
Statistical Debugging: A Hypothesis
Testing-Based Approach

Chao Liu, Member, IEEE, Long Fei, Member, IEEE, Xifeng Yan, Member, IEEE,

Jiawei Han, Senior Member, IEEE, and Samuel P. Midkiff, Member, IEEE

Abstract—Manual debugging is tedious, as well as costly. The high cost has motivated the development of fault localization techniques,

which help developers search for fault locations. In this paper, we propose a new statistical method, called SOBER, which automatically

localizes software faults without any prior knowledge of the program semantics. Unlike existing statistical approaches that select

predicates correlated with program failures, SOBERmodels the predicate evaluation in both correct and incorrect executions and regards

a predicate as fault-relevant if its evaluation pattern in incorrect executions significantly diverges from that in correct ones. Featuring a

rationale similar to that of hypothesis testing, SOBER quantifies the fault relevance of each predicate in a principled way. We

systematically evaluate SOBER under the same setting as previous studies. The result clearly demonstrates the effectiveness: SOBER

could help developers locate 68 out of the 130 faults in the Siemens suite by examining nomore than 10 percent of the code, whereas the

Cause Transition approach proposed by Holger et al. [6] and the statistical approach by Liblit et al. [12] locate 34 and 52 faults,

respectively. Moreover, the effectiveness of SOBER is also evaluated in an “imperfect world,” where the test suite is either inadequate or

only partially labeled. The experiments indicate that SOBER could achieve competitive quality under these harsh circumstances. Two

case studies with grep 2.2 and bc 1.06 are reported, which shed light on the applicability of SOBER on reasonably large programs.

Index Terms—Debugging aids, statistical methods, statistical debugging.

Ç

1 INTRODUCTION

THE last decade has witnessed great advances in fault
localization techniques [1], [2], [3], [4], [5], [6], [7], [8], [9].

These techniques aim to assist developers in finding fault
locations, which is one of the most expensive debugging
activities [10]. Fault localization techniques can be roughly
classified as static or dynamic. A static analysis detects
program defects by checking the source codes with or
without referring to a well-specified program model [1], [2],
[3]. A dynamic analysis, on the other hand, typically tries to
locate defects by contrasting the runtime behavior of correct
and incorrect executions. Dynamic techniques usually do
not assume any prior knowledge of program semantics
other than the labeling of each execution as either correct or
incorrect. Previous studies deploy a variant of program
runtime behaviors for fault localization, such as program
spectra [11], [4], memory graphs [5], [6], and program
predicate evaluation history [7], [12].

Within dynamic analyses, techniques based on predicate
evaluations have been shown to be promising for fault
localization [13], [14], [7], [12]. Programs are first instru-
mented with predicates such that the runtime behavior in
each execution is encoded through predicate evaluations.
Consider the predicate “idx < LENGTH,” where the variable
idx is an index into a buffer of length LENGTH. This predicate

checks whether accesses to the buffer ever exceed the upper
bound. Statistics on the evaluations of predicates are
collected over multiple executions at runtime and analyzed
afterward.

The method described in this paper shares the principle
of predicate-based dynamic analysis. However, by explor-
ing detailed statistics about predicate evaluation, our
method can detect more and subtler faults than the state-
of-the-art statistical debugging approach proposed by Liblit
et al. [12]. For easy reference, we denote this method as
LIBLIT05. For each predicate P in a program P, LIBLIT05
estimates two conditional probabilities:

Pr1 ¼ PrðP failsjP is ever observedÞ

and

Pr2 ¼ PrðP failsjP is ever observed as trueÞ:
It then treats the probability difference Pr2 � Pr1 as an
indicator of how relevant P is to the fault. Therefore,
LIBLIT05 essentially regards a predicate fault-relevant if its
true evaluation correlates with program failures.

While LIBLIT05 succeeded in isolating faults in some
widely used software [12], it has a potential problem in its
ranking model. Because LIBLIT05 only considers whether a
predicate has ever been evaluated as true or not in each
execution, it loses its power to discriminate when a
predicate P is observed as true at least once in all
executions. In this case, Pr1 is equal to Pr2, which suggests
that the predicate P has no relevance to the fault. In
Section 2, we will present an example where the most fault-
relevant predicate reveals only a small difference between
Pr1 and Pr2. We found that similar cases are not rare in
practice, as suggested by the experiments in Section 4.

The above issue motivates us to develop a new approach
that can exploit multiple evaluations of a predicate within

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006 1

. C. Liu, X. Yan, and J. Han are with the Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL 61801.
E-mail: {chaoliu, xyan, hanj}@cs.uiuc.edu.

. L. Fei and S.P. Midkiff are with the School of Electronic and Computer
Engineering, Purdue University, West Lafayette, IN 47907.
E-mail: {lfei, smidkiff}@purdue.edu.

Manuscript received 12 Dec. 2005; revised 10 May 2006; accepted 4 Aug.
2006; published online DD Mmmm, YYYY.
Recommended for acceptance by R. Lutz.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0327-1205.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

each execution. We start by treating the evaluations of a
predicate P as independent Bernoulli trials: Each evaluation
of P gives either true or false. We then estimate the
probability of P being true in each execution, which we call
the evaluation bias. While the evaluation bias of P may
fluctuate from one execution to another, its observed values
from multiple executions constitute a random sample from
a statistical model. Specifically, if we let X be the random
variable standing for the evaluation bias of predicate P ,
then there are two statistical models, fP ðXjCorrectÞ and
fP ðXjIncorrectÞ, which govern the evaluation bias observed
from correct and incorrect executions respectively. Intui-
tively, if the model fP ðXjIncorrectÞ is significantly different
from fP ðXjCorrectÞ, it is indicated that P ’s evaluation in
incorrect runs captures abnormal activity, and the predicate
P is likely relevant to the fault. Therefore, instead of
selecting predicates correlated with program failures as
done by LIBLIT05, our approach statistically models pre-
dicate evaluations in both correct and incorrect runs,
respectively, and treats the model difference as a measure
of the fault relevance.

In quantifying the model difference between
fP ðXjCorrectÞ and fP ðXjIncorrectÞ, there are two major
obstacles. First, we have no idea what family of distributions
the two models are in. Second, we are not authorized to
impose model assumptions on fP ðXÞ because improper
model assumptions can result in misleading inferences [15].
Therefore, without prior knowledge of the statistical
models, a direct measurement of the model divergence is
difficult, if not fully impossible.

In this paper, we propose a hypothesis testing-based
approach, which indirectly quantifies the model difference.
Aiming at the model difference, we first propose the null
hypothesis that the two models are identical. We then
derive a test statistic that conforms to a normal distribution
under the null hypothesis through the Central Limit
Theorem [15]. Finally, given observed evaluation biases
from multiple executions (both correct and incorrect), the
instantiated test statistic quantifies the likelihood that the
evaluation biases observed from incorrect runs were
generated as if from fP ðXjCorrectÞ. Therefore, a smaller
likelihood suggests a larger discrepancy between the two
models, and, hence, a greater likelihood that the predicate P
is fault-relevant. Using this quantification, we can rank all
the instrumented predicates, getting a ranked list of
suspicious predicates. Developers can then examine the list
from the top down in debugging.

In summary, we make the following contributions in this
paper:

1. We propose a probabilistic treatment of program
predicates that models how a predicate is evaluated
within each execution, which exploits more detailed
information than previous methods [7], [12]. In
addition, this probabilistic treatment naturally en-
compasses the concept of program invariants [16] as
a special case.

2. On top of the probabilistic treatment of predicates,
we develop a theoretically well-motivated ranking
algorithm, SOBER, that ranks predicates according
to how abnormally each predicate evaluates in
incorrect executions. Intuitively, the more abnor-
mal the evaluations, the more likely the predicate
is fault-relevant.

3. We systematically evaluate the effectiveness of
SOBER on the Siemens suite [17], [18] under the

same setting as previous studies. Seven existing fault
localization techniques are compared with SOBER in
this study, which demonstrates the superior accu-
racy achieved by SOBER in fault localization.
Furthermore, the effectiveness of SOBER is also
evaluated in an “imperfect world,” where the test
suite is either inadequate or partially labeled. The
experimental results shows that SOBER is statistically
robust to these circumstances.

4. Finally, two case studies with grep 2.2 and bc 1.06
are reported, which illustrate the applicability of
SOBER on reasonably large programs. In particular, a
previously unreported fault is found in bc 1.06,
based on the fault localization result from SOBER.

The rest of the paper is organized as follows: Section 2
first presents a motivating example, which illustrates the
advantages of modeling predicate evaluations within each
execution. We elaborate on the statistical model, ranking the
algorithm and its relationship with program invariants in
Sections 3. An extensive comparison between SOBER and
existing techniques is presented in Section 4, followed by the
evaluation of SOBER in an “imperfect world” in Section 5.
The two case studies with grep 2.2 and bc 1.06 are reported
in Section 6. With related work and threats to validity
discussed in Section 7, Section 8 concludes this study.

2 A MOTIVATING EXAMPLE

In this section, we present a detailed example that illustrates
the advantage of modeling predicates in a probabilistic
way. This example inspires us to locate faults by quantify-
ing the divergence between the models of correct and
incorrect executions.

The program in Fig. 1 is excerpted from the third faulty
version of the replace program in the Siemens suite. The
program replace has 507 lines of C code (LOC) and it
performs regular expression matching and substitutions.
The second subclause in line 7 was intentionally commen-
ted out by the Siemens researchers to simulate a type of
fault that may sneak in if the developer fails to think fully
about the if condition. Since this is essentially a logic error
that does not incur program crashes, even experienced
developers would have to use a conventional debugger for
step-by-step tracing. Our question is: Can we guide developers
to the faulty location or its vicinity by contrasting the runtime
behaviors between correct and incorrect executions?

For clarity in what follows, we denote the program with

the subclause ðlastm !¼ mÞ commented out as the incorrect

(or faulty) program P, and the one with the subclause (i.e.,

ðlastm !¼ mÞ is not commented out) as the correct

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

Fig. 1. Faulty-code version 3 of replace.

program bP. Because bP is certainly not available when P is

debugged, bP is used here to illustrate how our method is

motivated. As shown in Section 3, our method collects

statistics only from the faulty program P, not from bP.
We declare two Boolean variables, A and B, as follows:

A ¼ ðm >¼ 0Þ;
B ¼ ðlastm !¼ m Þ;

Let us consider the four possible evaluation combinations of

A and B, and their corresponding branching actions (either

enter or skip the block from lines 8 through11) in bothP and bP.
Fig. 2 explicitly lists the actions in P (Fig. 2a) and bP (Fig. 2b).

The left panel shows the actual actions taken in the faulty

programP, while the right one lists the expected actions in bP.
Differences between the above two tables reveal that in

the faulty program P, unexpected actions take place if and
only if A ^ :B evaluates to true. Explicitly, when A ^ :B is
true, the control flow actually enters the block, whereas it is
expected to skip the block if the logic was correct. This
incorrect control flow will likely lead to incorrect outputs.
Therefore, for the faulty program P, an execution is incorrect
if and only if there exist true evaluations of A ^ :B at line 7;
otherwise, the execution is correct even though the program
contains a fault.

While the predicate P : ðA ^ :BÞ ¼ true precisely char-
acterizes the scenario under which incorrect executions take
place, there is little chance for any fault locator to spot P as
fault-relevant. The obvious reason is that while we are
debugging P, bP is not available. Therefore, we have no idea
of what B is, let alone its combination with A. On the other
hand, because the evaluation of A is observable in P, we are
interested in whether the evaluation of A can actually point
to the fault. Explicitly, if the evaluation of A in incorrect
executions significantly diverges from that in correct ones,
the if statement at line 7 may be regarded as fault-relevant,
which exactly points to the fault location.

We, therefore, contrast how A is evaluated differently in
correct and incorrect executions of P. Fig. 3 shows the
number of true evaluations for the four combinations of A
and B in one correct (Fig. 3a) and one incorrect (Fig. 3b)
execution. The major difference between the two is that in a
correct run, A ^ :B never evaluates true ðnA �B ¼ 0Þ while
n0
A �B

must be nonzero for an execution to be incorrect. Since
the true evaluation of A ^ :B implies A ¼ true, we
expect that the probability for A to be true is different in
correct and incorrect executions. In running 5,542 test cases,
the true evaluation probability is 0.2952 in a correct
execution and 0.9024 in an incorrect execution, on average.
This divergence suggests that the fault location (i.e., line 7)
does exhibit detectable abnormal behaviors in incorrect
executions. Our method, as described in Section 3, nicely
captures this divergence and ranks A ¼ true as the top
fault-relevant predicate. This predicate readily leads the
developer to the fault location. Meanwhile, we note that

because neither A ¼ true nor A ¼ false is an invariant in
correct or incorrect executions, invariant-based methods
cannot detect that A is a suspicious predicate. LIBLIT05 does
not regard A as suspicious either because it does not model
the predicate evaluation within each execution (see Sec-
tion 3.7 for details).

The above example illustrates a simple but representa-
tive case where a probabilistic treatment of predicates
captures detailed information about predicate evaluations.
In the next section, we describe the statistical model and the
ranking algorithm that implement this intuition.

3 PREDICATE RANKING MODELS

3.1 Problem Settings

Let T ¼ ft1; t2; � � � ; tng be a test suite for program P. Each
test case ti ¼ ðdi; oiÞ ð1 � i � nÞ has an input di and the
expected output oi. The execution of P on each test case ti
gives the output o 0i ¼ PðdiÞ. We say P passes the test case ti
(i.e., ti is a passing case) if and only if o0i is identical to oi;
otherwise, P fails on ti (i.e., ti is a failing case). In this way,
the test suite T is partitioned into two disjoint subsets Tp

and Tf , corresponding to the passing and failing cases
respectively:

Tp ¼ ftijo0i ¼ PðdiÞ and o0i ¼ oig;
Tf ¼ ftijo0i ¼ PðdiÞ and o0i 6¼ oig:

Since program P passes test case ti if and only if P executes
correctly, we use “correct” and “passing,” as well as
“incorrect” and “failing,” interchangeably in the following
discussion.

Given a faulty program P together with a test suite
T ¼ Tp [Tf , our task is to localize the suspicious fault region by
contrasting P’s runtime behaviors on Tp and Tf .

3.2 Probabilistic Treatment of Predicates

In general, a program predicate is a proposition about any
program property, such as “idx < LENGTH,” “!emptyðlistÞ,”
and “fooðÞ > 0.” As any instrumentation site can be touched
more than once due to program control flows, a predicate P
can be evaluated multiple times in one execution, and each
evaluation produces either true or false. In order to model
this within-execution behavior of P , we propose the concept
of evaluation bias, which estimates the probability of the
predicate P being evaluated as true.

Definition 1 (Evaluation Bias). Let nt be the number of times

that predicate P evaluates to true, and nf the number of

times it evaluates to false, in one execution. �ðP Þ ¼ nt

ntþnf
is

the observed evaluation bias of predicate P in this particular

execution.

Intuitively, �ðP Þ estimates the probability that P takes
the value true in each evaluation. If the instrumentation site

LIU ET AL.: STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED APPROACH 3

Fig. 2. Branching actions in (a) P and (b) bP.
Fig. 3. (a) A correct and (b) an incorrect execution in P.

of P is touched at least once (i.e., nt þ nf 6¼ 0), �ðP Þ varies in
the range of [0, 1]: �ðP Þ is equal to 1 if P always holds, to 0 if
it never holds, and in between for all other sets of outcomes.
If the predicate is never evaluated, �ðP Þ has a singularity 0/
0. In this case, since we have no evidence to favor either
true or false, we set �ðP Þ to 0.5 for fairness. Finally, if a
predicate is never evaluated in any failing runs, it has
nothing to do with program failures and is hence eliminated
from the predicate ranking.

3.3 Methodology Overview

We formulate the main idea of our method in this section
and then develop its details in Section 3.4. Following the
convention in statistics, we use uppercase letters for
random variables and the corresponding lowercase letters
for their realizations. Moreover, fðXj�Þ is a general notation
of the probability model for the random variable X that is
indexed by the parameter �.

Let the entire test case space be T , which conceptually
contains all the possible inputs and expected outputs.
According to the correctness of P on the test cases in T , T
can be partitioned into two disjoint sets T p and T f for
passing and failing cases. Therefore, the available test suite T
and its partitions Tp and Tf can be treated as a random
sample from T , T p, and T f , respectively. Let X be the
random variable for the evaluation bias of predicate P . We
then use fP ðXj�pÞ and fP ðXj�fÞ to denote the statistical
model for the evaluation bias of P in T p and T f , respectively.
Therefore, the evaluation bias from running a test case t can
be treated as an observation from fP ðXj�Þ, where � is either
�p or �f depending on whether t is passing or failing. Given
the statistical models for both passing and failing runs, we
then define the fault relevance of P as follows:

Definition 2 (Fault Relevance). A predicate P is relevant to
the hidden fault if its underlying model fP ðXj�fÞ diverges
from fP ðXj�pÞ, where X is the random variable for the
evaluation bias of P .

The above definition relates fP ðXj�Þ, the statistical model
for P ’s evaluation bias, to the hidden fault. Naturally, the
larger the difference between fP ðXj�fÞ and fP ðXj�pÞ, the
more relevant P is to the fault. Let LðP Þ be an arbitrary
similarity function,

LðP Þ ¼ SimðfðXj�pÞ; fðXj�fÞÞ: ð1Þ
The ranking score sðP Þ can be defined as gðLðP ÞÞ, where
gðxÞ can be any monotonically decreasing function. We
here choose gðxÞ ¼ �logðxÞ because logðxÞ effectively
measures the relative magnitude even when xs are closed
to 0 (certainly, x must be positive). Therefore, the fault
relevance score sðP Þ is defined as

sðP Þ ¼ �logðLðP ÞÞ: ð2Þ
Using this fault relevance score, we can rank all the

instrumented predicates, and the top-ranked ones are
regarded more likely to be fault-relevant. Therefore, the
fault localization problem boils down to the setting of the
similarity function, which, in turn, consists of two subpro-
blems: 1) What is a suitable similarity function LðP Þ, and
2) how is LðP Þ computed when the closed form of fP ðXj�Þ
is unknown? In Sections 3.4 and 3.5, we examine the two
problems in detail.

3.4 Predicate Ranking

The lack of prior knowledge about fP ðXj�Þ constitutes one
of the major obstacles in calculating the similarity (or
difference, equivalently) between fP ðXj�pÞ and fP ðXj�fÞ. If
the closed form of fP ðXj�pÞ and fP ðXj�fÞ were given,
measures used in information theory [19], such as the
relative entropy, would immediately apply. Meanwhile, we
are not authorized to impose model assumptions, like
normality, on fP ðXÞ because improper assumptions can
lead to misleading inferences. Therefore, given the above
difficulties in directly measuring the model difference, in
this paper we propose an indirect approach that measures
the difference between fP ðXj�pÞ and fP ðXj�fÞ without any
model assumption.

Aiming at the model difference, we first propose the null
hypothesis that H0 : fP ðXj�pÞ ¼ fP ðXj�fÞ, i.e., there is no
difference between the two models. Letting X ¼
ðX1; X2; � � � ; XmÞ be a random sample from fP ðXj�fÞ (i.e.,
observed evaluation bias from m failing cases), we derive a
statisticY ,which, under thenull hypothesisH0, conforms to a
knowndistribution. If the realized statisticY ðXÞ corresponds
to an event that has a small likelihood of happening, the null
hypothesis H0 is likely invalid, which suggests that a
nontrivial difference exists between fP ðXj�pÞ and fP ðXj�fÞ.

We choose to characterize fP ðXj�Þ through its population
mean � and variance �2, so that the null hypothesis H0 is

�p ¼ �f and �2p ¼ �2
f : ð3Þ

Let X ¼ ðX1; X2; � � � ; XmÞ be an independent and identi-
cally distributed (i.i.d.) random sample from fP ðXj�fÞ.
Under the null hypothesis, we have EðXiÞ ¼ �f ¼ �p

and V arðXiÞ ¼ �2
f ¼ �2

p. Because Xi 2 ½0; 1�, both EðXiÞ
and V arðXiÞ are finite. According to the Central Limit
Theorem [15], the following statistic

Y ¼
Pm

i¼1 Xi

m
; ð4Þ

asymptotically conforms to Nð�p;
�2p
mÞ, a normal distribution

with mean �p and variance
�2p
m.

Let fðY j�pÞ be the probability density function of the

normal distribution Nð�p;
�2p
mÞ. Then, the likelihood Lð�qpjY Þ

of �p given the observed Y is

Lð�pjY Þ ¼ fðY j�pÞ: ð5Þ
A smaller likelihood implies that H0 is less likely to hold,
which, in turn, indicates a larger difference between fP ðXj�pÞ
and fP ðXj�fÞ. Therefore, we can reasonably instantiate the
similarity function in (1) with the likelihood function

LðP Þ ¼ Lð�pjY Þ: ð6Þ
According to the property of normal distribution, the

normalized statistic

Z ¼ Y � �p

�p=
ffiffiffiffiffi
m

p ð7Þ

asymptotically conforms to the standard normal distribu-
tion Nð0; 1Þ, and

fðY j�pÞ ¼
ffiffiffiffiffi
m

p

�p
’ðZÞ; ð8Þ

where ’ðZÞ is the probability density function of Nð0; 1Þ.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

Combining (2), (6), (5), and (8), we finally get the fault-
relevance ranking score for predicate P as

sðP Þ ¼ �logðLðP ÞÞ ¼ log
�pffiffiffiffiffi

m
p

’ðZÞ

� �
: ð9Þ

3.5 Discussions on Score Computation

First, in order to calculate sðP Þ using (9), we need to
estimate the population mean �p and the standard error
�p of fP ðXj�pÞ. Let X

0 ¼ ðX0
1; X

0
2; � � � ; X0

nÞ be a random
sample from fP ðXj�pÞ (which corresponds to the observed
evaluation bias from the n passing runs), then �p and �p

can be estimated as

�p ¼ X0 ¼
Pn

i¼1 X
0
i

n
ð10Þ

and

�p ¼ SX0 ¼
ffi
1

n� 1

Xn

i¼1

ðX0
i �X0Þ2

s

: ð11Þ

Second, because the
ffiffiffiffiffi
m

p
in (9) does not affect the relative

order between predicates, it can be safely dropped in
practice. However, as simple algebra would reveal, the m in
(4) and the

ffiffiffiffiffi
m

p
in (7) cannot be discarded, because they

properly scale the statistics for standard normality as
required by the Central Limit Theorem.

Finally, we note that although the derivation of (9) is
based on the asymptotic behavior, i.e., when m ! þ1,
statistical inference suggests that the asymptotic result is
still valid even when the sample size is nowhere near
infinity [15]. In the fault localization scenario, it is true that
we cannot have an infinite number of failing cases. But as
shown in experiments, (9) still works well in ranking
abnormal predicates even when only a small number of
failing cases are available.

We now use a concrete example to conclude the
discussion in this subsection. The example illustrates how
the fault relevance score of the predicate P ¼ ðA ¼ trueÞ is
calculated for the program in Fig. 1.

First, by running the 130 failing and the 5,412passing cases
(i.e., m ¼ 130 and n ¼ 5;412) on the instrumented program,
the numbers of true and false evaluations are recorded at
runtime for each execution. Then, the evaluation bias of P in
each execution is calculated based on Definition 1. Next, the
statistic Y ¼ 0:9024 is directly obtained from the evaluation
biases in failing cases according to (4). Similarly, frompassing
cases, we get �p ¼ 0:2952 and �p ¼ 0:2827 according to (10)
and (11), respectively. Plugging the calculated Y , �p, �p and
m ¼ 130 into (7), we get Z ¼ 24:4894. Finally, from (9), the
fault relevance score for predicate P is 297.2.

Besides illustrating how sðP Þ is calculated, this example
also shows the role played by the log operator in (9).
Although the log operator does not influence the ranking of
predicates, it helps scale down the calculated score, which
might otherwise overflow in numeric computation.

3.6 Generalizing Invariants

In this section, we demonstrate how the probabilistic
treatment of predicate evaluations encompasses program
invariants [16] as a special case. Moreover, we also prove
that the fault relevance score in (9) readily identifies both
invariant violations and conformations.

Without loss of generality, a predicate P is a program
invariant on a test suite C if and only if it always evaluates
true during the execution of C. In practice, the test suite C
is usually chosen to be a set of passing cases so that the
summarized invariants characterize the correct behavior of
the subject program [16]. During the failing executions,
these invariants are either conformed (i.e., still evaluate
true) or violated (i.e., evaluate false at least once), and
those violated invariants are regarded as hints for debug-
ging. In some special cases, the test suite C is chosen to be a
time interval during which the execution is believed to be
correct. One typical example is that for software that runs
for a long time, such as Web servers, the execution is likely
correct at the beginning of the execution [14].

According to Definition 1, the evaluation bias of an
invariant is always 1. Taking the set of passing cases Tp as
C, we know that, if the predicate P is an invariant, �p ¼ 1
and �p ¼ 0. Moreover, the following theorem proves that
the fault relevance score function of (9) naturally identifies
both invariant violations and conformations.

Theorem 1. Let P be any invariant summarized from a set of
correct executions Tp. sðP Þ ¼ þ1 if P is violated in at least
one faulty execution, and sðP Þ ¼ �1 if P is conformed in all
faulty executions.

Proof. Let x ¼ ðx1; x2; � � � ; xmÞ be a realized random sample,
which corresponds to the observed evaluation biases
from the m failing runs. Once P is violated in at least one
execution,

Pm
i¼1 xi 6¼ m. It then follows from (7) that

z ¼ c

�p
; where c ¼

Pm
i¼1 xi �m�pffiffiffiffiffi

m
p 6¼ 0;

and then

lim
�p!0

�pffiffiffiffiffi
m

p
’ðzÞ ¼

ffiffiffiffiffiffi
2�

m

r
lim
�p!0

�p

e�
1
2ð c
�p
Þ2

¼
ffiffiffiffiffiffi
2�

m

r
lim
t!1

e
c2t2

2

t

¼ c2
ffiffiffiffiffiffi
2�

m

r
lim
t!1

te
c2t2

2 ¼ þ1:

Thus, (9) gives sðP Þ ¼ þ1. This means that SOBER treats
violated invariants as the most abnormal predicates and
ranks them at the top.

On the other hand, if the invariant P is not violated in
any failing execution, we have

lim
�p!0

z ¼ lim
�p!0

Pm
i¼1 xi �m�pffiffiffiffiffi

m
p

�p
¼ lim

�p!0

0ffiffiffiffiffi
m

p
�p

¼ 0;

and, therefore,

lim
�p!0

�pffiffiffiffiffi
m

p
’ðzÞ ¼ lim

�p!0

�pffiffiffiffiffi
m

p
’ð0Þ ¼ 0;

which immediately leads to sðP Þ ¼ �1. This suggests
that conformed invariants are regarded as the least
abnormal, and are ranked at the bottom by our method. tu
Theorem 1 indicates that, if a fault can be caught by

invariant violations as implemented in the DIDUCE [14]
project, SOBER can also detect it because the fault relevance
score for the violated invariant is þ1. Meanwhile, for
conformed invariants, SOBER simply discards them due to
the �1 score. Previous research suggests that invariant
violations by themselves can only locate a number of faults

LIU ET AL.: STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED APPROACH 5

in the Siemens suite [20]. As will be shown shortly, our
method SOBER, being a superset of invariant-based meth-
ods, actually achieves the best fault localization results on
the Siemens suite.

3.7 Differences between SOBER and Liblit05

Because both LIBLIT05 and SOBER are based on a statistical
analysis of predicate evaluations, we now illustrate the
differences in this section.

In principle, LIBLIT05 contrasts the probability that one
execution crashes if the predicate P is ever observed true,
and that if P is observed (either true or false) in the
execution. Specifically, the authors define

ContextðP Þ ¼ PrðCrashjP observedÞ; ð12Þ
FailureðP Þ ¼ PrðCrashjP observed trueÞ; ð13Þ

and take the probability difference

IncreaseðP Þ ¼ FailureðP Þ � ContextðP Þ ð14Þ
as one of the two key components of P ’s fault relevance
score. The other component is the number of failing runs
where P is ever observed as true. A harmonic average is
then taken to combine these two components.

A detailed examination reveals fundamental differences
between LIBLIT05 and SOBER. First, from the methodologi-
cal point of view, LIBLIT05 estimates how much more likely
an execution crashes if the predicate P is observed as true

in comparison with if P is observed as either true or false.
This indicates that LIBLIT05 places a greater value on
predicates whose true evaluation correlates with program
crashes. SOBER, on the other hand, models the evaluation
distribution of the predicate P in passing (i.e., fP ðXj�pÞ) and
failing (i.e., fP ðXj�fÞ) executions, respectively, and regards
predicates with large differences between fP ðXj�fÞ and
fP ðXj�pÞ as fault-relevant. Therefore, SOBER and LIBLIT05
actually follow two fundamentally different approaches,
although both of them rank predicates statistically. Sec-
ondly, SOBER explores the multiple evaluations of pre-
dicates within one execution while LIBLIT05 overlooks this
information. For instance, if a predicate P evaluates as true
at least once in each execution, and has different likelihood
to be true in passing and failing executions, LIBLIT05
simply overlooks P while SOBER can readily capture the
evaluation divergence.

Let us reexamine the program in Fig. 1 presented in
Section 2. The faulty statement (line 7) is executed in almost
every execution. Within each run, it evaluates multiple
times as either true or false. In this case, LIBLIT05 has little
discrimination power. Specifically, for the predicate

P : }ðm >¼ 0Þ ¼ true};

IncreaseðP Þ ¼ 0:0104, and the Increase value for predicate

P 0 : }ðm >¼ 0Þ ¼ false}

is �0:0245. According to [12], neither P nor P 0 is ranked on
top since they are either negative or too small. Thus,
LIBLIT05 fails to identify the fault. In comparison, SOBER

successfully ranks the predicate P as the most suspicious
predicate. Intuitively, this is because the evaluation bias in
failing executions (0.9024) significantly diverges from that
in passing ones (0.2952).

4 EMPIRICAL COMPARISON WITH EXISTING

TECHNIQUES

In this section, we empirically evaluate the effectiveness of
SOBER in fault localization. We compare SOBER with seven
existing fault localization algorithms under the same setting
as previous studies. Section 4.1 first describes the experi-
mental setup, which includes the subject programs, the
metric for localization quality, and the implementation
details. We briefly explain the seven fault localization
algorithms in Section 4.2. Detailed comparison results are
presented in Sections 4.3 and 4.4. Finally, Section 4.5
compares these algorithms from different perspectives
other than the localization accuracy.

4.1 Experimental Setup

In this study, we use the Siemens suite as the subject
programs. The Siemens suite was originally prepared by
Siemens Corp. Research in a study of test adequacy criteria
[17]. It contains 132 faulty versions of seven subject
programs, where each faulty version contains one and only
one manually injected fault. Table 1 lists the characteristics
of the seven subject programs. The medians of the failing
and passing cases are taken over all the faulty versions of
each subject program. Readers interested in more details
about the Siemens suite are referred to [17], [18].

Previously, many researchers investigating fault locali-
zation have reported their results on the Siemens suite [11],
[20], [4], [6]. Because no failures are observed for the 32nd
version of the replace program and the 10th version of the
schedule2 program on the accompanying test suites, these
two versions are excluded in previous studies [4], [6], [21],
as well as in this one.

In order to objectively quantify the localization accuracy,
an evaluation framework based on program static depen-
dencies is adopted in this study. This measure was
originally proposed by Renieris and Reiss [4], and was

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

TABLE 1
Characteristics of Subject Programs

later adopted by Cleve and Zeller in reporting the quality of
CT [6]. We briefly summarize this measure as follows:

1. Given a (faulty) program P, its program depen-
dence graph (PDG) is written as G, where each
statement is a vertex and there is an edge between
two vertices if two statements have data and/or
control dependencies.

2. The vertices corresponding to faulty statements are
marked as defect vertices. The set of defect vertices is
written as Vdefect.

3. Given a fault localization report R, which is a set of
suspicious statements, their corresponding vertices
are called blamed vertices. The set of blamed vertices
is written as Vblamed.

4. A developer can start from Vblamed and perform a
breadth-first search until he reaches one of the defect
vertices. The set of statements covered by the
breadth-first search is written as Vexamined.

5. The T -score, defined as follows, measures the
percentage of code that has been examined in order
to reach the fault:

T ¼ jVexaminedj
jV j � 100%; ð15Þ

where jV j is the size of the program dependence
graph G. In [4], [6], the authors used 1� T as an
equivalent measure.

The T -score estimates the percentage of code a devel-
oper needs to examine (along the static dependencies)
before the fault location is found, when a fault localization
report is provided. A high quality fault localization is
expected to be a small set of statements that are close to
(or contain) the fault location. The above definition of
T -score is immediately applicable to localizations that
consist of a set of “blamed” statements. For algorithms that
generate a ranked list of all predicates, like LIBLIT05 and
SOBER, the corresponding statements of the top k pre-
dicates are taken as a fault localization report. The optimal
k is the one that minimizes the average examined code
over a set of faults under study, i.e.,

kopt ¼ argmin
k

E½Tk�: ð16Þ

where E½Tk� is the average T -score for the given set of faults
for any fixed k.

As the above defined T -score is calculated based on
PDGs, we call it PDG-based. Recently, another kind of
T -score was used by Jones and Harrold in reporting the
localization results of TARANTULA [8]. The TARANTULA

tool produces a ranking of all executable statements, and the
authors calculate the T -score directly from the ranking.
Instead of taking the top k statements and calculating the
T -score based on PDGs, the authors examine whether the
faulty statements are ranked high. Specifically, a developer
is assumed to examine statement by statement from the top
of the ranking until a faulty statement is touched. The
percentage of statements examined by then is taken as the
T -score. We call the T -score calculated in this way
ranking-based. Apparently, the ranking-based T -score as-
sumes a different code examination strategy than that
assumed by the PDG-based, i.e., along the ranking rather
than along the dependencies. Intuitively, the PDG-based

approach is closer to practice. Moreover, the ranking-based
T -score is not as generally applicable as the PDG-based,
because it requires a ranking of all statements. For example,
none of the discussed algorithms in Section 4.2, except
TARANTULA, can be evaluated using the ranking-based
approach, but TARANTULA can be evaluated by the PDG-
based T -score by taking the top k statements as a fault
localization report.

In this study, we compare SOBER with seven existing
fault localization algorithms (described in the next section).
Among them, we implemented LIBLIT05 in Matlab and
validated the correctness of the implementation with the
original authors. For the other six algorithms, the localiza-
tion result on the Siemens suite is taken directly from their
corresponding publications.

We instrumented the subject programs with two kinds of
predicates: branches and function returns, which are
described in detail in [7], [12]. In particular, we treat each
branch conditional as one inseparable instrumentation unit,
and do not consider each subclause separately. For better
fault localization, one may be tempted to introduce more
predicates. But the introduction of more predicates is a
double-edged sword. On the positive side, an expanded set
of predicates is more likely to cover the faulty code; but the
superfluous predicates brought in can nontrivially compli-
cate the predicate ranking. So far, no agreement has been
reached on what are the “golden predicates.” At runtime,
the evaluation of predicates is collected without sampling
for both LIBLIT05 and SOBER.

All experiments in this section were carried out on a
3.2 GHz Intel Pentium-4 PC with 1 GB physical memory,
running Fedora Core 2. In calculating the T -scores, we used
CODESURFER 1.9 with patch 3 to generate the program
dependence graphs. Because PDGs generated by CODE-

SURFER may vary with different build options, the factory
default (by enabling the factory-default switch) is
used to allow reproducible results in the future. Moreover,
the Matlab source code of SOBER and the instrumented
Siemens suite are available online at http://www.ews.
uiuc.edu/~chaoliu/sober.htm.

4.2 Compared Fault Localization Algorithms

We now briefly explain the seven fault localization
algorithms we compare with SOBER. As LIBLIT05 is already
discussed in Section 3.7, we only describe the other six
algorithms below:

. Set-Union. This algorithm is based on the program
spectra difference between a failing case f and a set
of passing cases P . Specifically, let SðtÞ be the
program spectra of running the test case t. Then, the
set difference between SðfÞ and the union spectra of
cases in P is taken as the fault localization report R,
i.e., R ¼ SðfÞ � [pi2PSðpiÞ. This algorithm is de-
scribed in [4], and we denote it by UNION for
brevity.

. Set-Intersect. A complementary algorithm to UNION

is also described in [4]. It is based on the set
difference between the spectra of the failing case
and the intersection spectra of passing cases, namely,
the localization report R ¼ \pi2PSðpiÞ � SðfÞ. We
denote this algorithm by INTERSECT.

LIU ET AL.: STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED APPROACH 7

. Nearest Neighbor. The nearest neighbor approach,
proposed by Renieris and Reiss in [4], contrasts the
failing case to the passing case that most “resembles”
the failing case. Namely, the localization report
R ¼ SðfÞ � SðpÞ, where p is the nearest passing case
to f as measured under certain distance metrics. The
authors studied two distance metrics and found that
the nearest neighbor search based on the Ulam’s
distance renders better fault localization. This algo-
rithm is denoted as NN/PERM by the original
authors.

. Cause Transition. The Cause Transition algorithm
[6], denoted as CT, is an enhanced variant of Delta
Debugging [5]. Delta Debugging contrasts the
memory graph [22] of one failing execution, ef ,
against that of one passing execution, ep. By carefully
manipulating the two memory graphs, Delta Debug-
ging systematically narrows the difference between
ef and ep down to a small set of suspicious variables.
CT enhances Delta Debugging by exploiting the
notion of cause transition: “moments where new
relevant variables begin being failure causes” [6].
Therefore, CT essentially implements the concept of
“search in time” in addition to the original “search in
space” used in Delta Debugging.

. Tarantula. The TARANTULA tool was originally
presented to visualize the test information for each
statement in a subject program, and it was shown to
be useful for fault localization [23]. In a recent study
[8], the authors took ð1� hueðsÞÞ as the fault
relevance score for the statement s, where hueðsÞ is
the hue component of each statement in visualiza-
tion [23]. With the fault relevance score calculated
for each statement, TARANTULA produces a ranking
of all executable statements. Developers are ex-
pected to examine the ranking from the top down
to locate the fault.

. Failure-Inducing Chops. Gupta et al. recently
propose a fault localization algorithm that inte-
grates delta debugging and dynamic slicing [9].
First, a minimal failure-inducing input f 0 is derived
from the given failing case f using the algorithms
of Zeller and Hildebrandt [24]. Then, a forward
dynamic slice, FS, and a backward slice, BS, are

calculated from f 0 and the erroneous output,
respectively. Finally, the intersection of FS and
BS, i.e., the chop, is taken as the fault localization
report, namely, R ¼ FS \BS. We denote this
algorithm by SLICECHOP.

In previous studies, comparisons of some of the above
algorithms are reported. Specifically, Renieris and Reiss
found that NN/PERM outperformed both UNION and
INTERSECT [4], whereas Cleve and Zeller later reported
that a better result than NN/PERM was achieved by CT [6].
These reported results are all based on the PDG-based
T -score. As CT achieves the best localization result as
measured with the PDG-based T -score, we compare SOBER

with CT and LIBLIT05 in Section 4.3 using the same
measure. Because TARANTULA and SLICECHOP results
are not reported with the PDG-based T -score, we compare
SOBER with them separately in Section 4.4.

4.3 Comparison with LIBLIT05 and CT

In this section, we compare SOBER with CT and LIBLIT05.
We subject both LIBLIT05 and SOBER to the 130 faults in the
Siemens suite and measure their localization quality using
the PDG-based T -score (15). The result of CT is directly cited
from [6].

Fig. 4a depicts the number of faults that can be located
when a certain percentage of code is examined by a
developer. The x-axis is labeled with T -score. For LIBLIT05
and SOBER, we choose the top five predicates to form the set
of blamed vertices. Because localization that still requires
developers to examine more than 20 percent of the code is
generally useless, we treat only [0, 20] as the meaningful
T -score range. Under these circumstances, SOBER is
apparently better than LIBLIT05, while both of them are
consistently superior to CT.

For practical use, it is instructive to know how many (or
what percentage of) faults can be identified when no more
than � percent of the code is examined. We therefore plot
the cumulative comparison in Fig. 4b. It clearly suggests
that both SOBER and LIBLIT05 are much better than CT and
that SOBER outperforms LIBLIT05 consistently. Although
LIBLIT05 catches up when the T -score is 60 percent or
higher, we regard this advantage as irrelevant because it
hardly makes sense for a fault locator to require a developer
to examine more than 60 percent of the code.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

Fig. 4. Located faults with regard to code examination. (a) Interval comparison. (b) Cumulative comparison.

Fig. 4b shows that, for the 130 faults in the Siemens suite,
when a developer examines at most 1 percent of the code,
CT catches 4.65 percent of the faults while LIBLIT05 and
SOBER capture 7.69 percent and 8.46 percent, respectively.
Moreover, when 10 percent code examination is acceptable,
CT and LIBLIT05 identify 34 (26.36 percent) and 52
(40.00 percent) of the 130 faults. SOBER is the best of the
three, locating 68 (52.31 percent) of the 130 faults, which is
16 faults more than the state-of-the-art approach LIBLIT05. If
the developer is patient enough to examine 20 percent of the
code, 73.85 percent of the faults (i.e., 96 of 130) can be
located by SOBER.

We also vary the parameter k in calculating the T -score
for both LIBLIT05 and SOBER. The quality comparison is
plotted in Fig. 5 for k varying from 1 through 8. The
comparison is confined within the [0, 20] T -score range.
Since detailed results about CT is not available in [6], CT is
still depicted only at the 1, 10, and 20 ticks. Fig. 5 shows that
LIBLIT05 is the best when k is equal to 1 or 2. When k ¼ 3,
SOBER catches up, and it consistently outperforms LIBLIT05
afterward. Because developers are always interested in
locating faults with minimal code checking, it is desirable to
select the optimal k that maximizes the localization quality.
We found that both LIBLIT05 and SOBER achieve their best
quality when k is equal to 5. In addition, Fig. 6 plots the
quality of SOBER with various k-values. It clearly indicates
that SOBER locates the largest number of faults when k is
equal to 5. Therefore, the setting of k ¼ 5 in Fig. 4 is
justified. Finally, Fig. 6 also suggests that too few predicates
(e.g., k ¼ 1) may not convey enough information for fault
localization, while too many predicates (e.g., k ¼ 9) are in
themselves a burden for developers to examine and, thus,
neither of them leads to the best result.

Besides being accurate in fault localization, SOBER is also
computationally efficient. Suppose we have n correct and
m incorrect executions. Then, the time complexity of scoring
each predicate is OðnþmÞ. If there are, in total, k predicates
instrumented, the entire time complexity of SOBER is

OððnþmÞ � kþ k � logðkÞÞ. Similarly, LIBLIT05 also needs

OðnþmÞ to score each predicate, and its time complexity is
also OððnþmÞ � kþ k � logðkÞÞ. We experimented with the
31 faulty versions of the replace program, and the average
time for unoptimized LIBLIT05 and SOBER to analyze each

version was 11.7775 seconds and 11.3844 seconds, respec-
tively. This is much faster than CT, as reported in [6].

4.4 Comparison with Tarantula and SLICECHOP

We now compare SOBER with TARANTULA and SLICE-
CHOP. Recently, Jones and Harrold. [8] reported the result
of TARANTULA on the Siemens suite with the ranking-
based T -score, and compared it with previous PDG-based
T -scores of CT, NN/PERM, INTERSECT, and UNION. As it is
unclear to what extent these two kinds of T -score agree with
each other, we assume they are equivalent, as Jones and
Harrold did in [8]. More investigation, however, is needed
to clarify this issue in the future. Moreover, because the

LIU ET AL.: STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED APPROACH 9

Fig. 5. Quality Comparison with regard to various top k Values. (a) Top one. (b) Top two. (c) Top three. (d) Top four. (e) Top five. (f) Top six. (g) Top
seven. (h) Top eight.

Fig. 6. Quality of SOBER with regard to top-k values.

authors failed to compare TARANTULA with statistical
debugging in [8], this study fills the gap.

We differ from previous comparisons in choosing to
compare algorithms in terms of the absolute number of
faulty versions on which an algorithm renders a T -score of
no more than � percent. Previously, different subsets of the
Siemens suite were used by different authors, and the
percentages based on the different subsets are put together
for comparison [4], [6], [8], [9]. Specifically, the reported
percentages for UNION, INTERSECT and NN/PERM are
based on 109 faulty versions, and the percentage for CT is
based on 129 versions. In the previous section, the
percentages for LIBLIT05 and SOBER are calculated on the
whole-set 130 versions. In a recent study of TARANTULA
and SLICECHOP [8], [9], 122 and 38 faulty versions are used
by the original authors, respectively.

Therefore, based on the reported percentage and the
chosen subset of faulty versions, we recover how many
faults are located by each algorithm with a T -score no more
than � percent, and Fig. 7 shows the effectiveness compar-
ison in terms of the absolute number of faulty versions.
Because the study of SLICECHOP excluded 91 faulty versions,
for fairness it is not plotted in Fig. 7. Instead, we compare
SOBER with SLICECHOP separately later.

Fig. 7 clearly shows that the effectiveness of the seven
algorithms is at three different levels. The algorithms UNION

and INTERSECT are the least effective andNN/PERM and CT

are in the middle, with CT being better than NN/PERM. The
other three algorithms: LIBLIT05, TARANTULA and SOBER,
apparently have the best result on the Siemens suite.

We now compare TARANTULA with SOBER in detail.
They both locate 68 faults when the T -score is no more than
10 percent. When the T -score is less than 1 percent,
TARANTULA and SOBER locate 17 and 11 faults, respec-
tively. On the other hand, with the T -score no more than
20 percent, SOBER can help locate 96 out of the 130 faults,
whereas TARANTULA helps locate 75. Since the comparison
is based on the assumption of the equivalence between the
PDG-based and ranking-based T -scores, we refrain from
drawing conclusions about the relative superiority of either
method. Ultimately, the effectiveness of all fault localization
algorithms will be assessed by end-users in practice.

We now compare SOBER with SLICECHOP. In the study
of SLICECHOP [9], the authors excluded the program tcas
from the Siemens suite due to its small size, and they

exclude the program tot_info because, at that time, their
framework could not handle floating point operations. For
the remaining five subject programs, which consist of 66
faulty versions in total, another 28 faulty versions were
excluded for various reasons, leaving 38 versions used in
the final evaluation. The authors reported that for 23 out of
the 38 versions, no more than 10.4 percent of the source
code needed to be examined. We checked the quality of
SOBER on the 66 versions of the five subject programs, and
found that the T -score is less than 10.4 percent on
43 versions. Moreover, within the 38 faulty versions
examined by SLICECHOP in [9], SOBER has a T -score of less
than 8.4 percent on 27 versions. Because the ratio of
examined code was not reported for each of the 38 versions
in [9], no further comparison is performed here between
SOBER and SLICECHOP.

4.5 Comparison from Other Perspectives

A comprehensive comparison between fault localization
algorithms is hard, and many aspects must be considered
for a fair comparison. For example, some important aspects
are the runtime overhead, analysis complexity, localization
accuracy, and the accessibility of final fault localization
reports. So far, we have been focusing on localization
accuracy and have demonstrated that SOBER is one of the
most accurate algorithms. However, when compared on
other aspects, SOBER might be inferior to other techniques,
at least in its current state.

First, some techniques, like NN/PERM, CT and
SLICECHOP, only need one failing and multiple passing
cases for fault localization, whereas SOBER, LIBLIT05 and
TARANTULA, in principle, need to collect the statistics from
multiple failing cases. Secondly, SOBER could be inferior to
LIBLIT05 in terms of the runtime overhead due to
instrumentation. Specifically, since LIBLIT05 is based on
the predicate coverage data, the instrumentation on a
predicate can be disabled once the predicate has been
evaluated (in a similar way to Jazz [25]). In contrast, SOBER
needs to count the evaluation frequency throughout the
execution. Finally, some algorithms, including TARANTULA,
LIBLIT05 and Delta Debugging, have provided visual
interfaces to increase their accessibility. Currently, no visual
interface is available for SOBER, but one could be added in
the future.

5 SOBER IN AN IMPERFECT WORLD

Besides the probabilistic treatment of program predicates,
there are two other factors that implicitly contribute to
SOBER’s effectiveness shown in Section 4. First, the test suite
in the experiment is reasonably adequate given the program
code size: Each subject program of the Siemens suite is
accompanied by a few thousand test cases.1 Intuitively,
more-reliable statistics can be collected from a more-
adequate test suite and would enable SOBER to produce
better fault localizations. Second, by taking the fault-free
version as the test oracle, each execution is precisely labeled
as either passing or failing. This provides SOBER with a
noise-free analysis environment, which likely benefits
SOBER’s inference ability.

Although these two elements are highly desirable for
quality localization, they are usually not available in

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

1. In this paper, we take the number of test cases as a rough measure of
the test adequacy. More involved discussion about test adequacy is out of
the scope of this study.

Fig. 7. Quality comparison between existing algorithms.

practice due to the potential high cost. For example, because
the program specification varies from one component to
another, exclusive test scripts for each component must be
prepared by human testers. Although some tools can help
expedite the generation of test cases [26], [27], [28], critical
manual work is still unavoidable. Furthermore, besides the
difficulty of test case generation, the test oracle is even
harder to construct. Again because of variations in program
functionality, it is usually humans developers who prepare
the expected outputs or pass judgment about the correct-
ness of outputs in practice.

Therefore, considering the difficulty of obtaining an
adequate test suite and a test oracle, we regard the
environment that we experimented with in Section 4 as “a
perfect world.” In order to shed some light on how SOBER

would work in practice, in this section we subject SOBER to
an “imperfect world,” where adequate test suites and test
oracles are not simultaneously available. Section 5.1 exam-
ines SOBER’s robustness to test inadequacy, and Section 5.2
studies how SOBER handles partially labeled test suites.

We regard, and hence believe, that the examination of
SOBER in an “imperfect world” is both necessary and
interesting. To some extent, this examination bridges the
gap between the perfect-world experiments (i.e., Section 4)
and real-world practices that cannot be fully covered in any
single research paper. We simulate the imperfect world
with the 130 faulty versions of the Siemens suite. In parallel
with SOBER, LIBLIT05 is also subjected to the same
experiments for a comparative study, which illustrates
how the two statistical debugging algorithms react to the
imperfect world.

5.1 Robustness to Inadequate Test Suites

Because of the cost of an adequate test suite, people usually
settle for inadequate but nevertheless satisfactory suites in
practice. For instance, during the prototyping stage, one
may not bother much with an all-around testing, and a
preliminary test suite usually suffices. We now simulate an
inadequate test suite by sampling (without replacement) the
accompanying test suite of the Siemens suite. The sampled
test suite becomes more and more inadequate as the
sampling rate gets smaller.

Specifically, for each faulty version of the Siemens suite,
we randomly sample a portion � ð0 < � � 1Þ of the original
test suite T . Suppose T consists of N test cases. Then,
dN � �e cases are randomly taken, constituting a �-sampled

test suite, denoted as T�. Because both SOBER and LIBLIT05
need at least one failing case, the above sampling is
repeated until at least one failing case is included. Finally,
both SOBER and LIBLIT05 are run on the same T� for each
faulty program.

Fig. 8 plots how the quality varies with different
sampling rates for both SOBER and LIBLIT05. We set �
equal to 100 percent, 10 percent, 1 percent and 0.1 percent,
respectively, so that T100% represents the entire test suite
and each of the following is roughly one-tenth as small as
the previous one. As � gets smaller, the localization quality
of both SOBER and LIBLIT05 gradually degrades. For
example, in Fig. 8a, curves for smaller �s are strictly below
those for higher sampling rates. A similar pattern for
LIBLIT05 is also observed in Fig. 8b. These observations are
easily explainable. In statistical hypothesis testing, the
confidence of either accepting or rejecting the null hypothesis
is, in general, proportional to the number of observations.
Because SOBER bears a similar rationale to hypothesis
testing, its quality naturally improves as more and more test
cases are observed. Because LIBLIT05 relies on the accurate
estimation of the two conditional probabilities, its quality
also improves with more labeled test cases due to the Law
of Large Numbers.

In Fig. 8a, one can also notice that the curve for � ¼ 10%

is quite close to the highest. This suggests that SOBER

obtains competitive results even when the test suite is only
one-tenth of the original. Moreover, Fig. 8 also indicates that
even when � is as low as 0.1 percent, both SOBER and
LIBLIT05 are still consistently better than CT. Based on the
typical suite size from Table 1, T0:1% contains at most six test
cases, at least one of which is failing. As one can see, even
with such an insufficient test suite, both SOBER and
LIBLIT05 still outperform CT. For example, without exam-
ining more than 20 percent of the code, SOBER and LIBLIT05
locate 53.08 percent and 51.54 percent of the 130 faults
respectively, while CT works well with 38 percent of the
versions. This could be attributed to the underlying

LIU ET AL.: STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED APPROACH 11

Fig. 8. Quality degradation with regard to � percent-sampled test suite. (a) Quality of SOBER with regard to sampled test suite. (b) Quality of LIBLIT

with regard to sampled test suite.

mechanism of CT: It localizes faults by systematically
contrasting the memory graphs of one passing and one
failing execution. However, because the faults in the
Siemens suite are mainly logic errors that rarely cause
memory abnormalities, CT has difficulties in identifying the
“delta” and further locating the fault. On the other hand,
because predicates express logic relations, it is no surprise
that predicate-based algorithms work better.

Beside varying the sampling rate �, we also examined
how the quality changed with respect to the absolute size of
the test suite. However, because the size of the accompany-
ing test suite and the failing rate drastically vary from one
faulty version to another, it makes little sense to set a
uniform size for the test suite for quality examination. We
therefore refrain from doing so, but choose instead to study
how the number of failing cases could affect the localization
quality, as described in the next section.

5.2 Handling Partially Labeled Test Suites

Although an adequate test suite is difficult to obtain,
preparing a test oracle that can automatically recognize
each execution as either passing or failing is even harder. In
some situations, test case generation can be relatively easy.
For example, one can simply feed random strings to a
program that consumes string inputs. However, these test
cases are hardly useful until we know the expected outputs.

In practice, except for programs that can be described by
a program model, the expected outputs are usually
prepared by human testers, either manually or assisted by
tools. It is usually unrealistic for a tester to examine
thousands of executions and label them. Instead, a tester
will likely stop testing and return the faulty program to
developers for patches when a small number of failing cases
are encountered. At that time, the examined cases are labeled
and the rest are unlabeled. This describes a typical scenario
which exemplifies how partially labeled test suites arise in
practice. In this section, we examine how well SOBER helps
developers locate the underlying faults, when the test suite
is partially labeled.

Formally, given a test suite T , suppose a tester has

examined and labeled a subset suite Te ðTe � T Þ. Because
manual labeling is usually expensive, it is common that

jTej � jT j. Let Tp and Tf denote the set of passing and

failing runs identified by the tester. Then, Te ¼ Tp [Tf and

Tp \ Tf ¼ �. We use Tu to denote the unexamined part of the

suite, i.e., Tu ¼ T � Te. T is partially labeled if and only if

Tu 6¼ �. The set relationship is further depicted in Fig. 9a.

The outer ellipse represents the entire test suite T . The

vertical line divides T into the full failing set T t
f on the left

and the full passing set T t
p on the right. Certainly, Tf � T t

f

and Tp � T t
p . As seen in Fig. 8a, the best localization is

achieved by SOBER when Tf ¼ T t
f and Tp ¼ T t

p , i.e., when

the given test suite T is fully labeled.

Now, given the partially labeled test suite T , the most

straightforward scheme for SOBER is to analyze labeled test

cases Te only. Because Te is fully labeled, SOBER can be

immediately applied with Te. In fact, this scheme is

equivalent to running SOBER on a �-sampled test suite,

where � 	 jTej
jT j and is usually quite small. As a conservative

estimation, � can be around 1 percent. In considering the

Siemens programs, � ¼ 1% means that the tester examines

tens among thousands of test cases and identifies about five

failing runs on the average. In our opinion, this can be a

reasonable workload for the tester.
This scheme, although straightforward, does render

reasonable localization results. As shown in Fig. 8a,
“SOBER 1% Sampled” is clearly better than CT. But it is
also seen that a considerable gap exists between “SOBER
0.1% Sampled” and “SOBER 100% Sampled.” For concise
reference, we use SOBER_FULL to denote “SOBER 100%
Sampled” in the following. Although the same quality as
SOBER_FULL is not (unrealistically) expected when T is
partially labeled, we nevertheless believe that Tu can be
utilized for better quality than that with Te only.

The above straightforward scheme apparently overlooks
the information contained in Tu. Although Tu bears no
labeling information, its runtime statistics, if used properly,
can assist SOBER in fault analysis. In this study, we restrict
our discussion to reasonably developed programs that pass
all but a few test cases. One can judge whether this
assumption holds by examining the percentage of failing
cases in Te. For example, if a program fails most cases in Te,
the fault could be quite easy to find. For reasonably
developed programs, we can choose to label all the
unexamined test cases Tu as passing and apply SOBER to
the regarded failing and passing set T 0

f and T 0
p, where T 0

f ¼ Tf

and T 0
p ¼ Tp [Tu. The difference between the two schemes

is visualized in Fig. 9.

Let Tm represent the set of unexamined failing cases, i.e.,

Tm ¼ T t
f � Tf . Then, all the cases in Tm are mislabeled as

passing in the above treatment. While this mislabeling

unavoidably introduces impurity into T 0
p, the effect it has on

SOBER is minimal: The �p calculated with T 0
p deviates

negligibly from that with T t
p because T

0
p ¼ Tp [Tu ¼ T t

p [Tm

and jTmj � jTf j � jT t
pj.

On the other hand, by mislabeling Tm, we utilize the
runtime statistics of the cases in T t

p � Tp, which are
otherwise disregarded. In this way, �p can be estimated
more accurately with T 0

p than with Tp only. This could
subsequently bring better localization quality. Therefore,
this is essentially a trade-off between grabbing more
passing runs and (unavoidably) mislabeling some failing
runs. In our belief, the gain from including more passing
executions should surpass the loss from mislabeling. As
will be shown shortly, this scheme achieves much better

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

Fig. 9. Two schemes to work with partial-labeled test suite. (a) Scheme

with labeled cases only. (b) Scheme with both labeled and unlabeled

cases.

results than the straightforward scheme, and sometimes it
even obtains comparable results to SOBER_FULL.

We simulate partially labeled test suites using the
Siemens programs. For each faulty version, we randomly
select m failing cases as Tf (i.e., the set of failing cases
identified by the tester). According to the above scheme, all
the remaining cases are regarded as passing, i.e., T 0

p. We
then run both SOBER and LIBLIT05 with the same T 0

p and T 0
f

(recall that T 0
f ¼ Tf) for each of the 130 faulty versions. We

experiment with m equal to 1, 3, 5, and 10, respectively, and
this represents the increasing effort that the tester puts into
test evaluation. If a faulty version does not have m failing
cases, we take all the failing cases. In the Siemens suite,
there are 0, 4, 14, and 19 versions that have less than 1, 3, 5,
and 10 failing cases. These versions were not excluded
because they do represent real situations.

Fig. 10 plots the localization quality for both SOBER and
LIBLIT05 with m equal to 1, 3, 5, and 10, respectively.
Curves for CT and SOBER_FULL are also plotted as the
baseline and ceiling quality in each subfigure. Among the
four subfigures, Fig. 10a represents the toughest situation,
where only one failing case is identified in each faulty
version. This simulates a typical scenario where a developer
starts debugging once a faulty execution is encountered. As
expected, the quality of SOBER degrades considerably from
SOBER_FULL, but it is still better than CT.

We note that them ¼ 1 situation is at least as harsh as the
situation with 0.1 percent-sampled test suites, as shown in
Fig. 8a. Nevertheless, at least one failing run is in every
0.1 percent-sampled test suite. In order to demonstrate the
effect of treating Tu as passing, we replot the curve of SOBER

with � ¼ 0:1% in Fig. 10a with a dashed line. The
remarkable gap between “SOBER” and “SOBER, 0.1%”
suggests the benefit of treating unlabeled cases as passing.

The four subfigures of Fig. 10, viewed in a sequence,
show that the quality of SOBER gradually improves as
additional failing cases are explicitly labeled. Intuitively, the
more failing cases that are identified, the more accurately
the statistic Y (4) approaches to the true faulty behavior of
predicate P and, hence, the higher quality of the final
predicate ranking list. LIBLIT05 also improves for a similar
reason.

5.3 Summary

In this section, we empirically examined how SOBER works
in an imperfect world, where either the test suite is
inadequate or only a limited number of failing executions
are explicitly identified. The experiment demonstrates the
robustness of SOBER under these harsh conditions. In
addition, the scheme of tagging all unlabeled cases as
passing is shown effective in leveraging SOBER’s quality.

6 EXPERIMENTAL EVALUATION WITH LARGE

PROGRAMS

Although the 130 faulty versions of the Siemens programs
are appropriate for algorithm comparison, the effectiveness
of SOBER nevertheless needs to be assessed on large
programs. In this section, we report on the experimental
evaluation of SOBER on two (reasonably) large programs,
grep 2.2 and bc 1.06. Moreover, as two faults are located in
each program, this evaluation also illustrates how SOBER

helps developers handle multifault cases. The detailed
experimental results with grep 2.2 and bc 1.06 are
presented in Sections 6.1 and 6.2, respectively.

6.1 A Controlled Experiment with grep 2.2

We obtained a copy of the grep 2.2 subject program from
the “Subject Infrastructure Repository” (SIR) [29]. The
original code of grep 2.2 has 11,826 lines of C code, as
counted by the tool SLOCCount [30], while the announced
size of the modified version at SIR is 15,633 LOC. A test
suite of 470 test cases is available at SIR for the program. We
tried out all the seeded faults provided by SIR, but found no
fault incurred failures on the accompanying test suite. We
therefore manually injected two faults in the source code, as
shown in Fig. 11 and Fig. 12, respectively.

The first fault (shown in Fig. 11) is an “off-by-one”
error: an expression “+1” is appended to line 553 in the
grep.c file. This fault causes failures in 48 of the 470 test
cases. The second fault (in Fig. 12) is a “subclause-
missing” error. The subclause ðlcp½i� ¼¼ rcp ½i�Þ is
commented out at line 2270 in file dfa.c. The fault incurs
another 88 failing cases.

Although these two faults are manually injected, they do
mimic realistic logic errors. Logic errors like “off-by-one” or
“subclause-missing” may sneak in when developers are
handling obscure corner conditions. Because logic errors,
like these two, do not generally incur program crashes, they
are usually harder to debug than those causing program
crashes. In the following, we illustrate how SOBER helps
developers find these two faults.

We first instrument the source code. According to the
instrumentation schema described in Section 4.1, grep 2.2 is
instrumented with 1,732 branch and 1,404 return predicates.
The first run of SOBER with the 136 failing (due to the two
faults) and the remaining 334 passing cases produces a
predicate ranking, whose top three predicates are listed in
Table 2. For easy reference, the three predicates are also
marked at their instrumented locations in Fig. 11 and
Fig. 12.

As we can see, the predicates P1 and P2 point to the
faulty function for the first fault. The predicate P1 is four

LIU ET AL.: STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED APPROACH 13

Fig. 10. Quality comparison with regard to the number ðmÞ of labeled failing cases. (a) m ¼ 1. (b) m ¼ 3. (c) m ¼ 5. (d) m ¼ 10.

lines above the real fault location. The predicate P3, on the

other hand, points directly to the exact location of the

second fault. Now, let us explore how these top predicates

help developers locate the faults.
Given the top-ranked predicates, it is natural to ask why

they are ranked high. We find that the sample mean and

standard deviation of the evaluation bias of P1 (denoted by
�ðP1Þ) are 0.90 and 0.25 in the 136 failing cases but are 0.99

and 0.065 in the remaining 344 passing cases. This suggests

that P1 is mostly evaluated true in passing cases with a
small variance but is mostly evaluated false in some failing

cases, as indicated by its much larger variance in failing

cases. By examining �ðP1Þ in the failing cases, we find that

�ðP1Þ is smaller than 0.1 in five failing cases. Therefore, we
know that P1 can be evaluated mostly as false in these

failing cases, whereas it is mostly true in passing cases.

Similarly, we find that P2 is considerably evaluated as true
in failing cases, but mostly false in passing cases.

We notice that when P2 evaluates true, the variable
lastout is reset to 0, which immediately causes P1 to
evaluate as false in the next iteration. This explains why
predicates P1 and P2 are both ranked at the top. In order to
find why “beg !¼ lastout” tends to evaluate to true in
failing cases, a developer would pay attention to the
assignment to variables beg and lastout. Within the
for loop from lines 541 through 580, there are no other
assignments to lastout except lines 549 and 575. Then, the
developer would examine lines 553, 566, and 571, where
beg gets assigned. A developer familiar with the code will
then identify the fault.

After fixing the first fault, a second run of SOBER with
the 88 failing and 382 passing cases puts P3 at the top. A
developer paying more attention to line 2270 of the dfa.c file
would find the fault, as P3 points to the exact fault location.
Because SOBER is only for fault localization, it is the
developer’s responsibility to confirm the fault location and
fix it. To the best of our knowledge, no tools can
automatically suggest patches for logic errors without
assuming any specifications.

6.2 A Case Study with bc 1.06

In this section, we report a case study of SOBER with a real-
world program bc 1.06, on which SOBER identifies two
buffer overflow faults, one of which has never been
reported before.

bc is a calculator program that accepts scripts written in
the bc language, which supports arbitrary precision calcula-
tions. The 1.06 version of the bc program is shipped with
most recent UNIX/Linux distributions. It has 14,288 LOC,
and a buffer overflow fault has been reported in [7], [12].

This experiment was conducted on a 3.06 GHz Pentium-4
PC running Linux RedHat 9 with gcc 3.3.3. Inputs to bc
1.06 are 4,000 valid bc programs that are randomly
generated with various size and complexity. We generate
each input program in two steps: First, a random syntax tree
is generated in compliance with the bc language specifica-
tion; second, a program is derived from the syntax tree.

With the aid of SOBER, we quickly identify two faults in bc
1.06, including one that has not been reported. Among the

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

Fig. 12. Fault 2: A subclause-missing error in dfa.c.

TABLE 2
Top Three Predicates from the First Run of SOBER

Fig. 13. First Fault in bc 1.06, in storage.c.

Fig. 11. Fault 1: An off-by-one error in grep.c.

4,000 input cases , the bc 1.06program fails 521 of them.After
running through these test cases, the analysis from SOBER
reports “indx < old count” as the most fault-relevant
predicate. This predicate points to the variable old_ count

in line 137 of storage.c (shown in Fig. 13). A quick scan of the
code shows that old_count copies its value from v_count.
By putting a watch on v_count, we find that v_count is
overwrittenwhenabuffer namedgenstroverflows (inbc.y,
line 306). The buffer genstr is 80 bytes long and is used to
hold bytecode characters. An input containing complex and
relatively large functions can easily overflow it. To the best of
our knowledge, this fault has not been reported before. We
manually examine the statistics of the top-ranked predicate
and find that its evaluation bias in correct and incorrect
executions is 0.0274 and 0.9423, respectively, which intui-
tively explains why SOBER works. LIBLIT05 also ranks the
same predicate at the top.

After fixing the above fault, a second run of SOBER (3,303
correct and 697 incorrect cases) generates a fault report with
the top predicate “a count < v count,” which points to
line 176 of storage.c (shown in Fig. 14). This is likely a copy-
paste error where a_count should have been used in the
position of v_count. This fault has been reported in
previous studies [7], [12].

As a final note, predicates identified by SOBER for these
two faults are far from the actual crashing points. This
suggests that SOBER picks up predicates that characterize
the scenario under which faults are triggered, rather than
the crashing venues.

7 DISCUSSION

7.1 Related Work

In this section, we briefly review previous work related to
fault detection in general. Static analysis techniques have
been used to verify program correctness against a well-
specified program model [1], [31] and to check real codes
directly for Java [2] and C/C++ programs [3]. Engler et al.
[32] further show that the correctness rules sometimes can
be automatically inferred from source code, hence saving, to
some extent, the cost of preparing specifications. Comple-
mentary to static analysis, dynamic analysis focuses more
on the runtime behavior and often assumes fewer specifica-
tions. SOBER belongs to the category of dynamic analysis.

Within dynamic analysis, most fault localization techni-
ques are based on the contrast between failing and passing
cases [4], [5], [6], [7], [8], [12], [20], [21], [33]. For example,
invariants that are formed from passing cases can suggest
potential fault locations if they are violated in any failing

cases [20]. Readers interested in the details of invariants are
referred to the project DAIKON [16]. The DIDUCE project
[14] monitors a more restricted set of predicates and relaxes
them in a similar manner to DAIKON at runtime. After the
set of predicates becomes stable, the DIDUCE tool relates
future violations as indications of potential faults. This
approach is demonstrated to be effective on four large
software systems. However, as invariants are a special kind
of predicates that hold in all passing executions, they may
not be effective in locating subtle faults as suggested by
Pytlik et al. in [20]. In comparison, the probabilistic
treatment of predicates implemented by SOBER naturally
relaxes this requirement and is shown to achieve much
better localization results on the Siemens suite.

Contrasts based on program slicing [34] and dicing [35]
are also shown effective for fault localization. For example,
Agrawal et al. [33] present a fault localization technique,
implemented as 	slice, which is based on the execution
traces of test cases. This technique displays and contrasts
the dices of one failing case to those of multiple passing
cases. Jones et al. [23] describe a similar approach
implemented as TARANTULA. Unlike 	-slice, TARANTULA
collects the testing information from all passing and failing
cases and colors suspicious statements based on the
contrast. Later, Renieris and Reiss [4] find that the contrast
renders better fault localization when the given failing case
is contrasted with the most similar passing case (i.e., the
nearest neighbor). In comparison, SOBER collects the
evaluation frequency of instrumented predicates, a much
richer information base, and quantifies the model difference
through a statistical approach.

While all the fault localization algorithms examined in
this paper are designed for programming professionals,
recent years have also witnessed an emergence of fault
localization algorithms especially tuned to assist end users
in fault diagnosis. For example, Ayalew and Mittermeir
propose a technique to trace faults in spreadsheets based on
“interval testing” and slicing [36]. Ruthruff et al. improve
this approach by allowing end-users to interactively adjust
their feedbacks [37]. The Whyline prototype realizes a new
debugging paradigm called “interrogative debugging,”
which allows users to ask why did and why didn’t questions
about runtime failures [38].

The power of statistical analysis is demonstrated in
program analysis and fault detection. Dickinson et al. find
program failures through clustering program execution
profiles [39]. Their subsequent work [40] first performs
feature selection using logistic regression and then clusters
failure reports within the space of selected features. The
clustering results are shown to be useful in prioritizing
software faults. Early work of Liblit et al. on statistical
debugging [7] also adopts logistic regression in sifting
predicates that are correlated with program crashes. In
addition, they impose L1 norm regularization during the
regression so that predicates that are really correlated are
distinguished. In comparison, our method SOBER is a
statistical model-based approach, while the above statistical
methods follow the principle of discriminant analysis.
Specifically, SOBER features a hypothesis testing-based
approach, which has not been seen in the fault localization
literature.

7.2 Threats to Validity

Like any empirical study, threats to validity should be
considered in interpreting the experimental results pre-
sented in this paper. Specifically, the results obtained

LIU ET AL.: STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED APPROACH 15

Fig. 14. Second fault in bc 1.06, in storage.c.

with the Siemens suite cannot be generalized to arbitrary
programs. However, we expect that on larger programs
with greater separation of concerns, most fault localiza-
tion techniques will do better. This expectation is
supported by existing studies with CT, LIBLIT05, and
TARANTULA [6], [8], [12], as well as the experiments in
Section 6 in this study.

Threats to construct validity concern the appropriateness
of the quality metric for fault localization results. In this
paper,we adopt thePDG-basedT -score,whichwasproposed
by Renieris and Reiss [4]. Although this evaluation frame-
work involves no subjective judgments, it is by no means a
comprehensively fair metric. For instance, this measure does
not take into account how easily a developer can make sense
of the fault localization report. Recent work [6] also identifies
some other limitations of this measurement. In previous
work, a ranking-based T -score is used to evaluate the
effectiveness of TARANTULA. Although both forms of
T -score estimate the human efforts needed to locate the fault,
it is yet unclear whether they agree. The comparison of
TARANTULA with other algorithms in Section 4.4 assumes
the equivalence between the two forms. More extensive
studies are needed to clarify this issue.

Finally, threats to internal validity concern the experi-
ments of SOBER with the programs grep 2.2 and bc 1.06,
discussed in Section 6. Specifically, the two logic errors in grep
2.2 are injected by us. However, because these two logic
errors do not incur segmentation faults, they are generally
harder todebug, even for humandevelopers. In contrast, case
studies in previous work target crashing faults [5], [6], [7],
[12]. Therefore, the experiment with grep 2.2 demonstrates
the effectiveness of SOBER on large programs with logic
errors. In order to minimize the threats to external validity
about experiments with large programs, a case studywith bc
1.06 is also presented, which illustrates the effectiveness of
SOBER on real faults. However, two experiments are still
insufficient to make claims about the general effectiveness of
SOBER on large programs. Ultimately, all fault localization
algorithms shouldbe subjected to real practice, andevaluated
by end users.

8 CONCLUSIONS

In this paper, we propose a statistical approach to localize
software faults without prior knowledge of program
semantics. This approach tackles the limitations of previous
methods in modeling the divergence of predicate evalua-
tions between correct and incorrect executions. A systema-
tic evaluation with the Siemens suite, together with two
case studies with grep 2.2 and bc 1.06, clearly demonstrates
the advantages of our method in fault localization. We also
simulate an “imperfect world” to investigate SOBER’s
robustness to the harsh scenarios that may be encountered
in practice. The experimental result favorably supports
SOBER’s applicability.

ACKNOWLEDGMENTS

The authors would like to thank Gregg Rothermel for
making the Siemens program suite available. Darko
Marinov provided the authors with insightful suggestions.
Andreas Zeller, Holger Cleve and Manos Reneris gener-
ously shared their evaluation frameworks. GrammaTech

Inc. offered the authors a free copy of CODESURFER. Last

but not the least, the authors deeply appreciate the

insightful questions, comments, and suggestions from

anonymous referees, which proved invaluable during the

preparation of this paper.

REFERENCES

[1] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[2] W. Visser, K. Havelund, G. Brat, and S. Park, “Model Checking
Programs,” Proc. 15th IEEE Int’l Conf. Automated Software Eng.
(ASE ’00), pp. 3-12, 2000.

[3] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill, “CMC: A
Pragmatic Approach to Model Checking Real Code,” Proc. Fifth
Symp. Operating System Design and Implementation (OSDI ’02),
pp. 75-88, 2002.

[4] M. Renieris and S. Reiss, “Fault Localization with Nearest
Neighbor Queries,” Proc. 18th IEEE Int’l Conf. Automated Software
Eng. (ASE ’03), pp. 30-39, 2003.

[5] A. Zeller, “Isolating Cause-Effect Chains from Computer Pro-
grams,” Proc. ACM Int’l Symp. Foundations of Software Eng.
(FSE ’02), pp. 1-10, 2002.

[6] H. Cleve and A. Zeller, “Locating Causes of Program Failures,”
Proc. 27th Int’l Conf. Software Eng. (ICSE ’05), pp. 342-351, 2005.

[7] B. Liblit, A. Aiken, A. Zheng, and M. Jordan, “Bug Isolation via
Remote Program Sampling,” Proc. ACM SIGPLAN 2003 Int’l Conf.
Programming Language Design and Implementation (PLDI ’03),
pp. 141-154, 2003.

[8] J. Jones and M. Harrold, “Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique,” Proc. 20th IEEE/ACM
Int’l Conf. Automated Software Eng. (ASE ’05), pp. 273-282, 2005.

[9] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating Faulty Code
Using Failure-Inducing Chops,” Proc. 20th IEEE/ACM Int’l Conf.
Automated Software Eng. (ASE ’05), pp. 263-272, 2005.

[10] I. Vessey, “Expertise in Debugging Computer Programs,” Int’l J.
Man-Machine Studies: A Process Analysis, vol. 23, no. 5, pp. 459-494,
1985.

[11] M. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
Empirical Investigation of the Relationship between Spectra
Differences and Regression Faults,” Software Testing, Verification,
and Reliability, vol. 10, no. 3, pp. 171-194, 2000.

[12] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan, “Scalable
Statistical Bug Isolation,” Proc. ACM SIGPLAN 2005 Int’l Conf.
Programming Language Design and Implementation (PLDI ’05),
pp. 15-26, 2005.

[13] Y. Brun and M. Ernst, “Finding Latent Code Errors via Machine
Learning over Program Executions,” Proc. 26th Int’l Conf. Software
Eng. (ICSE ’04), pp. 480-490, 2004.

[14] S. Hangal and M. Lam, “Tracking down Software Bugs Using
Automatic Anomaly Detection,” Proc. 24th Int. Conf. Software Eng.
(ICSE ’02), pp. 291-301, 2002.

[15] G. Casella and R. Berger, Statistical Inference, second ed., Duxbury,
2001.

[16] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically
Discovering Likely Program Invariants to Support Program
Evolution,” IEEE Trans. Software Eng., vol. 27, no. 2, pp. 1-25,
Feb. 2001.

[17] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
of the Effectiveness of Dataflow- and Controlflow-Based Test
Adequacy Criteria,” Proc. 16th Int’l Conf. Software Eng. (ICSE’94),
pp. 191-200, 1994.

[18] G. Rothermel and M. Harrold, “Empirical Studies of a Safe
Regression Test Selection Technique,” IEEE Trans. Software Eng.,
vol. 24, no. 6, pp. 401-419, June 1998.

[19] T. Cover and J. Thomas, Elements of Information Theory, first ed.
Wiley-Interscience, 1991.

[20] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. Reiss, “Automated
Fault Localization Using Potential Invariants,” Proc. Fifth Int’l
Workshop Automated and Algorithmic Debugging (AADEBUG ’03),
pp. 273-276, 2003.

[21] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff, “Sober: Statistical
Model-Based Bug Localization,” Proc. 10th European Software Eng.
Conf./13th ACM SIGSOFT Int’l Symp. Foundations of Software Eng.
(ESEC/FSE ’05), pp. 286-295, 2005.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

[22] T. Zimmermann and A. Zeller, “Visualizing Memory Graphs,”
Revised Lectures on Software Visualization, Int’l Seminar, pp. 191-204,
2002.

[23] J. Jones, M. Harrold, and J. Stasko, “Visualization of Test
Information to Assist Fault Localization,” Proc. 24th Int’l Conf.
Software Eng. (ICSE ’02), pp. 467-477, 2002.

[24] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
Inducing Input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183-
200, Feb. 2002.

[25] J. Misurda, J. Clause, J. Reed, B. Childers, and M. Soffa, “Jazz: A
Tool for Demand-Driven Structural Testing,” Proc. 14th Int’l Conf.
Compiler Construction (CC ’05), pp. 242-245, 2005.

[26] C. Pacheco and M. Ernst, “Eclat: Automatic Generation and
Classification of Test Inputs,” Proc. 19th European Conf. Object-
Oriented Programming (ECOOP ’05), pp. 504-527, 2005.

[27] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated
Testing Based on Java Predicates,” Proc. ACM/SIGSOFT Int’l Symp.
Software Testing and Analysis (ISSTA ’02), pp. 123-133, 2002.

[28] C. Csallner and Y. Smaragdakis, “JCrasher: An Automatic
Robustness Tester for Java,” Software—Practice and Experience,
vol. 34, no. 11, pp. 1025-1050, 2004.

[29] H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and
its Potential Impact,” Empirical Software Eng.: An Int’l J., vol. 10,
no. 4, pp. 405-435, 2005.

[30] D. Wheeler, SLOCCount: A Set of Tools for Counting Physical
Source Lines of Code, http://www.dwheeler.com/sloccount/,
2006.

[31] K. Apt and E. Olderog, Verification of Sequential and Concurrent
Programs, second ed. Springer-Verlag, 1997.

[32] D. Engler, D. Chen, and A. Chou, “Bugs as Inconsistent Behavior:
A General Approach to Inferring Errors in Systems Code,” Symp.
Operating Systems Principles, pp. 57-72, 2001.

[33] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault
Localization Using Execution Slices and Dataflow Tests,” Proc.
Sixth Int’l Symp. Software Reliability Eng., pp. 143-151, 1995.

[34] F. Tip, “A Survey of Program Slicing Techniques,” J. Programming
Languages, vol. 3, pp. 121-189, 1995.

[35] J. Lyle and M. Weiser, “Automatic Program Bug Location by
Program Slicing,” Proc. Second Int’l Conf. Computers and Applica-
tions, pp. 877-882, 1987.

[36] Y. Ayalew and R. Mittermeir, “Spreadsheet Debugging,” Proc.
European Spreadsheet Risks Interest Group Ann. Conf., 2003.

[37] J. Ruthruff, M. Burnett, and G. Rothermel, “An Empirical Study of
Fault Localization for End-User Programmers,” Proc. 27th Int’l
Conf. Software Eng. (ICSE ’05), pp. 352-361, 2005.

[38] A. Ko and B. Myers, “Designing the Whyline: A Debugging
Interface for Asking Questions about Program Behavior,” Proc.
SIGCHI Conf. Human Factors in Computing Systems (CHI ’04), pp.
151-158, 2004.

[39] W. Dickinson, D. Leon, and A. Podgurski, “Finding Failures by
Cluster Analysis of Execution Profiles,” Proc. 23rd Int’l Conf.
Software Eng. (ICSE ’01), pp. 339-348, 2001.

[40] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, “Automated Support for Classifying Software Failure
Reports,” Proc. 25th Int’l Conf. Software Eng. (ICSE ’03), pp. 465-475,
2003.

Chao Liu received the BS degree in computer
science from Peking University, China, in 2003,
and the MS degree in computer science from the
University of Illinois at Urbana-Champaign in
2005. He is currently a PhD student in the
Department of Computer Science at the Uni-
versity of Illinois at Urbana-Champaign. His
research focus is on developing statistical data
mining algorithms to improve software reliability,
with an emphasis on statistical debugging and

automated program failure diagnosis. Since 2003, he has more than 10
publications in refereed conferences and journals, such as the ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, the International World Wide Web Conference, the European
Software Engineering Conference, the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, and the IEEE Transactions on
Software Engineering. He is a member of the IEEE.

Long Fei received the BS degree in computer
Science from Fudan University, China, and the
MS degree in electrical and computer engineer-
ing from Purdue University. He is currently a
PhD student in the School of Electrical and
Computer Engineering at Purdue University. His
research interests are compilers and using
compiler techniques for software debugging.
He is a member of the IEEE.

Xifeng Yan received the BE degree from the
Computer Engineering Department of Zhejiang
University, China, in 1997, the MSc degree in
computer science from the University of New
York at Stony Brook in 2001, and the PhD
degree in computer science from the University
of Illinois at Urbana-Champaign in 2006. He is a
research staff member at the IBM T.J. Watson
Research Center. His area of expertise is data
mining, with an emphasis on mining and search

of graph and network data. His current research is focused on data
mining foundations, pattern post analysis, social, biological and Web
data mining, and data mining in software engineering and computer
systems. He has published more than 30 papers in reputed journals and
conferences, such as the ACM Transactions on Database Systems, the
ACM SIGMOD Conference on Management of Databases, the ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, the Very Large Database Conference, the Conference on
Intelligent Systems for Molecular Biology, the International Conference
on Data Engineering, and the Foundations of Software Engineering
Conference. He is a member of the IEEE.

Jiawei Han is a professor in the Department of
Computer Science at the University of Illinois at
Urbana-Champaign. He has been working on
research into data mining, data warehousing,
stream data mining, spatiotemporal and multi-
media data mining, biological data mining, social
network analysis, text and Web mining, and
software bug mining, with over 300 conference
and journal publications. He has chaired or
served on many program committees of inter-

national conferences and workshops. He also served or is serving on the
editorial boards for Data Mining and Knowledge Discovery, the IEEE
Transactions on Knowledge and Data Engineering, the Journal of
Computer Science and Technology, and the Journal of Intelligent
Information Systems. He is currently serving as founding editor-in-chief
of the ACM Transactions on Knowledge Discovery from Data and on the
board of directors for the executive committee of the ACM Special
Interest Group on Knowledge Discovery and Data Mining (SIGKDD).
Jiawei is an ACM fellow and an IEEE senior member. He has received
many awards and recognitions, including the ACM SIGKDD Innovation
Award (2004) and the IEEE Computer Society Technical Achievement
Award (2005).

Samuel P. Midkiff received the PhD degree in
1992 from the University of Illinois at Urbana-
Champaign, where he was a member of the
Cedar project. In 1991, he became a research
staff member at the IBM T.J. Watson Research
Center, where he was a key member of the
xlHPF compiler team and the Ninja project. He
has been an associate professor of computer
and electrical engineering at Purdue University
since 2002. His research has focused on

parallelism, high performance computing, and, in particular, software
support for the development of correct and efficient programs. To this
end, his research has covered dependence analysis and automatic
synchronization of explicitly parallel programs, compilation under
different memory models, automatic parallelization, high performance
computing in Java and other high-level languages, and tools to help in
the detection and localization of program errors. Professor Midkiff has
over 50 refereed publications. He is a member of the IEEE.

LIU ET AL.: STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED APPROACH 17

