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Abstract— This paper introduces the notion of cycle-accurate
macro-models for RT-level power evaluation. These macro-
models provide us with the capability to estimate the circuit
power dissipation cycle by cycle at RT-level without the need to
invoke low level simulations. The statistical framework allows us
to compute the error interval for the predicted value from the
user specified confidence level. The proposed macro-model
generation strategy has been applied to a number of RT-level
blocks and detailed results and comparisons are provided.

I. INTRODUCTION

Due to rapid advances in the semiconductor manufacturing
technology, the chip density and operating frequency of
today’s IC’s are increasing. Consequently, power dissipation
has emerged as a major concern in today’s IC’s. Low power
design requires accurate and efficient estimation tools at
various design abstraction levels.

Power  estimation at RT-level or higher level is crucial in
achieving a short design period. A hierarchical simulation
approach to RT-level power estimation is to functionally
simulate one circuit and to collect  input sequences for each
module (major sub-circuit). This information is then passed to
various kinds of gate-level or circuit-level simulation
programs. The modules are simulated in turn at gate-level or
circuit-level using the corresponding input sequences. Finally,
the power consumption for all the modules is added together
to get the power consumption of the whole circuit. Strictly
speaking, this is not an RT-level power estimation
methodology because it indeed uses gate-level or circuit-level
simulator to do power estimation. Power evaluation is actually
done at lower level.

Most RT-level power estimation techniques use capacitance
models for circuit modules and activity profiles for data or
control signals [1-3]. Such techniques are commonly known
as (power) macro-modeling. The simplest form of the macro-
model equation is given by:

                   Power V f C SWeff= ⋅ ⋅ ⋅1
2

2                         (1.1)

where Ceff is the effective capacitance, SW is the mean of the
input switching activity, and f is the clock frequency. The
Power Factor Approximation (PFA) technique uses an
experimentally determined weighting factor, called the power
factor, to model the average power consumed by a given
module over a range of designs.

More sophisticated macro-model equations can be used to
improve the accuracy. Dual Bit Type model, proposed in [2],
exploits the fact that switching activities of high order bits
depend on the temporal correlation of data while lower order
bits behave similarly to white noise data in the data path or

memory modules. Thus a module is completely characterized
by its capacitance models in the MSB and LSB regions. The
break-point between the regions is determined based on the
applied signal statistics collected from simulation runs. The
Activity-Based Control (ABC) model [4] is proposed to
estimate the power consumption of random-logic controllers.
All of the above macro-models assume some statistics or
properties about the input sequence.

Power macro-modeling formulations in general consist of
generating circuit capacitance models for some assumed data
statistics or properties. The statistics of input data is gathered
during behavioral simulation of the circuit. Power macro-
modeling problem defined as follows: Given an input vector
sequence of size N, an RT-level circuit with m modules, and
assuming N is large enough to capture the typical operation of
the circuit, derive a simple function such that the function
value of the N vector inputs is as close as possible to the
power consumption of the N-vector sequence.

A simple power macro-model equation for the jth module in
the circuit may be expressed as:

                         P V f C SWj ij
j

n

ij

j

= ⋅ ⋅ ⋅
=

∑1
2

2

1

                   (1.2)

where f is the clock frequency, nj is the number of inputs for
the jth module, Cij is the effective capacitance for input pin i,
and SWij is the switching activity for the ith pin of the jth
module. Note that the above equation is only a typical form of
macro-model and is not unique. For example, we can include
the spatio-temporal correlation coefficients among circuit
inputs [5] to improve the power prediction results (this will
however significantly increase the number of variables in the
macro-model equation and thus the evaluation overhead).

Let Pjk denote the power consumption of the jth module at
cycle k. We can also write the macro-model equation in a
cycle-based form as follows:

                       P V f C SWjk ij
i
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                 (1.3)

where SWijk is the switching activity (0 or 1) for the ith input
of jth module at cycle k. The above equation also illustrate
that macro-modeling can be used to estimate the power
consumption at each cycle, this ability is critical to our
statistical approach. We thus distinguish between cumulative
macro-models (such as eqn.(1.2) ) and cycle-based macro-
models (such eqn.(1.3)). The total power based on cumulative
or cycle-based macro-model can be expressed as:

                     P P  P Pj
j

m

k jk
j=

m

= =
=

∑ ∑
1 1

       or                 (1.4)
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where M is the number of modules used in the circuit. To
calculate SWij, behavioral simulation is performed from cycle
1 to cycle N and the mean values of random variates SWij are
tabulated. Let Vjk denote the input vector for module j at cycle
k, 0 ≤ ≤k N . A more general macro-model equation for
module j at cycle k can be expressed as:

                             P F V Vjk j j k j k= −( , ), ,1                        (1.5)

where Fj could be any function of input vector pairs. Let Vk
denote the collection of input vectors, derived from
simulation, for m modules at cycle k, 0 ≤ ≤k N . Then total
power equation for cycle k is:

                                 P F V Vk k k= −( , )1                            (1.6)

where F Fj
j

m

=
=

∑
1

.

In the past, average power dissipation has been the primary
focus of power estimation techniques and tools. It has
however become important to estimate the power distribution
of the circuit over a large number of clock cycles. This
information is especially useful for determining the circuit
reliability, performing dc/ac noise analysis, and choosing
appropriate packaging and cooling techniques for IC’s. Cycle-
based macro-models enable us to predict the circuit power
dissipation over time, without the need for low-level
simulation.

In general, the three basic criteria for effective macro-model
design are:

1. The space and time complexity for collection of
parameter values for F and for each evaluation of this
function should be small.

2. The accuracy of the macro-model should be high.
3. The error sensitivity of the macro-model to variations in

population behavior should be small.

In this paper we propose a statistical design methodology for
developing a good cycle-based macro-models for modules
(simple or complex cores). The macro-model is built and
analyzed based on the theory of regression analysis. A
systematic design flow is proposed for model development
and verification and two different variable selection methods
are discussed. In one approach, detailed information about
module (core) structure and functionality is used to derive a
specialized closed form capacitance equation with a relatively
small number of variables. This approach leads to macro-
model equations with high accuracy and low evaluation cost.
However, it requires detailed knowledge of the module
structure and functionality and cannot be fully automated. In
the second approach, we start with a general-purpose macro-
model equation with a large number of variables (for
example, all pairwise spatio-temporal correlation coefficients
among the module inputs). This technique leads to less
accurate macro-models with higher evaluation cost, but the
advantage is that it can be fully automated. A variable
reduction algorithm is then applied to eliminate as many
variables in the general-purpose equation as possible without
incurring large errors.

In the paper we discuss the various sources of error due to
insufficient training of the macro-model and propose a
training set design methodology to make out macro-model
universal (error be less sensitivity to variation in population
characteristics). Because of our macro-model, which is a
multivariate linear regression model, we are able to compute
the confidence interval for the estimation of model

coefficients. The confidence interval for power prediction of
any vector pair can also be evaluated for the purpose of error
control. This is a very important and useful feature which is
absent from all other power macro-modeling techniques.

II. BACKGROUND

Our goal is to build a cycle-based macro-model which takes a
pair of vectors as its inputs and produces a power estimate as
its output. The method of linear regression analysis is applied
to achieve our purpose.

The statistical relationship between power dissipation and an
input vector pair can be defined as,

                   P X X Xk k= + + + +β β β β0 1 1 2 2 �              (2.3)

where P is the power dissipation variable, β β β0 1, , ,� k  are

constants called the regression coefficients or parameters of
the macro-model, and X X Xk1 2, , ,�  are characteristic

variables extracted from the input vector pair.

Regression model is a formal means of describing a statistical
relation between a set of variables and the characteristic under
study. Unlike a functional relation, the statistical relation is
not perfect. This means that in general, observations for a
regression model do not fall directly on the curve defined by
the relationship. There are two essential ingredients of a
statistical relation which are expressed by a regression model:

1. Tendency of the dependent variable P to vary with the
independent variables X X Xk1 2, , ,�  in a systematic

fashion,
2. Concentration of points around the surface of statistical

relationship.

These two characteristics are embodied in a regression model
by postulating that:

1. There is a probability distribution of P for each distinct
value of (X X Xk1 2, , ,� )

2. The expected values of these probability distributions
(distribution means) vary in some systematic fashion with
X X Xk1 2, , ,� .

Assume that we have been given the equation form of the
macro-model and have done simulation (observation) on m
randomly sampled vector pairs so that we have obtained m
simulation results (observation values) of power consumption.
The power linear regression model can be defined as,

 P x x x i mi i i k i k i= + + + + + =β β β β ε0 1 1 2 2 1 2, , , , , , ,� �      (2.4)

where Pi’s are random variates corresponding to observations:
( X X Xk1 2, , ,� )=( x x xi i i k, , ,, , ,1 2 � ); β β β0 1, , ,� k  are the

regrssion coefficients; x x xi i i k, , ,, , ,1 2 �  are known values

derived from the input vector pair (V Vi i, ,,1 2 ); and εi’s are

independent random variates representing deviation from the
mean value of power. The multivariate regrssion model can
be also expressed in matrix form as,

                                   P X= +ββ εε                                    (2.5)

Consequently, the random vector P has an expected value of
E[P]=Xββ and the variance-covariance matrix of P is

COV[ ]P I= σ2 , where I  is the identity matrix.



Because the “real” values of ββ and εε in the regrssion model
are unkown, we apply the method of least squares fit to obtain
their estimates b and e. We denote the vector of estimated
regrssion coefficients as,

                        [ ]b
( )

, , ,
k

kb b b
+ ×

=
1 1

0 1 �
T

                           (2.6)

The lease squares estimator for the coefficients ββ are:

                             b X X X P= ⋅ ⋅ ⋅−( )T T1                        (2.7)

It has been proved [6] that the lest square estimator is an
unbiased estimator for ββ, which means E[b]= ββ.

The estimated (fitted) power from macro-model is given by
the multiplication of input variables and estimated
coefficients:

                             [ ]� � , � , , �P Xb= =P P Pm1 2 �                      (2.8)

and the residual terms are defined as the difference between
the fitted power and observed power:

                     [ ]e P P P Xb= = − = −e e em1 2, , �
�             (2.9)

It is necessary to point out that b, e, and �P  are all random
variables with certain distributions. We will discuss their
statistical properties in Section 3.

Some important statistical properties of regression model [6]
are:

error sum of squares: SSE ei
i

m

=
=
∑ 2

1

error mean squares: MSE SSE m k= − −( )1

regrssion sum of squares: SSR P Pi
i

m

= −
=
∑ ( � )2

1

regrssion mean squares: MSR SSR k=

coefficient of multiple correlation: R SSR SSR SSE= +( )

III . BUILDING THE REGRSSION MODEL

Our workflow of building a good cycle-based macro-model is
shown in Figure 3.1

Fig.3.1 The workflow of developing a macro-model

3.1 Variabel selection

Variable selection is the first important step for building a
good macro-model.

If detailed information about the module (core) structure and
functionality is provide. Then this information can be used to
derive a macro-model form with a relatively small number of
variables, yet high accuracy. We call this a specialized macro-
model. As an example, consider variable selection for
MUL16, which has the structure shown below:

The structure of MUL16 is basically a plane of 256 AND
gates integrated with 1-bit full adders. The power dissiation of
these adders is determined by the switching activity on their
inputs. We divided the plane into two symmetric parts as
shown above. Part I consists of 120 AND gates and 1-bit
adders while part II consists of 136 AND gates and 1-bit
adders. Let us define transition type as either 00, 01, 10, or 11
transition. We use four variables Xij (i,j=0,1) to represent the
number of transitions of type ij  at the ouputs of the AND gates
in part I. Similarly, we use four variables Ykl (k,l=0,1) to
represent the number of transitions of type kl at the outputs of
the AND gates in part II. We then introduce second order
terms XijXkl, XijYkl, YijYkl for a total of 10+16+10=36 variables.
In total, the number of variables in the specialized MUL16
macro-model becomes 44. Note that all variable values can be
derived from knowledge of the input patterns which are
applied to MUL16, that is, no low-level simulation is
required.

The procedure for generating a specialized macro-model
cannot be fully automated, because it requires detailed
analysis of the structure and functionality of a module. In our
general purpose macro-modeling approach, the original
variable set contains the variables that reflect the transition
situation of each input and the pairwise spatial correlation
between every pair of them. A variable reduction algorithm is
then applied to choose a “best” subset from the original
variables as the final selected variable for the macro-model as
detailed next.

3.2 Variable reduction

Number of variables in the initial macro-model can be in the
hundreds. The forward regression procedure [6] is the most
suitable automatic search method for a regression model with
this many variables. The search method develops a sequence
of regression models, at each step adding or deleting one X
variable. The criterion used for adding or deleting variables is
the F*  statistics [6] in regression analysis. The algorithm
(which assumes a linear macro-model equation form similar
to Eqn.(2.3)) is described below:

Input : Given are a set of candidate variables
{ X X XN1 2, , ,� }, a training set, a low threshold t0, a high

threshold t1. S is a set of selected variables.

Step 0 : Set S=Φ and C = {X X XN1 2, , ,� }.

Step 1 (start) : Fit a one-variable linear regression model for
each of the X variables. The F*  statistic for each model is
obtained by:

                     F
MSR X

MSE X
i Ni

i

i

* ( )

( )
, , , ,= =      1 2�               (3.1)
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Assume that Xj is the variable with the maximum F*  value. If

F tj
* ≥ 1  then move Xj from C to S and denote it as X1

* .

Otherwise, no macro-model can be found for the given t1
value (t1 must be reduced). The algorithm terminates.

Step 2 (add variable) : Assume S = { X X Xa1 2
* * *, , ,� }, for

each Xi remaining in C, fit the regression model with a+1

variables X X Xa1 2
* * *, , ,�  and Xi . For each of them, the

partial F test statistics is:

            F
MSR X X X X

MSE X X X X

b

s bi
i a

i a

i

i

*
* * *

* * *

( | , , , )

( , , , , )
(

{ }
)= =1 2

1 2

2�

�

       (3.2)

where bi is the estimated value of βi coefficient and s{ bi} is
the standard deviation of bi. Let Xj be the variable with the

maximum Fi
*  value. If F tj

* ≥ 1  then move Xj form C to S and

denote it as Xa+1
* , increase a by 1, and go to Step 3;

Otherwise the algorithm terminates.

Step 3(delete variable) : Assume S={ X X Xa1 2
* * *, , ,� }, and

Xa
*  is the latest variable added in Step 2. Compute the partial

F test statistics for all other variables in S:

     

F
MSR X X X X X X

MSE X X X X

b

s b
i a

i
i i i a

i a

i

i

*
* * * * * *

* * * *

( | , , , , , , )

( , , , , )

(
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       (3.3)

Let X j
*  be the variable with minimum F*  value. If F tj

* < 0

then remove X j
*  form S.

Step 4 : Repeat Steps 2 and 3 until algorithm terminates in
Step 2 or there is no variable in the candidate set C.

With user defined threshold t0 and t1, the above algorithm will
find the “best” variables for the macro-model from the
candidate set. The number of “best” variables retained in the
model is controlled by assigning appropriate threshold values.

3.3 Training set design

Definition . Population is the set of all possible input vector
pairs applied to a module.

Definition . Training set is a representative subset of the
whole population which is used to estimate coefficients of the
macro-model.

The general requirement for generating the training set for a
macro-model is that it should create the ranges of all possible
values of independent variables Xi and dependent variable P
in the original population . When either of these ranges is not
sufficiently covered by the training set, we say that the macro-
model is not well trained or, more precisely, it is insufficiently
trained. According to the source of insufficiency (range of
Xi’s versus range of P), insufficiently trained macro-models
can be classified into type I versus type II.

When applying the macro-model to new subsets of the
population (i.e., subsets other than the training set), the
insufficiently trained macro-model of type I will, in most

cases, results in large errors. Normally this problem can be
solved by doing more experiments and collecting more fitting
data from the available population. Table 3.1 shows the error
values caused by the C1908 macro-model (66 variables) using
training sets of different sizes. The units in the training sets
are randomly sampled from the population. Using the training
sets of different sizes, macro-models with different
coefficients were obtained and applied to estimate the power
dissipation for whole population.

In the Table, the average error and sum error is computed by:

  

EAP

ECP

(Error in Average Power)=
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=
−

= =

=
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        (3.4)

where N is the size of the population, �Pi  is the estimated

power for unit i, and Pi is the corresponding “actual” power
value.

TABLE 3.1
THE ERROR CAUSED BY THE MACRO-MODEL TRAINED BY

TRAINING SETS OF DIFFERENT SIZES

Training Set Size ECP EAP

100 33.54% 4.90%

200 19.74% 1.07%

500 14.90% 1.29%

Results show that, when size of the training set is too small,
the full range of range of values of variables in the macro-
model equation is not exercised sufficiently, resulting in
larger errors. However, after the size of training set surpasses
the lower bound for efficient training, the accuracy of the
macro-model can be hardly improved by using more training
units.

The magnitude of the error caused by insufficiently trained
macro-model of type II depends on the difference in the
characteristic under study (for example, power range)
between the new sequence and the training set. This problem,
which is called the population-sensitive error problem, is
more difficult to overcome and can not be completely
avoided.

Table 3.2 shows experimental results of the population-
sensitive error problem. In the experiment, we used three
different training sets and their union to train and get four
MUL16 macro-models with different coefficients. Then we
applied each one of these macro-models to all three sets and
their union separately to evaluate the errors. The three training

sets {A, B, C} correspond to input sequences going through a
MUL16 in three different applications. Training set A is
digitalized music waves. Training set B is random white noise
input. Training set C is obtained from a filtering application in
which one of the data operands is fixed. Because the sizes of
sets A and B are much larger than set C, the union set is
dominated by sets A and B.

Because sets A and B have similar power characteristics, the
macro-model trained by one of them has good accuracy when



TABLE 3.2
EXPERIMENTAL RESULTS FOR POPULATION-SENSITIVE ERROR

PROBLEM

Training Size Range A B C A+B+C

Set (µW) ECP

(%)

EAP

(%)

ECP

(%)

EAP

(%)

ECP

(%)

EAP

(%)

ECP

(%)

EAP

(%)

A 3000 [14,122] 10 0* 11 6.4 -** 67 -** 6.7

B 3500 [16,143] 13 1.2 11 0* -** 97 -** 3.0

C 630 [0,57] 870 660 390 205 -** 0* -** 378

A+B+C 7130 [0,143] 12 2.4 11 1.5 -** 3.4 -** 0*

* When the regression macro-model is applied to its training set, the error of
average power is always zero
** Eqn.(3.4) is not applicable for average error computation because there
are units in set C which have zero power consumption

applying to another. But set C has quite different
characteristics from sets A and B. As a result, the macro-
model trained by set C cause large error on sets A, B and the
union set. The macro-model trained by sets A or B is not
applicable to set C either. However, the macro-model trained
by the union set, which covers all the power range of set A, B,
C, has very good accuracy on all the sets.

It is desirable to have a macro-model which remains accurate
regardless of the specific subset of the population it may
encounter in practice. One way of doing this is to build
different macro-models for different sub-populations. In
practice, we will first analyze the characteristics of the input
data applied to the module, then apply the appropriate macro-
model. This methodology is similar to the population-partition
method in building specialized macro-models. However in
most cases, the population characteristics varies widely and it
is not possible to derive some well-behaved population
partitioning scheme. Even in the same application, different
instances of a module may encounter very different
population characteristics based on the circuit context in
which they are embedded. As a result, designers prefer to
have a single static macro-model that can be used in all kinds
of applications, in other words, a universal macro-model.

Generation of the training set is also an important step to
design a good universal macro-model. In this paper, we
generate the training sequence through population
stratification and random sampling as described next.

Fig.3.3 Generating the training set using stratified random sampling

In the first step, data is collected from all applications in
which the module is instantiated (for example, through
architectural or behavioral simulation of the system which
contains the module) or it is generated by automatic sequence
generation techniques [7] (which take signal and/or transition
probability and generate short sequences that satisfy the
specified behavior). Assume that this data covers the whole
range of the power consumed by the module. Let Pmin and
Pmax denote the minimum and maximum power among all the
units. We divide equally the region between Pmin and Pmax into

M sub-regions, thus forming M strata. According to its power
consumption, every unit may fall in exactly one of these
strata. Next, we randomly select k units from each stratum to
put into the training set. Finally, we get the training set of size
m=M*k. By using the stratified random sampling technique
[8], the size of the training set is largely reduced while the
property of the population is captured by the training set. In
this way, we ensure that the macro-model will be sufficiently
trained to keep type II error in check.

3.4 Inference about prediction of new observations

Information about the estimation error is the key factor to
improve the accuracy. When we apply the macro-model to
predict the power of an input vector pair, we like to know not
only the estimated power value, but also the estimation error.
One major advantage of using regression analysis as
described above is that the regression macro-model can
predict the power consumption for an input pair and give
confidence interval of the prediction for a given confidence
level as detailed next.

Values of regression variables, Xobs, are extracted from each
input vector pair (Vi-1, Vi). These variables are then plugged
into the macro-model equation to yield the power estimation

result �Pobs for the vector pair. At this point, we do not know

the actual value of the observation, that is, the “real”
simulation result for the vector pair. What we are able to do
however is to derive a confidence level for the unknown
observation.

Given a confidence level 1-α, the corresponding confidence
interval is the interval [u1, u2] such that the probability that
the actual power value lies inside this interval is 1-α.

Given a confidence level 1-α, the confidence interval of the
observation Pobs is given by:

            
[ � ( ; ) [ ],

� ( ; ) [ ]]

P t m k s P

P t m k s P

obs obs

obs obs

− − − − ⋅

+ − − − ⋅

1 2 1

1 2 1

α

α         
      (3.11)

where t(1-α/2;m-k-1) is the (1-α/2)×100 percentile point of
the t distribution with degree of freedom of (m-k-1) and
s[Pobs] is standard deviation of the new observation which is
given by:

         s P MSE X Xobs obs obs[ ] ( ( ) )= ⋅ + −1 1T TX X         (3.12)

Note that X and MSE refer to the training set matrix values
and mean square error of the training set as defined in Section
II. In simple terms, the probability that the absolute value of

the difference between �Pobs and Pobs exceeds t(1-α/2;m-k-

1)⋅s[Pobs], is α.

Table 3.3 gives the experimental results of error computation
for C1908 general purpose macro-model at a confidence level
of 95%. For example row 1 tells us that for the vector pair
(selected randomly), the estimated power value was
1.302mW, while the actual power (measured by PowerMill
[10]) was 1.537mW. Furthermore, the confidence interval for
a 95% confidence level was calculated to be [0.74, 1.87]mW.
Since the actual value lies within the confidence interval, we
have a correct prediction. This is not true for the second
vector pair since the actual value is outside the confidence
interval. This is statistically possible since we can ensure that
only 95% of the time, the actual value will be within the

SM-1

Pmin Pmax

S1
S2 S3 SM

k kkk k

Population

Training Set

Stratification

Random Sampling



confidence interval. Note that when the confidence level is
decreased, the confidence interval also shrinks, and vice
versa.

TABLE 3.3
EXPERIMENTAL RESULTS OF ERROR CONFIDENCE INTERVAL

PREDICTION

Vector

Pair

Estimated

Power (mW)

Confidence

Interval (mW)

Actual

Power (mW)

Correct

Prediction

1 1.302 [0.74, 1.87] 1.537 YES

2 1.323 [0.78, 1.87] 1.944 NO

3 1.329 [0.76, 1.90] 1.213 YES

4 1.274 [0.70, 1.85] 1.499 YES

5 1.765 [1.23, 2.30] 1.676 YES

6 3.095 [2.56, 3.63] 2.808 YES

7 1.994 [1.46, 2.53] 2.325 YES

Since the fitted power value follows normal distribution, from
our observation on the experimental results for more than 10
circuits. the average error is approximately 1/4th of the
confidence interval.

Introducing the notion of the confidence interval into high-
level power estimation provides us the means to control the
error and improve the accuracy of the estimates as shown
below.

Predefine a confidence level (1-α) (for example, 95%) and a
tolerance limit for error (for example, 10%). For each clock
cycle, use the macro-model to estimate the power
consumption of the module in that cycle. At the same time,
the confidence interval is computed by eqn.(3.11). According
to the estimated power and the error tolerance limit, we can
also compute the tolerable region for error (we call it error
tolerance interval). If the confidence interval totally falls
within the error tolerance interval, then the error is tolerable at
this confidence level and we accept the macro-model
estimate. Otherwise, the error is not tolerable at this
confidence level and we must use a more complex and more
accurate macro-model to estimate the power.

IV . EXPERIMENTAL RESULTS AND DISCUSSION

Some experimental results are shown in Table 4.1.

TABLE 4.1
EXPERIMENTAL* RESULTS FOR SOME SPICIALIZED AND

GENERAL PURPOSE MACRO-MODEL

Module Type No. of Var’s ECP (%) EAP (%)

MUL16 Specialized 44 10.6 4.3

C6288 Specialized 44 7.9 3.1

ADD16 General 64 8.0 1.0

MUL4 General 80 9.4 1.2

C1355 General 82 13.3 10.9

C1908 General 66 15.4 2.3

C3540 General 78 15.5 5.2

* In experiments, the training sets are subsets of the whole populations for
different modules. The error in cycle power and error in average power are
computed on applying the macro-model to whole population.

It can be seen that the average cycle-based error is 11.4%
while the average total power error is 4%.

When the user only wants to estimate the average power
dissipation of a module, a cumulative macro-model is applied.

Transforming the cycle-base macro-model to cumulative
macro-model for estimating average power is very simple.
Assume that the cycle-based macro-model is:

                 P X X Xk k= + + + +β β β β0 1 1 2 2 �                  (4.1)

Then, the cumulative macro-model for average power
estimation is:

           P X X Xk k= + + + +β β β β0 1 1 2 2E E E[ ] [ ] [ ]�        (4.2)

If X X Xk1 2, , ,�  are all 0-1 variables, the cumulative macro-

model becomes:

              P X Xk k= + + +β β β0 1 1Prob Prob[ ] [ ]�            (4.3)

V. CONCLUSION

In the paper, we intrduced the notion of cycle-based macro-
models for RT-level power estimation. In this way we are able
to esitmate not only the average power consumption at RT-
level, but also the power distribution over all the cycles that
are simulated. The macro-model is built on the basis of
regrssion analysis. Two variable selection strategies were
discussed: specialized and general purpose. The number of
variables can be reduced using statistical tests. The statistical
methodology enables us to not only predict the power values
at RT-level without invoking low level simulators, but also
compute the error and confidence level for our prediction.
The technique was applied to generate macro-models for
various RT-level cores and achieved good accruacy.
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