follow exactly the 

X2 distribution. If the histogram contains bins with, for example, ni < 5, a Monte 

Carlo study can be carried out to determine the true p.d.f., which can then be 

used to obtain a P-value. 

6.12 Combining measurements with maximum likelihood 

Consider an experiment in which one has n measured values of a random variable 

x, for which the p.d.f. fx(x; 0) depends on an unknown parameter O. Suppose in 

another experiment one has m measured values of a different random variable 

y, whose p.d.f. fy(y; 0) depends on the same parameter O. For example, x could 

be the invariant mass of electron-positron pairs produced in proton-antiproton 

collisions, and y could be the invariant mass of muon pairs. Both distributions 

have peaks at around the mass Mz of the ZO boson, and so both p.d.f.s contain 

Mz as a parameter. One then wishes to combine the two experiments in order 

to obtain the best estimate of Mz. 

The two experiments together can be interpreted as a single measurement of 

a vector containing n values of x and m values of y. The likelihood function is 

therefore 

n rn 

(6.55) 

i=l j=l 

or equivalently its logarithm is given by the sum log L(O) = log Lx(O) +log Ly(O). 
Thus as long as the likelihood functions of the experiments are available, the 

full likelihood function can be constructed and the ML estimator for 0 based 

on both experiments can be determined. This technique includes of course the 

special case where x and yare the same random variable, and the samples 

Xl, ... ,Xn and Yl, ... , Yrn simply represent two different subsamples of the data. 

More frequently one does not report the likelihood functions themselves, but 

rather only estimates of the parameters. Suppose the two experiments based on 

measurements of x and y give estimators ex and ey for the parameter 0, which 

themselves are random variables distributed according to the p.d.f.s gx(ex; 0) 

and gy(ey; 0). The two estimators can be regarded as the outcome of a single 

experiment yielding the two-dimensional vector (ex, ey). As long as ex and ey 
are independent, the log-likelihood function is given by the sum 

(6.56) 

Fot large data samples the p.d.f.s gx and gy can be assumed to be Gaussian, 

and one reports the estimated standard deviations (;-ox and (;-Oy as the errors 

on ex and Oy. As will be seen in Chapter 7, the problem is then equivalent to 

the method of least squares, and the combined estimate for 0 is given by the 

weighted average 
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(6.57) 

with the estimated variance 

(6.58) 

This technique can clearly be generalized to combine any number of mea

surements. 

6.13 Relationship between ML and Bayesian estimators 

It is instructive to compare the method of maximum likelihood to parameter 

estimation in Bayesian statistics, where uncertainty is quantified by means of 

subjective probability (cf. Section 1.2). Here, both the result of a measurement 

x and a parameter 0 are treated as random variables. One's knowledge about 0 

is summarized by a probability density, which expresses the degree of belief for 

the parameter to take on a given value. 

Consider again n observations of a random variable x, assumed to be dis

tributed according to some p.d.f. f(x; 0), which depends on an unknown param

eter O. (The Bayesian approach can easily be generalized to several parameters 

e = (01 , ... ,Om), For simplicity we will consider here only a single parameter.) 

Recall that the likelihood function is the joint p.d.f. for the data x = (Xl, ... , xn) 
for a given value of 0, and thus can be written 

n 

L(xIO) = /ioint{xIO) = II f(Xi; 0). (6.59) 

i=l 

What we would like is the conditional p.d.f. for 0 given the data p(Olx). This is 

obtained from the likelihood via Bayes' theorem, equation (1.26), 

L(xIO) 11'(0) 
p(Olx) = J L(xIO') 11'(O')dO" 

(6.60) 

Here 11'(0) is the prior probability density for 0, reflecting the state of knowledge 

of 0 before consideration of the data, and p(Olx) is called the posterior probability 

density for 0 given the data x. 

In Bayesian statistics, all of our knowledge about 0 is contained in p(Olx). 
Since it is rarely practical to report the entire p.dJ., especially when 0 is mul

tidimensional, an appropriate way of summarizing it must be found. The first 

step in this direction is an estimator, which is often taken to be the value of 0 

at which p(Olx) is a maximum (i.e. the posterior mode). If the prior p.d.f. 11'(0) 
is taken to be a constant, then p(Olx) is proportional to the likelihood function 

L(xIO), and the Bayesian and ML estimators coincide. The ML estimator can 
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thus be regarded as a special case of a Bayesian estimator, based on a uniform 

prior pd.f. We should therefore take a closer look at what a uniform 11"(0) implies. 

The Bayesian approach expressed by equation (6.60) gives a method for up

dating one's state of knowledge in light of newly acquired data. It is necessary 

to specify, however, what the state of knowledge was before the measurement 

was carried out. If nothing is known previously, one may assume that a priori 

all values of 0 are equally likely. This assumption is sometimes called Bayes' 

postulate, expressed here by 1T( 0) = constant. If the range of 0 is infinite, then 

a constant 1T(0) cannot be normalized, and is called an improper prior. This is 

usually not, in fact, a problem since 1T( 0) always appears multiplied by the like

lihood function, resulting in a normalizable posterior p.d.f. For some improper 

prior densities this may not always be the case; cf. equation (9.45) in Chapter 9. 

A more troublesome difficulty with constant prior densities arises when one 

considers a transformation of parameters. Consider, for example, a continuous 

parameter 0 defined in the interval [0, 10]. Using Bayes' postulate, one would use 

the prior p.d.f. 1To(O) = 0.1 in equation (6·.60) to obtain the posterior density 

Po (Olx). Another experimenter, however, could decide that some nonlinear func

tion a( 0) was more appropriate as the parameter. By transformation of variables, 

one could find the corresponding density Pa(alx) = po(Olx)ldOjdal. Alternatively, 

one could express the likelihood function directly in terms of a, and assume that 

the prior density 1Ta(a) is constant. For example, if a = 02
, then 1Ta(a) = 0.01 in 

the interval [0,100]. Using this in equation (6.60), however, would lead to a pos

terior density in general different from the Pa(alx) obtained by transformation 

of variables. That is, complete ignorance about 0 (1To(O) = constant) implies a 

nonuniform prior density for a nonlinear function of 0 (1T a (a) -::f constant). 

But if 1Ta{a) is not constant, then the mode of the posterior Pa(alx) will not 

occur at the same place as the maximum of the likelihood function La (xla) = 
/ioindxla). That is, the Bayesian estimator is not in general invariant under a 

transformation of the parameter. The ML estimator is, however, invariant under 

parameter transformation, as noted in Section 6.2. That is, the value of a that 

maximizes La{xla) is simply a(O), where 0 is the value of 0 that maximizes 

Lo(xIO). 
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The method of least squares 

7.1 Connection with maximum likelihood 

In many situations a measured value Y can be regarded as a Gaussian random 

variable centered about the quantity's true value A. This follows from the central 

limit theorem as long as the total error (i.e. deviation from the true value) is the 

sum of a large number of small contributions. 

Consider now a set of N independent Gaussian random variables Yi, i = 
1, ... ,N, each related to another variable Xi, which is assumed to be known 

without error. For example, one may have N measurements of a temperature 

T{xd at different positions Xi. Assume that each value Yi has a different unknown 

mean, Ai, and a different but known variance, a}. The N measurements of Yi can 

be equivalently regarded as a single measurement of an N-dimensional random 

vector, for which the joint p.d.f. is the prod.uct of N Gaussians, 

Suppose further that the true value is given as a function of x, A = A(X; 8), which 

depends on unknown parameters 8 = (e 1 , ••• , em). The aim of the method of 

least squares is to estimate the parameters 8. In addition, the method allows for 

a simple evaluation of the goodness-of-fit of the hypothesized function A(X; 8). 
The basic ingredients of the problem are illustrated in Fig. 7.l. 

Taking the logarithm of the joint p.d.f. and dropping additive terms that do 

not depend on the parameters gives the log-likelihood function, 

(7.2) 

This is maximized by finding the values of the parameters 8 that minimize the 

quantity 

(7.3) 
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Fig. 7.1 Ingredients of the least 

squares problem: N values Yl,···, YN 

are measured with errors 0"1,···,0" N 

at the values of x given without er

ror by Xl, ... ,X N. The true value Ai 

of Y. is assumed to be given by a func

tion Ai = A(Xii6). The value of 6 is 

adjusted to minimize the value of X2 

given by equation (7.3). 

namely the quadratic sum of the differences between measured and hypothe

sized values, weighted by the inverse of the variances. This is the basis of the 

method of least squares (LS), and is used to define the procedure even in cases 

where the individual measurements Yi are not Gaussian, but as long as they are 

independent. 

If the measurements are not independent but described by an N-dimensional 

Gaussian p.d.f. with known covariance matrix V but unknown mean values, the 

corresponding log-likelihood function is obtained from the logarithm of the joint 

p.d.f. given by equation (2.28), 

1 N 

log L(8) = -"2 L (Yi - -\(Xi; 8))(V- 1
)ij(Yj - -\(Xj; 8)), (7.4) 

i,j=l 

where additive terms not depending on the parameters have been dropped. This 

is maximized by minimizing the quantity 

N 

X2 (8) = L (Yi - -\(Xi; 8))(V- 1
)ij(Yj - -\(Xj; 8)), (7.5) 

i,j=l 

which reduces to equation (7.3) if the covariance matrix (and hence its inverse) 

are diagonal. 

The parameters that minimize the X2 are called the LS estimators, e1 , ... , em. 
As will be discussed in Section 7.5, the resulting minimum X2 follows under 

certain circumstances the X2 distribution, as defined in Section 2.7. Because of 

this the quantity defined by equations (7.3) or (7.5) is often called X2, even in 

more general circumstances where its minimum value is not distributed according 

to the X2 p.d.f. 
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7.2 Linear least-squares fit 

Although one can carry out the least squares procedure for any function A(X; 8), 
the resulting X2 value and LS estimators have particularly desirable properties 

for the case where A(X; 8) is a linear function of the parameters 8, 

m 

A(x;8) = Laj(x)Oj, (7.6) 
j=1 

where the aj(x) are any linearly independent functions of x. (What is required 

is that A is linear in the parameters OJ. The a j (x) are not in general linear in x, 
but are just linearly independent from each other, i.e. one cannot be expressed 

as a linear combination of the others.) For this case, the estimators and their 

variances can be found analytically, although depending on the tools available 

one may still prefer to maximize X2 numerically with a computer. Furthermore, 

the estimators have zero bias and minimum variance. This follows from the 

Gauss-Markov theorem (see e.g. [Stu91]) and holds regardless of the number of 

measurements N, and the p.d.f.s of the individual measurements. 

The value of the function A(X; 8) at Xi can be written 

m m 

A(Xi; 8) = L aj(xdOj = L AijOj (7.7) 
j=1 j=1 

where Aij = aj(xd. The general expression .(7.5) for the X2 can then be written 

in matrix notation, 

X2 (y - ~f V-I (y - ~) 

(y - A8)T V-I (y - A8), (7.8) 

where y = (Yl, . .. ,YN) is the vector of measured values, and ~ = (AI, ... ,AN) 
contains the predicted values Ai = A(Xi; 8). In matrix equations, y and ~ are 

understood to be column vectors, and the superscript T indicates a transposed 

(i.e. row) vector. 

To find the minimum X2 we set its derivatives with respect to the parameters 

Oi equal to zero, 

(7.9) 

Providing the matrix AT V- 1 A is not singular, this can be solved for the estima

tors {}, 

(7.10) 

That is, the solutions {} are linear functions of the original measurements y. 

Using error propagation to find the covariance matrix for the estimators Uij = 
COV[Oi' OJ] gives 
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U = BV BT (7.11) 

Equivalently, tl>€ inverse covariance matrix U- 1 can be expressed as 

(7.12) 

Note that equation (7.12) coincides with the RCF bound for the inverse covari

ance matrix when the Yi are Gaussian distributed, where one has log L = _X2/2, 

cf. Sections 6.6, 7.1. 

For the case of >.(x; 8) linear in the parameters 8, the X2 is quadratic in 8: 

(7.13) 

Combining this with the expression for the variance given by equation (7.12) 

yields the contours in parameter space whose tangents are at iJi ± Cri, corre

sponding to a one standard deviation departure from the LS estimates: 

(7.14) 

This corresponds directly to the contour of constant likelihood seen in connection 

with the maximum likelihood problem of Section 6.11. If the function >.(x; 8) is 

not linear in the parameters, then the contour defined by equation (7.14) is not 

in general elliptical, and one can no longer obtain the standard deviations from 

the tangents. It defines a region in parameter space, however, which can be inter

preted as a confidence region, the size of which reflects the statistical uncertainty 

of the fitted parameters. The concept of confidence regions will be defined more 

precisely in Chapter 9. One should note, however, that the confidence level of 

the region defined by (7.14) depends on the number of parameters fitted: 6.83% 

for one parameter, 39.4% for two, 19.9% for three, etc. (cf. Section 9.7). 

7.3 Least squares fit of a polynomial 

As an example of the least squares method consider the data shown in Fig. 7.2, 

consisting of five values of a quantity Y measured with errors i}..y at different 

values of x. Assume the measured values Yi each come from a Gaussian distribu

tion centered around >'i (which is unknown) with a standard deviation (Ii = i}..Yi 

(assumed known). As a hypothesis for >.(x; 8) one might try a polynomial of 

order m (i.e. m + 1 parameters), 
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Tn 

>. ( x; 00 , ... , 0111 ) == L x
j e j . 

j=O 

(7.15) 

This is a special case of the linear least-squares fit described in Section 7.2 with 

the coefficient functions aj(x) equal to powers of x. Figure 7.2 shows the LS fit 

result for polynomials of order 0, 1 and 4. The zero-order polynomial is simply 

the average of the measured values, with each point weighted inversely by the 

square of its error. This hypothesis gives eo = 2.66 ± 0.13 and X2 == 45.5 for four 

degrees of freedom (five points minus one free parameter). The data are better 

described by a straight-line fit (first-order polynomial) giving 00 = 0.93 ± 0.30, 

01 = 0.68 ± 0.10 and X2 = 3.99 for three degrees of freedom. Since there are only 

five data points, the fourth-order polynomial (with five free parameters) goes 

exactly through every point yielding a X2 of zero. The use of the X2 value to 

evaluate the goodness-of-fit will be discussed in Section 7 .. 5. 
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Fig. 7.2 Least squares fits of polyno

mials of order 0, 1 and 4 to five mea

sured values. 

As in the case of the maximum likelihood method, the statistical errors and 

covariances of the estimators can be estimated in several ways. All are related to 

the change in the X2 as the parameters are moved away from the values for which 

X2 is a minimum. Figure 7 .3( a) shows the X2 as a function of 00 for the case of 

the zero-order polynomial. The X2 curve is a parabola, since the hypothesized 

fit function is linear in the parameter 00 (see equation (7.13)). The variance of 

the LS estimator 00 can be eval uated by any of the methods discussed in Section 

7.2: from the change in the parameter necessary to increase the minimum X2 by 

one, from the curvature (second derivative) of the parabola at its minimum, or 

directly from equation (7.11). 

Figure 7.3(b) shows a contour of X2 == X~in + 1 for the first-order polynomial 

(two-parameter) fit. From the inclination and width of the ellipse one can see 

that the estimators 00 and 01 are negatively correlated. Equation 7.11 gives 
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Fig. 7.3 (a) The X2 as a function of eo for the zero-order polynomial fit shown in Fig. 7.2. 
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fit in Fig. 7.2. The tangents to the contour X2 (Bo, B1 ) = X;'in + 1 correspond to 00 ± 0-eo and 

Ol±0-81' 

(;-9
0 

yr;: = 0.30 

(;-9
1 

;0:; = 0.10 

cov[eo, e1 ] = U0 1 = -0.028, 

corresponding to a correlation coefficient of r = -0.90. As in the case of maxi

mum likelihood, the standard deviations correspond to the tangents of the ellipse, 

and the correlation coefficient to its width and angle of inclination (see equations 

{6.31} and (6.32)). 

Since the two estimators eo and e1 have a strong negative correlation, it is 

important to include the covariance, or equivalently the correlation coefficient, 

when reporting the results of the fit. Recall from Section 1.7 that one can always 

define two new quantities, i}o and i}1, from the original eo and e1 by means of 

an orthogonal transformation such that cov[i}o, 7h] = O. However, although it is 

generally easier to deal with uncorrelated quantities, the transformed parameters 

may not have as direct an interpretation as the original ones. 

7.4 Least squares with binned data 

In the previous examples, the function relating the 'true' values). to the variable 

x was not necessarily a p.d.f. for x, but an arbitrary function. It can, however, 

be a p.d.f., or it can be proportional to one. Suppose, for example, one has n 
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observations of a random variable x from which one makes a histogram with 

N bins. Let Yi be the number of entries in bin i and f(x; 8) be a hypothesized 

p.d.L for which one would like to estimate the parameters 8 = (0 1 , ... , Om). The 

number of entries predicted in bin i, Ai = E[yd, is then 

(7.16) 

where xiin and xiax are the bin limit.s and Pi(8) is the probability to have an 

entry in bin i. The parameters 8 are found by minimizing the quantity 

(7.17) 

where a} is the variance of the number of entries in bin i. Note that here the 

function f(x; 8) is normalized to one, since it is a p.dJ., and the function that 

is fitted to the histogram is Ai (8). 

If the mean number of entries in each bin is small compared to the total 

number of entries, the contents of each bin are approximately Poisson distributed. 

The variance is therefore equal to the mean (see equation (2.11)) so that equation 

(7.17) becomes 

X2(8) = t (Yi - Ai(8))2 = t (Yi - npi(8))2 

i=l Ai(8) i=l npi(8) 
(7.18 ) 

An alternative method is to approximate the variance of the number of entries 

in bin i by the number of entrie,& actually observed Yi, rather than by the pre

dicted number Ai (8). This is the so-called modified least-squares method (MLS 

method) for which one minimizes 

X2(8) = t (Yi - Ai(8))2 = t (Yi - npi(8))2 

i=l Yi i=l Yi 
(7.19) 

This may be easier to deal with computationally, but has the disadvantage that 

the errors may be poorly estimated (or X2 may even be undefined) if any of the 

bins contain few or no entries. 

When using the LS method for fitting to a histogram one should be aware 

of the following potential problem. Often instead of using the observed total 

number of entries n to obtain Ai from equation (7.16), an additional adjustable 

parameter v is introduced as a normalization factor. The predicted number of 

entries in bin i, Ai(8,v) = E[Yi], then becomes 

(7.20) 

This step would presumably be taken in order to eliminate the need to count 

the number of entries n. One can easily show, however, that introducing an 
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adjustable normalization parameter leads to an incorrect estimate of the total 

number of entries. Consider the LS case where the variances are taken from the 

predicted number of entries (O"f = Ad. Using equation (7.20) for Ai and setting 

the 1erivative of X2 with respect to v equal to zero gives the estimator 

~ X2 
lILs = n + 2· (7.21 ) 

For the MLS case (O"[ = Yi) one obtains 

~ 2 
VMLS = n - X . (7.22) 

Since one expects a contribution to X2 on the order of one per bin, the relative 

error in the number of entries is typically N /2n too high (LS) or' N / n too low 

(MLS). If one takes as a rule of thumb that each bin should have at least five 

entries, one could have an (unnecessary) error in the normalization of 10-20%. 

Although the bias introduced may be smaller than the corresponding statis

tical error, a result based on the average of such fits could easily be wrong by 

an amount larger than the statistical error of the average. Therefore, one should 

determine the normalization directly from the number of entries. If this is not 

practical (e.g. because of software constraints) one should at least be aware that 

a potential problem exists, and the bin size should be chosen such that the bias 

introduced is acceptably small. 

The least squares method with binned data can be compared to the maximum 

likelihood technique of Section 6.10. There the joint p.d.f. for the bin contents Yi 

was taken to be a multinomial distribution, or alternatively each Yi was regarded 

as a Poisson random variable. Recall that in the latter case, where the expected 

total number of entries v was treated as an adjustable parameter, the correct 

value v = n was automatically found (cf. Sections 6.9, 6.10). Furthermore it 

has been pointed out in [Ead71] (Section 8.4.5 and references therein) that the 

variances of ML estimators converge faster to the minimum variance bound than 

LS or MLS estimators, giving an additional reason to prefer the ML method for 

histogram fitting. 

As an example consider the histograms shown in Fig. 7.4, which contain 400 

entries in 20 bins. The data were generated by the Monte Carlo method in the 

interval [0,2]. The p.d.f. used was a linear combination of a Gaussian and an 

exponential given by 

(
_(X-J.l)2) 

exp 202 e-x/t; 

f(x;B,J-l,O",~) = B 2 (-(X1_J.l)2) ,+ (1- B) ~(1- e- 2/Q' 
fa exp 202 dx 

(7.23) 

with B = 0.5, J-l = 1, ~ = 4 and 0" = 0.35. Assume that J-l, 0" and ~ are known, 

and that one would like to determine the number of entries contributing to the 

Gaussian and exponential components, VGauss = vB and nexp = v(1- B). 
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Figure 7.4(a) shows the fit results where l/ was treated as a free parameter. 

For the case a} = Ai (LS) one obtains X2 = 17.1 and ilLS = 408.5, as expected 

from equation (7.21), and {} = 0.498 ± 0.056. For the case or = Yi (MLS) one 

obtains X2 = 17.8, zlMLS = 382.2 ± 19.5, which is in accordance with equation 

(7.22), and {} = 0.551 ± 0.062. One clearly sees from the figure that the areas 

under the two fitted curves are different, and this leads to different estimated 

numbers of entries corresponding to the Gaussian and exponential components. 

Figure 7.4(b) shows fit results where l/ is treated more correctly. For the curve 

labeled LS, the variances have been taken to be or = Ai and the total number of 

entries l/ has been fixed to the true number of entries, l/ = n = 400. This results 

in X2 = 17.3 and {} = 0.496 ± 0.055. Also shown in Fig. 7.4(b) is the result of 

an ML fit with {} = 0.514 ± 0.057, where the likelihood function is given by the 

product of Poisson distributions. As shown in Section 6.10, the ML estimator 

automatically gives the correct number of entries. The goodness-of-fit can be 

evaluated in the ML case using the statistic (6.52). This gives X~ = 17.6, similar 

to the X2 from the LS fit. Although the standard deviations of e are similar in all 

of the techniques shown, the fits shown in Fig. 7.4(b) are to be preferred, since 

there the total number of entries is correct. 

40 

20 

data (400 entries) (a) 

LS: x2 = 17.1, v = 408.5 ± 20.2 

MLS: l = 17.8, v = 382.2 ± 19.5 

0.5 1.5 

x 

2 

~ --.. 60 

40 

20 

data (400 entries) (b) 

LS: X
2 = 17.3, v = 400 (fixed) 

ML: X~ = 17.6, v = 400.0 ± 20.0 

0.5 1.5 

x 

2 

Fig. 7.4 (a) Fits to Monte Carlo data generated according to equation (7.23) where the total 

number of entries v is treated as an adjustable parameter. (b) Fit results using the LS method 

with the total number of entries fixed to the true number and using the method of maximum 

likelihood (see text). 

7.5 Testing goodness-of-fit with X2 

If the measured values Yi are Gaussian, the resulting estimators coincide with 

the ML estimators, as seen in Section 7.1. Furthermore, the X2 value can be used 

as a test of how likely it is that the hypothesis. if true, would yield the observed 

data. 
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The quantity (Yi - >.( Xi; 8)) / CTi is a measure of the deviation between the ith 

measurement Yi and the function >'(Xi; 8), so X2 is a measure of total agreement 

between observed data and hypothesis. It can be shown that if 

(1) the Yi, i = 1, ... , N, are independent Gaussian random variables with known 

variances, CTT (or are distributed according to an N-dimensional Gaussian 

with known covariance matrix V); 

(2) the hypothesis >.(x; ()l, ... ,()m) is linear in the parameters ()i; and 

(3) the functional form of the hypothesis is correct, 

then the minimum value of X2 defined by equation (7.3) (or for correlated Yi 

by equation (7.5)) is distributed according to the X2 distribution with N - m 

degrees of freedom as defined in Section 2.7, equation (2.34). We have already 

encountered a special case of this in Section 4.7, where no parameters were 

determined from the data. 

As seen in Section 2.7, the expectation value of a random variable z from the 

X2 distribution is equal to the number of degrees of freedom. One often quotes 

therefore the X2 divided by the number of degrees of freedom nd (the number 

of data points minus the number of independent parameters) as a measure of 

goodness-of-fit. If it is near one, then all is as expected. If it is much less than 

one, then the fit is better than expected given the size of the measurement errors. 

This is not bad in the sense of providing evidence against the hypothesis, but 

it is usually grounds to check that the errors CTi have not been overestimated or 

are not correlated. 

If X2 / nd is much larger than one, then there is some reason to doubt the 

hypothesis. As discussed in Section 4.5, one often quotes a significance level (P
value) for a given X2

, which is the probability that the hypothesis would lead to 

a X2 value worse (i.e. greater) than the one actually obtained. That is, 

(7.24) 

where J(z; nd) is the X2 distribution for nd degrees of freedom. Values can be 

computed numerically (e.g. with the routine PROB in [CER97]) or looked up in 

standard graphs or tables (e.g. references [PDG96, Bra92]). The P-value at which 

one decides to reject a hypothesis is subjective, but note that underestimated 

errors, CTi, can cause a correct hypothesis to give a bad X2. 

For the polynomial fit considered in Section 7.3, one obtained for the straight

line fit X2 = 3.99 for three degrees of freedom (five data points minus two free 

parameters). Computing the significance level using equation (7.24) gives P = 
0.263. That is, if the true function >.(x) were a straight line and if the experiment 

were repeated many times, each time yielding values for eo, e1 and X2, then 

one would expect the X2 values to be worse (i.e. higher) than the one actually 

obtained (X2 = 3.99) in 26.3% of the cases. This can be checked by performing a 

large number of Monte Carlo experiments where the 'true' parameters ()o and ()l 

are taken from the results of the real experiment, and a 'measured' value for each 
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data point is generated from a Gaussian of width (J" given by the corresponding 

errors. Figure 7.5 shows a normalized histogram of the X2 values from 1000 

simulated experiments along with the predicted X2 distribution for three degrees 

of freedom. 

0.2 3\, 

01· j\ 
/ from Me experiments 
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Fig. 7.5 Normalized histogram of X2 

values from 1000 Monte Carlo experi

ments along with the predicted X2 dis

tribution for three degrees of freedom. 

The fit to the horizontal line gave X2 = 45.5 for four degrees of freedom. The 

corresponding significance level is P = 3.1 X 10- 9
. If the horizontal-line hypoth

esis were true, one would expect a X2 as high or higher than the one obtained in 

only three out of a billion experiments, so this hypothesis can safely be ruled out. 

In computing the P-value it was assumed that the standard deviations (J"i (or 

for correlated measurements the covariance matrix V) were known. One should 

keep in mind that underestimated measurement .errors (J"i or incorrect treatment 

of correlations can cause a correct hypothesis to result in a large X2. 

One should keep in mind the distinction between having small statistical 

errors and having a good (i.e. small) X2. The statistical errors are related to the 

change in X2 when the parameters are varied away from their fitted values, and 

not to the absolute value of X2 itself. From equation (7.11) one can see that the 

covariance matrix of the estimators U depends only on the coefficient functions 

aj(x) (i.e. on the composite hypothesis >.(x; 8)) and on the covariance matrix V 

of the original measurements, but is independent of the measured values Yi. 

The standard deviation (J" 0 of an estimator e is. a measure of how widely 

estimates would be distributed if the experiment were to be repeated many 

times. If the functional form of the hypothesis is incorrect, however, then the 

estimate e can still differ significantly from the true value (j, which would be 

defined in the true composite hypothesis. That is, if the form of the hypothesis 

is incorrect, then a small standard deviation (statistical error) is not sufficient 

to imply a small uncertainty in the estimate of the parameter. 

To demonstrate this point, consider the fit to the horizontal line done in 

Section 7.3, which yielded the estimate eo = 2.66 ± 0.13 and X2 = 45.5 for four 
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degrees of freedom. Figure 7.6 shows a set of five data points with the same x 

values and the same errors, /)..y, but with different y values. A fit to a horizontal 

line gives eo = 2.84 ± 0.13 and X2 = 4.48. The error on eo stays the same, but 

the X2 value is now such that the horizontal-line hypothesis provides a good 

description of the data. The X2 vs. eo curves for the two cases have the same 

curvature, but one is simply shifted vertically with respect to the other by a 

constant offset. 
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Fig. 7.6 Least squares fit of a pol

ynomial of order 0 to data with the 

same x values and errors as shown in 

Fig. 7.2, but with different y values. 

Although the X 2 value is much smaller 

than in the previous example, the error 

of 80 remains the same. 

7.6 Combining measurements with least squares 

A special case of the LS method is often used to combine a number of measure

ments of the same quantity. Suppose that a quantity of unknown true value>. has 

been measured N times (e.g. in N different experiments) yielding independent 

values Yi and estimated errors (standard deviations) cri for i = 1, ... , N. Since 

one assumes that the true value is the same for all the measurements, the value 

>. is a constant, i.e. the function >.(x) is a constant, and thus the variable x does 

not actually appear in the problem. Equation (7.3) becomes 

(7.25) 

where>. plays the role of the parameter e. Setting the derivative of X2 with 

respect to >. equal to zero and solving for>. gives the LS estimator ~, 

~ = "L~1 yi/cr; 

"Lf=l l/cr] , 
(7.26) 

which is the well-known formula for a weighted average. From the second deriva

tive of X2 one obtains the variance of ~ (see equation (7.12)), 
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~ 1 
V[,\] = N. (7.27) 

Li=l l/a} 

From equation (7.27) one sees that the variance of the weighted average is 

smaller than any of the variances of the individual measurements. Furthermore, 

if one of the measured Yi has a much smaller variance than the rest, then this 

measurement will dominate both in the value and variance of the weighted av

erage. 

This procedure can easily be generalized to the case where the measurements 

Yi are not independent. This would occur, for example, if they are based at least 

in part on the same data. Assuming that the covariance matrix V for the N 

measurements is known, equation (7.25) can be rewritten using the more general 

definition of the X2 (equation (7.5)), 

N 

X2 (,\) = L (Yi - '\)(V- 1 )ij (Yj - ,\). (7.28) 

i,j=l 

The L8 estimator for ,\ is found as usual by setting the derivative of X2(,\) 

with respect to ,\ equal to zero. As in the case of uncorrelated measurements, 

the resulting estimator is a linear combination of the measured Yi, 

N 

~ = LWdii, (7.29) 

i=l 

with the weights Wi now given by 

(7.30) 

This reduces of course to equation (7.26) for the case of uncorrelated measure

ments, where (V-1)ij = bij/a-r. 
Note that the weights Wi sum to unity, 

~ L~j=l (V-
1 
)ij 

LWi = N = 1. 
i=l Lk,l=l (V-l )kl 

(7.31) 

Assuming that the individual measurements Yi are all unbiased estimates of '\, 

this implies that the estimator ~ is also unbiased, 

N N 

E[~] = L WiE[Yd =,\ L Wi ='\. (7.32) 

i=l 

This is true for any choice of the weights as long as one has Lf:l Wi = 1. One 

can show that the particular weights given by the L8 prescription (7.30) lead to 
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the unbiased estimator A with the smallest possible variance. On the one hand, 

this follows from the Gauss-Markov theorem, which holds for all LS estimators. 

Equivalently, one could simply assume the form of a weighted average (7.29), 

require L~1 Wi = 1, and determine the weights such that the variance of A is a 

minimum. By error propagation, equation (1.53), one obtains the variance 

N 

V[A] = L Wi \tijWj, (7.33) 

i,j=1 

or in matrix notation, V[A] = wTVw, where w is a column vector containing 

the N weights and w T is the corresponding transposed (i.e. row) vector. By 

replacing WN by 1 - L~~1 Wi, and setting the derivatives of equation (7.33) 

with respect to the first N - 1 of the Wi equal to zero, one obtains exactly the 

weights given by equation (7.30). (Alternatively, a Lagrange multiplier can be 

used to impose the constraint L~1 Wi = 1.) 

As an example, consider two measurements Yl and Y2, with the covariance 

matrix 

v=( 
0"2 

1 

(7.34) 

where p = V12 / (0"10"2) is the correlation coefficient. The inverse covariance matrix 

is then given by 

V-I = _1 ( 
1- p2 

1 

vi 

Using this in equations (7.29) and (7.30) yields the weighted average, 

with 

From equation (7.33) the variance of A is found to be 

or equivalently one has 

(7.35) 

(7.36) 

(7.37) 

(7.38) 
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(7.39) 

The presence of correlations has some interesting consequences; see e.g. [Ly088, 

Dag94]. From equation (7.39) one has that the change in the inverse variance 

due to the second measurement Y2 is 

1 

0"2 

1 

0"2 
1 

(7.40) 

This is always greater than or equal to zero, which is to say that the second 

measurement always helps to decrease 0"2, or at least it never hurts. The change 

in the variance is zero when p = 0"1/0"2. This includes the trivial case with p = 1 

and 0"1 = 0"2, i.e. the same measurement is considered twice. 

If p > 0"1/0"2, the weight w becomes negative, which means that the weighted 

average does not lie between Yl and Y2. This comes about because for a large 

positive correlation between YI and Y2, both values are likely to lie on the same 

side of the true value A. This is a sufficiently surprising result that it is worth 

examining more closely in the following example. 

7.6.1 An example of averaging correlated measurements 

Consider measuring the length of an object with two rulers made of different 

substances, so that the thermal expansion coefficients are different. Suppose both 

rulers have been calibrated to give accurate results at a temperature To, but at 

any other temperature, a corrected estimate Y of the true (unknown) length A 

must be obtained using 

(7.41) 

Here the index i refers to ruler 1 or 2, Li is the uncorrected measurement, Ci is 

the expansion coefficient, and T is the temperature, which must be measured. 

We will treat the measured temperature as a random variable with standard 

deviation O"T, and we assume that T is the same for the two measurements, i.e. 

they are carried out together. The uncorrected measurements Li are treated as 

random variables with standard deviations O"L,· Assume that the Ci, O"L, and O"T 

are known. 

In order to obtain the weighted average of Yl and Y2, we need their covariance 

matrix. The variances of the corrected measurements V[Yi] = 0"[ are 

(7.42) 

Assume that the measurements are unbiased, i.e. E[Yi] = A and E[T] = Ttrue , 

where Ttrue is the true (unknown) temperature. One then has the expectation 

values E[Li] = A - ci(Ttrue - To), E[T2] = O"? + Tt2rue ' and E[Li, Lj ] = 8ij O"'i,. 

From these the covariance V12 = COV[Yl, Y2] is found to be 
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V12 E[YIY2] - ,\2 

E[(LI + Cl (T - To))(L2 + c2(T - To))] _ ,\2 

(7.43) 

and the correlation coefficient is 

)(0"2 + C20"2 ) (0"2 + C20"2 ) 
LilT L2 2 T 

p= (7.44) 

The weighted average (7.26) is thus 

(7.45) 

If the error in the temperature O"T is negligibly small, then p goes to zero, 

and ..\ will lie between Yl and Y2. If, however, the standard deviations O"L. are 

very small and the' error in the temperature O"T is large, then the correlation 

coefficient (7.44) approaches unity, and the weight (7.37) becomes negative. For 

the extreme case of p = 1, (7.45) becomes 

(7.46) 

which has a variance of zero, cf. equation (7.38). 

The reason for this outcome is illustrated in Fig. 7.7. The two diagonal bands 

represent the possible values of the corrected length Vi, given measured lengths 

L i , as a function of the temperature. If the Li are known very accurately, and yet 

if Yl and Y2 differ by quite a bit, then the only available explanation is that the 

true temperature must be different from the measured value T. The weighted 

average ..\ is thus pulled towards the point where the bands of Yl (T) and Y2 (T) 

cross. 

The problem is equivalent to performing a least squares fit for the length ,\ 

and the true temperature Ttrue , given the uncorrelated measurements L1, L2 and 

T. The L5 estimator for the temperature is found to be 

T= T _ (Cl - C2)(YI - Y2)0"? 

O"L + O"L + (Cl - C2)20"?· 
(7.47) 

The knowledge that the temperature was the same for both measurements and 

the assumption that the error in T was at least in part responsible for the 

discrepancy between Yl and Y2 are exploited to obtain estimates of both ,\ and 

Ttrue. 
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Fig. 7.7 The horizontal bands indi

cate the measured lengths Li of an 

object with two different rulers, and 

the diagonal bands show the corrected 

lengths as a function of the temper

ature. The measured temperature T 

leads to the corrected lengths Yl and 

Y2. The error ellipse corresponds to 

.X
2 = X~in + 1 and is centered about 

the estimates for the length ,\ and the 

temperature T. 

One should ask to what extent such a procedure can be trusted in practice. 

The correlation stems from the fact that the individual measurements are based 

in part on a common measurement, here the temperature, which itself is a ran

dom quantity. Averages of highly correlated quantities should be treated with 

caution, since a small error in the covariance matrix for the individual measure

ments can lead to a large error in the average '\, as well as an incorrect estimation 

of its variance. This is particularly true if the magnitudes of correlated uncer

tainties are overestimated. 

In the example above, if the correction to the temperature I:!:..T == T - T 

turns out to be large compared to O'T, then this means that our assumptions 

about the measurements are probably incorrect. This would be reflected in a 

large value of the minimized X2
, and a correspondingly small P-value. This is 

the case in Fig. 7.7, which gives X2 == 10.7 for one degree of freedom. We would 

then have to revise the model, perhaps reevaluating O'L, O'L and O'f, or the 

relationship between the measured and corrected lengths. The correct conclusion 

in the example here would be that because of the large X2, the two measurements 

Yl and Y2 are incompatible, and the average is therefore not reliable. 

One could imagine, for example, that the reason for the large X2 is that the 

standard deviations of the Li are underestimated. If they would be taken larger 

by a factor of four, then one would obtain X2 == 1.78 and the ,\ would lie between 

Yl and Y2. Suppose instead, however, that one were to take O'T larger by a factor 

of four. This would cause the X2 to drop to 0.97, so that this would not provide 

any evidence against the modeling of the system. The error ellipse for ,\ and T 
(i.e. the contour of X2 == X~in + 1) would shift closer to the point where the two 

bands cross, but would remain approximately the same size. If the larger value of 

O'T is known to be correct, and the modeling of the measuring devices is reliable, 

then the result is perfectly acceptable. If, however, O'T is simply overestimated 

in an attempt to be conservative, then one would be led to an erroneous result. 
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7.6.2 Determining the covariance matrix 

In order to apply the LS technique to average results, it is necessary to know the 

covariance matrix V. In simple cases one may be able to determine the covariance 

directly, e.g. if two measurements simply use some, but not ail, of the same data. 

Consider, for example, a number of independent observations of a quantity x 

('events'), where x itself has a variance 0"2. Suppose that the first measurement 

YI is constructed as the sample mean of n independent events, 

and a second measu,rement Y2 uses m values of x, 

1 m 

Y2=-L x i. 
m 

i=l 

(7.48) 

(7.49) 

Suppose further that c of the events are common to the two sets, i.e. they repre

sent the same observations. Using COV[Xi,Xj] = 8ij 0"2, the covariance COV[Yl,Y2] 

is found to be 

CO"2 

COV[Yl, Y2] = -, (7.50) 
nm 

or equivalently p = cj vnm. That is, if c = 0, the two data sets do not overlap 

and one has p = 0; if c ~ n ~ m, then the measurements use almost all of the 

same data, and hence are highly correlated. 

In this example the variances of the individual measurements are 0"1 = 0" j Vn 
and 0"2 = 0" j.;m. One has thus O"d 0"2 = J mj n and therefore 

C 0"1 C 0"1 
p= --= -- <-. vnm 0"2 m - 0"2 

(7.51) 

In this case, therefore, a negative weight cannot occur and the average always 

lies between Yl and Y2. 

Often it is more difficult to determine the correlation between two estimators. 

Even if two data samples overlap completely, different estimators, Yl,.·., YN, 

may depend on the data in different ways. Determining the covariance matrix 

can therefore be difficult, and may require simulating a large number of experi

ments with the Monte Carlo method, determining Yl, ... , YN for each experiment 

and then estimating the covariance of each pair of measurements with equation 

(5.11). An example with mean particle lifetimes treated in this way is given in 

reference [Lyo88]. 

In situations where even one simulated experiment might involve a long 

Monte Carlo calculation, this technique may be too slow to be practical. One can 

still simulate the experiments with a smaller number of events per experiment 

than were actually obtained. Depending on the estimator it may be possible 

to construct it for an experiment consisting of a single event. From these one 
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then determines the matrix of correlation coefficients Pij for the N estimators 

Y1, ... YN· For efficient estimators (which is the case for maximum likelihood and 

least squares estimators in the large sample limit), the covariance is inversely 

proportional to the sample size (cf. equation (6.20)), and thus Pij is indepen

dent of the number of events in the individual subsamples. One can then use 

Vij = Pij(Ti(Tj, where (Ti and (Tj can be estimated either from the data directly 

or from the Monte Carlo. If enough data are available, this technique can be 

applied without recourse to Monte Carlo calculations by dividing the real data 

sample into a large number of subsamples, determining the estimators YI, ... , YN 

for each and from these estimating the matrix of correlation coefficients. 

Even if the covariance matrix is not known accurately, the technique is still 

a valid way to average measurements, and it may represent the best practical 

solution. Recall that any choice of the weights Wi in equation (7.29), as long 

as they sum to unity, will lead to an unbiased estimator i This still holds if 

the covariance matrix is only known approximately, but in such a case one will 

not attain the smallest possible variance and the variance of the average will be 

incorrectly estimated. 
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The method of moments 

Although the methods of maximum likelihood and least squares lead to estima

tors with optimal or nearly optimal properties, they are sometim~s difficult to 

implement. An alternative technique of parameter estimation is the method of 

moments (MM). Although the variances of MM estimators are not in general as 

small as those from maximum likelihood, the technique is often simpler from a 

computational standpoint. 

Suppose one has a set of n observations of a random variable X, Xl, ... , X n , 

and a hypothesis for the form of the underlying p.d.f. f(x; 8), which contains m 

unknown parameters 8 = (01 , ... , Om). The idea is to first construct m linearly 

independent functions ai(x), i = 1, ... , m. The ai(x) are themselves random 

variables whose expectation values ei = E[ai(x)] are functions of the true pa

rameters, 

J ai(x )f(x; 8)dx (8.1) 

The functions ai(x) must be chosen such that the expectation values (8.1) can 

be computed, so that the functions ei (8) can be determined. 

Since we have seen in Section 5.2 that the sample mean is an unbiased es

timator for the expectation value of a random variable, we can estimate the 

expectation value ei = E[ai(x)] by the arithmetic mean of the function ai(x) 
evaluated with the observed values of x, 

(8.2) 

The MM estimators for the parameters 8 are defined by setting the expecta

tion values ei(8) equal to the corresponding estimators ei and solving for the pa

rameters. That is, one solves the following system of m equations for 01 •... ,Om: 
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(8.3) 

Possible choices for the functions ai (x) are integer powers of the variable x: 
xl, ... ,xm, so that the expectation value E[ai(x)] = E[xi] is the ith algebraic 

moment of x (hence the name 'method of moments'). Other sets of m linearly 

independent functions are possible, however, as long as one can compute their 

expectation values and obtain m independent functions of the parameters. 

We would also like to estimate the covariance matrix for the estimators 

(h, ... , Om. In order to obtain this we first estimate the covariance cov[ai(x), aj(x)] 
using equation (5.11), 

1 n 

Co"V[ai(x), aj(x)] = n _ 1 I)ai(xk) - ad(aj(xk) - aj). (8.4) 
k=l 

This can be related to the covariance cov[ai, aj] of the arithmetic means of the 

functions by 

1 n 

"" cov [ ai ( x k ), a j ( x I) ] 
n2 L 

k,l=l 

(8.5) 

The last line follows from the fact there are n terms in the sum over· k and 

I with k = I, which each give cov[ai, aj]. The other n 2 
- n terms have k =F

I, for which the covariance cov[ai(xk),aj(xt)] vanishes, since the individual x 
values are independent. The covariance matrix cov[ei, ej] for the estimators of 

the expectation values ei = ai can thus be estimated by 

In order to obtain the covariance matrix COV[Oi, OJ] for the estimators of the pa

rameters themselves, one can then use equation (8.6) with the error propagation 

formula (1.54), 
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(8.7) 

Note that even though the value of each measurement Xi is used (i.e. there 

is no binning of the data) one does not in general exhaust all of the information 

about the form of the p.d.f. For example, with ai(x) = xi, i = 1, ... , m, only 

information about the first m moments of x is used, but some of the parameters 

may be more sensitive to higher moments. For this reason the MM estimators 

have in general larger variances than those obtained from the principles of max

imum likelihood or least squares (cf. [Ead71] Section 8.2.2, [Fr079] Chapters 11 

and 12). Because of its simplicity, however, the method of moments is partic

ularly useful if the estimation procedure must be repeated a large number of 

times. 

As an example consider the p.d.f. for the continuous random variable x given 

by 

(8.8) 

with Xmin ::; x ::; Xmax and where 

(8.9) 

We have already encountered this p.d.f. in Section 6.8, where the parameters a 

and (J were estimated using the method of maximum likelihood; here for com

parison we will use the method of moments. For this we need two linearly In

dependent functions of x, which should be chosen such that their expectation 

values can easily be computed. A rather obvious choice is 

(8.10) 

The expectation values el = E[aIJ and e2 = E[a2] are found to be 

d2 + ad3 + (Jd4 
el 

d1 + ad2 + (Jd3 ' 

d3 + ad4 + (Jd5 

(8.11) 

e2 
d1 + ad2 + (Jd3 ' 

with dn again given by equation (8.9). Solving these two equations for a and f3 
and replacing el and e2 by el and e2 gives the MM estimators, 
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(e l d3 - d4)(e2dl - d3 ) - (eldl - d2)(e2d3 - d5 ) 

(e l d2 - d3 )(e2d3 - d5 ) - (e 1d3 - d4)(e2d2 - d4)' 

(iiI dl - d2)( ii2d2 - d4) - (iiI d2 - d3 )( ii2dl - d3 ) 

(e l d2 - d3 )(e2d3 - d5 ) - (e l d3 - d4)(e2d2 - d4)' 

(8.12) 

From the example of Section 6.8 we had a data sample of 2000 x values 

generated with Q' = 0.5, {3 = 0.5, Xmin = -0.95, Xmax = 0.95. Using the same 

data here gives 

ci 0.493 ± 0.051 

/J = 0.410 ± 0.106. 

The statistical errors are obtained by means of error propagation from the co

variance matrix for el and e2, which is estimated using equation (8.6). Similarly 

one obtains the correlation coefficient r = 0.42. 

These results are similar to those obtained using maximum likelihood, and 

the estimated standard deviations are actually slightly smaller. The latter fact 

is, however, the result of a statistical fluctuation in estimating the variance. The 

true variances of MM estimators are in general greater than or equal to those 

of the ML estimators. For this particular example they are almost the same. 

The method of moments has the advantage, however, that the estimates can 

be obtained without having to maximize the likelihood function, which in this 

example would require a more complicated numerical calculation. 



9 

Statistical errors, confidence 
intervals and limits 

In Chapters 5-8, several methods for estimating properties of p.d.f.s (moments 

and other parameters) have been discussed along with techniques for obtaining 

the variance of the estimators. Up to now the topic of 'error analysis' has been 

limited to reporting the variances (and covariances) of estimators, or equiva

lently the standard deviations and correlation coefficients. This turns out to be 

inadequate in certain cases, and other ways of communicating the statistical 

uncertainty of a measurement must be found. 

After reviewing in Section 9.1 what is meant by reporting the standard de

viation as an estimate of statistical uncertainty, the confidence interval is intro

duced in Section 9.2. This allows for a quantitative statement about the fraction 

of times that such an interval would contain the true value of the parameter in 

a large number of repeated experiments. Confidence intervals are treated for a 

number of important cases in Sections 9.3 through 9.6, and are extended to the 

multidimensional case in Section 9.7. In Sections 9.8 and 9.9, both Bayesian and 

classical confidence intervals are used to estimate limits on parameters near a 

physically excluded region. 

9.1 The standard deviation as statistical error 

Suppose the result of an experiment is an estimate of a certain parameter. The 

variance (or equivalently its square root, the standard deviation) of the estimator 

is a measure of how widely the estimates would be distributed if the experiment 

were to be repeated many times with the same number of observations per ex

periment. As such, the standard deviation (J' is often reported as the statistical 

uncertainty of a measurement, and is referred to as the standard error. 

For example, suppose one has n observations of a random variable x and a 

hypothesis for the p.d.f. f(x; 0) which contains an unknown parameter o. From 

the sample Xl, ... , Xn a function B(XI, ... , xn) is constructed (e.g. using maxi

mum likelihood) as an estimator for o. Using one of the techniques discussed in 

Chapters 5-8 (e.g. analytic method, RCF bound, Monte Carlo, graphical) the 

standard deviation of B can be estimated. Let Bobs be the value of the estimator 

actually observed, and fre the estimate of its standard deviation. In reporting 

the measurement of 0 as Bobs ± Cr 8 one means that repeated estimates all based 
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on n observations of x would be distributed according to a p.d.f. g(O) centered 

around some true value () and true standard deviation (J' 0' which are estimated 

to be Oobs and Cr o. 
For most practical estimators, the sampling p.d.f. g(O) becomes approxi

mately Gaussian in the large sample limit. If more than one parameter is es

timated, then the p.d.f. will become a multidimensional Gaussian characterized 

by a covariance matrix V. Thus by estimating the standard deviation, or for 

more than one parameter the covariance matrix, one effectively summarizes all 

of the information available about how repeated estimates would be distributed. 

By using the error propagation techniques of Section 1.6, the covariance matrix 

also gives the equivalent information, at least approximately, for functions of the 

estimators. 

Although the 'standard deviation' definition of statistical error bars could in 

principle be used regardless of the form of the estimator's p.d.f. g(O), it is not, 

in fact, the conventional definition if g(O) is not Gaussian. In such cases, one 

usually reports confidence intervals as described in the next section; this can in 

general lead to asymmetric error bars. In Section 9.3 it is shown that if g(O) is 

Gaussian, then the so-called 68.3% confidence interval is the same as the interval 

covered by Oobs ± Cro. 

9.2 Classical confidence intervals (exact method) 

An alternative (and often equivalent) method of reporting the statistical error of 

a measurement is with a confidence interval, which was first developed by Ney

man [Ney37]. Suppose as above that one has n observations of a random variable 

x which can be used to evaluate_an estimator O(Xl' ... , xn) for a parameter (), 

and that the value obtained is Oobs. Furthermore, suppose that by means of, 

say, an analytical calculation or a Monte Carlo study, one knows the p.d.f. of 0, 
g(O; ()), which contains the true value () as a parameter. That is, the real value 

of () is not known, but for a given (), one knows what the p.d.f. of 0 would be. 

Figure 9.1 shows a probability density for an estimator 0 for a particular 

value of the true parameter (). From g(O; ()) one can determine the value U Q such 

that there is a fixed probability Q' to observe 0 2: U Q , and similarly the value 

v{3 such that there is a probability (3 to observe 0 :::; v{3. The values U Q and v{3 

depend on the true value of (), and are thus determined by 

and 

j
V/J(8) 

(3 = P(O:::; v{3(())) = -00 g(O;())dO = G(v{3(());()), (9.2) 

where G is the cumulative distribution corresponding to the p.d.f. g(O; ()). 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti

mator e for a given value of the true 

parameter 8. The two shaded regions 

indicate the values of 8 :::; v{3, which 

has a probability {J, and e ~ u a , which 

has a probabilit:y a. 

Fig. 9.2 Construction of the confi

dence interval [a, b] given an observed 

value 80bs of the estimator 8 for the 

parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 

as a function of the true value of O. The region between the two curves is called 

the confidence belt. The probability for the estimator to be inside the belt, 

regardless of the value of 0, is given by 

P(Vf3(O) ~ 0 ~ ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 

in general should be the case if (; is to be a good estimator for 0, one can determine 

the inverse functions 

The ineqllalities 

a(O) == u~!(O), 

b(O) == v;! (0). 
(9.4) 



then imply respectively 

Classical confidence intervals (exact method) 

iJ 2: Ua(O), 

iJ::;Vf3(O), 

a(iJ) 2: 0, 

b(iJ) ::; O. 

Equations (9.1) and (9.2) thus become 

or taken together, 

P(a(iJ) 2: 0) = a, 

P(b(iJ) ::; 0) = (3, 

P(a(iJ)::; 0::; b(iJ)) = 1- a-(3. 
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(9.5) 

(9.6) 

(9.7) 

(9.8) 

If the functions a( iJ) and b( iJ) are evaluated with the value of the estimator 

actually obtained in the experiment, iJobs, then this determines two values, a 

and b, as illustrated in Fig. 9.2. The interval [a, b] is called a confidence interval 

at a confidence level or coverage probability of 1 - a - (3. The idea behind 

its construction is that the coverage probability expressed by equations (9.7), 

and hence also (9.8), holds regardless of the true value of 0, which of course is 

unknown. It should be emphasized that a and b are random values, since they 

depend on the estimator iJ, which is itself a function of the data. If the experiment 

were repeated many times, the interval [a, b] would include the true value of the 

parameter 0 in a fraction 1 - a - (3 of the experiments. 

The relationship between the interval [a, b] and its coverage probability 1 -

a - (3 can be understood from Fig. 9.2 by considering the hypothetical true value 

indicated as Otrue. If this is the true value of 0, then iJobs will intersect the solid 

segment of the vertical line between U a (Otrue) and vf3 (Otrue) with a probability of 

1 - a - (3. From the figure one can see that the interval [a, b] will cover Otrue if 

iJobs intersects this segment, and will not otherwise. 

In some situations one may only be interested in a one-sided confidence in

terval or limit. That is, the value a represents a lower limit on the parameter 0 

such that a ::; 0 with the probability 1- a. Similarly, b represents an upper limit 

on 0 such that P(O ::; b) = 1 - (3. 

Two-sided intervals (i.e. both a and b specified) are not uniquely determined 

by the confidence level 1 - a - (3. One often chooses, for example, a = (3 = ,/2 
giving a so-called central confidence interval with probability 1 - ,. Note that a 

central confidence interval does not necessarily mean that a and b are equidistant 

from the estimated value iJ, but only that the probabilities a and (3 are equal. 

By construction, the value a gives the hypothetical value of the true param

eter 0 for which a fraction a of repeated estimates iJ would be higher than the 
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one actually obtained, Bobs, as is illustrated in Fig. 9.3. Similarly, b is the value 

of () for which a fraction {3 of the estimates would be lower than Bobs. That is, 

taking eobs = ua(a) = v,6(b), equations (9.1) and (9.2) become 

(9.9) 

{3 

The previously described procedure to determine the confidence interval is thus 

equivalent to solving (9.9) for a and b, e.g. numerically. 

(a) 

0.5 

o 
o 2 3 4 5 

9 Fig. 9.3 (a) The p.d.f. g(B; a), where 

a is the lower limit of the confidence 

b 
(b) interval. If the true parameter B were 

equal to a, the estimates 0 would be 

&reater than the one actually observed 

Bobs with a probability Q. (b) The 
0.5 p.d.f. g(O; b), where b is the upper limit 

of the confidence interval. If B were 

equal to b, B would be observed less 

2 3 4 5 
than Bobs with probability {3. o 

o 
9 

Figure 9.3 also illustrates the relationship between a confidence interval and a 

test of goodness-of-fit, cf. Section 4.5. For example, we could test the hypothesis 

() == a using B as a test statistic. If we define the region e ~ Bobs as having equal 

or less agreement with the hypothesis than the result obtained (a one-sided test), 

then the resulting P-value of the test is a. For the confidence interval, however, 

the probability a is specified first, and the value a is a random quantity depending 

on the data. For a goodness-of-fit test, the hypothesis, here () = a, is specified 

and the P-value is treated as a random variable. 

Note that one sometimes calls the P-value, here equal to a, the 'confidence 

level' of the test, whereas the one-sided confidence interval () ~ a has a confidence 

level of 1 - a. That is, for a test, small a indicates a low level of confidence in 

the hypothesis () = a. For a confidence interval, small a indicates a high level of 
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confidence that the interval () 2: a includes the true parameter. To avoid confusion 

we will use the term P-value or (observed) significance level for goodness-of-fit 

tests, and reserve the term confidence level to mean the coverage probability of 

a confidence interval. 

The confidence interval [a, b] is often expressed by reporting the result of 

a measurement as O!~, where 0 is the estimated value, and c = 0 - a and 

d = b - 0 are usually displayed as error bars. In many cases the p.d.f. g(O; ()) 
is approximately Gaussian, so that an interval of plus or minus one standard 

deviation around the measured value corresponds to a central confidence interval 

with 1 - I = 0.683 (see Section 9.3). The 68.3% central confidence interval is 

usually adopted as the conventional definition for error bars even when the p.d.f. 

of the estimator is not Gaussian. 

If, for example, the result of an experiment is reported as O!~ = 5.79!g:~~, it 

is meant that if one were to construct the interval [0 - c, 0 + d] according to the 

prescription described above in a large number of similar experiments with the 

same number of measurements per experiment, then the interval would include 

the true value () in 1 - Q' - {3 of the cases. It does not mean that the probability 

(in the sense of relative frequency) that the true value of () is in the fixed interval 

[5.54,6.11] is 1 - Q' - {3. In the frequency interpretation, the true parameter () 

is not a random variable and is assumed to not fluctuate from experiment to 

experiment. In this sense the probability that () is in [5.54,6.11] is either 0 or 1, 

but we do not know which. The interval itself, however, is subject to fluctuations 

since it is constructed from the data. 

A difficulty in constructing confidence intervals is that the p.d.f. of the estima

tor g(O; ()), or equivalently the cumulative distribution G(O; ()), must be known. 

An example is given in Section~ 10.4, where the p.d.f. for the estimator of the 

mean ~ of an exponential distribution is derived, and from this a confidence inter

val for ~ is determined. In many practical applications, estimators are Gaussian 

distributed (at least approximately). In this case the confidence interval can be 

determined easily; this is treated in detail in the next section. Even in the case 

of a non-Gaussian estimator, however, a simple approximate technique can be 

applied using the likelihood function; this is described in Section 9.6. 

9.3 Confidence interval for a Gaussian distributed estimator 

A simple and very important application of a confidence interval is when the 

distribution of 0 is Gaussian with mean () and standard deviation (Y 8. That is, 

the cumulative distribution of 0 is 

~ 18 
1 (_(Of _ ())2) ~f 

G( (); () , (Yo) = Po exp 2 ~ d() . 
-00 27r(y~ (Yo 

o 

(9.10) 

This is a commonly occurring situation since, according to the central limit 

theorem, any estimator that is a linear function of a sum of random variables 

becomes Gaussian in the large sample limit. We will see that for this case, the 
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Fig. 9.4 The standard Gaussian p.d.f. <p(x) showing the relationship between the quantiles 

~-l and the confidence level for (a) a central confidence interval and (b) a one-sided confidence 

interval. 

somewhat complicated procedure explained in the previous section results in a 

simple prescription for determining the confidence interval. 

Suppose that the standard deviation (J'§ is known, and that the experiment 

has resulted in an estimate Bobs. According to equations (9.9), the confidence 

interval [a, b] is determined by solving the equations 

(9.11) 

(3 

for a and b, where G has been expressed using the cumulative distribution of the 

standard Gaussian 4> (2.26) (see also (2.27)). This gives 

a = Bobs - (J'§4>-1(1- a), 

A -1 
b=()obs+(J'§4> (1-(3). 

(9.12) 

Here 4>-1 is the inverse function of 4>, i.e. the quantile of the standard Gaussian, 

and in order to make the two equations symmetric we have used 4>-1 ((3) = 

_4>-1(1 - (3). 

The quantiles 4>-1(1_ a) and 4>-1 (1- (3) represent how far away the interval 

limits a and b are located with respect to the estimate Bobs in units of the standard 

deviation (J'§. The relationship between the quantiles of the standard Gaussian 

distribution and the confidence level is illustrated in Fig. 9.4( a) for central and 

Fig. 9.4(b) for one-sided confidence intervals. 



Confidence interval for a Gaussian distributed estimator 125 

Consider a central confidence interval with a =.(3 = ,/2. The confidence level 

1-, is often chosen such that the quantile is a small integer, e.g. cI>-1(1-,/2) = 
1,2,3, .... Similarly, for one-sided intervals (limits) one often chooses a small 

integer for cI>-1 (1 - a). Commonly used values for both central and one-sided 

intervals are shown in Table 9.1. Alternatively one can choose a round number 

for the confidence level instead of for the quantile. Commonly used values are 

shown in Table 9.2. Other possible values can be obtained from [Bra92, Fr079 , 

Dud88] or from computer routines (e.g. the routine GAUSIN in [CER97]). 

Table 9.1 The values of the confidence level for different values of the quantile of the standard 

Gaussian ~-1: for central intervals (left) the quantile ~-1 (1-,/2) and confidence level 1-,; 
for one-sided intervals (right) the quantile ~-1(1 - Q) and confidence level 1- Q. 

cI> (1 - ,/2) 

1 

2 

3 

0.6827 

0.9544 

0.9973 

cI> (1-0') 

1 

2 

3 

1 - a 

0.8413 

0.9772 

0.9987 

Table 9.2 The values of the quantile of the standard Gaussian ~-1 for different values 

of the confidence level: for central intervals (left) the confidence level 1 - , and the quan

tile ~-1 (1 - ,/2); for one-sided intervals (right) the confidence level I - Q and the quantile 

~-1 (I - Q). 

0.90 

0.95 

0.99 

-1.645 

1.960 

2.576 

1 - a 

0.90 

0.95 

0.99 

1.282 

1.645 

2.326 

For the conventional 68.3% central confidence interval one has a = {3 = ,/2, 

with cI>-1 (1-, /2) = 1, i.e. a' 1 (J' error bar'. This results in the simple prescription 

(9.13) 

Thus for the case of a Gaussian distributed estimator, the 68.3% central confi

dence interval is given by the estimated value plus or minus one standard de

viation. The final result of the measurement of () is then simply reported as 

Oobs±(J'o· 
If the standard deviation (J'o is not known a priori but rather is estimated 

from the data, then the situation is in principle somewhat more complicated. 

If, for example, the estimated standard deviation (;-0 had been used instead of 

(J'o' then it would not have been so simple to relate the cumulative distribution 

G(e; (), (;-g) to cI>, the cumulative distribution of the standard Gaussian, since (;-{} 

depends in general on O. In practice, however, the recipe given above can still 
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be applied using the estimate U e instead of U e, as long as U e is a sufficiently 

good approximation of the true standard deviation, e.g. for a large enough data 

sample. For the small sample case where 0 represents the mean of n Gaussian 

random variables of unknown standard deviation, the confidence interval can 

be determined by relating the cumulative distribution G(O; (), ue) to Student's t 

distribution (see e.g. [Fro79], [Dud88] Section 10.2). 

Exact determination of confidence intervals becomes more difficult if the p.d.f. 

of the estimator g(O; ()) is not Gaussian, or worse, if it is not known analytically. 

For a non-Gaussian p.d.f. it is sometimes possible to transform the parameter 

() -+ 7J(()) such that the p.d.f. for the estimator ij is approximately Gaussian. The 

confidence interval for the transformed parameter 7J can then be converted back 

into an interval for (). An example of this technique is given in Section 9.5. 

9.4 Confidence interval for the mean of the Poisson distribu-
tion 

Along with the Gaussian distributed estimator, another commonly occurring case 

is where the outcome of a measurement is a Poisson variable n (n = 0, 1,2, ... ). 

Recall from (2.9) that the probability to observe n is 

(9.14) 

and that the parameter v is equal to the expectation value E[n]. The maximum 

likelihood estimator for v can easily be found to be v = n. Suppose that a single 

measurement has resulted in the value Vobs = nobs, and that from this we would 

like to construct a confidence interval for the mean v. 

For the case of a discrete variable, the procedure for determining the confi

dence interval described in Section 9.2 cannot be directly applied. This is because 

the functions ua(()) and v{3(fJ), which determine the confidence belt, do not exist 

for all values of the parameter (). For the Poisson case, for example, we would 

need to find ua(v) and v{3(v) such that P(v ~ ua(v)) = Q and P(v:::; v{3(v)) = {3 

for all values of the parameter v. But if Q and (3 are fixed, then because [) only 

takes on discrete values, these equations hold in general only for particular values 

of v. 

A confidence interval [a, b] can still be determined, however, by using equa

tions (9.9). For the case of a discrete random variable and a parameter v these 

become 

(9.15) 

and in particular for a Poisson variable one has 
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00 nob.- 1 nob.- 1 n 

a I: f(n;a) = 1- I: f(n;a) = 1- I: ;e- a
, 

n. 
n=nobs n=O n=O 

(9.16) 
nob. 

(3 L f(n; b) 
n=O 

For an estimate v = nobs and given probabilities a and (3, these equations 

can be solved numerically for a and b. Here one can use the following relation 

between the Poisson and X2 distributions, 

nI:0bS 

v
n 

-v 
-e 
n! 

n=O 
100 fx.2 (z; nd = 2(nobs + 1)) dz 

2£1 

(9.17) 

where fx.2 is the X2 p.d.f. for nd degrees of freedom and Fx.2 is the corresponding 

cumulative distribution. One then has 

a 1 F- 1
(. - 2 ) 2" x.2 a, nd - nobs, 

(9.18) 
b 

Quantiles F~l of the X2 distribu_tion can be obtained from standard tables (e.g. 

in [Bra92]) or from computer routines such as CHISIN in [CER97]. Some values 

for nobs = 0, ... ,10 are shown in Table 9.3. 

Note that the lower limit a cannot be determined ifnobs = O. Equations (9.15) 

say that if v = a (v = b), then the probability is a ((3) to observe a value greater 

(less) than or equal to the one actually observed. Because the case of equality, 

v = Vobs, is included in the inequalities (9.15), one obtains a conservatively large 

confidence interval, i.e. 

P(v~a) > I-a, 

P(v ~ b) > 1 - (3, 

P(a~v~b) > l-a-(3. 

(9.19) 

An important special case is when the observed number nobs is zero, and one 

is interested in establishing an upper limit b. Equation (9.15) becomes 

o bn -b 

L 
e -b 

(3= ---=e, 
n! 

n=O 

(9.20) 
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Table 9.3 Poisson lower and upper limits for nobs observed events. 

lower limit a upper limit b 
nobs 

a = 0.1 a = 0.05 a = 0.01 ,13 = 0.1 ,13 = 0.05 ,13 = 0.01 

0 - - - 2.30 3.00 4.61 

1 0.105 0.051 0.010 3.89 4.74 6.64 

2 0.532 0.355 0.149 5.32 6.30 8.41 

3 1.10 0.818 0.436 6.68 7.75 10.04 

4 1.74 1.37 0.823 7.99 9.15 11.60 

5 2.43 1.97 1.28 9.27 10.51 13.11 

6 3.15 2.61 1.79 10.53 11.84 14.57 

7 3.89 3.29 2.33 11.77 13.15 16.00 

8 4.66 3.98 2.91 12.99 14.43 17.40 

9 5.43 4.70 3.51 14.21 15.71 18.78 

10 6.22 5.43 4.13 15.41 16.96 20.14 

or b = -log,B. For the upper limit at a confidence level of 1 - ,13 = 95% one 

has b = -log(0.05) = 2.996:::::::: 3. Thus if the number of occurrences of some rare 

event is treated as a Poisson variable with mean v, and one looks for events of 

this type and finds none, then the 95% upper limit on the mean is 3. That is, if 

the mean were in fact v = 3, then the probability to observe zero would be 5%. 

9.5 Confidence interval for correlation coefficient, transforma-
tion of parameters 

In many situations one can assume that the p.d.f. for an estimator is Gaussian, 

and the results of Section 9.3 can then be used to obtain a confidence interval. As 

an example where this may not be the case, consider the correlation coefficient 

p of two continuous random variables x and y distributed according to a two

dimensional Gaussian p.d.f. f(x, y) (equation (2.30)). Suppose we have a sample 

of n independent observations of x and y, and we would like to determine a 

confidence interval for p based on the estimator 1', cf. equation (5.12), 

l' = 1/2' 

(2:7:=1 (Xj - x)2 . 2:~=1 (Yk _]])2) 
(9.21) 

The p.d.f. g(1'; p, n) has a rather complicated form; it is given, for example, 

in [Mui82] p. 151. A graph is shown in Fig. 9.5 for a sample of size n = 20 for 

several values of the true correlation coefficient p. One can see that g(1'; p, n) is 

asymmetric and that the degree of asymmetry depends on p. It can be shown 

that g(1'; p, n) approaches a Gaussian in the large sample limit, but for this 

approximation to be valid, one requires a fairly large sample. (At least n :::: 500 

is recommended [Bra92].) For smaller samples such as in Fig. 9.5, one cannot 

rely on the Gaussian approximation for g(1'; p, n), and thus one cannot use (9.12) 

to determine the confidence interval. 
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p=O 

-1 -0.5 o 

r 

0.5 

Fig. 9.5 The probability density 

f (ri p, n) for the estimator r of the cor

relation coefficient p shown for a sam

ple of size n = 20 and various values of 

p. 

In principle one is then forced to return to the procedure of Section 9.2, which 

in this case would be difficult computationally. There exists, however, a simpler 

method to determine an approximate confidence interval for p. It has been shown 

by Fisher that the p.d.f. of the statistic 

-1 1 1 + l' 
z = tanh l' = 2" log --

1-1' 
(9.22) 

approaches the Gaussian limit much more quickly as a function of the sample 

size n than that of l' (see [Fis90] and references therein). This can be used as an 

estimator for (, defined as 

1 l+p 
(= tanh- p = ! log --. 

2 1-p 
(9.23) 

One can show that the expectation value of z is approximately given by 

and its variance by 

1 + p P 
E[z] = t log 1 _ p + 2(n _ 1) 

1 
V[z] = --3' 

n-

(9.24) 

(9.25) 

We will assume that the sample is large enough that z has a Gaussian p.d.f. and 

that the bias term p/2(n - 1) in (9.24) can be neglected. Given a sample of n 

measurements of x and y, z can be determined according to equation (9.22) and 

its standard deviation irz can be estimated by using the variance from equation 

(9.25). One can use these to determine the interval [z-irz, z+irz]' or in general the 

interval [a, b] given by (9.12). These give the lower limit a for ( with confidence 

level 1 - Q and an upper limit b with confidence level 1 - /3. The confidence 

interval [a,b] for (= tanh-1p can then be converted back to an interval [A,B] 
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for p simply by using the inverse of the transformation (9.22), i.e. A = tanh a 

:ind B = tanh b. 

Consider for example a sample of size n = 20 for which one has obtained 

the estimate l' = 0.5. From equation (5.17) the standard deviation of l' can 

be estimated as Cr r = (1 - 1'2) / Vn = 0.168. If one were to make the incorrect 

approximation that l' is Gaussian distributed for such a small sample, this would 

lead to a 68.3% central confidence interval for p of [0.332, 0.668]' or [0.067,0.933] 

at a confidence level of 99%. Thus since the sample correlation coefficient l' is 

almost three times the standard error Crr , one might be led to the incorrect 

conclusion that there is significant evidence for a non-zero value of p, i.e. a '3 cr 

effect'. By using the z-transformation, however, one obtains z = 0.549 and Crz = 

0.243. This corresponds to a 99% central confidence interval of [-0.075, 1.174] 

for (, and [-0.075,0.826] for p. Thus the 99% central confidence interval includes 

zero. 

Recall that the lower limit of the confidence interval is equal to the hypothet

ical value of the true parameter such that l' would be observed higher than the 

one actually observed with the probability Q. One can ask, for example, what 

the confidence level would be for a lower limit of zero. If we had assumed that 

g(1'; p, n) was Gaussian, the corresponding probability would be 0.14%. By using 

the z-transformation, however, the confidence level for a limit of zero is 2.3%, 

i.e. if p were zero one would obtain l' greater than or equal to the one observed, 

l' = 0.5, with a probability of 2.3%. The actual evidence for a non-zero corre

lation is therefore not nearly as strong as one would have concluded by simply 

using the standard error Crr with the assumption that l' is Gaussian. 

9.6 Confidence intervals using the likelihood function or X2 

Even in the case of a non-Gaussian estimator, the confidence interval can be 

determined with a simple approximate technique which makes use of the likeli

hood function or equivalently the X2 function where one has L = exp( _X2 /2). 

Consider first a maximum likelihood estimator fJ for a parameter B in the large 

sample limit. In this limit it can be shown ([Stu91] Chapter 18) that the p.d.f. 

g(O; B) becomes Gaussian, 

A 1 (-(fJ _ B)2) 
g(B;B) = M exp 2 2 ' 

21Tcr~ cr e 
() 

(9.26) 

centered about the true value of the parameter B and with a standard deviation 

cro· 
One can also show that in the large sample limit the likelihood function itself 

becomes Gaussian in form centered about the ML estimate fJ, 

(
-(B - 8)2) 

L(B) = Lmax exp 2 . 
2cr. 

() 

(9.27) 
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From the ReF inequality (6.16), which for an ML estimator in the large sample 

limit becomes an equality, one obtains that (To in the likelihood function (9.27) is 

the same as in the p.d.f. (9.26). This has already been encountered in Section 6.7, 

equation (6.24), where the likelihood function was used to estimate the variance 

of an estimator B. This led to a simple prescription for estimating (To' since by 

changing the parameter () by N standard deviations, the log-likelihood function 

decreases by N 2 /2 from its maximum value, 

(9.28) 

From the results of the previous section, however, we know that for a Gaussian 

distributed estimator e, the 68.3% central confidence interval can be constructed 

from the estimator and its estimated standard deviation (j 0 as [a, b] = [e - 0-B' e + 
0-0] (or more generally according to (9.12) for a confidence level of 1 - ,). The 

68.3% central confidence interval is thus given by the values of () at which the log

likelihood function decreases by 1/2 from its maximum value. (This is assuming, 

of course, that B is the ML estimator and thus corresponds to the maximum of 

the likelihood function.) 

In fact, it can be shown that even if the likelihood function is not a Gaussian 

function of the parameters, the central confidence interval [a, b] = [0 - c, e + d] 
can still be approximated by using 

(9.29) 

where N = <1>-1 (1-, /2) is the quantile of the standard Gaussian corresponding 

to the desired confidence level 1 - ,. (For example, N = 1 for a 68.3% central 

confidence interval; see Table 9.1.) In the case of a least squares fit with Gaussian 

errors, i.e. with log L = _X2/2, the prescription becomes 

X
2 (B+ d

) = X2. + N 2 
-c mm . (9.30) 

A heuristic proof that the intervals defined by equations (9.29) and (9.30) ap

proximate the classical confidence intervals of Section 9.2 can be found in [Ead71, 

Fr079]. Equations (9.29) and (9.30) represent one of the most commonly used 

methods for estimating statistical uncertainties. One should keep in mind, how

ever, that the correspondence with the method of Section 9.2 is only exact in the 

large sample limit. Several authors have recommended using the term 'likelihood 

interval' for an interval obtained from the likelihood function [Fr079, Hud64]. 

Regardless of the name, it should be kept in mind that it is interpreted here 

as an approximation to the classical confidence interval, i.e. a random interval 

constructed so as to include the true parameter value with a given probability. 

As an example consider the estimator f = ~ 2::7=1 ti for the parameter T of 

an exponential distribution, as in the example of Section 6.2 (see also Section 

6.7). There, the ML method was used to estimate T given a sample of n = 50 

measurements of an exponentially distributed random variable t. This sample 
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was sufficiently large that the standard deviation crf could be approximated 

by the values of T where the log-likelihood function decreased by 1/2 from its 

maximum (see Fig. 6.4). This gave 7 = 1.06 and Crf ~ ,6,.7_ ~ ,6,.7+ ~ 0.15. 

Figure 9.6 shows the log-likelihood function log L( T) as a function of T for 

a sample of only n = 5 measurements of an exponentially distributed random 

variable, generated using the Monte Carlo method with the true parameter r = 1. 

Because of the smaller sample size the log-likelihood function is less parabolic 

than before. 

-4.5 

-5 

.. .... ··············· .. ··t .. · log Lmax 

............. '''''''''''''''j .......................... ; ... log Lmax - 1/2 

0.5 1.5 2 

Fig. 9.6 The log-likelihood function 

log L( r) as a function of r for a sam

ple of n = 5 measurements. The in

terval (f - f:l.f _, f + f:l.f +] determined 

by log L(r) = log Lmax - 1/2 can be 

used to approximate the 68.3% central 

confidence interval. 

One could still use the half-width of the interval determined by log Lmax -1/2 

to approximate the standard deviation crr, but this is not really what we want. 

The statistical uncertainty is better communicated by giving the confidence in

terval, since one then knows the probability that the interval covers the true pa

rameter value. Furthermore, by giving a central confidence interval (and hence 

asymmetric errors, ,6,.7_ "# ,6,.7+), one has equal probabilities for the true pa

rameter to be higher or lower than the interval limits. As illustrated in Fig. 9.6, 

the central confidence interval can be approximated by the values of T where 

10gL(r) = log Lmax - 1/2, which gives [7 - ,6,.7_,7 + ,6,.7+] = [0.55,1.37] or 

7 = 0.85~g:~~. 
In fact, the same could have been done in Section 6.7 by giving the result 

there as f = 1.062~g:i~~. Whether one chooses this method or simply reports an 

averaged symmetric error (i.e. 7 = 1.06 ± 0.15) will depend on how accurately 

the statistical error needs to be given. For the case of n = 5 shown in Fig. 9.6, 

the error bars are sufficiently asymmetric that one would probably want to use 

the 68.3% central confidence interval and give the result as f = 0.85~g:~~. 

9.7 Multidimensional confidence regions 

In Section 9.2, a confidence interval [a, b] was constructed so as to have a cer

tain probability 1 - I of containing a parameter (). In order to generalize this 
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Fig. 9.7 (a) A contour of constant g(8;8 true ) (i.e. constant Q(8,Btrue » in 8-space. (b) A 
cont~ur of constant L(8) corresponding to constant Q(8obg , 8) in 8-space. The values Btrue 

and Bobs represent particular constant values of 8 and 8, respectively. 

to the case of n parameters, 0 = ((}l, ... , (}n), one might attempt to find an 

n-dimensional confidence interval [a, b] constructed so as to have a given prob

ability that ai < (}i < bi, simultaneously for all i. This turns out to be computa

tionally difficult, and is rarely done. 

It is nevertheless quite simple to construct a confidence region in the pa

rameter space such that the true parameter 0 is contained within the region 

with a given probability (at least approximately). This region will not have the 

form ai < (}i < bi , i = 1, ... , n, but will be more complicated, approaching an 

n-dimensional hyperellipsoid in the large sample limit. 

As in the single-parameter case, one makes use of the fact that both the joint 

p.d.f. for the estimator fJ = (0 1 , ... , On) as well as the likelihood function become 

Gaussian in the large sample limit. That is, the joint p.d.f. of fJ becomes 

~ 1 [~] 
g(OIO) = (2rr)n/2IVI 1/ 2 exp -~ Q(O, 0) , (9.31) 

where Q is defined as 

(9.32) 

Here V-I is the inverse covariance matrix and the superscript T indicates a 

transposed (i.e. row) vector. Contours of constant g(fJIO) correspond to constant 

Q(fJ, 0). These are ellipses (or for more than two dimensions, hyperellipsoids) in 

fJ-space centered about the true parameters O. Figure 9.7(a) shows a contour of 

constant Q(fJ), where Otrue represents a particular value of o. 
Also as in the one-dimensional case, one can show that the likelihood function 

L(O) takes on a Gaussian form centered about the ML estimators fJ, 
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[ 1 ~ T -1 ~ ] [1 ~ ] L(O) = Lmax exp -2(0 - 0) V (0 - 0) = Lmax exp -2 Q(O, 0) . (9.33) 

The inverse covariance matrix V-I is the same here as in (9.31); this can be 

seen from the ReF inequality (6.19) and using the fact that the ML estimators 

attain the ReF bound in the large sample limit. The quantity Q here is regarded 

as a function of the parameters 0 which has its maximum at the estimates O. 
This is shown in Fig. 9.7(b) for 0 equal to a particular value Oobs. Because of 

the symmetry between 0 and iJ in the definition (9.32), the quantities Q have 

the same value in both the p.d.f. (9.31) and in the likelihood function (9.33), i.e. 

Q(8,0) = Q(O, 8). 

As discussed in Section 7.5, it can be shown that if iJ is described by an 

n-dimensional Gaussian p.d.f. g(iJ, 0), then the quantity Q(O,O) is distributed 

according to a X2 distribution for n degrees of freedom. The statement that 

Q(O,O) is less than some value Q-y, i.e. that the estimate is within a certain 

distance of the true value 0, implies Q(O, iJ) < Q-y, i.e. that the true value () 

is within the same distance of the estimate. The two events therefore have the 

same probability, 

~ rQ-y 
P(Q(O,O) ::; Q-y) = Jo J(z; n)dz, (9.34) 

where J(z;n) is the X2 distribution for n degrees of freedom (equation (2.34)). 

The value Q-y is chosen to correspond to a given probability content, 

rQ-y 
Jo J(z;n)dz = 1 -i· (9.35) 

That is, 

(9.36) 

is the quantile of order 1-i of the X2 distribution. The region of O-space defined 

by Q(O, iJ) ::; Q-y is called a confidence region with the confidence levell-i. For 

a likelihood function of Gaussian form (9.33) it can be constructed by finding 

the values of 0 at which the log-likelihood function decreases by Q-y/2 from its 

maximum value, 

log L( 0) = log Lmax - ~-Y. (9.37) 

As in the single-parameter case, one can still use the prescription given by (9.37) 

even if the likelihood function is not Gaussian, in which case the probability 

statement (9.34) is only approximate. For an increasing number of parameters, 

the approach to the Gaussian limit becomes slower as a function of the sample 

size, and furthermore it is difficult to quantify when a sample is large enough 

for (9.34) to apply. If needed, one can determine the probability that a region 
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constructed according to (9.37) includes the true parameter by means of a Monte 

Carlo calculation. 

Quantiles of the X2 distribution Q/ = p-l (1 - ,; n) for several confidence 

levels 1 - , and n = 1,2,3,4,5 parameters are given in Table 9.4. Values of the 

confidence level are shown for various values of the quantile Q1 in Table 9.5. 

Table 9.4 The values of the confidence level 1 - r for different values of Q-y and for 

n = 1,2,3,4,5 fitted parameters. 

Q1 

1-, 

n=l n=2 n=3 n=4 n=5 

1.0 0.683 0.393 0.199 0.090 0.037 

2.0 0.843 0.632 0.428 0.264 0.151 

4.0 0.954 0.865 0.739 0.594 0.451 

9.0 0.997 0.989 0.971 0.939 0.891 

Table 9.5 The values of the quantile Q-y for different values of the confidence level 1 - r for 

n = 1,2,3,4,5 fitted parameters. 

1-, 
Q1 

n=l n=2 n=3 n=4 n=5 

0.683 1.00 2.30 3.53 4.72 5.89 

0.90 2.71 4.61 6.25 7.78 9.24 

0.95 3.84 5.99 7.82 9.49 11.1 

0.99 6.63 '9.21 11.3 13.3 15.1 

For n = 1 the expression (9.36) for Q1 can be shown to imply 

(9.38) 

where cI>-1 is the inverse function of the standard normal distribution. The pro

cedure here thus reduces to that for a single parameter given in Section 9.6, 

where N = vr:r; is the half-width of the interval in standard deviations (see 

equations (9.28), (9.29)). The values for n = 1 in Tables 9.4 and 9.5 are thus 

related to those in Tables 9.1 and 9.2 by equation (9.38). 

For increasing n, the confidence level for a given Q1 decreases. For example, 

in the single-parameter case, Q/ = 1 corresponds to 1 - , = 0.683. For n = 2, 

Q/ = 1 gives a confidence level of only 0.393, and in order to obtain 1-, = 0.683 

one needs Q/ = 2.30. 

We should emphasize that, as in the single-parameter case, the confidence 

region Q(8, 6) ~ Q
1 

is a random region in 8-space. The confidence region varies 

upon repetition of the experiment, since {j is a random variable. The true pa

rameters, on the other hand, are unknown constants. 
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9.8 Limits near a physical boundary 

Often the purpose of an experiment is to search for a new effect, the existence of 

which would imply that a certain parameter is not equal to zero. For example, 

one could attempt to measure the mass of the neutrino, which in the standard 

theory is massless. If the data yield a value of the parameter significantly different 

from zero, then the new effect has been discovered, and the parameter's value 

and a confidence interval to reflect its error are given as the result. If, on the 

other hand, the data result in a fitted value of the parameter that is consistent 

with zero, then the result of the experiment is reported by giving an upper limit 

on the parameter. (A similar situation occurs when absence of the new effect 

corresponds to a parameter being large or infinite; one then places a lower limit. 

For simplicity we will consider here only upper limits.) 

Difficulties arise when an estimator can take on values in the excluded region. 

This can occur if the estimator {) for a parameter B is of the form B = x-y, where 

both x and yare random variables, i.e. they have random measurement errors. 

The mass squared of a particle, for example, can be estimated by measuring 

independently its energy E and momentum p, and using ;;?i = E2 - p2. Although 

the mass squared should come out--£ositive, measurement errors in E2 and p2 

could result in a negative value for m 2 . Then the question is how to place a limit 

on m 2
, or more generally on a parameter B when the estimate is in or near an 

excluded region. 

Consider further the example of an estimator B = x - y where x and yare 

Gaussian variables with means J.lx, J.ly and variances 0";, 0";. One can show that 

the difference B = x - y is also a Gaussian variable with B = J.lx - J.ly and 

O"J = 0"; + 0";. (This can be shown using characteristic functions as described in 

Chapter 10.) 

Assume that B is known a priori to be non-negative (e.g. like the mass 

squared), and suppose the experiment has resulted in a value Bobs for the es

timator B. According to (9.12), the upper limit Bup at a confidence level 1 - j3 

IS 

~ -1 
Bup = (Jobs + 0"9 <1> (1 - j3). (9.39) 

For the commonly used 95% confidence level one obtains from Table 9.2 the 

quantile <1>-1(0.95) = 1.645. 

The interval (-00, Bup] is constructed to include the true value B with a prob

ability of 95%, regardless of what B actually is. Suppose now that the standard 

deviation is 0"9 = 1, and the result of the experiment is Bobs = -2.0. From equa

tion (9.39) one obtains Bup = -0.355 at a confidence level of 95%. Not only is 

Bobs in the forbidden region (as half of the estimates should be if B is really zero) 

but the upper limit is below zero as well. This is not particularly unusual, and 

in fact is expected to happen in 5% of the experiments if the true value of e is 

zero. 
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As far as the definition of the confidence interval is concerned, nothing fun

damental has gone wrong. The interval was designed to cover the true value of B 

in a certain fraction of repeated experiments, and we have obviously' encountered 

one of those experiments where B is not in the interval. 'But this is not a very 

satisfying result, since it was already known that B is greater than zero (and 

certainly greater than Bup = -0.355) without having to perform the experiment. 

Regardless of the upper limit, it is important to report the actual value of the 

estimate obtained and its standard deviation, i.e. Bobs±O"o' even ifthe estimate is 

in the physically excluded region. In this way, the average of many experiments 

(e.g. as in Section 7.6) will converge to the correct value as long as the estimator 

is unbiased. In cases where the p.d.f. of B is significantly non-Gaussian, the entire 

likelihood function L(B) should be given, which can be combined with that of 

other experiments as discussed in Section 6.12. 

Nevertheless, most experimenters want to report some sort of upper limit, 

and in situations such as the one described above a number of techniques have 

been proposed (see e.g. [Hig83, Jam91]). There is unfortunately no established 

convention on how this should be done, and one should therefore state what 

procedure was used. 

As a solution to the difficulties posed by an upper limit in an unphysical 

region, one might be tempted to simply increase the confidence level until the 

limit enters the allowed region. In the previous example, if we had taken a confi

dence level 1 - j3 = 0.99, then from Table 9.2 one has <1>-1 (0.99) = 2.326, giving 

Bup = 0.326. This would lead one to quote an upper limit that is smaller than the 

intrinsic resolution of the experiment (0"9 = 1) at a very high confidence level 

of 99%, which is clearly misleading. Worse, of course, would be to adjust the 

confidence level to give an arbitrarily small limit, e.g. <1>-1(0.97725) = 2.00001, 

or Bup = 10- 5 at a confidence level of 97.725%! 

In order to avoid this type of difficulty, a commonly used technique is to 

simply shift a negative estimate to zero before applying equation (9.39), i.e. 

A -1 
Bup = max(Bobs, 0) + 0"9 <1> (1 - j3). (9.40) 

In this way the upper limit is always at least the same order of magnitude as 

the resolution of the experiment. If Bobs is positive, the limit coincides with that 

of the classical procedure. This technique has a certain intuitive appeal and is 

often used, but the interpretation as an interval that will cover the true parameter 

value with probability 1- j3 no longer applies. The coverage probability is clearly 

greater than 1- j3, since the shifted upper limit (9.40) is in all cases greater than 

or equal to the classical one (9.39). 

Another alternative is to report an interval based on the Bayesian posterior 

p.d.f. p(Blx). As in Section 6.13, this is obtained from Bayes' theorem, 

B x _ L(xIB) rr(B) 
p( I ) - J L(xIB') rr(B')dB" 

(9.41 ) 
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where x represents the observed data, L(xIB) is the likelihood function and rr(B) 
is the prior p.d.f. for O. In Section 6.13, the mode of p(Blx) was used as an 

estimator for B, and it was shown that this coincides with the ML estimator 

if the prior density rr(B) is uniform. Here, we can use p(Blx) to determine an 

interval [a, b] such that for given probabilities Q and j3 one has 

Q l~ p(Blx) dB 

100 

p(Blx) dB. 

(9.42) 

j3 

Choosing Q = j3 then gives a central interval, with e.g. 1 - Q - j3 = 68.3%. 

Another possibility is to choose Q and j3 such that all values of p(Blx) inside the 

interval [a, b] are higher than any values outside, which implies p(alx) = p(blx). 
One can show that this gives the shortest possible interval. 

One advantage of a Bayesian interval is that prior knowledge, e.g. B 2: 0, can 

easily be incorporated by setting the prior p.d J. rr( B) to zero in the excluded 

region. Bayes' theorem then gives a posterior probability p(Blx) with p(Blx) = 0 

for B < O. The upper limit is thus determined by 

_j/J u p 
_ f~: L(xIB) rr(B) dB 

1 - j3 - -00 p(Blx)dB - f~oo L(xIB) rr(B) dB' (9.43) 

The difficulties here have already been mentioned in Section 6.13, namely 

that there is no unique way to specify the prior density rr( B). A common choice 

IS 

rr(B) = { ~ (9.44) 

The prescription says in effect: normalize the likelihood function to unit area 

in the physical regi'on, and then integrate it out to Bup such that the fraction of 

area covered is 1 - j3. Although the method is simple, it has some conceptual 

drawbacks. For the case where one knows B 2: 0 (e.g. the neutrino mass) one 

does not really believe that 0 < B < 1 has the same prior probability as 1040 < 
B < 1040 + 1. Furthermore, the upper limit derived from rr(B) = constant is not 

invariant with respect to a nonlinear transformation of the parameter. 

It has been argued [Jef48] that in cases where B 2: 0 but with no other prior 

information, one should use 

rr(B) = {~ B :::; 0 

B > O. 
(9.45) 

This has the advantage that upper limits are invariant with respect to a trans

formation of the parameter by raising to an arbitrary power. This is equivalent 

to a uniform (improper) prior of the form (9.44) for log B. For this to be usable, 
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however, the likelihood function must go to zero for () ~ 0 and () ~ 00, or else 

the integrals in (9.43) diverge. It is thus not applicable in a number of cases of 

practical interest, including the example discussed in this section. Therefore, de

spite its conceptual difficulties, the uniform prior density is the most commonly 

used choice for setting limits on parameters. 

Figure 9.8 shows the upper limits at 95% confidence level derived according 

to the classical, shifted and Bayesian techniques as a function of Bobs = x - y 

for (J'9 = 1. For the Bayesian limit, a prior density rr((}) = constant was used. 

The shifted and classical techniques are equal for Bobs ~ O. The Bayesian limit is 

always positive, and is always greater than the classical limit. As Bobs becomes 

larger than the experimental resolution (J'9' the Bayesian and classical limits 

rapidly approach each other. 
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Fig. 9.8 Upper limits at 95% con

fidence level for the example of Sec

tion 9.8 using the classical, shifted 

and Bayesian techniques. The shifted 

and classical techniques are equal for 

Bobs? o. 

9.9 Upper limit on the mean of Poisson variable with back-
ground 

As a final example, recall Section 9.4 where an upper limit was placed on the 

mean v of a Poisson variable n. Often one is faced with a somewhat more com

plicated situation where the observed value of n is the sum of the desired signal 

events ns as well as background events nb, 

. (9.46) 

where both ns and nb can be regarded as Poisson variables with means Vs and 

Vb, respectively. Suppose for the moment that the mean for the background Vb is 

known without any uncertainty. For Vs one only knows a priori that Vs ~ O. The 

goal is to construct an upper limit for the signal parameter Vs given a measured 

value of n. 

Since n is the sum of two Poisson variables. one can show that it is itself a 

Poisson variable, with the probability function 
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(9.47) 

fhe ML estimator for Vs is 

(9.48) 

which has zero bias since E[n] = Vs + Vb. Equations (9.15), which are used to 

determine the confidence interval, become 

P(v > vObs
. v

1o
) = '""""' s_ s , s L...J 

n! 

(9.49) 

j3 P(v < vobs
. V

UP
) - '""""' s_ s 'S - L...J n! 

These can be solved numerically for the lower and upper limits v!o and v~p. 

Comparing with the case Vb = 0, one sees that the limits from (9.49) are related 

to what would be obtained without background by 

v!O(no background) - Vb, 

v~P(no background) - Vb. 
(9.50) 

The difficulties here are similar to those encountered in the previous example. 

The problem occurs when the total number of events observed nobs is not large 

compared to the expected number of background events Vb. Values of v~P for 

1 - j3 = 0.95 are shown in Fig. 9.9(a) as a function of the expected number 

of background events Vb. For small enough nobs and a high enough background 

level Vb, a non-negative solution for v~P does not exist. This situation can occur, 

of course, because of fluctuations in ns and nb. 

Because of these difficulties, the classical limit is not recommended in this 

case. As previously mentioned, one should always report vs and an estimate 

of its variance even if vs comes out negative. In this way the average of many 

experiments will converge to the correct value. If, in addition, one wishes to 

report an upper limit on V s , the Bayesian method can be used with, for example, a 

uniform prior density [HeI83]. The likelihood function is given by the probability 

(9.47), now regarded as a function of V s , 

(9.51 ) 

The posterior probability density for Vs is obtained as usual from Bayes' theorem, 

(9.52) 
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Fig. 9.9 Upper limits v~P at a confidence level of 1 - f3 = 0.95 for different numbers of events 

observed nabs and as a function of the expected number of background events Vb. (a) The 

classical limit. (b) The Bayesian limit based on a uniform prior density for Vs' 

Taking rr(vs ) to be constant for Vs 2:: 0 and zero for Vs < 0, the upper limit v~P 

at a confidence level of 1 - j3 is given by 

1- j3 = 

= 

f;:P L( nobs Ivs ) dvs 

fooo 
L(nobslvs)dvs 

(9.53) 

The integrals can be related to incomplete gamma functions (see e.g. [Arf95]), 

or since nobs is a positive integer, they can be solved by making the substitution 

x = Vs + Vb and integrating by parts nobs times. Equation (9.53) then becomes 

(9.54) 

This can be solved numerically for the upper limit v~p. The upper limit as a 

function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 

without background, setting Vb = 0 gives 

nob. ( Up)n 

j3 _vup L Vs -e' ---
- n! ' 

n=O 

(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 

be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 

than or equal to the corresponding classical one, with the two agreeing only for 

Vb = O. 
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The agreement for the case without background must be considered acci

lental, however, since the Bayesian limit depends on the particular choice of a 

'onstant prior density 1r(vs). Nevertheless, the coincidence spares one the trou

lIe of having to defend either the classical or Bayesian viewpoint, which may 

Lccount for the general acceptance of the uniform prior density in this case. 

Often the result of an experiment is not simply the number n of observed 

·vents, but includes in addition measured values Xl, ... , Xn of some property of 

he events. Suppose the probability density for X is 

(9.56) 

vhere the components fs(x) for signal and fb(X) for background events are both 

ssumed to be known. If these p.d.f.s have different shapes, then the values of 

. contain additional information on whether the observed events were signal or 

.ackground. This information can be incorporated into the limit Vs by using the 

xtended likelihood function, 

e-(VS+Vb) n 

n! II [vsfs(xd + Vbfb(xd], 
i=l 

(9.57) 

s defined in Section 6.9, or by using the corresponding formula for binned data 

s discussed in Section 6.10. 

In the classical case, one uses the likelihood function to find the estimator 

s- In order to find the classical upper limit, however, one requires the p.d.f. 

f vs. This is no longer as simple to find as before, where only the number of 

vents was counted, and must in general be determined numerically. For example, 

ne can perform Monte Carlo experiments using a given value of Vs (and the 

nown value Vb) to generate numbers ns and nb from a Poisson distribution, 

ad corresponding X values according to fs(x; vs) and fb(X; Vb). By adjusting Vs, 

rle can find that value for which there is a probability j3 to obtain vs ~ v~bs. 

ere one must still deal with the problem that the limit can turn out negative. 

In the Bayesian approach, L(vs ) is used directly in Bayes' theorem as before. 

'JIving equation (9.53) for v~P must in general be done numerically. This has the 

ivantage of not requiring the sampling p.d.f. for the estimator vs , in addition 

I the previously mentioned advantage of automatically incorporating the prior 

lowledge Vs ~ 0 into the limit. 

Further discussion of the issue of Bayesian versus classical limits can be found 

[Hig83, Jam91, Cou95]. A technique for incorporating systematic uncertainties 

the limit is given in [Cou92]. 
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Characteristic functions and 
related examples 

10.1 Definition and properties of the characteristic function 

The characteristic function c/>x(k) for a random variable x with p.d.f. f(x) IS 

defined as the expectation value of eikx
, 

(10.1) 

This is essentially the Fourier transform of the probability density function. It is 

useful in proving a number of important theorems, in particular those involving 

sums of random variables. One can show that there is a one-to-one correspon

dence between the p.d.f. and the characteristic function, so that knowledge of 

one is equivalent to knowledge of the other. Some characteristic functions of 

important p.d.f.s are given in Table 10.1. 

Suppose one has n independent random variables Xl, ... , X n , with p.d.f.s 

h(xI), ... , fn(xn), and corresponding characteristic functions c/>I(k) , ... , c/>n(k), 
and consider the sum z = I:i Xi. The characteristic function C/>Z (k) for z is related 

to those of the Xi by 

c/>1 (k) ... c/>n (k). (10.2) 

That is, the characteristic function for a sum of independent random variables 

is given by the product of the individual characteristic functions. 

The p.d.f. f(z) is obtained from the inverse Fourier transform, 

f(z) = ~ 100 

C/>Z (k) e-
ikz 

dk. 
2rr -00 

(10.3) 
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Table 10.1 Characteristic functions for some commonly used probability functions. 

Distribution p.d.f. 

Binomial f( 'N)- N! pn(l )N-n n, ,p - n!(N-n)! - p 

Poisson f(n; v) = ~~ e- V 

Uniform f(x; ex, (3) = { ~~Q 
otherwise 

Exponential 

Gaussian f( x' /I (J'2) = _1_ exp (_(X-/-l)2) 
,,..., -121[(72 2(72 

Chi-square f( . ) - 1 n/2-1 -z/2 
Z, n - 2n/2r(n/2) Z e 

Cauchy f(x) = ~ l;x2 

¢(k) 

exp[v( eik 
- 1)] 

e'/3 k _e""k 

(f3-ex)ik 

1 
l-ik€ 

(1 - 2ik)-n/2 

Even if one is unable to invert the transform to find f (z), one can easily determine 

its moments. Differentiating the characteristic function m times gives 

d: J eikz 
f(Z)dzi 

dk k=O 

im J zm f(z)dz 

(10.4) 

where J.l'm = E[zm] is the mth algebraic moment of z. 

10.2 Applications of the characteristic function 

In this section we will demonstrate the use of the characteristic function by deriv

ing a number of results that have been stated without proof in earlier chapters. 
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As a first example, we can use equation (10.4) to determine the means, variances 

and higher moments of the various distributions introduced in Chapter 2. The 

mean and variance of the Gaussian distribution, for example, are 

(10.5) 

In a similar way one can find the moments for the other distributions listed in 

Table 10.1, with the exception of the Cauchy distribution. Here the characteristic 

function cf>(k) = e- 1kl is not differentiable at k = 0, and as noted in Section 2.8, 

the mean and higher moments do not exist. 

By using characteristic functions it is easy to investigate how distributions 

behave for certain limiting cases of their parameters. For the binomial distribu

tion, for example, the characteristic function is 

(10.6) 

Taking the limit p -t 0, N -t 00 with v = pN constant gives 

(10.7) 

which is the characteristic function of the Poisson distribution. 

In a similar way, one can show that a Poisson variable n with mean v becomes 

a Gaussian variable in the limit v -t 00. Although the Poisson variable is discrete, 

for large n it can be treated as a continuous variable x as long as it is integrated 

over an interval that is large compared to unity. Recall that the variance of a 

Poisson variable is equal to its mean v. For convenience we can transform from 

n to the variable 

n-v 
x= JV' (10.8) 

which has a mean of zero and a variance of unity. The characteristic function of 

x IS 

cf>x(k) 

, (k) -ikfo 
CPn JV e , (10.9) 
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where ¢n is the characteristic function of the Poisson distribution. SUbstituting 

this from Table 10.1, expanding the exponential and taking the limit v -t 00, 

equation (10.9) becomes 

(10.10) 

This, however, is the characteristic function for a Gaussian with a mean of zero 

and unit variance. Transforming back to the original Poisson variable n, one finds 

that for large v, n follows a Gaussian distribution with mean and variance both 

equal to v. 

The addition theorem (10.2) allows us to prove a number of important results. 

For example, consider the sum z of two Gaussian random variables x and y with 

means J.lx, J.ly and variances 0";,0";. According to (10.2) the characteristic function 

for z is related to those of x and y by 

exp(iJ.lxk - to";k2) . exp(iJ.lyk - to";k2) 

exp[i(J.lx + J.ly)k - !(O"; + 0";)]. (10.11) 

This shows that z is itself a Gaussian random variable with mean J.lz = J.lx + J.ly 

and variance 0"; = 0"; + 0";. The corresponding property for the difference of 

two Gaussian variables was used in the example of Section 9.8. In the same way 

one can show that the sum of Poisson variables with means Vi is itself a Poisson 

variable with mean Li Vi· 

Also using (10.2) one can show that for n independent Gaussian random 

variables Xi with means J.li and variances 0"[, the sum of squares 

~ (Xi - J.ld
2 

z=L..J 2 0"-
i:::l ~ 

(10.12) 

follows a X2 distribution for n degrees of freedom. To see this, consider first the 

case n = 1. By transformation of variables, one can show that 

Xi - J.li 
y=--

0"-z 

(10.13) 

follows the standard Gaussian p.d.f. <p(y) = (1/yt'21r)e-
y2

/
2 for all i, and that 

z = y2 therefore follows 

1 
dy 1- 1 -z/2 

J(z; n = 1) = 2<p(y) dz - J27rz e , (10.14) 

where the factor of two is necessary to account for both positive and negative 

values of y. Comparison with (2.34) shows that this is the X2 distribution for 

n = 1. From Table 10.1, the characteristic function for z is 
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¢(k) = (l-2ik)-1/2. (10.15) 

For a sum of n terms, i.e. z = L~l y2, the characteristic function is the product 

of n identical factors like (10.15), which gives directly the characteristic function 

of the X2 distribution for n degrees of freedom. 

A proof of the central limit theorem based on similar arguments is sufficiently 

important to merit a separate discussion; this is given in the following section. 

10.3 The central limit theorem 

Suppose we have n independent random variables Xj with means J-lj and variances 

CTj, not necessarily equal. The central limit theorem states that in the limit of 

large n, the sum Lj x j becomes a Gaussian random variable with mean Lj J-lj 

and variance Lj CTr This holds under fairly general conditions regardless of 

distributions of the individual Xj. 

For convenience, we can subtract off the means J-lj so that the variables all 

have mean values of zero. In addition, we can regard n for the moment as fixed, 

and define 

_ Xj - J-lj 

Yj - Vn ' (10.16) 

so that E[Yj] = 0 and E[yj] = CTj /n. Consider the case where all of the variances 

are equal, CTj = CT 2
• The characteristic function ¢j (k) for Yj can be expanded in 

a Taylor series as 

= 

= (10.17) 

where we have used equation (lOA) to relate the derivatives dm¢j/dkm to the 

moments E[YI)' By' using equation (10.2), the characteristic function ¢z(k) for 

the sum z = Lj Yj IS 

(10.18) 

If the terms with the third and higher moments can be neglected in the limit of 

large n, one obtains 
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(10.19) 

This is the characteristic function of a Gaussian with mean zero and variance (J2. 

By transforming back to the variable Lj Xj one obtains a Gaussian with mean 

Lj J-lj and variance n(J2. The theorem holds as well for the case where the (Jj 

are different, under somewhat more restrictive conditions, with the variance of 

the sum then being Lj (JJ. 

Rather than specify the conditions under which the central limit theorem 

holds exactly in the limit n --+ 00 (see e.g. [Gri92]), it is more important in a 

practical data analysis to know to what extent the Gaussian approximation is 

valid for finite n. This is difficult to quantify, but one can say roughly that it 

holds as long as the sum is built up of a large number of small contributions. 

Discrepancies arise if, for example, the distributions of the individual terms have 

long tails, so that occasional large values make up a large part of the sum. Such 

contributions lead to 'non-Gaussian' tails in the sum, which can significantly 

alter the probability to find values with large departures from the mean. 

A common implicit use of the central limit theorem is the assumption that 

the measured value of a quantity is a Gaussian distributed variable centered 

about the true value. This assumption is often used when constructing a confi

dence interval, cf. Chapter 9. Such intervals can be significantly underestimated 

if non-Gaussian tails are present. In particular, the relationship between the con

fidence level and the size of the interval will differ from the Gaussian prescription, 

equation (9.12), e.g. 6B.3% for a '1 (J' interval, 95.4% for 2 (J, etc. A better un

derstanding of the non-Gaussian tails can sometimes be obtained from a detailed 

Monte Carlo simulation of the individual variables making up the sum. 

An example where the central limit theorem breaks down is the total number 

of electron-ion pairs created when a charged particle traverses a layer of matter. 

The number of pairs in a layer of a given thickness can be described by the 

Landau distribution, seen in Section 2.9. This was shown in Fig. 2.9 for a 4 mm 

layer of argon gas. The total amount of ionization in traversing, say, a 1 meter 

gas volume is then the sum of 25 such variables. In general, if one considers the 

total volume as being subdivided into a large number of very thin layers, then the 

total ionization is the sum of a large number of individual contributions, and one 

would expect the central limit theorem to apply. But the Landau distribution 

has a long tail extending to large values, so that relatively rare highly ionizing 

collisions can make up a significant fraction of the total ionization. The Gaussian 

approximation is not in general valid in practical systems (cf. [AllBO]). 

Anot~ler example is the angle by which a charged particle is deflected upon 

traversing a layer of matter. The total angle can be regarded as the sum of a 

small number of deflections caused by collisions with nuclei in the substance being 

traversed (multiple Coulomb scattering). Since there are many such collisions, 

one expects a Gaussian distribution for the total angle. The distribution for the 

individual collisions, however, has a long tail extending to large angles. For a 
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finite thickness, rare collisions leading to large angles can make up a significant 

fraction of the total, leading to a non-Gaussian distribution for the final angle. 

10.4 Use of the characteristic function to find the p.d.f. of an 
estimator 

Consider n independent observations of a random variable x from an exponen

tial distribution f(x;~) = (l/~)exp(-x/~). In Section 6.2 it was seen that the 

maximum likelihood estimator ~ for ~ was the sample mean of the observed Xi: 

(10.20) 

If the experiment were repeated many times one would obtain values of ~ dis

tributed according to a p.d.f. 9(~; n,~) which depends on the number of obser

vations per experiment n and the true value of the parameter ~. 

Suppose we want to find 9(~; n,~). The characteristic function for x is 

J eikx 
f(x )dx 

etkx _ e-xl€dx 1
00. 1 

o ~ 

1 

1- ik~ 
(10.21 ) 

Applying equation (10.2) for the sum z = 2::7=1 Xi = n~ gives 

(10.22) 

The p.d.f. 9z (z) for z is found by computing the inverse Fourier transform of 

<Pz(k), 

1 100 

e-
ikz 

9z(Z) = 21l" -00 (1- ik~)n dk. (10.23) 

The integrand has a pole of order n at -i/~ in the complex k plane. Closing the 

contour in the lower half plane and using the residue theorem gives 

1 n-1 

( 
_ z -z/€ 

9z z) - (n-1)! ~e (10.24) 

Transforming to find the p.d.f. for the estimator ~ = z / n gives 
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Fig. 10.1 The sampling p.d.f. g(t; n, e) for the estimator t for various values of nand e. (a) 

n = 5 measurements and various values of the true parameter e. (b) e = 4 and various numbers 

of measurements n. 

nn in-l . 
'" -nue 

(n - I)! ~n e , 
(10.25) 

which is a special case of the gamma distribution (see e.g. [Ead71] Chapter 4). 

Figure 10.1 shows the distribution g(f,; n,~) for several values of the parameters. 

For n = 5 measurements one sees that the p.d.f. is roughly centered about the 

true val ue ~, but has a long tail extending to higher values of ( In Fig. 10.1 (b) 

one sees that the p.d.f. becomes approximately Gaussian as the number of mea

surements n increases, as required by the central limit theorem. 

We can now take advantage of the fact that we have the p.d.f. of an estimator 

to work out two additional examples. In Section 10.4.1 the p.d.f. (10.25) is used 

to compute expectation values, and in Section 10.4.2 it is used to construct a 

confidence interval. 

10.4.1 Expectation value for mean lifetime and decay constant 

Changing now to the conventional notation for particle lifetimes, equation (10.25) 

gives the p.d.f. of f = (lin) L~=l ti used to estimate the mean lifetime r of a 

particle given n decay-time measurements t 1, ... , tn. Recall that the expectation 

value of f was computed in Section 6.2 by using the formula 
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E[f(tl' ... , tn)] = tXJ ... roo (~ t ti) ~e-tt/T ... ~e-tn/T dtl ... dtn = r. 
Jo Jo n i=1 r r 

(10.26) 

This result could have also been obtained directly from the p.d.f. of f (see equa

tion (10.25)), 

E[f] 100 

f g(f; n, r) df 

= A n _r_ e-nf / T df 1
00 n An-l 

a r (n - 1)1 rn 

r. (10.27) 

It was also shown in Section 6.2 that the maximum likelihood estimator for a 

function of a parameter is given by the same function of the ML estimator for 

the original parameter. For example, the ML estimator for the decay constant 

,X = l/r is ,\ = l/f. From g(f; n, r) one can compute the p.d.f. h('\), 

g( f; n, r) Idf / d'\l 

(10.28) 

The expectation value of ,\ is -

roo nn ~n e-n>../5.. d'\ 

Jo (n - I)! ,Xn 

_n_,X. 

n-l 
(10.29) 

One sees that even though the ML estimator f = (l/n) 2::7=1 ti is an unbiased 

estimator for r, the estimator ,\ = 1/ f is not an unbiased estimator for ,X = 1/ r. 

The bias, however, goes to zero in the limit that n goes to infinity. 

10.4.2 Confidence interval for the mean of an exponential random 

variable 

The p.d.f. g(t; n,~) from equation (10.25) can be used to determine a confidence 

interval according to the procedure given in Section 9.2. Suppose n observations 

of the exponential random variable x have been used to evaluate the estimator € 
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for the parameter ~, and the value obtained is eobs. The goal is to determine an 

interval [a, b) given the data Xl, ... , Xn such that the probabilities P[a < ~] = a 

and P[~ < b] = f3 hold for fixed a and f3 regardless of the true value ~. 

The confidence interval is found by solving equations (9.9) for a and b, 

a 100 

g(e; a) d~, 
€obs 

t h

' 

(10.30) 

f3 -00 g(~; b) d{ 

Figure 10.2 shows the 68.3% confidence intervals for various values of n as

suming a measured value ~obs = 1. Also shown are the intervals one would 

obtain from the measured value plus or minus the estimated standard devia

tion. As n becomes larger the p.d.f. g(~; n,~) becomes Gaussian (as it must by 

the central limit theorem) and the 68.3% central confidence interval approaches 

[~Obs - ue' ~obs + ue]· 

• 68.3% confidence interval 

a ~bS± cr~ 

2 

... 6 ... ::: ••••••• 

" ............ 41:11111 
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n 

25 

Fig. 10.2 Classical confidence inter

vals for the parameter of the expo

nential distribution { (between solid 

points) and the interval [eobs - u~, 

tobs + u~] (between open triangles) for 

different values of the number of mea

surements n, assuming an observed 

value tobs = 1. 
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Unfolding 

Up to now we have considered random variables such as particle energies, decay 

times, etc., usually with the assumption that their values can be measured with

out error. The present chapter concerns the distortions to distributions which 

occur when the values of these variables are subject to additional random fluc

tuations due to the limited resolution of the measuring device. The procedure of 

correcting for these distortions is known as unfolding. The same mathematics can 

be found under the general heading of inverse problems, and is also called decon

volution or unsmearing. Although the presentation here is mainly in the context 

of particle physics, the concepts have been developed and applied in fields such 

as optical image reconstruction, radio astronomy, crystallography and medical 

imaging. 

The approach here, essentially that of classical statistics, follows in many 

ways that of [Any91, Any92, Be185, Zhi83, Zhi88]. Some of the methods have a 

Bayesian motivation as well, however, cf. [Siv96, Ski85, Ski86, Jay86]. 

In Section 11.1 the unfolding problem is formulated and the notation defined. 

Unfolding by inversion of the response matrix is discussed in Section 11.2. This 

technique is rarely used in practice, but is a starting point for better solutions. 

A simple method based on correction factors is shown in Section 11.3. The main 

topic of this chapter, regularized unfolding, is described in Sections 11.4 through 

11.7. This includes the strategy used to find the solution, a survey of several 

regularization functions, and methods for estimating the variance and bias of the 

solution. These points are illustrated by means of examples in Section 11.8, and 

information on numerical implementation of the methods is given in Section 11.9. 

It should be emphasized that in many problems it is not necessary to unfold 

the measured distribution, in particular if the goal is to compare the result with 

the prediction of an existing theory. In that case one can simply modify the 

prediction to include the distortions of the detector, and this can be directly 

compared with the measurement. This procedure is considerably simpler than 

unfolding the measurement and comparing it with the original (unmodified) 

theory. 

Without unfolding, however, the measurement cannot be compared with the 

results of other experiments, in which the effects of resolution will in general 

be different. It can also happen that a new theory is developed many years af

ter a measurement has been carried out, and the information needed to modify 
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the theory for the effects of resolution, i.e. the response function or matrix (see 

below), may no longer be available. If a particularly important measured dis

tribution is to retain its value, then both the measurement and the response 

matrix should be preserved. Unfortunately, this is often impractical, and it is 

rarely done. 

By unfolding the distribution one provides a result which can directly be 

compared with those of other experiments as well as with theoretical predictions. 

Other reasons for unfolding exist in -applications such as image reconstruction, 

where certain features may not be recognizable in the uncorrected distribution. 

In this chapter we will assume that these arguments have been considered and 

that the decision has been made to unfold. 

11.1 Formulation of the unfolding problem 

Consider a random variable x whose p.d.f. we would like to determine. In this 

chapter we will allow for limited resolution in the measurement of x, as well as 

detection efficiency less than 100% and the presence of background processes. 

As an example, we could consider the distribution of electron energies resulting 

from the beta decay of radioactive nuclei, i.e. the variable x refers to the energy 

of the emitted electron. 

By 'limited resolution' we mean that because of measurement errors, the 

measured values of x may differ in a random way from the values that were 

actually created. For example, a particular beta decay may result in an electron 

with a certain energy, but because of the resolution of the measuring device, the 

recorded value will in general be somewhat different. Each observed event is thus 

characterized by two quantities: a true value Y (which we do not know) and an 

observed value x. 

In general one must also allow for the occurrence of a true value that does not 

result in any measured value at all. For the example of beta decay, it could be 

that an emitted electron escapes completely undetected, since the detector may 

not cover the entire solid angle surrounding the radioactive source, or electron 

energies below a certain minimum threshold may not produce a sufficiently large 

signal to be detected. The probability that an event leads to some measured 

value is called the detection efficiencyl c(y), which in general depends on the 

true value of the event, y. 

Suppose the true values are distributed according to the p.d.f. ftrue(Y). In 

order to construct a usable estimator for ftrue(Y)' it is necessary to represent it 

by means of some finite set of parameters. If no functional form for ftrue(Y) is 

known a priori, then it can still be represented as a normalized histogram with 

M bins. The probability to find Y in bin j is simply the integral over the bin, 

1 If the reason that the event went undetected is related to the geometry, e.g. limited solid 

angle of the detector, then the efficiency is often called acceptance. The term efficiency is 

sometimes used to refer to the conditional probability that an event is detected given that it is 

contained in the sensitive region of the detector. Here we will use efficiency in the more general 

sense, meaning the overall probability for an event to be detected. 
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Pj = 1 ftrue(Y) dy. (11.1) 
binj 

Suppose we perform an experiment in which a certain total number of events 

mtot occur; this will differ in general from the number observed. The number 

mtot could be treated as fixed or as a random variable. In either case, we will 

call the expectation value of the total number of events J-ltot = E[mtotL so that 

the expected number of events in bin j is 

J-lj = J-ltotPj· (11.2) 

We will refer to the vector J1, = (J-ll, ... , J-lM) as the 'true histogram'. Note 

that these are not the actual numbers of events in the various bins, but rather 

the corresponding expectation values, i.e. the J-li are not in general integers. One 

could, for example, regard the true number of events in bin i as a random variable 

mi with mean J-li. Because of the limited resolution and efficiency, however, mi 

is not directly observable, and it does not even enter the present formulation of 

the problem. Instead, we will construct estimators directly for the parameters 

J-li· 

For reasons of convenience one usually constructs a histogram of the observed 

values as well. Suppose that we begin with a sample of measured values of x, and 

that these are entered into a histogram with N bins, yielding n = (nl' ... , n N). 
These values could also be sample moments, Fourier coefficients, etc. In fact, the 

variable x could be multidimensional, containing not only a direct measurement 

of the true quantity of interest y, but also correlated quantities which provide 

additional information on y. 

The number of bins N may in general be greater, less than, or equal to 

the number of bins M in the true histogram. Suppose the ith bin contains ni 

entries, and that the total number of entries is Li ni = ntot. It is often possible 

to regard the variables ni as independent Poisson variables with expectation 

values IIi. That is, for this model the probability to observe ni entries in bin i is 

given by 

(11.3) 

Since a sum of Poisson variables is itself a Poisson variable (cf. Section 10.4), 

ntot will then follow a Poisson distribution with expectation value IItot = Li IIi. 
We may also consider the case where ntot is regarded as a fixed parameter, and 

where the ni follow a multinomial distribution. Whatever the distribution, we 

will call the expectation values 

IIi = E[ni]. (11.4) 



56 Unfolding 

The form of the probability distribution for the data n = (nl' ... , nN) (Pois

on, multinomial, etc.) will be needed in order to construct the likelihood func

ion, used in unfolding methods based on maximum likelihood. Alternatively, we 

nay be given the covariance matrix, 

(11.5) 

vhich is needed in methods based on least squares. We will assume that either 

,he form of the probability law or the covariance matrix is known. 

By using the law of total probability, (1. 27), the expectation values Vi = E[ nd 
:an be expressed as 

Vi J.ltot P{ event observed in bin i) 

'J d P (observed I true value y and) () f () 
J.ltot Y in bin i event detected C Y true Y 

= J.ltot f . . dx J dy s(xly) c(y) ftrue(Y)· 
Jbm~ 

(11.6) 

Here s(xly) is the conditional p.d.f. for the measured value x given that the 

true value was y, and given that the event was observed somewhere, i.e. it is 

normalized such that f s(xly)dx = 1. We will call s the resolution function or in 

imaging applications the point spread function. One can also define a response 

function, 

r(xIY) = s(xly) c(y), (11.7) 

which gives the probability to observe x, including the effect of limited efficiency, 

given that the true value was y. Note that this is not normalized as a conditional 

p.d.f. for x. One says that the true distribution is folded with -the response 

function, and thus the task of estimating ftrue is called unfolding. 

Breaking the integral over y in equation (11.6) into a sum over bins and 

multiplying both numerator and denominator by J.lj, the expected number of 

entries to be observed in bin i becomes 

~ fbin i dx fbin j dy s(xly) c(y) ftrue (y) 
L.J J.lj 
j=l 

M 

LRiiJ.lj, 

j=l 

(J.lj/J.ltot) 

where the response matrix R is given by 

(11.8) 
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fbini dx fbinj dys(xIY) c(y) ftrue(Y) 

fbinj dy ftrue(Y) 

P( observed in bin i and true value in bin j) 

P(true value in bin j) 

P(observed in bin i I true value in bin j). (11.9) 

The response matrix element Rij is thus the conditional probability that an event 

will be found with measured value x in bin i given that the true value Y was in 

bin j. The effect of off-diagonal elements in R is to smear out any fine structure. 

A peak in the true histogram concentrated mainly in one bin will be observed 

over several bins. Two peaks separated by less than several bins will be merged 

into a single broad peak. 

As can be seen from the first line of equation (11.9), the response matrix 

depends on the p.d.f. ftrue(Y). This is a priori unknown, however, since the goal 

of the problem is to determine ftrue(Y). If the bins of the unfolded histogram 

are small enough that s(xIY) and c(y) are approximately constant over the bin 

of y, then the direct dependence on ftrue(Y) cancels out. In the following we 

will assume that this approximation holds, and that the error in the response 

matrix due to any uncertainty in ftrue(Y) can be neglected. In practice, the 

response matrix will be determined using whatever best approximation of ftrue(Y) 
is available prior to carrying out the experiment. 

Although s(xly) and c(y) are by construction independent of the probability 

that a given value yoccurs (i.e.-independent of ftrue(Y)), they are not in general 

completely model independent. The variable Y may not be the only quantity 

that influences the probability to obtain a measured value x. For the example of 

beta decay where Y represents the true and x the measured energy of the emitted 

electron, s(xIY) and c(y) will depend in general on the angular distribution of the 

electrons (some parts of the detector may have better resolution than others), 

and different models of beta decay might predict different angular distributions. 

In the following we will neglect this model dependence and simply assume 

that the resolution function s(xIY) and efficiency c(y), and hence the response 

matrix R;j, depend only on the measurement apparatus. We will assume in fact 

that R can be determined with negligible uncertainty both from the standpoint 

of model dependence as well as from that of detector response. In practice, R is 

determined either by means of calibration experiments where the true value y is 

known a priori, or by using a Monte Carlo simulation based on an understanding 

of the physical processes that take place in the detector. In real problems the 

model dependence may not be negligible, and the understanding of the detector 

itself is never perfect. Both must be treated as a possible sources of systematic 

error. 

Note that the response matrix Rij is not in general symmetric (nor even 
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square), with the first index i = 1, ... , N denoting the bin of the observed 

histogram and the second index j = 1, ... , M referring to a bin of the true 

histogram. Summing over the first index and using I s(xly)dx = 1 gives 

t Ibini dx Ibinj dYs(xIY) e(y) ftrue{Y) 

i:::l (J1-j / J1-tod 

Ibinj dyC(y)ftrue(Y) 

Ibinj ftrue(Y) dy 

(11.10) 

i.e. one obtains the average value of the efficiency over bin j. 

In addition to limited resolution and efficiency, one must also allow for the 

possibility that the measuring device produces a value when no true event of 

the type under study occurred, i.e. the measured 'value was caused by some 

background process. In the case of beta decay, this could be the result of spurious 

signals in the detector, the presence of radioactive nuclei in the sample other 

than the type under study, interactions due to particles coming from outside the 

apparatus such as cosmic rays, etc. Suppose that we have an expectation value 

f3i for the number of entries observed in bin i which originate from background 

processes. The relation (11.8) is then modified to be 

M 

Vi = L Rij J1-j + f3i. (11.11) 

j=l 

Note that the f3i include the effects of limited resolution and efficiency of the 

detector. They will usually be determined either from calibration experiments 

or from a Monte Carlo simulation of both the background processes and the 

detector response. In the following we will assume that the values f3i are known, 

although in practice this will only be true to a given accuracy. The uncertainty 

in the background is thus a source of systematic error in the unfolded result. 

To summarize, we have the following vector quantities (referred to also in a 

general sense as histograms or distri bu tions) : 

(1) the true histogram (expectation values of true numbers of entries in each 

bin), I-' = (J1-1, ... ,J1-M), 

(2) the normalized true histogram (probabilities), P = (PI, ... , PM) = 1-'/ J1-tot, 

(3) the expectation values of the observed numbers of entries, v = (VI, ... , VN), 

(4) the actual number of entries observed (the data), D = (nl' ... , nN), 

(5) efficiencies e = (£1, ... , eM), and 

(6) expected background values f3 = (f31, ... ,f3N). 

It is assumed either that we know the form of the probability distribution for 

the data D, which will allow us to construct the likelihood function, or that we 
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have the covariance matrix Vij = cov[ni, njl, which can be used to construct a 

X2 function. In addition we have the response matrix Rij , where i = 1, ... , N 

represents the bin of the observed histogram, and j = 1, ... ,M gives the bin of 

the true histogram. We will assume that Rand j3 are known. The vect'Jrs /1-, v, 

j3 and the matrix R are related by 

v = R/1- + j3, (11.12) 

where /1-, v and j3 should be understood as column vectors in matrix equations. 

The goal is to construct estimators it for the true histogram, or estimators p for 

the probabilities. 

11.2 Inverting the response matrix 

In this section we will examine a seemingly obvious method for constructing esti

mators for the true histogram /1-, which, however, often leads to an unacceptable 

solution. Consider the case where the number of bins in the true and observed 

histograms are equal, M = N. For now we will assume that the matrix relation 

v = R/1- + f3 can be inverted to give 

I-' = R- 1 (v - (3). (11.13) 

An obvious choice for the estimators of v is given by the corresponding data 

values, 

v=n. (11.14) 

The estimators for the I-' are then simply 

{L = R- 1 (n - (3). (11.15) 

One can easily show that this is, in fact, the solution obtained from maximizing 

the log-likelihood function, 

N 

log L(I-') = L log P(ni; Vi), (11.16) 

i=1 

where P(ni; Vi) is a Poisson or binomial distribution. It is also the least squares 

solution, where one minimizes 

N 

X2(1-') = L (Vi - nil (V- 1
)ij (Vj - nj). (11.17) 

i,j=1 

Note that logL(/1-) and X2(/1-) can be written as functions of /1- or v, since the 

relation v = R/1- + j3 always holds. That is, when differentiating (11.16) or 

(11.17) with respect to J-li one uses ov;jOJ-lj = Rij. 



160 Unfolding 

Before showing how the estimators constructed in this way can fail, it is 

interesting to investigate their bias and variance. The expectation value of {lj is 

given by 

N N 

I)R- 1 
)ji E[ni - Pi] I)R- 1 

)jdVi - Pd 
i=1 i=l 

(1l.18) 

so the estimators {lj are unbiased, since by assumption, Vi = ni is unbiased. For 

the covariance matrix we find 

N 

L (R-
1 
)ik (R- 1 

)jl cov[nk, nd 
k,l=l 

N 

L(R-1)ik {R-1)jk Vk, (11.19) 

k=l 

where to obtain the last line we have used the covariance matrix for independent 

Poisson variables, cov[nk: nd = JkWk. 

In the following we wiII use the notation Vij = cov[ni, nj] for the covariance 

matrix of the data, and Uij = COV[{li, {lj] for that of the estimators of the true 

distribution. Equation (11.19) can then be written in matrix notation, 

(11.20) 

Consider now the example shown in Fig. ILL The original true distribution Il 

is shown in Fig. lLl(a), and the expectation values for the observed distribution 

v are shown in the histogram of Fig. 11.1 (b). 

The histogram v has been computed according to v = RIl, i.e. the back

ground (3 is taken to be zero. The response matrix R is based on a Gaussian 

resolution function with a standard deviation equal to 1.5 times the bin width, 

and the efficiencies Ci are all taken to be unity. This results in a probability of 

approximately 26% for an event to remain in the bin where it was created, 21 % 

for the event to migrate one bin, and 16% to migrate two or more bins. 

Figure lLl(c) shows the data n = (nI, ... , nN). These have been generated 

by the Monte Carlo method using Poisson distributions with the mean values Vi 

from Fig. 11.1(b). Since the number of entries in each bin ranges from around 

102 to 103
, the relative statistical errors (ratio of standard deviation to mean 

value) for the ni are in the range from 3 to 10%. 

Figure 11.1(d) shows the estimates it obtained from matrix inversion, equa

tion (11.15). The error bars indicate the standard deviations for each bin. Far 

from achieving the 3-10% precision that we had for the ni, the {lj oscillate 
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Fig. 11.1 (a) A hypothetical true histogram p., (b) the histogram of expectation values 

v = Rp., (c) the histogram of ob_served data n, and (d) the estimators jl obtained from 

inversion of the response matrix. -

wildly from bin to bin, and the error bars are as large as the estimated values 

themselves. (Notice the increased vertical scale on this plot.) The correlation 

coefficients for neighboring bins are close to -1. 

The reason for the catastrophic failure stems from the fact that we do not 

have the expectation values v; if we did, we could simply compute J1, = R-1v. 
Rather, we only have the data D, which are random variables and hence subject 

to statistical fluctuations. Recall that the effect of the response matrix is to smear 

out any fine structure. If there had been peaks close together in /1-, then although 

these would be merged together in v, there would still remain a certain residual 

fine structure. Upon applying R- 1 to v, this remnant of the original structure 

would be restored. The data D have indeed statistical fluctuations from bin to 

bin, and this leads to the same qualitative result as would a residual fine structure 

in v. Namely, the unfolded result is given a large amount of fine structure, as is 

evident in Fig. 11.1(d). 

It is interesting to compare the covariance matrix U (11.19) with that given 

by the ReF inequality (cf. Section 6.6); this gives the smallest possible variance 

for any choice of estimator. For this we will regard the ni as independent Poisson 
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variables with mean values Vi. The log-likelihood function is thus 

N N (v n
• e- v

.) 

log L(J.t) = ~ log P(ni; vd = ~ log i nil . (11.21) 

Dropping additive terms that do not depend on J.t gives 

N 

log L(J.t) = L(ndog Vi - vd. (11.22) 

i=1 

One can check that by setting the derivatives of log L with respect to the 

components of J.t equal to zero, 

N N 

ologL = L ologL OVi = L (ni - 1) Rik = 0, 
OJ-lk i=1 OVi OJ-lk i=1 Vi 

(11.23) 

one obtains in fact the same estimators, f) = n, as we have seen previously. 

Differentiating one more time gives 

0
2 

log L = _ t ni Ri~ Ril . 

OJ-lk OJ-ll i=1 Vi 
(11.24) 

The RCF bound for the inverse covariance matrix for the case of zero bias (equa

tion (6.19)) is therefore 

= -E [0 2 

log L] 
OJ-lk OJ-ll 

N 
~ E[ nil Rik Ril 

~ v~ 
i=1 t 

N 
~ Rik Ril. 

~ v' 
i=1 t 

(11.25) 

By mul tiplying both sides of the equation once by U, twice by R-l, and summing 

over the appropriate indices, one can solve (11.25) for the RCF bound for the 

covariance matrix, 

N 

Uij = I)R-1)ik(R-1)jkVk. (11.26) 

k=l 

This is the same as the result of the exact calculation (11.19), so we see that 

the maximum likelihood solution is both unbiased and efficient, i.e. it has the 
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smallest possible variance for an estimator with zero bias. We would obtain the 

same result using the method of least squares; in that case, unbiased and efficient 

estimators are guaranteed by the Gauss-Markov theorem. 

Although the solution in Fig. l1.1(d) bears little resemblance to the true 

distribution, it has certain desirable properties. It is simple to construct, has 

zero bias, and the variance is equal to the RCF bound. In order to be of use, 

however, the correlations must be taken into account. For example, one can test 

the compatibility of the estimators fl with a hypothesis /1-0 by constructing a X2 

statistic, 

(11.27) 

which uses the full covariance matrix U of the estimators. This test would be 

meaningless if the X2 were to be computed with only the diagonal elements of 

U. We should also note that although the variances are extremely large in the 

example shown here, they would be significantly smaller if the bins are made 

large compared to the width of the resolution function. 

Regardless of its drawbacks, response-matrix inversion indicates some impor

tant lessons and provides a starting point for other methods. Since the inverse

matrix solution has zero bias and minimum variance as given by the RCF inequal

ity, any reduction in variance can only be achieved by introducing a bias. The art 

of unfolding consists of constructing biased estimators jl such that the bias will 

be small if our prior beliefs, usually some assumptions concerning smoothness, 

are in fact correct. Roughly speaking, the goal is to find an optimal trade-off 

between bias and variance, although we will see in Section 11.7 that there is a 

certain arbitrariness in determining how this optimum is achieved. 

The need to incorporate prior knowledge suggests using the Bayesian ap

proach, where the a priori probabilities are combined with the data to yield a 

posteriori probabilities for the true distribution (cf. Sections 1.2, 6.13). This is 

a common starting point in the literature on unfolding. It suffers from the dif

ficulty, however, that prior knowledge is often of a complicated or qualitative 

nature and is thus difficult to express in terms of prior probabilities. The fact 

that prior beliefs are inherently subjective is not a real disadvantage here; in the 

classical approach as well there is a certain subjectivity as to how one chooses a 

biased estimator. In the following we will mainly follow classical statistics, using 

bias and variance as the criteria by which to judge the quality of a solution, while 

pointing out the connections with the Bayesian techniques wherever possible. 

As a final remark on matrix inversion, we can consider the case where the 

number of bins M in the unfolded histogram is not equal to the number of mea

sured bins N. For M > N, the system of equations (11.12), v = R/1- + {3, is 

underdetermined, and the solution is not unique. The methods presented in Sec

tion 11.4 can be used to select a solution as the estimator fl. For M < N, (11.12) 

is overdetermined, and an exact solution does not exist in general. An approxi

mate solution can be constructed using, for example, the methods of maximum 
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likelihood or of least squares, i.e. the problem is equivalent to parameter esti

mation as discussed in Chapters 5-8. If M is large, then correlations between 

the estimators can lead to large variances. In such a case it may be desirable 

to reduce the variances, at the cost of introducing bias, by using one of the 

regularization methods of Section 11.4. 

11.3 The method of correction factors 

Consider the case where the bins of the true distribution /.L are taken to be the 

same as those of the data n. One of the simplest and perhaps most commonly 

used techniques is to take as the estimator for J-li 

(11.28) 

where !3i is the expected background and Gi is a multiplicative correction factor. 

The correction factors can be determined using a Monte Carlo program which 

includes both a model of the process under study as well as a simulation of 

the measuring apparatus. The factors Gi are determined by running the Monte 

Carlo program once with and once without the detector simulation, yielding 

model predictions for the observed and true values of each bin, vf'1c and J-l'rc . 
Here v MC refers to the signal process only, i.e. background is not included. The 

correction factor is then simply the ratio, 

(11.29) 

For now we will assume that it is possible to generate enough Monte Carlo 

data so that the statistical errors in the correction factors are negligible. If this 

is not the case, the uncertainties in the Gi can be incorporated into those of the 

estimates Pi by the usual procedure of error propagation. 

If the effects of resolution are negligible, then the response matrix is diagonal, 

i.e. Rij = JijC j, and therefore one has 

(11.30) 

whereov;ig is the expected number of entries in bin i without background. Thus 

the correction factors become simply Gi = 1/ Ci, so that 1/ Gi plays the role 

of a generalized efficiency. When one has off-diagonal terms in the response 

matrix, however, the values of I/Gi can be greater than unity. That is, because 

of migrations between bins, it is possible to find more entries in a given bin than 

the number of true entries actually created there. 

The expectation value of the estimator Pi is 
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E[Pi] 

sig . 
vi + J.l~. (11.31) 

The estimator Pi thus has a bias which is only zero if the ratios J.ld vtg 
are the 

same for the Monte Carlo model and for the real experiment. 

The covariance matrix for the estimators is given by 

cl cov[ni, nj] 

cl Jij Vi· (11.32) 

The last line uses the covariance matrix for the case where the ni are independent 

Poisson variables with expectation values Vi. For many practical problems, the Ci 

are of order unity, and thus the variances of the estimates Pi are approximately 

the same as what one would achieve with perfect resolution. In addition, the 

technique is simple to implement, not even requiring a matrix inversion. The 

price that one pays is the bias, 

(11.33) 

A rough estimate of the systematic uncertainty due to this bias can be obtained 

by' computing the correction factors with different Monte Carlo models. Clearly a 

better model leads to a smaller bias, and therefore it is often recommended that 

the estimated distribution {t be used to tune the Monte Carlo, i.e. by adjust

ing its parameters to improve the agreement between v MC and the background 

subtracted data n - j3. One can then iterate the procedure and obtain improved 

correction factors from the tuned model. 

A danger in the method of correction factors is that the bias often pulls 

the estimates it towards the model prediction /l-MC. This complicates the task 

of testing the model, which may have been the purpose of carrying out the 

measurement in the first place. In such cases one must ensure that the uncertainty 

in the unfolded result due to the model dependence of the correction factors 

is taken into account in the estimated systematic errors, and that these are 

incorporated into any model tests. 

11.4 General strategy of regularized unfolding 

Although the method of correction factors is simple and widely practiced, it has a 

number of disadvantages, primarily related to the model dependence of the result. 

An alternative approach is to impose in some way a measure of smoothness on 
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the estimators for the true histogram p,. This is known as regularization of the 

unfolded distribution. 

As a starting point, let us return to the oscillating solution of Section 11.2 

obtained from inversion of the response matrix. This estimate for p, is charac

terized by a certain maximum value of the log-likelihood function log Lmax , or 

a minimum value of the X2
. In the following we will usually refer only to the 

log-likelihood function; the corresponding relations using X2 can be obtained by 

the replacement log L = -X2 /2. 

One can consider a certain region of l1--space around the maximum likelihood 

(or least squares) solution as representing acceptable solutions, in the sense that 

they have an acceptable level of agreement between the predicted expectation 

values v and the data n. The extent of this region can be defined by requiring 

that log L stay within some limit of its maximum value. That is, one determines 

the acceptable region of p,-space by 

log L (p,) 2: log Lmax - d log L 

or for the case of least squares, 

(11.34) 

(11.35) 

for appropriately chosen d log Lor dX2. The values of d log Lor dX2 will deter

mine the trade-off between bias and variance achieved in the unfolded histogram; 

we will return to this point in detail in Section 11.7. 

In addition to the acceptability of the solution, we need to define a measure of 

its smoothness by introducing a function 5(p,), called the regularization function. 

Several possible forms for 5(p,) will be discussed in the next section. The general 

strategy is to choose the solution with the highest degree of smoothness out of 

the acceptable solutions determined by the inequalities (11.34) or (11.35). 

Maximizing the regularization function 5(11-) with the constraint that log L(p,) 

remain equal to log Lmax - d log L is equivalent to maximizing the quantity 

Q [log L(p,) - (log Lmax - d log L)] + 5(p,) (11.36) 

with respect to both p, and Q. Here Q is a Lagrange multiplier called the regu

larization parameter, which can be chosen to correspond to a specific value of 

dlogL. For a given Q, the solution is thus determined by finding the maximum 

of a weighted combination of log L and the 5(11-), 

(11.37) 

Setting Q = 0 leads to the smoothest distribution possible; this ignores com

pletely the data n. A very large Q leads to the oscillating solution from inversion 

of the response matrix, corresponding to having the likelihood function equal to 

its maximum value. 

In order for the prescription of maximizing <1>(11-) to be in fact equivalent to 

the general strategy stated above, the surfaces of constant log L(p,) and 5(11-) 
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must be sufficiently well behaved; in the following we will assume this to be the 

case. In particular, they should not change from convex to concave or have a 

complicated topology such that multiple local maxima exist. 

Recall that we can write log Land 5 as functions of /1. or v, since the relation 

v = R/1. + f3 always holds. In a similar way, we will always take the relation 

f) = Rit + f3 ( 11.38) 

to define the estimators for v; knowing these is equivalent to knowing the esti

mators it. Note, however, that in contrast to the method of Section 11.2, we will 

no longer have f) = n. It should also b~ kept in mind that J-ltot = Lj J-lj and 

IItot = '""". IIi = L· . RiJ· J-lJ. are also functIOns of /1.. ~t t,J 

Here we will only consider estimators it for which the estimated total number 

of events Vtot is equal to the number actually observed, 

N N M 

Vtot = LVi = L L Rij Pj + f3i = ntot· (11.39) 

i=1 i=l j=l 

This condition is not in general fulfilled automatically. It can be imposed by 

modifying equation (11.37) to read 

cp(p, A) = " log L(p) + 5(1') + A [n tot - t. v;] , (11.40) 

where ,\ is a Lagrange multiplier. Setting 8<p/8'\ = 0 then leads to Li IIi = ntot. 

As a technical aside, note that it does not matter whether the regularization 

parameter Q is attached to the regularization function 5(/1.) (as it is in many 

references) or with" the likelihood function. In the particular numerical imple

mentation given in Section 11.9, it is more convenient to associate Q with the 

likelihood. 

11.5 Regularization functions 

11.5.1 Tikhonov regularization 

A commonly used measure of smoothness is the mean value of the square of some 

derivative of the true distribution. This technique was suggested independently 

by Phillips [Phi62] and Tikhonov [Tik63, Tik77], and is usually called Tikhonov 

regularization. If we consider the p.d.f. ftrue (y) before being discretized as a 

histogram, then the regularization function is 

(11.41) 

where the integration is over all allowed values of y. The minus sign comes 

from the convention taken here that we maximize <p as defined by (11.40). That 

is, greater 5 corresponds to more smoothness. (Equivalently one can of course 
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minimize a combination of regularization and log-likelihood functions with the 

opposite sign; this convention as well is often encountered in the literature.) 

In principle, a linear combination of terms with different derivatives could be 

used; in practice, one value of k is usually chosen. When Itrue(Y) is represented 

as a histogram, the derivatives are replaced by finite differences. For equal bin 

widths, one can use for k = 1 (cf. [Pre92]) 

M-l 

5(1-') = - L (J-li - lli+d
2

, (11.42) 

i=1 

for k = 2 

M-2 

5(1-') = - L (-J-li + 2J-li+l - J-li+2)2, (11.43) 

i=1 

or for k = 3 

M-3 

5(1-') = - L (-J-li + 3J-li+l - 3J-li+2 + J-li+3) 
2 

. (11.44) 

i=1 

A common choice for the derivative is k = 2, so that 5(1-') is related to the 

average curvature. 

If the bin widths D.Yi are all equal, then they can be ignored in (11.42)

(11.44). This would only give a constant of proportionality, and can be effectively 

absorbed into the regularization parameter Q. If the D.Yi are not all equal, then 

this can be included in the finite differences in a straightforward manner. For 

k = 2, for example, one can assume a parabolic form for Itrue(Y) within each 

group of three adjacent bins, 

(11.45) 

There are M - 2 such groups, centered around bins i = 2, ... , M - 1. The 

coefficients can be determined in each group by setting the integrals of li(Y) 

over bins i-I, i and i + 1 equal to the corresponding values of J-li-l, J-li and 

J-li+l. The second derivative for the group centered around bin i is then II' = 2a2i, 

and the regularization function can thus be taken to be 

M-l 

5(1-') = - L 1I'2 D.Yi. (11.46) 

i=2 

Note that the second derivative cannot be determined in the first and last bins. 

Here they are not included in the sum (11.46), i.e. they are taken to be zero; 

alternatively one could set them equal to the values obtained in bins 2 and M - 1. 

For any value of the derivative k and regardless of the bin widths. the func

tions 5(1-') given above can be expressed as 
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M 

S(I-') = - L Gij J-li J-lj = -I-'T G 1-', (11.47) 

i,j=l 

where G is a symmetric matrix of constants. For k = 2 with equal bin widths 

(11.43), for example, G is given by 

Gii = 6 } 
Gi,i±l = Gi±l,i = -4 3 ::; i ::; M - 2, 

Gi,i±2 = Gi±2,i = 1 

G l1 =GMM=I, 

G 22 = GM-1,M-1 = 5, 

G 12 = G21 = GM,M-1 = GM-1,M = -2, 

with all other Gij equal to zero. 

( 11.48) 

In order to obtain the estimators and their covariance matrix (Section 11.6), 

we will need the first and second derivatives of S. These are 

and 

oS 
0J-li 

M 

-2 L Gij J-lj 

j=l 

02S 
= -2Gij. 

0J-li0J-lj 

(11.49) 

( 11.50) 

Tikhonov regularization using k = 2 has been widely applied in particle 

physics for the unfolding of structure functions (distributions of kinematic vari

ables in lepton-nucleon scattering). Further descriptions can be found in [Blo85, 

Hoc96, Roe92, Zec95]. 

11.5.2 Regularization functions based on entropy 

Another commonly used regularization function is based on the entropy H of a 

probability distribution p = (PI, ... , PM), defined as [Sha48] 

M 

H = - LPi logpi. 

i=l 

(11.51) 

The idea here is to interpret the entropy as a measure of the smoothness of 

a histogram I-' = (J-l1, ... , J-lM), and to use 

M 
W w 

S(I-') = H(I-') = - L -~ log-~ 
i = 1 J-ltot J-ltot 

(11.52) 

as a regularization function. Estimators based on (11.52) are said to be con

structed according to the principle of maximum entropy or MaxEnt. To see how 
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entropy is related to smoothness, consider the number of ways in which a par

ticular histogram 11- == (J.ll, ... ,J.lM) can be constructed out of J.ltot entries (here 

the values J.lj are integers). This is given by 

, 
n(l1-) == ,~tot. ,. 

J.ll· J.l2· ... J.lM· 
( 11.53) 

(Recall that the same factor appears in the multinomial distribution (2.6).) By 

taking the logarithm of (11.53) and using Stirling's approximation, logn! ~ 

n (log n - 1), valid for large n, one obtains 

M 

log n ~ J.ltot (log J.ltot - 1) - L J.li (log J.li - 1) 

i=l 

M 

'" W - ~J.lilog-l-
i=l J.ltot 

J.ltot 5 (11-). (11.54) 

We will use equation (11.54) to generalize logn to the case where the J.li are not 

integers. 

If all of the events are concentrated in a single bin, i.e. the histogram has 

the minimum degree of smoothness, then there is only one way of arranging 

them, and hence the entropy is also a minimum. At the other extreme, one 

can show that the entropy is maximum for the case where all J.li are equal, i.e. 

the histogram corresponds to a uniform distribution. To maximize H with the 

constraint Li Pi = 1, a Lagrange multiplier can be used. 

For later reference, we list here the first and second derivatives of the entropy

based 5(11-): 

1 J.li 
--log-

J.ltot J.ltot 

5(11-) 

J.ltot 
(11.55) 

and 

~ = -4- [1 - J
ij 

J.ltot + log (J.li:
j

) + 25(11-)] . 
0J.li0J.lj J.ltot J.li J.ltot 

(11.56) 

11.5.3 Bayesian motivation for the use of entropy 

In much of the literature on unfolding problems, the principle of maximum en

tropy is developed in the framework of Bayesian statistics. (See, for example, 

[Siv96, Jay86, Pre92].) This approach to unfolding runs into difficulties, how

ever, as we will see below. It is nevertheless interesting to compare Bayesian 

MaxEnt with the classical methods of the previous section. 
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In the Bayesian approach, the values I-' are treated as random variables in the 

sense of subjective probability (cf. Section 1.2), and the joint probability density 

f(l-'ln) represents the degree of belief that the true histogram is given by 1-'. To 

update our knowledge about I-' in light of the data n, we use Bayes' theorem, 

(11.57) 

where L(nll-') is the likelihood function (the conditional probability for the data 

n given 1-') multiplied by the prior density 7r(I-'). The prior density represents 

our knowledge about I-' before seeing the data n. 

Here we will regard the total number of events J.ltot as an integer. This is in 

contrast to the classical approach, where J.ltot represents an expectation value of 

an integer random variable, and thus is not necessarily an integer itself. Suppose 

we have no prior knowledge about how these J.ltot entries are distributed in the 

histogram. One can then argue that by symmetry, each of the possible ways of 

placing J.ltot entries into M bins is equally likely. The probability for a certain 

histogram (J.ll, ... , J.lM) therefore should be, in the absence of any other prior 

information, proportional to the number of ways in which it can be made; this 

is just the number n given by equation (11.53). The total number of ways of 

distributing the entries 0(1-') is thus interpreted as the prior probability 7r(I-') , 

O( ) = J.ltot! 
I-' I I I 

J.ll·J.l2· ... J.lM· 

exp(J.ltot H), (11.58) 

where H is the entropy given by equation (11.51). 

From the strict Bayesian standpoint, the job is finished when we have de

termined f(l-'ln). It is not practical to report f(l-'ln) completely, however, since 

this i.s a function of as many variables as there are bins M in the unfolded dis

tribution. Therefore some way of summarizing it must be found; to do this one 

typically selects a single vector fl as the Bayesian estimator. The usual choice 

is the I-' for which the probability f(l-'ln) , or equivalently its logarithm, is a 

maximum. According to equation (11.57), this is determined by maximizing 

log f(l-'ln) ex log L(I-'In) + log 7r(I-') 

log L(I-'In) + J.ltotH(I-') 

log L(I-'In) + J.ltotH(I-'). (11.59) 

The Bayesian prescription thus corresponds to using a regularization function 

M 

""' J.li 5(1-') = J.ltot H (I-') = - L...J J.li log -. 
i=l J.ltot 

( 11.60) 
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Furthermore, the regularization parameter a is no longer an arbitrary factor 

but is set equal to 1. If all of the efficiencies €i are equal, then the requirement 

Vtot = ntot also implies that /-Ltot is constant. This is then equivalent to using the 

previous regularization function S(I-') = H with a = 1/ /-Ltot. 

If the efficiencies are not all equal, however, then constant Vtot does not imply 

constant /-Ltot, and as a result, the distribution of maximum S(,.,,) = /-Ltot H (I-') is 

no longer uniform. This is because S can increase simply by increasing /-Ltot, and 

thus in the distribution of maximum S, bins with low efficiency are enhanced. 

In this case, then, using Hand /-LtotH as regularization functions will lead to 

somewhat different results, although the difference is in practice not great if the 

efficiencies are of the same order of magnitude. In any event, S = H is easier 

to justify as a measure of smoothness, since the distribution of maximum H is 

always uniform. 

We will see in Section 11.9 that the Bayesian estimator (11.59) gives too much 

weight to the entropy term (see Fig. 11.3(a) and [Ski86]). From the classical point 

of view one would say that it does not represent a good trade-off between bias 

and variance, having an unreasonably large bias. One can modify the Bayesian 

interpretation by replacing /-Ltot in (11.59) by an effective number of events /-teff, 

which can be adjusted to be smaller than /-Ltot. The estimator is then given by 

the maximum of 

(11.61) 

This is equivalent to using S(I-') = H (I-') as before, and the parameter /-Leff plays 

the role of the regularization parameter. 

The problem with the original Bayesian solution stems from our use of f2(I-') 

as the prior density. From either the Bayesian or classical points of view, the 

quantities p = 1-'/ /-ttot are given by some set of unknown, constant numbers, e.g. 

the electron energy distribution of specific type of beta decay. In either case, our 

prior knowledge about the form of the distribution (i.e. about p, not 1-') should 

be independent of the number of observations in the data sample that we obtain. 

This points to a fundamental problem in using 11"(1-') = 0(1-'), since this becomes 

increasingly concentrated about a uniform distribution (i.e. all Pi equal) as /-ttot 

increases. 

It is often the case that we have indeed some prior beliefs about the form 

of the distribution p, but that these are difficult to quantify. We could say, for 

example, that distributions with large amounts of structure are a priori unlikely, 

since it may be difficult to imagine a physical theory predicting something with 

lots of peaks. On the other hand, a completely flat distribution may not seem 

very physical either, so 0(1-') does not really reflect our prior beliefs. Because of 

these difficulties with the interpretation of f2(I-') as a prior p.d.f., we will stay 

with the classical approach here, and simply regard the entropy as one of the 

possible regularization functions. 
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11.5.4 Regularization function based on cross-entropy 

Recall that the distribution of maximum entropy is ~at, and thus the bias intro

duced into the estimators jl will tend to pull the result towards a more uniform 

distribution. Suppose we know a distribution q = (ql,"" qM) that we regard as 

the most likely a priori shape for the true distribution p = p,/ f-ltot. We will call 

q the reference distribution. Suppose that we do not know how to quantify our 

degree of belief in q, however, and hence we do not have a prior density 7r(p,) for 

use with Bayes' theorem. That is, q represents the normalized histogram p,/ f-ltot 

for which the prior density is a maximum, but it does not specify the entire prior 

density. 

In this case, the regularization function can be taken as 

5(p,) = f{(p; q), (11.62) 

where f{(p; q) is called the cross-entropy [KuI64] or Shannon-Jaynes entropy 

[J ay68] , defined as 

M 

[{(Pi q) = - LPdog :;i .' 
i=1 ql 

(11.63) 

The cross-entropy is often defined without the factor of M, and also without 

the minus sign, in which case the principle of maximum entropy becomes the 

principle of minimum cross-entropy. We will keep the minus sign so as to maintain 

the similarity between f{(p; q) and the Shannon entropy H(p) (11.51). Note that 

f{(p; q) = H(p) when the reference distribution is uniform, i.e. qi = l/M for all 

z. 

One can easily show that the cross-entropy f{ (p; q) is a maximum when the 

probabilities p are equal to those of the reference distribution q. The effect of 

using the regularization function (11.62) is that the bias of the estimators ji, will 

be zero (or small) if the true distribution is equal (or close) to the reference 

distribution. 

11.6 Variance and bias of the estimators 

The estimators jl are functions of the data n, and are hence themselves random 

variables. In order to obtain the covariance matrix Uij = COV[Pi, Pj}, we can 

calculate an approximate expression for jl as a function of n, and then use the 

error propagation formula (1.54) to relate U to the covariance matrix for the 

data, Vij = cov[ni' nj]. 

The estimators jl are found by maximizing the function <p(p"..\) given by 

(11.40), which uses a given log-likelihood or X2 function and some form of the 

regularization function 5(p,) (Tikhonov, entropy, etc.). The estimators ji, and 

the Lagrange multiplier ..\ are thus solutions to the system of M + 1 equations 

Fi(p"..\, n) = 0, i = 1, ... , M + 1, (11.64) 

where 
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i= 1, ... ,M, 
(11.65) 

i=M+1. 

Suppose the data actually obtained are given by the vector ii, the correspond

ing estimates are jL = ft(ii), and the Lagrange multiplier>. has the value>.. We 

would like to know how ft and >. would change if the data were given by some 

different values n. Expanding the functions Fi (IL, >., n) to first order in a Taylor 

series about the values jL, ). and ii gives 

+ 1 
N 

oFi - oFi { _ [a>: _ -_ (>. - >.) + L [a;; l- __ ,nj - nj). (11.66) 
J.I.,>..,n j=1 J J.I.,>..,n 

The first term Fi (jL, )., ii) as well as the entire expression Fi (IL, >., n) are both 

equal to zero, since both sets of arguments should represent solutions. Solving 

equation (11.66) for IL gives 

ft(n) ~ jL - A-I B(n - ii), (11.67) 

where the M + 1 component of IL refers to the Lagrange multiplier >.. The sym

metric (M + 1) x (M + 1) matrix A is given by 

!
~ 
OJl;OJlj' i,j = 1, ... , M, 

Aij = o~:§>.. = -1, i = 1, ... , M,j = M + 1, 

~ = 0, i = M + l,j = M + 1, 

and the (M + 1) x N matrix B is 

{ 

0 :;2:n j , i = 1, ... , M, j = 1, ... , N, 
B··-

JJ - ....f:.L-
0>.. on j - 1, i = M + 1, j = 1, ... , N. 

(11.68) 

(11.69) 

By using the error propagation formula (1.54), the covariance matrix for the 

estimators Uij = COV(jti, Pj] is obtained from the covariance matrix for the data 

~j = cov[ni, nj] by 

N ~~ ~~ 

[ 
~ ~] '" U J-li U J-l j [ ] 

cov J-li, J-lj = L..,; a a cov nk, nl . 
k,I=1 nk nl 

(11.70) 

The derivatives in (11.70) can be computed using (11.67) to be 



Variance and bias of the estimators 175 

OPi (-1) C 
~ == - A B ik == ik, 
Unk 

(11.71) 

where the matrices A and B are given by equations (11.68) and (11.69). What 

we will use here is not the entire matrix C, but rather only the M x N submatrix, 

excluding the row i = M + 1, which refers to the Lagrange multiplier >.. The 

final expression for the covariance matrix U can thus be expressed in the more 

compact form, 

(11.72) 

The derivatives in (11.68) and (11.69) depend on the choice of regularization 

function and on the particular log-likelihood function used to define <p(I1-, >.) 
(11.40), e.g. Poisson, Gaussian (log L = -X2/2), etc. In the case, for example, 

where the data are treated as independent Poisson variables with covariance 

matrix Vij = JijVi, and where the entropy-based regularization function (11.54) 

is used, one has 

+ + [1 - J
ij ~tot + log (l1-itj) + 25(11-)] 

I1-tot 11-1 I1-tot 

(11.73) 

and 

~ = aRji 
Ol1-iOnj Vj 

(11.74) 

The matrices A and B (and hence C) can be determined by evaluating the 

derivatives (11.73) and (11.74) with the estimates for 11- and v obtained in the 

actual experiment. Table 11.1 summarizes the necessary ingredients for Poisson 

and Gaussian log-likelihood functions. Note that for the Gaussian case, i.e. for 

the method of least squares, the quantities always refer to log L = - t X2, and 

not to X2 itself. The derivatives of Tikhonov and entropy-based regularization 

functions are given in Sections 11.5.1 and 11.5.2. 

In order to determine the biases bi = E[Pi] - l1-i, we can compute the expec

tation values E[Pi] by means of the approximate relation (11.67), 

N 

bi = E[Pi] - l1-i ~ iii + L Cij(Vj - iij) - l1-i· 
j=l 

(11.75) 

This can be estimated by substituting the estimator from equation (11.67) for 

l1-i and replacing Vj by its corresponding estimator iij = I:k RjkPk, which yields 
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N 

hi = L Gij(ilj - nj) (11.76) 

j=l 

The approximations used to construct hi are valid for small (ilj - nj)' or equiv

alently, large values of the regularization parameter Q. For small Q, the matrix 

G in fact goes to zero, since the estimators jJ,i are then decoupled from the mea

surements nj, cf. equation (11.71). In this case, however, the bias is actually at 

its largest. But since we will only use bi and its variance in order to determine 

the regularization parameter Q, the approximation is sufficient for our purposes. 

By error propagation (neglecting the variance of the matrix G), one obtains 

the covariance matrix W for the hi, 

N 

Wij = cov[b i , bj ] = L Gik Gjl cov[ (ilk - nk), (ill - nt)]. (11.77) 

k,l=l 

This can be computed by using ilk = L:m RkmjJ,m to relate the covariance matrix 

COv[i/k, i/z] to that of the estimators for the true distribution, Uij = COV[jJ,i' jJ,j], 

which is in turn related by equation (11.72) to the covariance matrix of the data 

by U = GVGT . Putting this all together gives 

W (GRG - G) V (GRG - G)T 

= (G R - I) U (G R - 1) T , (11.78) 

where I is the M x M unit matrix. The variances V[bi] = Wii can be used to tell 

whether the estimated biases are significantly different from zero; this in turn 

can be employed as a criterion to determine the regularization parameter. 

Table 11.1 Log-likelihood functions and their derivatives for Poisson and Gaussian random 

variables. 

Poisson Gaussian (least squares) 

logL L:i (ni log Vi - Vi) -i L:i,j(Vi - ni)(V-I)ij(Vj - nj) 

ologL 

Otti 
L:.(~-I)R .. J Vj )1 

- L:j,k Rji (V-1)jk (Vk - nk) 

o21ogL 
- L:k 

nkRk,Rk] _(RT v-I R)ij 
OttiOttj v 2 

k 

o21ogL R,] (V- l R)ij 
on,ott] v, 
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Before proceeding to the question of the regularization parameter, however, 

it is important to note that the biases are in general nonzero for all regularized 

unfolding methods, in the sense that they are given by some functions, not 

everywhere zero, of the true distribution. Their numerical values, however, can 

in fact be zero for particular values of 11-. A guiding principle in unfolding is 

to choose a method such that the bias will be zero (or small) if 11- has certain 

properties believed a priori to be true. For example, if the true distribution is 

uniform, then estimates based on Tikhonov regularization with k = 1 (11.42) 

will have zero bias; if the true distribution is linear, then k = 2 (11.43) gives 

zero bias, etc. If the true distribution is equal to a reference distribution q, then 

unfolding using the cross-entropy (11.63) will yield zero bias. 

11.7 Choice of the regularization parameter 

The choice of the regularization parameter a, or equivalently the choice of ~ log L 

(or ~X2), determines the trade-off between the bias and variance of the estima

tors fl. By setting a very large, the solution is dominated by the likelihood 

function, and one has log L = log Lmax (or with least squares, X2 = X~jn) and 

correspondingly very large variances. At the other extreme, a -t 0 puts all of the 

weight on the regularization function and leads to a perfectly smooth solution. 

Various definitions of an optimal trade-off are possible; these can incorporate 

the estimates for the covariance matrix Uij = COV[Pi, Pj], the biases bi, and the 

covariance matrix of their estimators, Wij = COV[hi' hj]. Here U and W will refer 

to the estimated values, f) and W; the hats will not be written explicitly. 

One possible measure of the goodness of the final result is the mean squared 

error, cf. equation (5.5), averaged over all bins, 

M 

1 '" ~2 MSE = M ~ (Uii + b;). 
i=1 

(11.79) 

The method of determining a so as to obtain a particular value of the MSE will 

depend on the numerical implementation. Often it is simply a matter of trying 

a value a, maximizing <p(I1-, ).), and iterating the procedure until the desired 

solution is found. 

One could argue, however, that the contribution to the mean squared error 

should be different for different bins depending on how accurately they are mea

sured. Since the variance of a Poisson variable with mean value J.li is equal to J.li, 

one can define a weighted MSE, 

M ~2 

MSE' = ~ L Uii + bi 

M i=1 Pi 
(11.80) 

in analogy with the X2 used in the method of least squares. For Poisson dis

tributed data, the quantity MSE' represents the mean squared increase in the 

errors due to limited resolution. It is thus reasonable to require that this quantity 

be small. 
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A popular choice for the regularization parameter is based on the idea that, 

on average, each bin should contribute approximately one unit to the X2
, i.e. a 

is determined such that X2 = N. This can be generalized to the log-likelihood 

case as ~ log L = log Lmax - log L = N /2, since for Gaussian distributed none 

has log L = -X2/2. 

Naively one might expect that an increase in the X2 of one unit would set 

the appropriate level of discrepancy between the data n and the estimates v. 
This typically leads, however, to solutions with unreasonably large variance. The 

problem can be traced to the fact that the estimator Vi receives contributions 

not only from ni but also from neighboring bins as well. The coupling of the 

estimators Vi to the measurements nj can be expressed by the matrix 

aV' aM· 
~ = ~ L RikPk = (RC)ij. 

nJ nJ k=l 

(11.81) 

A modification of the criterion ~X2 = 1 has been suggested in [Sch94] which 

incorporates this idea. It is based on an increase of one unit in an effective X2, 

~X~ff = (v - nf RC V-
1
(RCf (v - n) = 1, ( 11.82) 

where the matrix RC effectively takes into account the reduced coupling between 

the estimators Vi and the data ni. 

Alternatively, one can look at the estimates of the biases and their variances. 

If the biases are significantly different from zero, then it is reasonable to subtract 

them. This is equivalent to going to a smaller value of ~ log L. As a measure of 

the deviation of the biases from zero, one can construct the weighted sum of 

squares, 

M A2 

2 _ ""' bi 

Xb - L-J W'" 
i=l n 

(11.83) 

The strategy is thus to reduce ~ log L (i.e. increase a) until xi is equal to a 

sufficiently small value, such as the number of bins M. At this point the standard 

deviations of the biases are approximately equal to the biases themselves, and 

therefore any further bias reduction would introduce as much error as it removes. 

The bias squared, the variance, and their sum, the mean squared error, are 

shown as a function of ~ log L in Fig. 11.2. These are based on the example from 

Fig. 11.1, there unfolded by inverting the response matrix, and here treat~d 

using (a) maximum entropy and (b) Tikhonov regularization. The increase in 

the estimated bias for low ~ log L reflects the variance of the estimators hi; the 

true bias decreases to zero as ~ log L goes to zero. The arrows indicate solutions 

based on the various criteria introduced above; these are discussed further in t.he 

next section. 

Further criteria for setting the regularization parameter have been proposed 

based on singular value analysis [Hoc96]. or using a procedure known as cross

validation [Wah79]. Unfortunately, the choice of a is still a somewhat open 
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Fig. 11.2 The estimated mean variance, mean squared bias, and their sum, the mean squared 

error, as a function of ~ logL for (a) MaxEnt and (b) Tikhonov regularization (k = 2). The ar

rows indicate the solutions from Figs 11.3 and 11.4: (b) is minimum MSE, (c) is ~ logL = N/2, 

(d) is ~X;ff = 1, and (e) is X2 b = M. For the MaxEnt case, the Bayesian solution ~ logL = 970 

is not shown. For Tikhonov regularization, (a) gives the solution for minimum weighted MSE. 

question. In practice, the final estimates are relatively stable as the value of 

~ log L decreases, until a certain point where the variances suddenly shoot up 

(see Fig. 11.2). The onset of the rapid increase in the variances indicates roughly 

the natural choice for setting a. 

11.8 Examples of unfolding 

Figures 11.3 and 11.4 show exa~ples based on maximum entropy and Tikhonov 

regularization, respectively. The distributions 1-', v and n are the same as seen 

previously in Figs 11.1(a)-(c), having N = M = 20 bins, all efficiencies e equal to 

unity, and backgrounds f3 equal to zero. The estimators jl are found by maximiz

ing the function <p(I-', >.) (11.40), here constructed with a log-likelihood function 

based on independent Poisson distributions for the data. On the left, the origi

nal 'true' histograms I-' are shown along with the unfolded solutions jJ,i and error 

bars VUii corresponding to a given value of the regularization parameter a, or 

equivalently to a given ~ log L. On the right are the corresponding estimates of 

the biases bi with their standard deviations ~. These should not be confused 

with the true residuals jJ,i - J.li, which one could not construct without knowledge 

of the true histogram 1-'. The estimates bi, on the other hand, are determined 

from the data. 

Consider first Fig. 11.3, with the entropy-based regularization function 5(1-') = 

H(I-'). Figure 11.3(a) corresponds to a = 1/ J.ltot, i.e. the Bayesian prescription 

(11.59), and gives ~ log L = 970. We show this choice simply to illustrate that 

the prior density 7r(I-') = 0(1-') does not lead to a reasonable solution. Although 

the standard deviations VUii are very small, there is a large bias. The estimates 

bi shown on the right are indeed large, and from their error bars one can see that 

they are significantly different from zero. Note that the estimated biases here are 
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not, in fact, in very good agreement with the true residuals Pi - fJ,i, owing to 

the approximations made in constructing the estimators hi, cf. equation (11.67). 

The approximations become better as Lllog L is decreased, until the standard 

deviations v'vVii become comparable to the biases themselves. 

Figure 11.3(b) shows the result based on minimum mean squared error (11.79). 

This corresponds to Lllog L = 13.3 and xi = 154. Although the estimated biases 

are much smaller than for a = 1/ fJ,tot, they are still significantly different from 

zero. 

The solution corresponding to ~logL = N/2 = 10 is shown in Fig. 11.3(c). 

Here the biases are somewhat smaller than in the result based on minimum 

MSE, but are still significantly different from zero, giving xl = 87. In this par

ticular example, requiring minimum weighted mean squared error (11.80) gives 

~logL = 10.5, and is thus similar to the result from ~logL = N/2 = 10. 

The results corresponding to LlX~ff = 1 and xi = M are shown in Figs 11.3(d) 

and (e), respectively. Both of these have biases which are consistent with zero, 

at the expense of larger variances compared to the results from ~ log L = N /2 

or minimum MSE. The LlX~ff = 1 case has xi = 20.8, and the xi = M case has 

~X~ff = 0.85, so in this example they are in fact very similar. 

Now consider Fig. 11.4, which shows examples based on the same distribution, 

but now using Tikhonov regularization with k = 2. The figures correspond to (a) 

minimum weighted MSE, (b) minimum MSE, (c) ~logL = N/2, (d) LlX~ff = 1, 

and (e) xi = M. Here in particular the solution from ~ log L = N /2 does not 

appear to go far enough; although the statistical errors v1Jii are quite small, 

the biases are large and significantly different from zero (b; » Wii). Reasonable 

results are achieved in (a), (b) and (e), but the requirement LlX~ff = 1 (d) appears 

to go too far. The bias is consistent with zero, but no more so than in the case 

with xi = M. The statistical errors are, however, much larger. 

A problem with Tikhonov regularization, visible in the right most bins in 

Fig. 11.4, is that the estimates can become negative. (All of the bins are posi

tive only for Fig. 11.4(a).) There is in fact nothing in the algorithm to prevent 

negative values. If this must be avoided, then the algorithm has to be modified 

by, for example, artificially decreasing the errors on points where the negative 

estimates would occur. This problem is absent in MaxEnt unfolding, since there 

the gradient of S(I1-) diverges if any fJ,i approach zero. This penalty keeps all of 

the fJ,i positive. 

The techniques discussed in this chapter can easily be generalized to multidi

mensional distributions. For the case of two dimensions, for example, unfolding 

methods have been widely applied to problems of image restoration [Fri72, Fri80, 

Fri83, Ski85], particularly in astronomy [Nar86], and medical imaging [Lou92]. A 

complete discussion is beyond the scope of this book, and we will only illustrate 

some main ideas with a simple example. 

Figure 11.5 shows an example of MaxEnt unfolding applied to a test photo

graph with 56 x 56 pixels. Figure 11.5( a) is taken as the 'true' image, representing 

the vector 11-. In Fig. 11.5(b), the image has been blurred with a Gaussian reso

lution function with a standard deviation equal to 0.6 times the pixel size. 
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Fig. 11.3 MaxEnt unfolded distributions shown as points with the true distribution shown 

as a histogram (left) and the estimated biases (right) for different values of the regularization 

parameter Q. The examples correspond to (a) the Bayesian prescription Q = 1/ I-ltot, (b) mini

mum mean squared error, (c) ~ log L = N /2, (d) ~X;ff = 1, and (e) X~ = M. In this example, 

the solution of minimum weighted MSE turns out similar to case (c) with ~ logL = N/2. 
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Fig. 11.4 Unfolded distributions using Tikhonov regularization (k = 2) shown as points with 

the true distribution shown as a histogram (left) and the estimated biases (right) for different 

values of the regularization parameter Q. The examples correspond to (a) minimum weighted 

mean squared error, (b) minimum mean squared error, (c) ~ logL == N/2, (d) ~X~ff = 1, and 

(e) X~ = M. . 
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Fig. 11.5 (a) The original 'true' image p.. (b) The observed image n, blurred with a Gaus

sian point spread function with a standard deviation equal to 60% of the pixel size. (c) The 

maximum entropy unfolded image. The histograms to the right show the light intensity in pixel 

row 36 (indicated by arrows). 

For purposes of this exercise, the effective number of 'photons~ (or, depending 

on the type of imaging system, silver halide grains, photoelectrons, etc.) was 

assigned such that the brightest pixels have on the order of 104 entries. Thus if 

the number of entries in pixel i is treated as a Poisson variable ni with expectation 

value Vi, the relative sizes of the fluctuations in the brighter regions are on the 

order of 1% (UdVi = lifo). Figure l1.5(c) shows the unfolded image according 

to maximum entropy with ~ log L = N 12 where N = 3136 is the number of 

pixels. The histograms to the right of Fig. 11.5 show the light intensity in pixel 

row 36 of the corresponding photographs. 

For this particular example, the method of maximum entropy has certain 

advantages over Tikhonov regularization. First, there is the previously mentioned 

feature of MaxEnt unfolding that all of the bins remain positive by construction. 

Beyond that, one has the advantage that the entropy can be directly generalized 
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to multidimensional distributions. This follows immediately from the fact that 

the entropy H = - Lj Pj log Pj is simply a sum over all bins, and pays no 

attention to the relative values of adjacent bins. For Tikhonov regularization, one 

can generalize the function 5(/1-) to two dimensio.1.s by using a finite-difference 

approximation of the Laplacian operator; see e.g. [Pre92]' Chapter 18. 

A consequence of the fact that entropy is independent of the relative bin lo

cations is that the penalty against isolated peaks is relatively slight. Large peaks 

occur in images as bright spots such as stars, which is a reason for MaxEnt's 

popularity among astronomers. For relatively smooth distributions such as those 

in Figs 11.3 and 11.4, Tikhonov regularization leads to noticeably smaller vari

ance for a given bias. This would not be the case for distributions with sharp 

peaks, such as the photograph in Fig. 11.5. 

A disadvantage of MaxEnt is that it necessarily leads to nonlinear equations 

for /1-. But the number of pixels in a picture is typically too large to allow for 

solution by direct matrix inversion, so that one ends up anyway using iterative 

numerical techniques. 

11.9 Numerical implementation 

The numerical implementation of the unfolding methods described in the previ

ous sections can be a nontrivial task. Finding the maximum of the function 

'1'(1-', >.) = a log L(I-') + S(I-') + >. [ntot - t. Vj] (11.84) 

with respect to /1- and the Lagrange multiplier>. implies solving the M + 1 equa

tions (11.64). If tp is a quadratic function of /1-, then the equations (11.64) are 

linear. This occurs, for example, if one has a log-likelihood function for Gaussian 

distributed n, giving log L = _X2/2, in conjunction with Tikhonov regulariza

tion. Methods of solution for this case based on singular value decomposition are 

discussed in [Hoc96]. If tp contains, for example, a log-likelihood function based 

on the Poisson distribution, or an entropy-based regularization function, then 

the resulting equations are nonlinear and must be solved by iterative numerical 

techniques. 

Consider as an example the case of a Poisson-based likelihood function, cf. 

equations (11.21), (11.22), 

N 

log L(/1-) = L(ni log Vi - vd, (11.85) 

i=l 

with the regularization function S = H where H is the entropy (11.51). 

A possible method of solution for MaxEnt regularization is illustrated in 

Fig. 11.6. The three axes represent three dimensions of /1--space, and the diagonal 

plane is a subspace of constant Li Vi = ntot. The two points indicated in the 

plane are the point of maximum entropy (all Pi equal) and the point of maximum 
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subspace of constant L i vi 

~j 

Fig. 11.6 Three dimensions of IL-space illustrating the numerical implementation of maxi

mum entropy unfolding (see text). 

likelihood. The curve connecting the two indicates possible solutions to (11.40) 

corresponding to different values of the regularization parameter a; for example, 

a = 0 gives the point of maximum entropy; a -t 00 corresponds to the point of 

maximum likelihood. The curve passes through the points at which contours of 

constant entropy and constant likelihood touch. Note that the point of maximum 

likelihood is not in the allowed region with all J.li > O. This is, in fact, typical of 

the oscillating maximum likelihood solution, cf. Fig. l1.1(d). 

The program used for the MaxEnt examples shown in Figs 11.3 and 11.5 em

ploys the following algorithm, which includes some features of more sophisticated 

methods described in [Siv96, Ski85]. The point of maximum likelihood usually 

cannot be used for the initial value of 1-', since there one often has negative J.li, 

and hence the entropy is not defined. Instead, the point of maximum entropy is 

taken for the initial values. This is determined by requiring all J.li equal, subject 

to the constraint 

N N M M 

Vtot LVi z=z=RijJ.lj z= CjJ.lj 

i=l i=l j=l j=l 

ntot, (11.86) 

where Cj is the efficiency for bin j. The point of maximum entropy is thus 
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(11.87) 

If one uses 5(1-') = J.ltotH, and if the efficiencies are not all equal, then the 

distribution of maximum S(I-') is not uniform, but rather is given by the solution 

to the M equations, 

J.li S(I-') €i -_ 0, 
log- + 

J.ltot ntot 
i= 1, ... ,M. (11.88) 

Starting from the point of maximum S(I-') , one steps along the curve of 

maximum t.p in the subspace of constant Vtot. As long as one remains in this 

subspace, it is only necessary to maximize the quantity 

(11.89) 

i.e. the same as t.p(I-') but without the Lagrange multiplier>., cf. (11.40). Simply 

requiring V<I> = 0 will not, however, lead to the desired solution. Rather, V<I> 

must be first projected into the subspace of constant Vtot and the components of 

the resulting vector set equal to zero. In this way the Lagrange multiplier). never 

enters explicitly into the algorithm. That is, the solution is found by requiring 

D<I> = V <I> - u (u . V <I» = 0, (11.90) 

where u is a unit vector in the direction of VVtot. This is given by (cf. (11.10)) 

(11.91) 

so that the vector u is simply given by the vector of efficiencies, normalized to 

unit length, 

e 
u = j;I. ( 11.92) 

We will use the differential operator D to denote the projection of the gradient 

into the subspace of constant Vtot, as defined by equation (11.90). 

One begins thus at the point of maximum entropy and takes a small step in 

the direction of D log L. The resulting I-' is in general not directly on the curve 

of maximum <I>, but it will be close, as long as the step taken is sufficiently small. 

As a measure of distance from this curve one can examine 1 D<I> I. If this exceeds 

a given limit then the step was too far; it is undone and a smaller step is taken. 

If the resulting point I-' were in fact on the curve of maximum <I> , then we 

would have a D log L + DS = 0 and the corresponding regularization parameter 

would be 
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IDSI 

IDlogLI· 
a= (11.93) 

The parameter a can simply be set equal to the right-hand side of (11.93), and a 

side step taken to return to the curve of DiP = O. This can be done using standard 

methods of function maximization (usually reformulated as minimization; cf. 

[Bra92, Pre92]). These side steps as well are made such that one remains in the 

subspace of Vtot = ntot, i.e. the search directions are projected into this subspace. 

One then proceeds in this fashion, increasing a by means of the forwards steps 

along D log L and moving to the solution D~ = 0 with the side steps, until the 

desired value of ~ log L = log Lmax - log L is reached. Intermediate results can 

be stored and examined in order to determine the optimal stopping point. 

Although the basic ideas of the algorithm outlined above can also be applied 

to Tikhonov regularization, the situation there is somewhat complicated by the 

fact that the solution of maximum S(I-') is not uniquely determined. For k = 2, 

for example, any linear function gives S = o. One can simply start at J.li = ntot/ M 
and set the regularization parameter a sufficiently large that a unique solution 

is found. 

It is also possible with Tikhonov regularization to leave off the condition 

L:i Vi = ntot, since here the regularization function does not tend to pull the 

solution to a very different total normalization. If the normalization condition is 

omitted, however, then one will not obtain exactly L:i Vi = ntot. One can argue 

t.hat Vtot should be an unbiased estimator for the total number of event.s, but 

since the bias is not. large, the constraint is usually not included. 
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