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ABSTRACT

The statistical characterization of the diffuse magnetized interstellar medium (ISM) and Galactic foregrounds to the cosmic microwave
background (CMB) poses a major challenge. To account for their non-Gaussian statistics, we need a data analysis approach capable
of efficiently quantifying statistical couplings across scales. This information is encoded in the data, but most of it is lost when using
conventional tools, such as one-point statistics and power spectra. The wavelet scattering transform (WST), a low-variance statistical
descriptor of non-Gaussian processes introduced in data science, opens a path towards this goal. To establish the methodology, we
applied the WST to noise-free maps of dust polarized thermal emission computed from a numerical simulation of magnetohydro-
dynamical turbulence in the diffuse ISM. We analyzed normalized complex Stokes maps and maps of the polarization fraction and
polarization angle. The WST yields a few thousand coefficients; some of them measure the amplitude of the signal at a given scale, and
the others characterize the couplings between scales and orientations. The dependence on orientation can be fitted with the reduced
wavelet scattering transform (RWST), an angular model introduced in previous works for total intensity maps. The RWST provides a
statistical description of the polarization maps, quantifying their multiscale properties in terms of isotropic and anisotropic contribu-
tions. It allowed us to exhibit the dependence of the map structure on the orientation of the mean magnetic field and to quantify the
non-Gaussianity of the data. We also used RWST coefficients, complemented by additional constraints, to generate random synthetic
maps with similar statistics. Their agreement with the original maps demonstrates the comprehensiveness of the statistical description
provided by the RWST. This work is a step forward in the analysis of observational data and the modeling of CMB foregrounds. We
also release PyWST, a public Python package to perform WST and RWST analyses of two-dimensional data.
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1. Introduction

The interstellar medium (ISM) is a beautifully complex physical
system, in which gas particles and dust grains, coupled to a per-
vasive magnetic field, experience turbulent motions across a vast
range of scales (Draine 2011; Hennebelle & Falgarone 2012).
Nonspherical grains tend to align locally with their longest axis
perpendicular to the Galactic magnetic field (Andersson et al.
2015; Reissl et al. 2020), leading to polarization in extinction
in the visible and in emission in the submillimeter (Draine
& Fraisse 2009; Guillet et al. 2018). The multiscale filamen-
tary structure of diffuse interstellar matter is spectacularly
illustrated by Herschel observations of dust emission (Miville-
Deschênes et al. 2010). Observations of dust polarization provide
an additional perspective because they probe the orientation of
magnetic fields. Planck has provided us with the first all-sky
survey of polarized dust emission, opening the path to statis-
tical studies (Planck Collaboration XII 2020). This broad view
is being complemented by observations at higher angular reso-
lution, which are carried out by the balloon-borne experiments

⋆ The public Python package PyWST is available at https://
github.com/bregaldo/pywst

BLASTPOL (Fissel et al. 2016) and PILOT (Mangilli et al.
2019), the far-IR HAWC+ camera onboard SOFIA (Chuss et al.
2019) and imaging at sub-mm/mm wavelengths from large
single-dish telescopes (Ritacco et al. 2020) and ALMA (Hull
et al. 2017). These observations all contribute to a common
scientific goal: understanding the role turbulence and magnetic
fields play along the star formation process, from the diffuse
interstellar medium to molecular clouds and protostellar cores. In
this ambitious endeavor, all projects face the difficulty of infer-
ring information on magnetic fields from observations of Stokes
parameters.

Over the last few years, studies of the magnetized and tur-
bulent ISM have become closely entwined with a major goal
of observational cosmology that is the detection of the primor-
dial gravitational wave (GW) signal from the early Universe’s
inflationary era (Guth 1981; Linde 1982). The reason for this
entanglement lies in the superposition between the expected sig-
nal from these GWs on the one hand, imprinted in the curl-like
“B-mode” part of the polarization of the cosmic microwave back-
ground (CMB, Kamionkowski et al. 1997), and the polarized
emission from the Galaxy on the other hand (BICEP2/Keck
Array and Planck Collaborations 2015; Planck Collaboration
Int. XXX 2016; Planck Collaboration XI 2020). The current
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constraints on the cosmological B-mode tensor-to-scalar ratio
r < 0.06 (95% confidence level, BICEP2 Collaboration 2018)
are expected to be significantly improved by the next genera-
tion of CMB experiments, such as ACT (Naess et al. 2014),
SPIDER (Fraisse et al. 2013), LiteBIRD (Ishino et al. 2016),
PICO (Sutin et al. 2018), the Simons Observatory (Ade et al.
2019), and CMB-S4 (Abazajian et al. 2019), with a detection
limit goal of r ≃ 10−3. However, any claim to the detection of the
cosmological B-mode signal will have to be critically assessed
against alternative explanations involving Galactic foregrounds.

An overarching challenge for studying both interstellar tur-
bulence and CMB foregrounds is the need for a new approach
to data analysis, which is able to efficiently capture statistical
couplings across scales. This information is encoded in the data,
but most of it is lost when one resorts to such classical tools as
one-point statistics and power spectra.

To characterize magnetized interstellar turbulence, as well
as to produce realistic synthetic dust polarization sky maps
for CMB data analysis, we aim at a statistical description of
the polarized Galactic emission maps that encompasses non-
Gaussian characteristics. Recent advances in data science open
up a new path towards this goal. Allys et al. (2019) provided the
first astrophysical application of the wavelet scattering transform
(WST), a low-variance statistical description of non-Gaussian
processes (Mallat 2012) inspired by convolutional neural net-
works but that does not require any training stage (Bruna
& Mallat 2013). They applied the WST to column density
maps inferred from magnetohydrodynamical (MHD) simula-
tions and to an Herschel observation of the thermal emission
from Galactic dust. The physical regularity of the maps led
them to introduce the reduced wavelet scattering transform
(RWST), a statistical description of reduced dimensionality,
obtained through a fit of the angular dependencies of the WST
coefficients.

In this paper, we extend the WST and RWST analyses to
maps of linearly polarized emission, which is represented by
Stokes Q and U maps1. We begin by presenting the properties
of these Stokes maps and define three polarization variables of
interest built from the full (I,Q,U) maps. We then recall the def-
inition of the WST for real maps and extend it to complex maps.
In order to focus on the properties of this new statistical descrip-
tion of polarization data, we work with data sets built from a
noise-free MHD simulation, from which we compute simulated
Stokes maps. We identify regular patterns in the angular depen-
dencies of the WST coefficients for these maps, leading us to
define a RWST model for polarization maps. We give interpre-
tations of the RWST coefficients that highlight the impact of the
orientation of the mean magnetic field on the statistical proper-
ties of polarization maps. We also show how these coefficients
quantitatively exhibit the non-Gaussianity of these maps. We
finally assess the exhaustiveness of RWST descriptions of polar-
ization maps by generating random maps from these statistical
coefficients.

The paper is organized as follows: in Sect. 2, we recall the
basic properties of Stokes maps of polarized thermal emission
from dust and introduce the set of polarization variables on
which we define the WST. In Sect. 3, we present the MHD
simulation and the polarization maps derived from it, exhibit
regularities in the WST coefficients for these maps, and define

1 The last Stokes parameter V measuring the intensity of circularly
polarized light is ignored in this paper as it is expected to be negligi-
ble in the diffuse interstellar medium at frequencies of a few hundred
GHz (Siebenmorgen et al. 2014).

the RWST model. In Sect. 4, we give interpretations for a sub-
set of the RWST coefficients. We present synthetic realizations
of random polarization maps based on the RWST coefficients
in Sect. 5, and summarize our conclusions in Sect. 6. We also
provide a public Python package to perform WST and RWST
analyses of two-dimensional data called PyWST2.

2. Statistical description of polarization maps with

the WST

We first discuss the properties of Stokes I, Q, U maps of the
polarized emission of dust before defining convenient transfor-
mations of these observables. We then explain how to apply the
WST to these transformed maps.

2.1. Properties of I, Q, U maps

In the diffuse interstellar medium and at the frequencies of a few
hundred GHz, we observe the thermal emission of large grains of
dust (typically grains of radii greater than 50 nm, see e.g., Draine
2011). These large grains are in thermal equilibrium, absorbing
the light of surrounding stars and emitting a black body radia-
tion at typical temperatures of a few tens of K. This emission is
polarized due to the statistical alignment between the orientation
of aspherical dust grains and the local magnetic field (Andersson
et al. 2015), leading to preferential directions of absorption and
emission of light, and thus to a polarization of the signal (Planck
Collaboration Int. XIX 2015).

Taking these processes into account, a physical model of
radiative transfer has been built (see derivation and references in
Planck Collaboration Int. XX 2015). This model provides ana-
lytical expressions at a given submillimeter frequency ν for the
Stokes parameters I,Q, and U:

I =

∫

S νe
−τν

[

1 − p0

(

cos2 γ −
2

3

)]

dτν, (1)

Q =

∫

p0S νe
−τν cos (2φ) cos2 γdτν, (2)

U =

∫

p0S νe
−τν sin (2φ) cos2 γdτν, (3)

where S ν is the source function which is assumed here to be that
of a black body so that S ν = Bν(Td) with Td the dust temperature,
τν is the optical depth, p0 is an intrinsic polarization fraction
parameter, γ is the angle that the local magnetic field makes with
the plane of the sky, and φ is the angle that the projection of the
local magnetic field on the plane of the sky makes with the x
direction when z is the line of sight in the HEALPix3 (Górski
et al. 2005) convention (see Fig. 1).

In the following, we assume uniform values for the intrin-
sic polarization p0 and the dust temperature Td, an opti-
cally thin medium, and an infinitesimal optical depth equal to
dτν =σνnHdz where σν is the dust opacity (assumed uniform)
and nH is the total gas density. In this case, Eqs. (1)–(3) become:

I = S νσν

[

NH − p0

∫

nH

(

cos2 γ −
2

3

)

dz

]

, (4)

Q = p0σνS ν

∫

nH cos (2φ) cos2 γdz, (5)

2 https://github.com/bregaldo/pywst
3 https://healpix.jpl.nasa.gov
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Fig. 1. Definition of the angles γ and φ related to the orientation of
the local magnetic field with respect to the plane of the sky when the z-
axis corresponds to the line of sight (adapted from Planck Collaboration
Int. XX 2015). The line of sight points away from the observer and φ
is counted positively clockwise from the x direction in the HEALPix
convention.

U = p0σνS ν

∫

nH sin (2φ) cos2 γdz. (6)

From these formulæ, Stokes parameters I, Q, and U appear
to be proportional to an integration along the line of sight of
quantities depending on the same three variables: the total gas
density nH, and the angles γ and φ. Therefore we expect a priori
some statistical dependencies between I, Q, and U maps, and
a statistical description of these Stokes maps should take into
account these dependencies.

These expressions also underline how closely related Stokes
Q and U are. Indeed they are defined with respect to a given
reference direction (see for example Landi Degl’innocenti &
Landolfi 2004), and any rotation of this reference direction by
a given angle ϕ transforms Q and U into rotated quantities Q′

and U′ as follows4:

Q′ = cos(2ϕ)Q + sin(2ϕ)U, (7)

U′ = − sin(2ϕ)Q + cos(2ϕ)U. (8)

These relations can be written in a more compact form introduc-
ing complex quantities:

Q′ + iU′ = (Q + iU) e−2iϕ. (9)

As a consequence, the global phase of Q + iU complex maps
is directly related to the reference frame in which we define the
angular variables measuring the orientation of the local mag-
netic field within the plane of the sky. Because of the previous
transformation properties, the complex variable Q + iU is more
apt to represent linear polarization than Q and U separately (see
e.g., Haverkorn et al. 2004). Moreover it will be useful to define
a statistical description of polarization maps that is independent
from this choice of reference frame as we discuss in Sect. 2.3.

Finally, let us discuss the non-Gaussianity of Stokes maps
I, Q, and U. We know that the gas and the magnetic field in
the diffuse interstellar medium are highly turbulent (Hennebelle
& Falgarone 2012), and the nonlinearity involved in the MHD
equations that describe their dynamics couples scales. Therefore
we expect the statistical properties of the sky maps of I, Q, and
U to be highly non-Gaussian. Unless one can find a mapping
of the data that leads to Gaussian statistics, a mere statistical
description in terms of power spectra measurements cannot be
sufficient to statistically characterize these maps.

4 These relations hold for an angle ϕ that is counted positively clock-
wise from the x direction when the z-axis is the line of sight in the
HEALPix convention. See Fig. 1.

2.2. Transformation of Stokes maps

Stokes maps I and Q + iU are raw observables of the polar-
ized emission of dust that we first want to transform. Our goal
is twofold: to simplify the statistical properties of these observ-
ables and to ease the physical interpretation of their properties.
In this work, we consider three dimensionless variables based
on Stokes maps I and Q + iU to build and interpret a statis-
tical description of polarized light: normalized Stokes variable
Q̃ + iŨ, polarization fraction p and complex polarization angle
exp(2iψ).

We first define the normalized Stokes complex variable
Q̃ + iŨ as follows:

Q̃ + iŨ =
Q + iU

I + P
, (10)

with P= |Q + iU | the polarized intensity. Such a definition
roughly disentangles the structure of the magnetic field and the
structure of dust density at the lowest order. Indeed, assuming a
constant orientation of the magnetic field along the line of sight,
one gets using Eqs. (4)–(6):

Q̃ + iŨ =
3p0

3 + 2p0

cos2 γ exp(2iφ), (11)

which is independent of the density field nH.
The polarization fraction p and the polarization angle ψ

follow the usual definitions:

p =
|Q + iU |

I
, (12)

and

ψ =
1

2
atan2(U,Q), (13)

where atan2(b, a) is the function that returns the angle restricted
to (−π, π] between the positive x-axis and the ray to the point
(a, b) in the Euclidean plane. Because of the nonlinearity of the
atan2 function, we expect the statistics of ψ maps to be unnec-
essarily complicated compared to those of the original Stokes
maps. We thus choose to analyze maps of the complex variable
exp(2iψ). This variable also avoids dealing with discontinuities
of ψ maps that appear where the polarization angle approaches
±π/2. Moreover, the statistical properties of exp(2iψ) are easier
to compare to those of Q̃ + iŨ since Q̃ + iŨ ≈ p exp(2iψ) when
P ≪ I (which is typically the case).

2.3. WST statistical description

The WST is a tool from data science that computes statistical
descriptions of images that can efficiently discriminate between
images which have identical power spectra but distinct higher
order moments (Bruna & Mallat 2013). An advantage of this
description compared to the direct estimation of higher order
moments is that the estimators of the WST coefficients have
a low variance and thus do not need a large amount of sam-
ples for an accurate estimation. This is because the WST relies
on nonexpansive operators (see Bruna & Mallat 2013). Origi-
nally designed to understand the properties of deep convolutional
neural networks which have proved successful for classification
problems (LeCun et al. 2010; Krizhevsky et al. 2012), this tool
also provides a convenient statistical description of astronom-
ical observations of the interstellar medium for total intensity
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maps (Allys et al. 2019). In this subsection we use the WST
to describe the statistical properties of the polarization related
maps discussed in the previous section: complex maps Q̃ + iŨ
and exp(2iψ), and real map p.

Let us briefly recall the definition of the WST of a given 2D
real field I(x) that is statistically homogeneous5. For a more com-
plete presentation we refer to Allys et al. (2019) and Bruna &
Mallat (2013). The WST relies on convolutions of the target field
I(x) with a set of J ×Θ Morlet wavelets ψ j,θ with 0 ≤ j ≤ J − 1
and θ ∈ {kπ/Θ, 0 ≤ k ≤ Θ− 1}, with J and Θ two integers. These
wavelets ψ j,θ are the result of the dilation by a factor 2 j and the
rotation by an angle θ of a mother Morlet wavelet Ψ:

ψ j,θ (x) = 2−2 j
Ψ(2− jr−1

θ x). (14)

A Morlet wavelet is essentially a plane wave modulated by a
Gaussian envelope. It is a quite general kind of wavelet to study
physical fields and it provides a good angular selectivity (Farge
1992). We recall the definition of the mother Morlet wavelet Ψ:

Ψ (x) = α
(

eik0·x − β
)

e−|x|
2/2σ2

, (15)

with α and β two constants that are adjusted to ensure a zero
mean and a unit L1 norm, k0 = k0ex the wave vector of the plane
wave factor, and σ the standard deviation of the Gaussian enve-
lope6,7. Convolving a field I(x) with a wavelet ψ j,θ corresponds
to a local band-pass filtering of the field at frequencies centered
on a mode k j,θ = k02− j

(

cos (θ) êx + sin (θ) êy

)

. J and Θ constants
thus correspond respectively to the number of scales and angles
that discretize the 2D Fourier space. For a statistically homoge-
neous real field I(x), normalized WST coefficients are defined as
follows:

S̄ 0 = 〈I〉, (16)

S̄ 1( j1, θ1) =
〈|I ⋆ ψ j1,θ1

|〉

〈I〉
, (17)

with 0 ≤ j1 ≤ J − 1 and 0 ≤ θ1 < π,

S̄ 2( j1, θ1, j2, θ2) =
〈||I ⋆ ψ j1,θ1

| ⋆ ψ j2,θ2
|〉

〈|I ⋆ ψ j1,θ1
|〉

, (18)

with 0 ≤ j1, j2 ≤ J − 1 such that j2 > j1 and 0 ≤ θ1, θ2 < π,
where the averaging operator 〈·〉 here is simply an average over
a map, meaning 〈I〉= 1

A

∫

I(x)d2
x with A the area of integration,

and where the ⋆ symbol stands for the convolution operator. The
number of WST coefficients depends on the J and Θ parame-
ters: we have a single S̄ 0 coefficient, J ×Θ S̄ 1 coefficients, and
Θ

2 × J × (J − 1)/2 S̄ 2 coefficients.
These coefficients can be interpreted in the following man-

ner: S̄ 0 is simply the mean of the field, S̄ 1( j1, θ1) is a measure
of the amplitude of oscillation of the normalized I/〈I〉 field for
modes centered on k j1,θ1

, and finally S̄ 2( j1, θ1, j2, θ2) character-
izes how the normalized amplitude of oscillation of the field for a
mode k j1,θ1

is modulated by a mode of oscillation k j2,θ2
. Accord-

ingly, the S̄ 1( j1, θ1) coefficient characterizes the amplitude at a

5 In this work, we restrict our analysis to statistically homogeneous data
for simplicity, but this is not a limitation of the methodology as the WST
can also be computed locally (see e.g., Allys et al. 2019).
6 In practice we choose k0 = 3π/4 pixel−1 and σ= 0.8 pixel as in Bruna
& Mallat (2013).
7 Actually, the Gaussian envelope has an elliptical shape that is not
included in Eq. (15) for simplicity. This elliptical shape enhances the
angular selectivity of the wavelets.

single oriented scale ( j1, θ1), while the S̄ 2( j1, θ1, j2, θ2) coeffi-
cient measures the coupling between two oriented scales ( j1, θ1)
and ( j2, θ2).

We note that even if the S̄ 1 coefficients characterize the
Fourier amplitude of the field under study in the spectral band
of the wavelets, they differ in practice from the power spectrum.
While the power spectrum can be computed from L2 norms of
the wavelet transform, the S̄ 1 coefficients are computed with
L1 norms. One can however recover the power spectrum at a
given scale from a quadratic sum of S̄ 1 and S̄ 2 coefficients8.
Notably, we expect a non-Gaussian field to have higher S̄ 2 coef-
ficients compared to those of a Gaussian field with identical
power spectrum, and this should be counterbalanced by smaller
S̄ 1 coefficients. This is related to the sparsity of the wavelet rep-
resentation of the data (see Allys et al. 2019 and Bruna & Mallat
2013 for further discussions).

We can extend the previous definition of normalized WST
coefficients to statistically homogeneous complex fields such as
Q̃ + iŨ or exp(2iψ) as follows:

S̄ 0 = 〈|Q̃ + iŨ |〉, (19)

S̄ 1( j1, θ1) =
〈|(Q̃ + iŨ) ⋆ ψ j1,θ1

|〉

〈|Q̃ + iŨ |〉
, (20)

S̄ 2( j1, θ1, j2, θ2) =
〈||(Q̃ + iŨ) ⋆ ψ j1,θ1

| ⋆ ψ j2,θ2
|〉

〈|(Q̃ + iŨ) ⋆ ψ j1,θ1
|〉

, (21)

where we still have 0 ≤ j1, j2 ≤ J − 1 with j2 > j1 for S̄ 2 coef-
ficients, but here the main difference is that 0 ≤ θ1 < 2π and
0 ≤ θ2 < π. This new range of angles for θ1 is directly related
to the complex nature of the Q̃ + iŨ variable. For a real signal
I(x), one can easily show that |I ⋆ ψ j1,θ1+π|= |I ⋆ ψ j1,θ1

|, which
explains the range of θ1 in Eq. (17). For a complex signal the
previous relation does not hold anymore, and we have to con-
sider rotations of the mother wavelet Ψ for angles between 0 and
2π (see Mallat 2012, for more details). We note that the range of
angles for θ2 is unchanged because |(Q̃ + iŨ) ⋆ ψ j1,θ1

| is a real
signal. Thus, for a complex field, we end up with twice as many
S̄ 1 and S̄ 2 coefficients as for the WST of a real field.

Let us note that this definition of the WST on complex polar-
ization maps Q̃ + iŨ does not depend on the global phase of
Q̃ + iŨ maps, meaning that the WST coefficients associated to
Q̃+ iŨ maps do not depend on the reference frame mentioned in
Sect. 2.1.

In the following, the statistical properties of p maps will
be described with the WST coefficients defined in Eqs. (16)–
(18), while the statistical properties of Q̃ + iŨ and exp(2iψ)
maps will be described with the WST coefficients defined in
Eqs. (19)–(21).

3. Simplification of the WST statistical descriptions

for simulated Stokes maps with the RWST

The WST coefficients of polarization variables Q̃+ iŨ, exp(2iψ),
and p define statistical descriptions of polarization maps. We
expect some form of regularity in these coefficients that should
lead to possible simplifications. This was the case for total
intensity maps, which led to defining a reduced set of coeffi-
cients (Allys et al. 2019). In this section, we similarly define
the reduced wavelet scattering transform (hereafter RWST) to
characterize the statistics of polarization data.

8 See Eq. (9) in Allys et al. (2019).
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We first present the simulated sets of polarization maps
we built from a numerical simulation of the diffuse interstel-
lar medium. Then, we show what kind of statistical regularity
arises from the WST descriptions of these data sets. We finally
define RWST descriptions of these maps which are based on the
modeling of the angular dependencies of the WST coefficients.

3.1. Building simulated Stokes maps

Throughout this paper we work with Stokes maps which are
directly computed as integrations along a given direction of 3D
simulated cubes of data extracted from a numerical simulation of
magnetized interstellar turbulence (this given direction of inte-
gration corresponds to the line of sight for observations). As a
first step, working with MHD simulations instead of observa-
tional data is a stepping-stone to relate our statistical descriptions
to physics where we avoid the difficulty of dealing with data
noise.

We use a MHD simulation designed to study the bipha-
sic nature of the diffuse interstellar medium (Bellomi et al., in
prep.). The simulation uses the adaptive mesh refinement code
RAMSES (Teyssier 2002; Fromang et al. 2006) to solve the equa-
tions of ideal MHD as described in Iffrig & Hennebelle (2017),
neglecting self-gravity and taking into account heating and cool-
ing processes of the gas. Turbulent forcing is applied to inject
kinetic energy and balance numerical dissipation so that the
simulation reaches a statistical steady state. In practice this tur-
bulent forcing consists in a large-scale stochastic force field (a
three component Ornstein-Uhlenbeck process defined in spec-
tral space). Details on the turbulent forcing model can be found
in Schmidt et al. (2006).

The simulation volume is a (50 pc)3 box divided into 5123

cells with periodic boundary conditions. At t= 0 the gas has
uniform properties with a density nH = 1.5 cm−3 and a temper-
ature T = 8000 K, and the magnetic field is also uniform, with
B0 = B0ex and B0 ∼ 3.8 µG. In steady state, the turbulent forc-
ing leads to an approximate velocity dispersion σv ∼ 2.6 km s−1.
This gives a turnover time at large scale τL ≈ 18.8 Myr. Finally,
an isotropic Habing radiation field is applied at the boundaries of
the box. Its intensity is scaled by a factor G0 = 1 (for a definition,
see Draine 2011).

Once the simulation has reached a statistical steady state,
we extract 14 snapshots that are approximately statistically inde-
pendent using an approach similar to Federrath et al. (2009).
In practice we make sure that two consecutive snapshots cor-
respond to a minimal time evolution of δτ= 1.25 Myr which is
roughly ten percent of τL. The phenomenology of turbulence in
the sense of Kolmogorov shows that the turnover time τl at a
given scale l scales as l2/3 (Frisch 1995). This scaling holds for
incompressible hydrodynamical turbulence only but we assume
for the sake of simplicity that it extends reasonably well to ideal
compressible MHD. At the range of scales considered in the
following, we find that δτ is about fives times smaller than the
corresponding largest value of τl. Although this value is not com-
pletely satisfactory, we assume that the snapshots are statistically
independent.

We can compute a set of Stokes maps I, Q, and U for each of
these snapshots using Eqs. (4)–(6) and choosing the z-axis of the
cubes as the direction of integration. We note that this integration
procedure is identical to the one used in Planck Collaboration
Int. XX (2015). We choose a typical value for the polarization
fraction parameter p0 = 0.2 and arbitrary values for σν and Td as
these only determine the global amplitude of I, Q and U maps
but do not impact the analysis. These maps are relevant for any

frequency ν provided that the dust emission remains optically
thin. Then from these Stokes maps we compute the associated
maps P, Q̃, Ũ, p, cos(2ψ), and sin(2ψ) which are the transforma-
tions of the Stokes observables defined in Sect. 2.2. Finally, we
end up with a set of 14 maps for each of these variables.

We point out that the initial conditions of the MHD simula-
tions are anisotropic because of the initial direction of the uni-
form magnetic field. This anisotropy remains once the simulation
has reached steady state, due to magnetic flux conservation, and
the value of the mean magnetic field is B̄ ≈ B0. Because the
direction of integration chosen to compute the previous Stokes
maps is orthogonal to the direction of the mean magnetic field
B̄ in the simulation, we refer to the previous sets of maps using
the ⊥ symbol. For instance, the p⊥ data set refers to the set of 14
maps of polarization fraction p computed from the 14 maps I, Q,
and U for which the z-axis was the axis of integration. We sim-
ilarly compute Stokes maps integrating along the x-axis which
is the direction of the mean magnetic field. This results in a set
of maps that are statistically isotropic and from which we also
compute the associated maps P, Q̃, Ũ, p, cos(2ψ), and sin(2ψ).
We use the ‖ symbol to refer to these sets of maps.

3.2. Presentation of the data sets

We use for this work eight data sets, each one comprising
14 statistically independent maps. The various maps presented
in the last subsection define 6 data sets: exp(2iψ)⊥, p⊥, Q̃⊥ +
iŨ⊥, exp (2iψ)‖, p‖, and Q̃‖ + iŨ‖. In addition, we also analyze
phase randomized data sets R[Q̃⊥ + iŨ⊥] and R[Q̃‖ + iŨ‖] built
respectively from the Q̃⊥ + iŨ⊥ and Q̃‖ + iŨ‖ data sets.

We define R[·] to be the operator that acts on a map by ran-
domizing the phases of the map in Fourier space, meaning that
the new phases are drawn from a uniform distribution on [0, 2π).
We note that the modulus of the Fourier coefficients are retained
so that the power spectrum is also unchanged. The phase infor-
mation of an image is tightly bound to its structure (Oppenheim
& Lim 1981) and the main effect of the R[·] operator is to
severely damage the structure of the image. We use phase ran-
domization as an approximation to Gaussianization9. We could
have used a standard Gaussian random field generation (see
e.g., Kroese & Botev 2015), however we found out that the two
approaches give similar results. In practice R[Q̃⊥ + iŨ⊥] (respec-
tively R[Q̃‖ + iŨ‖]) refers to the set of 14 maps produced by
randomizing separately Q̃ and Ũ maps from the Q̃⊥ + iŨ⊥ data
set (respectively Q̃‖ + iŨ‖). Technical details about phase ran-
domization can be found in Appendix B, as well as an example
of a phase randomized map for R[Q̃⊥ + iŨ⊥] in Fig. B.1.

Figure 2 shows examples of maps for I⊥, Q⊥, U⊥, P⊥, Q̃⊥,
Ũ⊥, p⊥, cos(2ψ)⊥, and sin(2ψ)⊥ data sets, while Fig. 3 shows
examples of maps for the corresponding ‖ data sets. These fig-
ures show maps that all rely on the same snapshot of a MHD
simulation. We draw the attention of the reader to a few points.
First, we clearly see filamentary patterns on these maps that will
demand a statistical description involving higher orders statis-
tics compared to simple power spectra. We also note that P is
an order of magnitude lower than the intensity I (this is due
to the value of the polarization fraction parameter p0), hence
we have approximately Q̃ + iŨ ≈ (Q + iU)/I so that p roughly
behaves as the modulus of Q̃ + iŨ, and 2ψ roughly behaves as
its complex argument. Next, we note that the magnitude of p‖ is

9 Stationary Gaussian random fields (GRFs) do have uniformly dis-
tributed phases on [0, 2π) but this property alone does not define them
(see Wandelt 2013).
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Fig. 2. Examples of I⊥, Q⊥, U⊥, P⊥, Q̃⊥, Ũ⊥, p⊥, cos(2ψ)⊥, and sin(2ψ)⊥ maps (from top to bottom and left to right) that are built from a given
snapshot of the MHD simulation.

unsurprisingly much lower than that of p⊥ as the direction of the
projection of the local magnetic field on the plane of the sky is
much less coherent along the line of sight when the line of sight
corresponds to the direction of the mean magnetic field. Finally,
we see on the cos(2ψ)⊥ map that the anisotropy of the magnetic
field in the simulation leads to values that are concentrated close
to 1.

3.3. Regularity in the WST coefficients

We now focus on the WST coefficients associated with the
Q̃⊥ + iŨ⊥ data set, but the following reasoning remains valid for
the other data sets, including those related to exp(2iψ) and p.

For the 14 maps of the Q̃⊥ + iŨ⊥ data set, we compute the
WST coefficients for J = 7 and Θ= 8 (see Eqs. (19)–(21)). J

could have been fixed to a higher value for 512× 512 maps, but
because of our limited number of maps we chose to restrict our
statistical description to scales for which we have a sufficient
number of modes for reliable estimations. We give in Table 1 the
correspondence between the scale index j and the central wave-
length of the related dilated Morlet wavelet both in pixel units
and in dimensional units (related to the MHD simulation).

Table 1. Correspondence between scale index j and related wavelengths
on simulated maps, both in pixel units and dimensional units.

j 0 1 2 3 4 5 6

λ̃ [pixels] 2.67 5.33 10.7 21.3 42.7 85.3 171
λ [pc] 0.26 0.52 1.04 2.08 4.17 8.33 16.7

Notes. Those wavelengths λ̃ come from the definition of dilated Morlet
wavelets ψ j,θ (for more details, see Bruna & Mallat 2013).

These J and Θ values lead for each map to 112 S̄ 1 coeffi-
cients and 2688 S̄ 2 coefficients. Adding to this the S̄ 0 coefficient,
we end up with 2801 coefficients per map. We define mean S̄ 0,
S̄ 1 and S̄ 2 coefficients as means of the WST coefficients over
the 14 maps and we also compute the standard deviation of the
mean for each of these coefficients assuming that the maps are
statistically independent.

Figures 4 and 5 represent (in blue) respectively S̄ 1( j1, θ1)
coefficients and a representative subsample of S̄ 2( j1, θ1, j2, θ2)
coefficients (for j1 = 1) on a logarithmic scale, for Q̃⊥ + iŨ⊥.
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Fig. 3. Same as Fig. 2 but for the I‖, Q‖, U‖, P‖, Q̃‖, Ũ‖, p‖, cos(2ψ)‖, and sin(2ψ)‖ data sets.

In both figures, we represent the multivariate functions S̄ 1 and S̄ 2

in a lexicographical order for the ( j1, θ1) and ( j1, θ1, j2, θ2) vari-
ables, respectively. Vertical gray lines help to mark increments
of these variables.

In Fig. 4, we see that for a fixed scale j1 a smooth pattern
emerges with respect to the angular variable θ1. Because of the
definition of S̄ 1 coefficients, at fixed j1, log2(S̄ 1)( j1, ·) functions
must be 2π-periodic, but here the smooth pattern appears to be π-
periodic. While it is not surprising to get smooth angular patterns
that reflect the regularity of physical processes, this π-periodicity
with respect to the angular variable θ1 was unexpected.

We can nevertheless explain it by noticing that:

|(Q̃ + iŨ) ⋆ ψ j,θ|= |[(Q̃ + iŨ) ⋆ ψ j,θ]
∗|= |(Q̃ − iŨ) ⋆ ψ j,θ+π|, (22)

because for Morlet wavelets we have ψ∗
j,θ
=ψ j,θ+π

10. Hence,
saying that log2(S̄ 1)( j1, ·) functions are π-periodic amounts to
saying that Q̃ + iŨ and Q̃ − iŨ have the same WST first order
statistics.

We can identify the same kind of regularity properties for
S̄ 2 coefficients in Fig. 5. Since S̄ 2 coefficients depend on four

10 The ∗ symbol stands for the complex conjugate.

Fig. 4. WST coefficients S̄ 1( j1, θ1) on a logarithmic scale for the Q̃⊥ +
iŨ⊥ data set, presented in a lexicographical order on ( j1, θ1). Vertical
dashed lines delimit distinct j1 values. Top panel: original data (solid
lines) and the RWST fit (dotted lines) corresponding to the model of
Eq. (23), while bottom panel: normalized residuals of the fit.
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Fig. 5. j1 = 1 selection of WST coefficients S̄ 2( j1, θ1, j2, θ2) on a logarithmic scale for the Q̃⊥ + iŨ⊥ data set presented in a lexicographical order on
( j1, θ1, j2, θ2). This specific selection of coefficients is arbitrary, and we find similar results for other scales and the other data sets. Vertical dashed
and dotted lines delimit distinct θ1 and j2 values, respectively. Top panel: original data (solid lines) and the RWST fit (dotted lines) corresponding
to the model of Eq. (24), while bottom panel: normalized residuals of the fit.

Fig. 6. Surface representation of WST coefficients S̄ 2( j1 = 1,
θ1, j2 = 3, θ2) for the Q̃⊥ + iŨ⊥ data set as a function of θ1 and θ2

variables only.

variables, two of which are angular variables θ1 and θ2, it is more
complicated to see this angular regularity, but Fig. 6 helps us to
exhibit this regularity by plotting S̄ 2 coefficients as a function of
angular variables θ1 and θ2 when j1 = 1 and j2 = 3. Smooth angu-
lar patterns appear on this surface which is parameterized by θ1

and θ2. In particular we see that θ1 − θ2 = c cuts of this surface
for arbitrary constants c give roughly constant S̄ 2 coefficients.
On this example we thus expect most of the angular modulation
to depend on the θ2 − θ1 variable.

3.4. Definition of a RWST statistical description

The smooth periodic patterns identified in the Q̃⊥ + iŨ⊥ WST
coefficients suggest that a simplification of the WST statisti-
cal description is possible, through an adequate modeling of its

angular dependencies. The purpose of such a modeling of the
WST coefficients is twofold: (1) lowering the dimensionality of
the statistical description of our data, and (2) providing an inter-
pretable representation of these angular dependencies in terms
of considerations of isotropy and anisotropy of the data.

We model the regularity of WST coefficients with respect to
angular variables θ1 and θ2 using the RWST model introduced
in Allys et al. (2019). It is remarkable that a model developed
for total intensity maps may be applied to Q̃ + iŨ complex
Stokes maps of polarized thermal emission of dust, without any
modification. This highlights the generality of such an angular
modeling of the WST coefficients for maps of dust emission, and
this model may surely be extended to other kinds of complex-
valued fields in physics. We present in Appendix A the RWST
model in terms of Fourier series expansions and rephrase the
characteristics of this generality.

We now briefly recall the RWST model, and refer the reader
to Allys et al. (2019) for more details.

In the RWST model, the S̄ 1 coefficients are written as:

log2

[

S̄ 1 ( j1, θ1)
]

= Ŝ iso
1 ( j1)

+ Ŝ aniso
1 ( j1) cos

(

2
[

θ1 − θ
ref,1 ( j1)

])

, (23)

where Ŝ iso
1

( j1), Ŝ aniso
1

( j1), and θref,1( j1) are the parameters of
this angular model for scale j1. This model thus depends on
3× J parameters. We also enforce Ŝ aniso

1
( j1) ≥ 0 in order to lift a

degeneracy between the Ŝ aniso
1

( j1) and θref,1 parameters. Ŝ iso
1

( j1)
quantifies the isotropic component of the data fluctuations at a
scale j1, while Ŝ aniso

1
( j1) defines a measure of the angular modu-

lation of the coefficients at scale j1, introducing a reference angle
θref,1( j1) that defines a privileged direction in the maps11.

11 We note that Eq. (23) defines an angular model of the logarithm of
the WST coefficients that turns angular modulations of the WST coef-
ficients into additive corrections Ŝ aniso

1
( j1) cos

(

2
[

θ1 − θ
ref,1 ( j1)

])

to the

A217, page 8 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038044&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038044&pdf_id=0


B. Regaldo-Saint Blancard et al.: Statistical description of dust polarized emission from the diffuse interstellar medium

Similarly, the RWST model for S̄ 2 coefficients reads:

log2

[

S̄ 2 ( j1, θ1, j2, θ2)
]

= Ŝ
iso,1
2

( j1, j2)

+Ŝ
iso,2
2

( j1, j2) cos (2 [θ1 − θ2])

+Ŝ
aniso,1
2

( j1, j2) cos
(

2
[

θ1 − θ
ref,2 ( j1, j2)

])

+Ŝ
aniso,2
2

( j1, j2) cos
(

2
[

θ2 − θ
ref,2 ( j1, j2)

])

, (24)

where Ŝ
iso,1
2

( j1, j2), Ŝ
iso,2
2

( j1, j2), Ŝ
aniso,1
2

( j1, j2), Ŝ
aniso,2
2

( j1, j2),
and θref,2( j1, j2) are the parameters of this angular model for
each pair of scales ( j1, j2). As we have j2 > j1, we end up with
5× J × (J − 1)/2 parameters for this model. Here again we make
sure that Ŝ

aniso,1
2

( j1, j2) ≥ 0 to avoid any parameter degeneracy.
Ŝ

iso,1
2

measures the overall amplitude of coupling between the
scales j1 and j2. Ŝ

iso,2
2

represents the amplitude of the modu-
lation due to the relative orientation of the wavelets ψ j1,θ1

and
ψ j2,θ2

, and we interpret it as a signature of filamentary structures
at a given scale. Indeed for an oriented filamentary structure,
we expect the S̄ 2 coefficients to peak when θ2 = θ1 and to reach
a minimum when θ2 = θ1 + π/2. Finally, Ŝ

aniso,1
2

and Ŝ
aniso,2
2

are
measures of the anisotropic properties of the data in second order
WST coefficients, here decoupling θ1 and θ2 contributions.

In practice, for a given data set, this RWST model of the
angular dependencies is fitted to the first order WST coefficients
for every scale j1, and to the second order WST coefficients for
every pair of scales ( j1, j2) (with j2 > j1). The accuracy of these
multiple fits is quantified with χ2

r statistics as described in Allys
et al. (2019). Since it is not possible to properly estimate the
full covariance matrix with only 14 samples per coefficient, the
uncertainties affecting the WST coefficients for a given data set
are simply estimated from the sample variance across the various
simulation snapshots.

However an important correlation of the first order WST
coefficients across angles for each scale j1 needs to be taken into
account to properly estimate statistical uncertainties. For each
sample we compute a mean coefficient across angles for a given
scale and subtract this mean before computing the statistical
uncertainties12. This mitigates most of the correlation between
WST coefficients at the same scale j1.

Figure 7 shows the χ2
r values for both log2(S̄ 1) and log2(S̄ 2)

fits for the Q̃⊥ + iŨ⊥ data set. The χ2
r values are globally close

to 1 except at low j1 for χ2,S1
r and at low j2 − j1 for χ2,S2

r . This
deterioration of the goodnesses of the fits is due to a pixellization
effect at small scales, and may be fixed by adding adequate lattice
terms in the RWST model, as described in the Appendix C of
Allys et al. (2019). This is shown for our data in Appendix C.1.
We note that these additional terms do not affect the values of the
coefficients corresponding to the original RWST model. Finally,
the same RWST model applies to the other data sets used in this
work, including exp(2iψ) and p data sets, and we get for all of
them similar χ2

r values.
In Figs. 4 and 5 we show the RWST fit overplotted on a selec-

tion of first and second order WST coefficients, and also show
the corresponding normalized residuals. The curves are glob-
ally in good agreement and the flaws of the RWST model due
to numerical effects at low j1 and j2 − j1 appear as clear patterns
in the residuals. Additional figures in Appendix C.1 show how
these artifacts may be taken into account.

isotropic amplitude of fluctuations Ŝ iso
1

( j1). We use a base 2 logarithm
to be consistent with the base 2 definition of scales j1 and j2.
12 This decreases the effective number of degrees of freedom by one
when computing χ2

r values.

Fig. 7. Reduced chi square χ2,S1
r ( j1) (top) and χ2,S2

r ( j1, j2) (bottom) asso-
ciated with the RWST fit of the WST coefficients (see Eqs. (23) and
(24)) for the Q̃⊥ + iŨ⊥ data set. Bottom panel: each curve corresponds to
a fixed j1 value with j2 varying from j1 + 1 to J − 1= 6. For j1 = J − 2,
the curve is reduced to a single dot on the figure. We use logarithmic
scales for better visibility.

In the end, the RWST coefficients define statistical descrip-
tions of the data sets in terms of simple considerations of
isotropy and anisotropy with respect to a reference direction.
Furthermore, these statistical descriptions exhibit much lower
dimensionality, with a total of 127 coefficients (including S̄ 0

coefficient in the description) compared to the original 2801
WST coefficients in the case of complex variables Q̃ + iŨ
and exp(2iψ)13, thus providing a very large compression of the
statistical information contained in the WST coefficients.

4. RWST data analysis and interpretation

In this section we analyze and interpret the RWST statistical
descriptions for the 8 data sets built from the same MHD sim-
ulation. We relate the coefficients of these descriptions to the
physical properties of the simulation.

4.1. Isotropic fluctuations in first order coefficients Ŝ
iso

1

Figure 8 presents Ŝ iso
1
+ log2(S̄ 0) coefficients as a function of

scale for Q̃⊥ + iŨ⊥, Q̃‖ + iŨ‖, R[Q̃⊥ + iŨ⊥] and R[Q̃‖ + iŨ‖]
data sets. We note that the log2(S̄ 0) term cancels the normal-
ization of the S̄ 1 WST coefficients defined in Eq. (20) in order
to analyze the statistics of Q̃ + iŨ (and not the statistics of
(Q̃ + iŨ)/〈|Q̃ + iŨ |〉). We see that Ŝ iso

1
+ log2(S̄ 0) levels which

measure an amplitude of fluctuations of the signal, per scale, are
higher for Q̃⊥ + iŨ⊥ and R[Q̃⊥ + iŨ⊥] than for the corresponding
‖ data sets. This shows that the amplitudes differ depending on
the orientation of the mean magnetic field with respect to the line

13 For p maps, the WST descriptions consist of 1401 coefficients.
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Fig. 8. Ŝ iso
1

( j1) + log2(S̄ 0) RWST coefficients for Q̃⊥ + iŨ⊥, Q̃‖ + iŨ‖,
R[Q̃⊥ + iŨ⊥] and R[Q̃‖ + iŨ‖] data sets. We use solid lines for ⊥ data
sets and dotted lines for ‖ data sets. For reference, we show at the top of
this figure the correspondence between j scale indices and the related
wavelengths on the maps (in practice, we have λ1 = 2 j1+1π/k0).

of sight. We have more fluctuations within Q̃+ iŨ maps when the
mean magnetic field is in the plane of the sky.

The differences between the Q̃ + iŨ data set and its corre-
sponding randomized counterpart R[Q̃ + iŨ] (in both ⊥ and ‖
cases) illustrate the difference between S̄ 1 coefficients and the
power spectrum. Indeed, Q̃ + iŨ and R[Q̃ + iŨ] maps share the
same power spectrum but have different S̄ 1 coefficients. The fact
that the R[·] operator increases the S̄ 1 values leaving the power
spectrum unchanged shows that it reduces the sparsity of these
maps (see discussion in Sect. 2.3). This feature underlines the
non-Gaussianity of the Q̃ + iŨ data set and we therefore expect
its second order coefficients to be higher compared to those of
the corresponding randomized data set. We note that these dif-
ferences wear off at large scales. We interpret this as statistical
evidence that the non-Gaussianity of Q̃ + iŨ maps decreases at
large scales. This result may reflect a characteristic of interstel-
lar turbulence but could also follow from the fact that we start
to probe the Gaussian distribution of the turbulent forcing of the
simulation.

In Fig. 9, we compare Q̃ + iŨ Ŝ iso
1

coefficients to those of
p and exp(2iψ) for respectively ‖ and ⊥ data sets. Since we
have Q̃ + iŨ ≈ p exp(2iψ) we would like to compare the rela-
tive contributions of Ŝ iso

1
coefficients of Q̃ + iŨ maps, but this

seems more complicated than expected as we found out that a
proper comparison through Ŝ iso

1
coefficients highly depends on

the choice of normalization of the WST coefficients for p.
Ŝ iso

1
coefficients roughly range from −4.5 to −3.0 for

exp(2iψ)‖ while they range from −5.8 to −4.2 for exp(2iψ)⊥.
These differences indicate larger fluctuations of the polarization
angle when the mean magnetic field is along the line of sight
compared to when the mean magnetic field is in the plane of
the sky. Since the average polarization fraction p is lower when
the mean magnetic field is along the line of sight (S̄ 0 ≈ 0.03 for
p‖ compared to S̄ 0 ≈ 0.1 for p⊥) this feature is consistent with
the anti-correlation observed with polarization data between
the angle dispersion function S and the polarization fraction
p (Planck Collaboration Int. XX 2015; Planck Collaboration XII
2020; Fissel et al. 2016).

Fig. 9. Ŝ iso
1

( j1) RWST coefficients for Q̃ + iŨ, exp(2iψ) and p data sets
in the ⊥ (top, solid lines) and ‖ (bottom, dotted lines) cases.

4.2. Anisotropic fluctuations in first order coefficients Ŝ
aniso

1

Ŝ aniso
1

coefficients measure the angular modulation of the first
order WST coefficients. They are presented in Fig. 10 for all data
sets. We see that this anisotropy is much larger for ⊥ data sets
than for ‖ ones. The p⊥ data set constitutes an exception among
the ⊥ data sets as it has a rather low anisotropy level. These dif-
ferences are not surprising as we expect a stronger anisotropy
when the mean magnetic field is in the plane of the sky, while
statistical isotropy is expected when integrating along the mean
magnetic field. For larger scales, we see an increase of these
coefficients for ⊥ data sets. This trend has already been observed
on observational data of the Polaris flare in total intensity (Allys
et al. 2019) and deserves a closer examination.

As explained in Sect. 3.1 the large scales of consecutive snap-
shots could be correlated to some extent. To assess the potential
impact of these correlations on our analysis, we have computed
separate RWST statistics for three maps of the Q̃⊥ + iŨ⊥ data
set corresponding to snapshots that are sufficiently distant in
time to rightfully assume the independence (we choose 6× δτ
instead of δτ). The increase of Ŝ aniso

1
coefficients remains signif-

icant for each map, which demonstrates that this trend is not a
consequence of correlations among snapshots.

Reference angles θref,1 also presented in Fig. 10 show that the
preferential direction identified for anisotropic ⊥ data sets is the
direction corresponding to θref,1

= 0 for all scales j1. Such a value
of the reference angle indicates a statistical tendency for struc-
tures, including filaments, to be elongated vertically rather than
horizontally, that is, along the y axis in Fig. 2. This corresponds
to an elongation which is orthogonal to the mean magnetic field.
This result is to be compared in further works to the abundant
literature on the relative orientation between magnetic fields and
structures traced by interstellar dust (for a review, see Hennebelle
& Inutsuka 2019).

The reference angle found for ‖ data set is well defined and
approximately equal to π/4 for all scales while the anisotropy
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Fig. 10. Ŝ aniso
1

( j1) (top) and θref,1( j1) (bottom) RWST coefficients for
Q̃ + iŨ, exp(2iψ), p, and R[Q̃ + iŨ] data sets in the ⊥ (solid lines) and ‖
(dotted lines) cases.

levels are close to zero. These values of θref,1 are surprising
because we were not expecting any anisotropy for these data
sets. By examining the RWST statistics separately for each map,
for each of the corresponding data sets, we found out that
these surprising values correspond to an intermittent rise of the
anisotropy level that appears in a few consecutive snapshots of
the simulation. In this case where the level and direction of
anisotropy are not coherent over snapshots, the mean coefficient
gives an incomplete view of the anisotropic properties of the
simulation. Notably, even with significant levels of anisotropy
per map, if the reference angles are incoherent, we expect the
mean level of anisotropy to be small. We found out that this is
what happens for the p⊥ data set, where Ŝ aniso

1
coefficients are

relatively small while θref,1 coefficients clearly deviate from zero.

4.3. Second order coefficients and non-Gaussianity of the
data

R[Q̃ + iŨ] maps are Gaussian approximations of Q̃ + iŨ maps,
and we have already exhibited differences between these data
sets in their first order RWST coefficients in Sect. 4.1. Similarly,
second order RWST coefficients show remarkable differences
that highlight the non-Gaussianity of the Q̃⊥ + iŨ⊥ and Q̃‖ + iŨ‖
data sets. The two dominant second order RWST coefficients
Ŝ

iso,1
2

and Ŝ
iso,2
2

presented in Fig. 11 display clearly distinct pat-
terns between the original data sets and the randomized ones on
the example of the ⊥ data sets. First, Ŝ

iso,1
2

and Ŝ
iso,2
2

coefficients
are globally smaller for the R[Q̃ + iŨ] data sets, which is in line
with what we had foreseen in Sect. 4.1. In addition, Ŝ

iso,1
2

coef-
ficients for R[Q̃ + iŨ] show a scale invariance property: Ŝ

iso,1
2

coefficients only depend on the difference j2 − j1. We point out
that these scale invariant patterns are signatures of scale invari-
ant Gaussian processes (Bruna et al. 2015) and have already been
observed for fractional Brownian motions processes in Allys
et al. (2019).

Fig. 11. Ŝ
iso,1

2
( j1, j2) (top) and Ŝ

iso,2

2
( j1, j2) (bottom) RWST coefficients

for Q̃⊥ + iŨ⊥ and R[Q̃⊥ + iŨ⊥] data sets. Each curve corresponds to a
fixed j1 value with j2 varying from j1 + 1 to J − 1= 6. For j1 = J − 2,
the curve is reduced to a single dot on the figure.

Ŝ
iso,2
2

coefficients also show two distinct trends: the coeffi-
cients quickly tend to zero when j2 − j1 increases for R[Q̃ + iŨ]
while coefficients tend to strictly positive values for the largest
j2 − j1 values for non randomized data sets Q̃ + iŨ. This result
is related to the filamentary structure of the non randomized
maps, because a filamentary structure involves a modulation of
the WST coefficients as a function of the angle difference θ2− θ1.
We see the same trend in Fig. 12 for the Ŝ

iso,2
2

coefficients of
the other non randomized data sets which all present filamentary
structures. For all data sets, and fixed j1 values, Ŝ

iso,2
2

coefficients
decrease as a function of j2. This property seems to be general.
We also expect a signal due to the imprint of the wavelets in
the Ŝ

iso,2
2

coefficients that would increase their values when j2 is
close to j1 + 1.

We see in Fig. 11 that the differences between the Q̃⊥ + iŨ⊥
data set and its randomized counterpart decrease for the high-
est j1 values. Here again, this shows that the non-Gaussianity
of Q̃ + iŨ maps decreases at large scales. This is consistent with
what we have already pointed out in Sect. 4.1 for Ŝ iso

1
coefficients

and we interpret this trend similarly.
Second order anisotropic coefficients Ŝ

aniso,1
2

, Ŝ
aniso,2
2

, and
θref,2 essentially show consistent results with first order
anisotropic coefficients both in terms of amplitude and direction
of anisotropy. They have generally smaller values compared to
those of isotropic coefficients Ŝ

iso,1
2

and Ŝ
iso,2
2

. We do not show
these coefficients here as we do not discuss them any further in
this work.

5. Random syntheses of Q̃ + iŨ polarization maps

The RWST coefficients are not only statistical descriptors of
the data but can also be used as a set of constraints for gen-
erating multiple random realizations of polarization maps. By
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Fig. 12. Ŝ
iso,1

2
( j1, j2) (left column) and Ŝ

iso,2

2
( j1, j2) (right column) RWST coefficients for Q̃+ iŨ, exp(2iψ) and p data sets in the ⊥ case. Each curve

corresponds to a fixed j1 value with j2 varying from j1 + 1 to J − 1= 6. For j1 = J − 2, the curve is reduced to a single dot on the figure.

comparing the original and synthetic maps one can assess the
exhaustiveness of the statistical description. A visual agreement
would give more confidence in the relevance of the statisti-
cal information captured by a RWST description. However, this
qualitative assessment has its limits as it is unclear what kind of
statistics human eyes are sensitive to (Julesz 1981). A quantita-
tive comparison using summary statistics other than the RWST
is thus also needed.

The synthesis is also a means of simulating noise-free maps
artificially and realistically augmenting demanding MHD simu-
lations, or producing realistic foregrounds for component separa-
tion methods for CMB data analysis. This approach differs from
previous work where dust polarization maps are computed from
a phenomenological model and ancillary observations (Planck
Collaboration Int. XLII 2016; Ghosh et al. 2017; Vansyngel et al.
2017; Levrier et al. 2018; Adak et al. 2020; Clark & Hensley
2019) or directly from numerical simulations (Kim et al. 2019).
It follows what has been done for dust total intensity by Allys
et al. (2019) using the RWST, and Aylor et al. (2019) using a
Generative Adversarial Network.

In this section, we present random synthetic Q̃ + iŨ maps
generated from RWST coefficients derived from the analysis
of our MHD simulation and complemented by additional con-
straints on the large-scale components of the maps and on
the one-point probability distribution function. We then com-
pare synthetic and original maps using one-point and two-point
statistics.

5.1. Generation of synthetic polarization maps from a RWST
description

If synthetic total intensity maps generated from a RWST descrip-
tion have already been produced in Allys et al. (2019), in this
paper we extend and improve this procedure for complex polar-
ization maps Q̃ + iŨ. We give in this subsection some technical

details on the implementation but details on the mathematical
formalism can be found in Bruna & Mallat (2019).

The generation of synthetic maps is an iterative process that
consists in the minimization of a loss function L in pixel space.
Hence this optimization problem is defined in practice in a space
of dimension 5122. Starting from a realization of a complex
Gaussian white noise map X0 = Q̃0 + iŨ0, successive maps {Xk}

are built with a quasi-Newton method. We use a L-BFGS-B algo-
rithm, although we do not impose any boundary to the values of
the pixels. Technical details on quasi-Newton methods and L-
BFGS-B algorithm can be found in Fletcher (1987) and Byrd
et al. (1995).

In the following, one specific map Xr
= Q̃r

+ iŨr of the data
set on which the RWST description is built serves as a reference
for comparison with the synthetic maps. Because our WST and
RWST analyses does not extend to the largest scales, we have
no statistical information on these. Thus, we replace the largest
scales of X0 with those of Xr to address this gap in a determin-
istic way14. Formally, noting F [X0] the Fourier transform of X0

initially drawn as a realization of a Gaussian white noise we set:

F [X0](k)=F [Xr](k) for |k| < kmin, (25)

where kmin is the wave number corresponding to the largest
scale probed by the WST. For J = 7, using Table 1 we have
kmin ≈ 2π/171 ≈ 0.037 pixel−1. In practice, 25 Fourier modes
out of 5122 are set by this procedure. Even if in our case this
value of kmin is related to an ad hoc modeling decision (J value),
we point out that statistical approaches are not always relevant at
all scales for the analysis of the diffuse ISM. For example, in a
turbulent medium we know that injection scales generally corre-
spond to specific events (e.g., a supernova) for which a statistical

14 We note that such an approach cannot supply the statistical informa-
tion concerning the couplings between the largest scales with smaller
ones.
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Fig. 13. Synthesis of a Q̃‖ + iŨ‖ map
(right column) built from its correspond-
ing RWST description with additional
constraints on large-scale components and
on a few one-point moments of Q̃ and Ũ
maps, to be consistent with those of a ref-
erence map (left column). The reference
maps shown here are the same as in Fig. 3.

description has little meaning, while a statistical description is
relevant to describe the inertial range. Moreover, the WST of an
image does not adequately characterize its one-point statistics, so
in the following we also constrain these for the synthetic maps
using Xr one-point statistics as a reference.

We define the loss functionL of a complex image X = Q̃+ iŨ
as follows:

L[X]=LWST[X] + µ
(

Lone−point[Q̃] +Lone−point[Ũ]
)

, (26)

with LWST[X] the loss function constraining the WST coeffi-
cients of X, Lone−point[Q̃] (respectively Lone−point[Ũ]) that con-
straining a few one-point moments of Q̃ (respectively Ũ), and
µ a weighting coefficient balancing the importance of one-point
moments constraints with that of WST coefficients constraints.
More specifically we set:

LWST[X]=
1

N

















(

S 0[X] − S t
0

)2
+

∑

j1,θ1

(

S 1( j1, θ1)[X] − S t
1( j1, θ1)

)2

+

∑

j1, j2,θ1,θ2

(

S 2( j1, θ2, j2, θ2)[X] − S t
2( j1, θ1, j2, θ2)

)2

















,

(27)

where the “t” superscript refers to the target WST coefficients
that the synthetic map should have, and N is the total number
of WST coefficients. In our case (J = 7 and Θ= 8) we recall
that we have N = 2801. These target WST coefficients are com-
puted from the RWST coefficients derived from a given data set
of Q̃ + iŨ maps (of which Xr is part) using the RWST model
defined in Eqs. (23) and (24). We see on this loss function that
none of the WST coefficient is privileged and that we do not
weigh the differences of WST coefficients by any uncertainty on

the target coefficients. This is certainly something that can be
improved in future work on WST syntheses. We finally define:

Lone−point[Q̃]=
1

3















(

M2[Q̃]

M2[Q̃r]
− 1

)2

+

(

M3[Q̃] −M3[Q̃r]
)2

+

(

M4[Q̃] −M4[Q̃r]
)2
)

, (28)

where M2[Q̃]= 〈
(

Q̃ − 〈Q̃〉
)2
〉 is an estimation of the variance

of the distribution of pixels values in the Q̃ map, M3[Q̃]=

〈
(

Q̃ − 〈Q̃〉
)3
〉/M2[Q̃]3/2 is an estimation of its skewness, and

M4[Q̃]= 〈
(

Q̃ − 〈Q̃〉
)4
〉/M2[Q̃]2 is an estimation of its kurtosis.

We generate synthetic maps using the Q̃‖ + iŨ‖ RWST
description as a target but we also provide equivalent results
for the Q̃⊥ + iŨ⊥ RWST description in Appendix C. The opti-
mization algorithm stops when the values of the loss func-
tion stagnates between two consecutive iterations. In prac-
tice we choose µ= 5× 10−8 and the algorithm stops when
|L[Xk] − L[Xk+1]| / 10−12. These numerical values correspond
to a reasonable trade-off between the quality of the syntheses
and the execution time of the algorithm. They lead to constrained
statistical coefficients with an accuracy better than a few per-
cent on average. Once the optimization is done, we finally filter
the modes of the resulting maps at higher wave numbers than
the one dimensional Nyquist wave number (kN = π pixels−1) to
avoid unwanted numerical artifacts. Indeed, the WST relies on
a bank of Morlet wavelets that does not properly cover this
range of frequencies, which results in a total loss function L
that does not properly constrain these modes. Figure 13 shows
a synthetic Q̃‖ + iŨ‖ map (right column) next to its reference
map (left column). The overall appearance of the synthetic maps
is satisfactory. The largest scales are roughly consistent with
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Fig. 14. Power spectra of the synthetic Q̃‖ + iŨ‖ map shown in Fig. 13, compared to those of the reference map, for Q̃, Ũ, and |Q̃ + iŨ | (left, middle
and right respectively). The vertical dashed lines mark the wavelet central wave numbers corresponding to the scale indices j= 0, . . . , J − 1.

Fig. 15. One-point distribution functions of the synthetic Q̃‖ + iŨ‖ map shown in Fig. 13, compared to those of the reference map, for Q̃, Ũ, and
|Q̃ + iŨ | (left, middle and right respectively).

those of the reference maps15, but we also see at intermediate
and small scales, which are the truly synthetic scales, consistent
filamentary patterns and dynamic ranges.

5.2. One-point and two-point statistics of synthetic maps

By construction, the synthetic maps we built have the same
WST statistics as the one prescribed by the RWST description
of the Q̃‖ + iŨ‖ data set, similar large scales and some identical
one-point moments compared to the reference maps. We may
wonder if elementary one-point and two-point statistics are fully
consistent with the ones of the reference maps.

Figure 14 shows the power spectra of Q̃, Ũ, and Q̃ + iŨ
up to the one dimensional Nyquist wave number kN for both
the reference maps and the syntheses shown in Fig. 13. The
power spectra are computed by binning the squared amplitudes
of Fourier modes with respect to the modulus of the corre-
sponding wave number k. We use a regular binning in k and the
estimations of the power spectra are computed as the means for
each bin. We also represent standard deviations of the mean per
bin. We see that the power spectra as well as their standard devi-
ations are in good agreement for the three variables Q̃, Ũ, and
Q̃ + iŨ for all scales except the smallest ones. These discrepan-
cies at small scales take the form of a lack followed by an excess
of power in the syntheses for wave numbers approaching kN . We
interpret this as the result of poorly constrained modes close to

15 Since the WST constraints leave the largest scales of X0 unchanged,
this shows that the impact of the one-point moments constraints on these
scales is minor.

kN in the optimization process. It is not surprising to reproduce
the power spectrum of Q̃ + iŨ maps as the S̄ 1 and S̄ 2 coeffi-
cients constrain the power spectrum of Q̃ + iŨ (see discussion
in Sect. 2.3). However we point out that we correctly reproduce
the power spectra of Q̃ and Ũ taken separately. Still we note that
we did not investigate cases where Q̃ and Ũ have very different
power spectra.

In Fig. 15, we compare the one-point distribution functions
of the reference maps and the synthetic maps for Q̃, Ũ, and
|Q̃ + iŨ |. These are also in fairly good agreement for all the
variables. We notably successfully reproduce the tails of these
distributions, this must be due to the combined constraints on
WST coefficients and one-point moments. One could surely
enhance the agreement between the reference and synthetic maps
by taking into account higher order moments in the Lone−point

loss functions.
We point out that such syntheses were generated using

RWST descriptions that comprise 127 coefficients (see
Sect. 3.4). Adding to that the largest scales that were set in a
deterministic way as well as the constraints on the one-point
moments of Q̃ and Ũ maps, we end up with a total of 158 coef-
ficients to generate 512× 512 complex Q̃ + iŨ maps that are in
good visual agreement with the maps of the original data set and
successfully reproduce their one-point and two-point statistics.
Excluding the largest scales, these sets of statistical coefficients
not only describe the statistical properties of these maps, but they
also define a statistical model of the mechanism that generated
these data. In a mathematical wording, these coefficients model
the probability distribution of the random field of which these
maps are realizations. Although these statistical syntheses will
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definitely benefit from more dedicated work, they already are a
promising avenue to address the construction of the statistical
model of polarization maps that we seek.

6. Conclusions and perspectives

In this paper, we extended the WST analysis to maps of polarized
thermal emission from interstellar dust, using 512× 512 pixels
Stokes I, Q, and U maps built from a numerical simulation of
MHD turbulence designed to reproduce typical properties of the
diffuse ISM. To alleviate the fact that Stokes Q and U rely on
the definition of an arbitrary reference frame, and to remove the
zeroth-order impact of the matter distribution on their proper-
ties and thus focus on the statistics of the magnetic field, the
WST was applied to complex Stokes maps Q̃ + iŨ that are nor-
malized by I + P. To study the contributions of the polarization
fraction p and of the polarization angle ψ to the statistical prop-
erties of these complex Stokes maps, we also applied the WST
to the corresponding maps of p and exp(2iψ). We finally ana-
lyzed “Gaussianized” complex Stokes maps obtained after phase
randomization.

The WST gives a low-variance statistical description of
these complex and real maps through typically a few thousand
coefficients indexed in terms of orientations and scales. These
coefficients capture the power spectra of the maps and charac-
terize couplings between oriented scales. WST coefficients for
maps of Q̃ + iŨ, p, and exp(2iψ) present a striking regularity
when taken as functions of the sole angular variables. This is
very much in line with what we observed in Allys et al. (2019)
for column density and total intensity maps, and in fact the same
functional form introduced in that paper can be used to fit the
angular dependencies of the WST coefficients of polarization
maps studied here, thus extending the RWST model introduced
in Allys et al. (2019). The RWST yields a statistical description
of polarization maps that quantifies their multiscale properties
in terms of isotropic and anisotropic contributions, all the while
requiring more than one order of magnitude fewer coefficients
than the WST.

In the rest of this section, we summarize the main results of
our work, then highlight a few perspectives. The RWST analysis
allowed us to identify statistical characteristics that exhibit the
dependence of the map structure on the orientation of the mean
magnetic field and quantify the non-Gaussianity of data.

– The overall level of first order coefficients depends on the
orientation of the mean magnetic field with respect to the
line of sight. For Q̃ + iŨ maps, Ŝ iso

1
+ log2(S̄ 0) coefficients

are larger when the mean magnetic field is in the plane of the
sky, while for exp(2iψ) maps Ŝ iso

1
is larger when the mean

magnetic field is along the line of sight.
– Ŝ aniso

1
coefficients quantify the statistical anisotropy of the

maps. When the mean magnetic field is parallel to the line of
sight Ŝ aniso

1
coefficients are negligible, while when the mean

magnetic field is in the plane of the sky they allow us to iden-
tify the direction of anisotropy at each scale. For the MHD
simulation we analyzed, this direction is orthogonal to the
direction of the mean magnetic field for both the Q̃⊥ + iŨ⊥
and exp(2iψ)⊥ maps.

– Second order RWST coefficients clearly exhibit the non-
Gaussianity of Q̃ + iŨ maps (although this is also visible
to a lesser extent in first order coefficients). While the ran-
domized R[Q̃+ iŨ] data sets present characteristic properties
of scale invariant Gaussian fields (invariance of Ŝ

iso,1
2

as a
function of the scale difference j2 − j1 and a quick decrease

to zero of Ŝ
iso,2
2

as this scale difference increases), the Ŝ
iso,1
2

and Ŝ
iso,2
2

coefficients for the corresponding Q̃ + iŨ data
sets show clearly different patterns. In particular, the strictly
positive values of Ŝ

iso,2
2

at large j2 − j1 are interpreted as
signatures of the filamentary structure of the maps.
We have used the RWST approach to synthesize Q̃ + iŨ

maps. Combining the RWST coefficients with additional con-
straints, we obtained synthetic maps that statistically match the
original maps. The agreement demonstrates the comprehensive-
ness of the statistical description provided by the RWST. The
additional constraints include large scale modes that cannot
be described statistically with the limited amount of samples
we have worked with, as well as statistical constraints on the
one-point distribution function.

In this paper, to establish the methodology, we have worked
with noise-free maps computed from numerical simulations of
MHD turbulence. A future extension would be to apply it to
observations of polarized thermal emission from dust. To do
this, we need to learn how to handle data noise. Indeed, while
signal-to-noise ratios in total intensity for both Herschel and
Planck maps are quite high, this is not the case for currently
available polarization data. Studying how data noise affects the
WST coefficients would demand to repeat the analysis of MHD
simulations with noise added to the dust signal. Once this dif-
ficulty is overcome, we may use the RWST to define a metric
to compare observations with simulations and phenomenologi-
cal models. This will be a stepping stone towards a more refined
physical interpretation of the RWST coefficients. A main moti-
vation would be to use the RWST to characterize magnetized
interstellar turbulence.

Throughout this work we chose to work with Stokes I, Q,
and U maps to analyze the polarization of dust thermal emission
as astronomers do for Galactic astrophysics. In the framework
of CMB data analysis, polarization is more usually character-
ized through E and B modes. Thus, it would be interesting to
apply the RWST to E and B maps. This will lead to a physically
motivated statistical model that would include observational
constraints such as the E/B power asymmetry and the correlation
between E-modes of the polarization and total intensity (Planck
Collaboration XI 2020). Once this is achieved, the RWST may
be used to synthesize dust polarization maps that would help
to assess and optimize component separation methods for CMB
data analysis.
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Appendix A: The RWST model in terms of Fourier

series expansions

The RWST model can be rephrased in terms of truncated Fourier
series. Let us consider the log2(S̄ 1) coefficients at a given scale
j1 and write f j1 (θ1) the corresponding angular model16. If one
assumes that there are no more than one privileged direction
θref,1( j1) in the maps we are dealing with, we can write gen-
erally f j1 (θ1) as a Fourier series expansion using the natural
2π-periodicity of this function:

f j1 (θ1)= a0( j1) +

+∞
∑

k= 1

[

ak( j1) cos
(

k
[

θ1 − θ
ref,1 ( j1)

])

+ bk( j1) sin
(

k
[

θ1 − θ
ref,1 ( j1)

])]

. (A.1)

Assuming a mirror symmetry with respect to the potential ref-
erence direction, we expect {bk} coefficients to vanish (which is
the case in practice for our data). Adding to that the π-periodicity
identified in Sect. 3.3 the angular model reduces to:

f j1 (θ1)= a0( j1) +

+∞
∑

k= 2

ak( j1) cos
(

k
[

θ1 − θ
ref,1 ( j1)

])

. (A.2)

Finally, the smoothness of the patterns presented in Sect. 3.3
implies a fast decrease of the amplitudes of the harmonics.
Truncating the expansion after the second term and writing
a0( j1)= Ŝ iso

1
( j1) and a2( j1)= Ŝ aniso

1
( j1) we end up with the

RWST model of Eq. (23).

Appendix B: Phase randomization

We give some technical details concerning the phase randomiza-
tion process of a discretized scalar field.

Let us consider a 2D discretized real scalar field f : Ω → R
with Ω= ~0,N − 1�2. Its discrete Fourier transform reads for a
given mode k= (kx, ky) ∈ Ω:

f̂ (k)=
∑

r∈Ω

f (r) exp

(

−2πi
r.k

N

)

, (B.1)

where r · k= xkx+yky. We also recall the inverse discrete Fourier
transform relation for the chosen convention:

f (r)=
1

N2

∑

k∈Ω

f̂ (k) exp

(

2πi
r.k

N

)

. (B.2)

The phase randomization of f consists in defining a new field g
in Fourier space such that:

ĝ(k)= | f̂ (k)|eiφ(k), (B.3)

for every mode k ∈ Ω and where φ is a realization of a uniform
random phase such as defined in Galerne et al. (2011), that is,
defining Ω0 = {(0,N/2), (N/2, 0), (N/2,N/2)} if N is even, and
Ω0 =∅ otherwise, φ verifies:
1. ∀k ∈ Ω \ Ω0, φ(−k)= − φ(k) (we extend the domain of φ to
Z

2 using periodic boundary conditions).
2. ∀ k ∈ Ω, φ(k) is drawn uniformly and independently in

[0, 2π) (the independence holds to the extent of the first
relation).

16 The same kind of reasoning holds for log2(S̄ 2) coefficients.

Fig. B.1. Example of a phase randomized R[Q̃⊥] map (right) next to its
corresponding original Q̃⊥ map (left).

3. ∀k ∈ Ω0, φ(k) is drawn uniformly and independently in the
set {0, π}.

These relations ensure that g will be a real field, and that the
mean of g will be equal to the absolute value of the mean of
f (since condition 1. gives φ(0)= 0). Such a process obviously
defines a field g which preserves the power spectrum of f . For
reference, we show an example of a phase randomized R[Q̃⊥]
map in Fig. B.1.

Appendix C: Additional results

C.1. Additional terms in the RWST model

Following the appendix C of Allys et al. (2019), we enhance
the RWST model defined in Eqs. (23) and (24) by adding so-
called lattice terms related to pixellization effects at small scales
for first order coefficients and a supplementary harmonic of the
angular modulation of the second order WST coefficients. This
enhanced RWST model of the angular dependency of the WST
coefficients becomes, for S̄ 1 coefficients:

log2

[

S̄ 1 ( j1, θ1)
]

= Ŝ iso
1 ( j1)

+ Ŝ aniso
1 ( j1) cos

(

2
[

θ1 − θ
ref,1 ( j1)

])

+ Ŝ
lat,1
1

( j1) cos (4θ1) + Ŝ
lat,2
1

( j1) cos (8θ1) ,

(C.1)

where the additional lattice terms Ŝ
lat,1
1

and Ŝ
lat,2
1

quantify angu-
lar modulations that are respectively π/2 and π/4-periodic and
aligned with the main directions of the lattice. Similarly the
enhanced RWST model of S̄ 2 coefficients is:

log2

[

S̄ 2 ( j1, θ1, j2, θ2)
]

= Ŝ
iso,1
2

( j1, j2)

+Ŝ
iso,2
2

( j1, j2) cos (2 [θ1 − θ2])

+Ŝ
iso,3
2

( j1, j2) cos (4 [θ1 − θ2])

+Ŝ
aniso,1
2

( j1, j2) cos
(

2
[

θ1 − θ
ref,2 ( j1, j2)

])

+Ŝ
aniso,2
2

( j1, j2) cos
(

2
[

θ2 − θ
ref,2 ( j1, j2)

])

, (C.2)

where the additional term Ŝ
iso,3
2

measures the amplitude of an
additional harmonic of the θ1 − θ2 angular modulation that is
π/2-periodic.

These additional terms do not affect the values of the RWST
coefficients discussed in the main body of the paper and sig-
nificantly improve reduced chi square χ

2,S1
r and χ

2,S2
r at small

scales as shown in Fig. C.1. These chi square functions are to be
compared to those of Fig. 7. Figures C.2 and C.3 show greatly
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Fig. C.1. Reduced chi square χ2,S1
r ( j1) (top) and χ

2,S2
r ( j1, j2) (bottom)

associated with the RWST fits of the WST coefficients that take into
account lattice terms (see Eqs. (C.1) and (C.2)) for the Q̃⊥+ iŨ⊥ data set.
Each curve in the χ2,S2

r ( j1, j2) plot corresponds to a fixed j1 value while
j2 ranges from j1 + 1 to J − 1= 6. For j1 = J − 2, the curve is reduced to
a single dot on the figure. We use logarithmic scales for better visibility.

improved normalized residuals compared to the previous ones
shown in Figs. 4 and 5. In particular at j1 = 0 we no longer
observe the strong angular pattern seen in Fig. 4.

For completeness, we show in Fig. C.4 the additional RWST
terms given for the example of the Q̃⊥ + iŨ⊥ data set.

Fig. C.2. Same as Fig. 4 but for the RWST fit corresponding to the
model of Eq. (C.1) including lattice terms.

C.2. Syntheses for Q̃⊥ + iŨ⊥

We show in Figs. C.5–C.7 the maps, power spectra, and distribu-
tion functions of synthetic maps in the ⊥ case that are analogous
to those of Figs. 13–15.
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Fig. C.3. Same as Fig. 5 but for the RWST fit corresponding to the model of Eq. (C.1) including lattice terms.

Fig. C.4. Ŝ
lat,1

1
( j1) (left column), Ŝ

lat,2

1
( j1) (middle column) and Ŝ

iso,3

2
( j1, j2) (right column) RWST coefficients for the Q̃⊥ + iŨ⊥ data set. In the

Ŝ
iso,3

2
plot, each curve corresponds to a fixed j1 value while j2 ranges from j1 + 1 to J − 1= 6. For j1 = J − 2, the curve is reduced to a single dot on

the figure.
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Fig. C.5. Same as Fig. 13 but for the ⊥ case. The
reference maps shown here are the same maps as in
Fig. 2.

Fig. C.6. Same as Fig. 14 but for the ⊥ case.

Fig. C.7. Same as Fig. 15 but for the ⊥ case.
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