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Abstract

Discovery of a new drug involves screening large chemical libraries to identify active

compounds. Screening efficiency can be improved by testing compounds in pools. We

consider two criteria to design pools: optimal coverage of the chemical space and min-

imal collision between compounds. Five pooling designs are applied to a public data

set. We evaluate each method by determining how well the design criteria are met. One

design uniformly dominates all other designs, but all criteria-designed pools outperform

randomly created pools. Furthermore, we discuss blocking and synergism between com-

pounds as other effects that must be investigated when performing pooling experiments.

KEY WORDS: Blocking; Drug discovery; High throughput screening; Pooling experi-

ment; Synergism; Uniform cell coverage design.



1 INTRODUCTION

The drug discovery process starts with screening chemical libraries (collections of chemical

compounds) to identify new lead compounds. Compounds are tested for potency with re-

spect to one or several biological targets in an automated process known as high throughput

screening (HTS). This process involves screening thousands to tens of thousands of chem-

ical compounds per week. However, today’s chemical libraries are extremely large, on the

order of hundreds of thousands or millions of compounds, so that even the high throughput

screening process can take months to test the entire library. This, and the fact that only

a small fraction of the compounds in a library are actually active, leads to the conclusion

that this approach is not very cost or time efficient. New methods for improving screening

efficiency are needed. Xie, Tatsuoka, Sacks, and Young (2001) state that, in situations when

the rate of active individuals is very small but the number of individuals to be tested is

very large, testing individuals in groups is an effective alternative to testing them one by

one. This scenario describes exactly the situation we are facing when screening large collec-

tions of chemical compounds. Therefore, one alternative approach to assaying compounds

individually is to test them in pools, for example put 10 compounds together for testing.

Creating the pools can be done either in a random fashion, or by applying certain design

criteria.

The chemical properties of every compound in the library can be described by a vari-

ety of molecular descriptors. McFarland and Gans (1986) note that two compounds with

fairly close values of all critical descriptors are more likely to have similar biological ac-

tivity. Additionally, scientists believe that there is a correlation between the activity of a

compound and its chemical structure (structure-activity relationship, SAR). In light of this,

it is especially important to choose descriptors that are informative about the activity of a

compound with respect to the biological targets under consideration. In this way, the chem-
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ical descriptors of a compound can be used to guide the search for lead compounds when

assaying chemical libraries. Descriptors that are commonly used are atom pairs (Carhart,

Smith, and Ventkataraghavan 1985), topological torsions (Nilakantan, Bauman, Dixon, and

Ventkataraghavan 1987), and the continuous BCUT numbers. BCUTs are described by

Pearlman and Smith (1998, 1999) and originally derived by Burden (1989).

In this paper, we propose two design criteria for creating pools. The first criterion tries

to cover the chemical space as uniformly as possible when choosing compounds to be as-

signed to pools. The second criterion aims for minimizing collision among compounds that

form a pool, i.e., minimize the similarity of compounds within a pool. A discussion will

follow on why we think it is important to fulfill these two design criteria, and what we can

gain by doing so. Lam, Welch, and Young (2002), hereafter LWY, propose a method for

uniformly covering low dimensional subspaces. They use an exchange algorithm to opti-

mize the criterion for uniformity of coverage. We use this algorithm as a tool to select the

compounds we want to assign to each pool. We propose and compare four different pooling

designs that fulfill at least one of the design criteria. Performance of the four pooling designs

is illustrated using a data set from the National Cancer Institute (NCI). Table 1 gives an

overview of the four proposed pooling designs, indicating which design criteria are fulfilled

by each design. A fifth pooling design is included in the table. This design, Total Random

(TR), does not satisfy any of the two design criteria and it is used as a benchmark pooling

design.

[Table 1 about here.]

Section 2 contains an introduction to pooling experiments. Section 3 explains the two

proposed design criteria, namely, optimal coverage and minimal collision. We also discuss

the importance and benefits of these criteria. Section 4 describes the NCI data, including
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the chemical descriptors used and why they were chosen. In Section 5, a data-driven binning

approach is described. This method is used to create suitable descriptors that allow assess-

ment of how well the design criteria are fulfilled. This section also describes the SpaceFill

algorithm proposed by LWY and how we use it to choose compounds that fulfill the design

criteria. In Section 6, we provide a detailed discussion of the four pooling designs. We il-

lustrate their realization on the NCI data set, and compare how well they fulfill the design

criteria. Finally, in Section 7 we close with a summary and discussion of future work.

2 POOLING EXPERIMENTS

Pooling experiments, also known under the name of group testing, were first introduced by

Dorfman in 1943. He suggested testing men’s blood samples for syphilis by pooling them into

groups rather than testing each sample individually. If a pool tests active, the individuals

will be retested so that the active individual sample(s) can be determined. Dorfman (1943)

illustrated the cost and time savings that could be achieved by applying this procedure.

Phatarfod and Sudbury (1994) discuss pooling in the context of HIV testing when pooled

tests are flawed. Many other authors (for example, Tu, Litvak, and Pagano 1995; Behets et

al. 1990; Hughes-Oliver and Rosenberger 2000) also discuss pooling as a means of screening

for other diseases, even simultaneously screening for several diseases, in the presence of

flawed tests. Findings clearly support superiority of pooling experiments over one-at-a-time

testing.

Today, pooling methods are used to identify active individuals in many other different

applications. Langfeldt, Hughes-Oliver, Ghosh and Young (1997), Hann et al. (1999), Xie

et al. (2001), Zhu, Hughes-Oliver, and Young (2001), and Yi (2002) note that the pooling

methodology is commonly used in the drug discovery process, and they demonstrate its use

on real, not simulated, pooled data from a large pharmaceutical company. Pooling is used
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to screen large chemical libraries, and is considered to be a very efficient high throughput

screening technique.

Pooling experiments for chemical compounds proceed in a highly automated fashion.

First, the solid components need to be liquified by mixing them with a solvent. Robotic

systems place tiny amounts of the solutions into different wells arranged on a plate. In

one-way pooling, either all samples along one column are combined to form a pool, or all

samples along one row. This is done for all the columns or rows respectively. If a plate

contains, for example, n columns, a total of n pools are formed. In our experiments, we

typically combine 10 samples into one pool. Two-way pooling combines the samples along

the m rows and the samples along the n columns to create a total of m+n pools. Two-way

pooling can be used to facilitate decoding of actives and to decrease the chance of false

inactive pools (Langfeldt et al. 1997; Phatarfod and Sudbury 1994; Xie et al. 2001); false

inactive pools are more fully discussed below. We only consider one-way pooling in this

paper. Figure 1 shows a typical one-way pooling design where the samples of each column

are combined into one pool.

[Figure 1 about here.]

The chemical compounds that we group into one pool are all expected to differ in their

activities with respect to a given biological target; most compounds are either completely

inactive or only weakly active. Dorfman (1943) and many others define a pool to be active if

at least one of the compounds in the pool is active, and inactive if none of the compounds in

the pool are active. When pooling chemical compounds, however, these simplifying assump-

tions are not necessarily valid. It can occur that some pools are tested as inactive although

they contain active compounds, because one compound in a pool is blocking the activity of

another compound in the same pool. Langfeldt et al. (1997) call compounds that prevent
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the detection of active compounds blockers. In other words, blockers lead to false inactive

pools. There are a number of possible blocking mechanisms.

Compounds are mixed with a solvent when placing them into a pool. This liquid state

allows easier handling of the compounds. But the liquid state, which is necessary for the

assay, allows two compounds to react and join together and in this combined state they

may no longer be active. Suppose, for example, the goal is to identify compounds with the

ability to bind to a particular receptor. It can happen that an individually tested compound

has this binding ability, but when placed into a solution with other compounds the active

compound reacts with a blocker compound and can no longer fit the binding site. It is also

possible that the blocker alters the primary binding site, so that the active compound can

no longer bind to it. Blocking is illustrated in Pool 8 of Figure 1. Column 8 contains an

active compound, as well as a blocker compound. As a result, the pooled compounds do

not show any activity. Blocking has also been researched in other applications of pooling

methods, such as blood testing experiments (Phatarfod and Sudbury 1994).

Another effect that can occur when placing compounds into pools is synergism. Two

chemically dissimilar compounds are synergistic to one another if, when combined, they

show activity, but individual testing reveals no activity or only weak activity. Again, syner-

gism can occur because two compounds combined in one pool can react with each other and

create a new compound for binding at the site of interest. One compound might bind at a

secondary binding site and alter the shape of the primary binding site. Evidence of syner-

gism and researchers’ interest in it is given in various forms. While trying to understand the

mechanistic actions of p68 RNA helicase, Rossow and Janknecht (2003) discover synergis-

tic relationships between p68 transcriptional coactivators p300 and CERB-binding proteins.

Tipping et al. (2002) discuss synergistic relationships between imatinib, a powerful inhibitor

of the tyrosine kinase activity of the oncoprotein responsible for chronic myeloid leukemia,
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and three other compounds. Furthermore, the company ActivBiotics (2003) is currently

developing rifalazil, a best-in-class antibiotic that targets and inhibits the transcriptional

machinery of bacteria. They report that rifalazil acts synergistically with other classes of

antibiotics. Figure 1 illustrates the concept of synergism. None of the individual compounds

in column 1 show activity, yet the pooled compounds are active; that is, synergism occurs.

We think it is very important to take these two effects, blocking and synergism, into

consideration when performing pooling experiments or statistical analysis of pooled data.

Langfeldt et al. (1997), Zhu (2000), and Xie et al. (2001) all assume the presence of block-

ers in their studies of optimal pooling strategies and cost efficiency. Xie et al. (2001) also

consider the effects of synergistic compounds in their work, and they say that at the early

stage of drug discovery, compounds acting synergistically are usually considered a source

of contamination. We, however, view synergism as a critical path to identifying “combi-

nation therapies.” Yi (2002) considers blocking and synergism when modeling pooled and

individual activity of chemical compounds.

Testing compounds in pools has several advantages. As already attributed to Dorfman

(1943), pooling can bring very large benefits in terms of cost and time efficiency, but at the

cost of complexity. The chemical libraries of pharmaceutical companies are of the order of

millions of compounds. It would take months to screen each compound individually against

a particular biological target. Testing them in groups of 10 significantly decreases the time

needed to screen the entire library. Very often, only a small fraction of the compounds in

a chemical collection are active with respect to the biological target assayed. Consequently,

when testing the compounds in groups, only a small number of pools will contain an active

compound, which in turn means that only relatively few pools will test active and need

to be decoded. When a pharmaceutical company tries to find new lead compounds, it

typically chooses only the active pools, and individually retests all compounds in the active
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pools. One can see that this procedure considerably reduces the number of tests performed,

especially when the proportion of active compounds is very small in comparison to non-

active compounds. Since a certain cost can be assigned to each test, this approach does not

only bring a reduction in time spent, but also a reduction of the cost. Chemical libraries

will continue to increase in size in the years to come, and therefore we think it is important

to investigate new ways of screening large chemical libraries.

A number of diseases such as HIV, hepatitis, and cancer are treated with multiple drugs

in what is called “combination therapy.” Several different drugs are simultaneously given

to the patient. Although each drug is typically aimed towards a different biological target,

we think nevertheless it is important to consider the blocking and synergistic properties of

different compounds. As mentioned earlier, pooling experiments provide the opportunity to

learn more about the blocker and synergism probabilities among compounds at an early

stage of the drug discovery process.

To make pooling designs as efficient as possible, certain design criteria can be applied

to assign individual compounds to pools. In the next section, we discuss two such criteria

and explain why we think they are important.

3 POOLING DESIGN CRITERIA

Typically, when chemical libraries are screened for activity against a particular biological

target, only a subset of all available compounds is selected and the activity of the compounds

in this set is determined. Since only a subset of the collection of compounds is screened, it is

desirable to select compounds that come from different regions of the chemical space. Cum-

mins, Andrews, Bentley, and Cory (1996) and Menard, Mason, Morize, and Bauerschmidt

(1998) provide cell-based methods for choosing screening sets of diverse compounds from

large databases. In pooling experiments, a similar approach can be used; divide the space
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into cells and select a compound from each occupied cell. In particular, we select a subset

of the entire chemical library and assign these selected compounds into pools. The pools

are then tested for activity. Again, it is important that the chemical space is covered as

completely as possible by the subset of compounds that will be screened, which are also the

compounds that will be assigned into pools.

Certain chemical descriptors are calculated for all the compounds in the library. Using

the chemical descriptors as covariates, the selection of compounds that cover the chemi-

cal space is guided by the chemical descriptors. Furthermore, we do not want to lose any

information by pooling the compounds. This can be assured by avoiding assignment of

compounds that live in the same area of the chemical space into the same pool; two com-

pounds with similar features should be in different pools so they give replication and do

not inadvertently increase the concentration of the tested compound (we want each com-

pound/chemical feature tested at the same concentration). The above considerations lead

to our two proposed design criteria: Optimal Coverage and Minimal Collision.

3.1 Optimal Coverage

When chemical compounds are selected in such a way that they represent the chemical space

as completely as possible, we say they cover the chemical space, or the chemical space is

covered. Coverage of the chemical space is important because potent compounds can appear

anywhere in the chemical space, not only in regions of high compound density. Very often,

chemical synthesis is based on previous efforts to detect active compounds. This results in

chemical libraries that have areas that are dense in compounds because an active was found

in a particular area and similar compounds were made. A new query typically involves a

different biological target, and might require compounds from a different area in the chemical

space. When choosing compounds at random, compounds from highly dense subspaces are
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more likely to be selected and a randomly selected data set will over-represent these areas.

However, if we select members of the data set in such a way that compounds from all

regions of the chemical space are uniformly represented, this data set will assure that active

compounds in sparse subspaces have a better chance of being detected. Implementation of

this criterion is discussed in Section 5.2.

One problem that occurs is that in high-dimensional spaces it is essentially impossible

to cover the complete space by only selecting thousands of design points. Therefore, we will

concentrate only on low-dimensional projections of the space, following the suggestion of

LWY. This will be discussed in more detail in Sections 4 and 5.1.

3.2 Minimal Collision

Two compounds are said to be colliding when they have one or more very similar descriptor

values. Imagine splitting the range of a descriptor into a certain number of cells. We then

could say that two compounds are colliding if they live in the same cell. When creating

pools, we want to minimize the number of collisions within a pool by selecting compounds

that are as diverse as possible. Implementation of this criterion is discussed in Section 5.2.

There are several reasons why we think it is important to fulfill this design criterion.

First, when creating the pools, we want to avoid additive effects. Compounds that are weakly

active might appear as highly active when they are pooled together, because their features

are effectively tested at a much higher concentration. These effects might be misleading in

the process of identifying new lead compounds.

Another reason for trying to minimize collisions within the pools is to avoid ambiguous

decoding. A mathematical decoding model can be used to point to specific compounds in

the pool and obviate testing of each compound in the pool. If several compounds within

an active pool share the same chemical features, it will be hard to identify the specific
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compound that induces the activity in the pool without retesting each compound in the

pool.

4 NCI DATA AND CHEMICAL DESCRIPTORS

We illustrate the realization of our proposed design criteria on the DTP AIDS Antiviral

Screen database from the National Cancer Institute (NCI). The database contains screening

results for evidence of anti-HIV activity, and the chemical structure of 43,905 compounds.

More information on this public data set can be obtained from http://dtp.nci.nih.gov/

docs/aids/aids_data.html. We use an older version of this database (May 1999), which

contained originally 32,110 compounds. Only 29,749 of these compounds were used by us

as the descriptors could not be calculated for all members of the database. We will provide

this data set to those that are interested.

As mentioned earlier, an important decision is choice of appropriate molecular descrip-

tors that describe the chemical properties of each compound in the chemical library. We

need descriptors that capture structural features of a compound that are relevant to activ-

ity. BCUT numbers seem the appropriate choice for us, but we use them only after a certain

level of discretization.

Pearlman and Smith (1998, 1999) describe a system of BCUT descriptors, which were

derived from a method of Burden (1989). BCUTs are eigenvalues from connectivity matrices

derived from the molecular graph. A connectivity matrix is obtained by placing an atomic

property (e.g. size, atomic number, partial charge, etc.) for each heavy (non-hydrogen) atom

along the diagonal of a square matrix. The off-diagonal elements of the matrix measure

the degree of connectivity between two heavy atoms. The eigenvalues of this matrix then

measure properties of the molecular graph, since they (eigenvalues) are matrix invariants.

Furthermore, this construction allows the eigenvalues to be functions of all the heavy atoms
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in the molecule. Following Lam (2001), we assume that they capture useful aspects of the

properties of the molecule. Pearlman and Smith (1998, 1999) describe 67 BCUT numbers.

Since these 67 BCUT descriptors are highly correlated, computational chemists typically

use a subset of six fairly uncorrelated BCUT numbers. They tend to characterize molecular

bonding patterns and atomic properties such as surface area, charge, hydrogen-bond donor,

and acceptor ability. We will follow this approach.

Lam (2001), Stanton (1999) and Yi, Hughes-Oliver, Zhu, and Young (2002) all have

shown utility of BCUTs as molecular descriptors. Having found molecular descriptors that

capture useful properties and structural features of a compound, the question now arises of

how these descriptors can be used to express and evaluate the two proposed design criteria

of optimal coverage and minimal collision. We choose a data-driven binning approach, which

follows a method proposed by LWY and will be described in detail in the next section.

5 DATA-DRIVEN BINNING AND SPACEFILL ALGORITHM

5.1 Data-driven Binning Method

One of our goals is to choose compounds that will be pooled in such a way that they cover

the chemical space as completely as possible. To be able to measure whether the space is

covered or not, we modify the BCUT descriptors. What we want is to divide the range of the

BCUT descriptors into a rather fine grid, that will help us to obtain meaningful coverage

of the chemical space. We should note that the original BCUT descriptors are continuous,

but the objects (compounds) in the space are discrete; there will be areas in the chemical

space that cannot be covered, since no objects exist.

[Figure 2 about here.]
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Figure 2 shows histograms of the six BCUT descriptors. It can be seen that only a

few compounds live in the outer ranges of the six descriptors. To assure that cells are

better occupied, a hybrid method of combined equal width (EW) and equal frequency (EF)

binning is used. Each descriptor range is divided into 64 cells. The cutoff values of the two

outermost cells are chosen such that 1% of the compounds reside in each of these outer

cells. The remaining inner bins are divided into 62 equal-width cells. Figure 3 illustrates

this principle.

[Figure 3 about here.]

Our goal is to cover the chemical space. Therefore, it is not satisfactory to look only

at the one-dimensional (1-D) subspaces spanned by the six BCUT descriptors. However,

if we take all possible subspaces into account (up to 6-D subspaces), too many design

points are needed to achieve a fine coverage of the chemical space, (64)6 = 6.9 × 1010 cells.

In HTS, activity is usually the result of multiple mechanisms that are observed through

different descriptor sets and descriptor ranges (Rusinko, Farmen, Lambert, Brown, and

Young 1999; Young and Hawkins 1998). Each activity mechanism is typically driven by a

small subset of descriptors, and so it seems reasonable that these important descriptors will

be captured by applying fine grids to low-dimensional subspaces of the 6 BCUT descriptors.

We limit attention to all 1-D, 2-D, and 3-D subspaces spanned by the 6 BCUT descriptors,

as suggested by LWY.

We now want to modify the proposed 1-D binning approach for the 2-D and 3-D sub-

spaces. Originally, we choose 64 cells for the one-dimensional subspaces. Using the same grid

for the 2-D subspace, we would obtain 4,096 cells, and 262,144 for the 3-D subspaces. Since

we want to avoid this exponential increase of the number of cells for higher dimensions, we

keep the same number of cells for each subspace. To form the cells for a 2-D subspace, we
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divide each dimension into eight cells, 8× 8 = 64. This is done by amalgamating eight cells

of the 1-D subspace into one cell of the new 2-D subspace. This is done for all (62) = 15

possible 2-D subspaces for all six BCUT descriptors. In this way, each 2-D subspace is

described again by 64 cells. Figure 4 illustrates this method.

[Figure 4 about here.]

Three-dimensional subspaces are formed by amalgamating 16 1-D bins into a single bin

of the 3-D subspace. Each dimension is divided into 4 cells, so that the 3-D subspace is

expressed by 64 cells, 4 × 4 × 4 = 64. There are a total of (63) = 20 3-D subspaces. In order

to be able to measure the coverage of the chemical space and the number of collisions that

occur in each pool, we define a new descriptor matrix. This new matrix contains all 20

3-D subspaces, each expressed by its 64 bins, which leads to a row vector of 1,280 elements

for a specific molecule, or a 1,280-dimensional covariate space. The new descriptors are

binary, and each descriptor indicates whether a compound resides in a certain cell of one

particular 3-D subspace. When creating descriptors for pools, we combine the rows of the

descriptor matrix for all the compounds grouped together in a particular pool. These pooled

descriptors are again binary. If at least one compound in the pool has a one-entry in the

original descriptor, the pooled descriptor is set to one as well. Figure 5 illustrates this

concept and gives an example of the pooled descriptors of one 3-D subspace; the compound

vectors are “ORed” to produce a bit string for the pool.

[Figure 5 about here.]

5.2 SpaceFill Algorithm

SpaceFill is a fast exchange algorithm that uniformly fills a space, as described by LWY.

The following gives a brief description of the method. We then illustrate how we use the
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algorithm to help fulfill our two design criteria.

The SpaceFill algorithm is based on covering all 1-D, 2-D, and 3-D subspaces as com-

pletely as possible. The goal of SpaceFill is to put a target number of compounds, usually

one, into each cell occupied by a candidate molecule.

In subspace s, a measure of lack of uniformity is

Us =
∑

i

[nsi(Xd) − csi(Xc)]
2, (1)

where nsi(Xd) is the number of design compounds in cell i of subspace s, csi(Xc) = 0 if the

candidate set Xc does not cover cell i of subspace s, and csi(Xc) = 1 if the candidate set

Xc covers cell i of subspace s.

To obtain the total lack of uniformity for all 3-D subspaces, the quantity Us will be

averaged over all three-dimensional subspaces:

U3−D =

∑
s∈S3

Us

|S3|
(2)

Analogous definitions apply for U1−D and U2−D.

The uniform cell coverage criterion (UCC) of LWY is minimization of

UCC =
U1−D + U2−D + U3−D

3
, (3)

where the 1-D, 2-D, and 3-D subspaces can be individually weighted. UCC minimization

can be achieved by having no uncovered candidate cells in the design, and placing only one

design point, for example, per occupied cell.

Optimization in the SpaceFill algorithm is based on a basic exchange algorithm (Wynn 1972).
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This algorithm randomly chooses n compounds from the set of all available N compounds.

It then performs a series of exchanges, each attempting to improve UCC. An exchange is

performed by first adding a design point from the candidate list to the evolving design of n

compounds. The added compound gives an improved UCC value based on n+1 compounds.

Next, one compound is removed from this evolving design by determining the smallest UCC

value for a design with n compounds. This exchange process is repeated until no further

reduction of the UCC value can be achieved.

The question left to be discussed is how do we use the SpaceFill algorithm to fulfill

the two design criteria? Our first goal is to choose a subset of all the available compounds

that fulfill the first design criterion, optimal coverage. We do this by applying the SpaceFill

algorithm to our complete database and asking it to pick 4,096 design points, placed into

4,096 bins. The 4,096 bins refer to the total number of cells in each of the 1-D, 2-D, and

3-D subspaces. For the 1-D subspaces, this means a grid of 4,096 cells, in the 2-D subspaces

64×64 cells, and in the 3-D subspaces 16×16×16 cells. The SpaceFill algorithm aims to

select the design points in such a way that each cell of all 1-D, 2-D, and 3-D subspaces is

occupied by at least one compound. We choose a fine grid to guarantee good coverage of

the entire chemical space.

The next step is to build the pools from these diverse compounds, addressing the second

design criterion, minimal collision within a pool. We apply the SpaceFill algorithm to place

compounds in pools. Compounds are chosen from among the 4,096 previously selected

design points for designs OC, SF1, and SF6, and from the entire collection of compounds

for design MC. This time we select 64 design points, placed in 64 bins. This refers to a grid

of 64 cells in the 1-D subspaces, 8×8 cells in the 2-D subspaces, and 4×4×4 cells in the 3-D

subspaces. SpaceFill will choose the points attempting to get one point in each cell of all

the subspaces. To construct pools of size n, we will now randomly choose n compounds, out
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of the 64 chosen design points. These, say 10, compounds should be rather different from

one another. By selecting a much coarser grid than before (64 vs 4,096), we ensure that the

selected compounds are far enough apart from each other to minimize collisions. Additional

details on pool construction will be provided in the next section.

6 FOUR POOLING DESIGNS APPLIED TO NCI AIDS DATA

6.1 Design 1: Optimal Coverage

The first design, Optimal Coverage (OC), only tries to fulfill one design criterion, opti-

mal coverage. As described in Section 5.2, the SpaceFill algorithm is used to choose 4,096

compounds that give the best possible coverage of the chemical space. Pools are created

by randomly selecting 10 of these 4,096 compounds at a time, without replacement, and

assigning them to the same pool. In this way, 409 pools are created (the remaining six

compounds will be ignored). This design does not try to minimize collision; it is used as a

benchmark design for assessing minimum collision. We created 20 replicates by repeatedly

selecting 4,096 compounds using SpaceFill, and assigning them to pools at random.

6.2 Design 2: SpaceFill 1

SpaceFill 1 (SF1) aims to fulfill both design criteria. First, an initial set of 4,096 compounds

is chosen in the same fashion as in the OC design. This step picks compounds that fulfill

the criterion of optimal coverage. In order to be able to compare the two designs OC and

SF1, we use for SF1 the same 4,096 compounds as in the OC design. The next step is

building the pools, while fulfilling the design criterion of minimal collision. In Section 5.2,

we gave a brief description of how we achieve this. SpaceFill is used to select a subset of 64

compounds among the previously chosen 4,096 compounds. By defining a much coarser grid,

we assure that these compounds are not too close to each other in the chemical space. Now,
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10 compounds are chosen at random and assigned to the first pool. Since all 64 selected

compounds have a certain distance to each other, minimal collisions should occur within the

10 pooled compounds. To create the second pool, the above steps are repeated, using the

subset of the remaining 4,086 compounds. We created 390 pools in this way. The SpaceFill

algorithm was designed for large data sets and will not work with small candidate sets; in

our case, we could not go below 300 candidate points. Again, 20 replicates were created.

6.3 Design 3: SpaceFill 6

The third design, SpaceFill 6 (SF6), is a slight modification of the SF1 design. The subset

of 4,096 compounds and the first candidate set for the pools of 64 compounds are selected

as described in Section 6.2. Again we use the same 4,096 compounds. We now randomly

select 60 compounds among the 64 molecules, and randomize them into six pools of 10. To

create pools 7 to 12, SpaceFill is used to select 64 compounds among the remaining 4036

compounds, and the above steps are repeated. We created 390 pools in this way. Twenty

replicates were created. This method is more computationally efficient, but might not give

as high a quality design.

6.4 Design 4: Minimized Collision

The fourth design, Minimized Collision (MC), is primarily aimed at fulfilling the design

criterion of minimal collision. Without selecting a subset of compounds that is trying to

cover the chemical space as completely as possible, we select compounds from the complete

chemical library and assign them directly into pools. The compounds that will be assigned

to the same pool should not be too close to each other in the chemical space to avoid

collision. In particular, we use SpaceFill to select 64 compounds from all available 29,749

compounds. For each of the 1-D, 2-D, and 3-D subspaces, we have 64 cells. This number
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of bins guarantees a coarse enough grid to choose 64 compounds that live far enough apart

from each other to avoid collision. We then randomly select 10 compounds among the 64

compounds, and assign them to pool 1. SpaceFill is run again to select 64 compounds

among the remaining 29,739 compounds. Pool 2 is created by again randomly selecting 10

compounds among the 64 selected compounds. This procedure is repeated until 390 pools

are created. Twenty replicates were created.

6.5 Application to NCI AIDS Data

We illustrate our pooling design methods on the NCI AIDS Antiviral screen database of

29,749 compounds with 607 (2.04%) potent compounds. The chemical descriptors used are

6 BCUT numbers where each of the 20 3-D subspaces is binned into 64 bins giving a total

of 1,280 binary covariates. This is described in more detail in Section 5.1. Results are given

for five designs. All results are averaged across 20 replicates. Primary interest is in the four

designs OC, SF1, SF6, and MC. The fifth design, TR, is used as a control/benchmark. Here,

390 pools are created by randomly selecting, without replacement, 10 compounds at a time

from the complete NCI database.

Assessing Coverage.

Table 2 shows how well the optimal coverage criterion is fulfilled. The UCC criterion (see

Section 5.2) is evaluated for compounds selected at the first step of the design. For each

of the 20 replicates, we selected 4,096 compounds that cover the chemical space as com-

pletely as possible in all 1-D, 2-D, and 3-D subspaces. The UCC value was calculated for

these compounds. OC, SF1 and SF6 share the same 4,096 compounds for each of the 20

replicates, so the Optimal Coverage line in Table 2 also applies to SF1 and SF6. In the

MC design, we select compounds and assign them directly to pools using a coarse grid in
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SpaceFill. However, to evaluate the UCC value, we use the 3,900 individual compounds of

each replicate. Because a different number of compounds is evaluated here, it is more ap-

propriate to compare the average percent of cells covered, pc, than comparing UCC. When

calculating pc, we average the percentage of cells covered by a design over all subspaces.

Cells that are not covered by the complete database, the candidate set Xc, are eliminated

from consideration when pc is evaluated. Results are shown in Table 2.

[Table 2 about here.]

Table 2 shows that compounds selected with the SpaceFill algorithm in OC give signifi-

cantly better coverage of the chemical space than the randomly selected compounds in TR

(UCC: t = 178.56, p-value ≤ 0.0001; pc: t = 247.58, p-value ≤ 0.0001). The same holds for

the MC design. It covers a higher percentage of cells averaged across all replicates than the

TR design (UCC: t = 62.47, p-value ≤ 0.0001; pc: t = 140.17, p-value ≤ 0.0001).

Assessing Collision.

In a cell containing k compounds, (k2) collisions occur. To obtain the total number of colli-

sions within a pool, we sum the number of collisions per cell over all cells corresponding to

compounds in that pool. Figure 6 illustrates how well the five designs fulfill the criterion of

minimal collision.

[Figure 6 about here.]

Table 3 shows collision averages across the 20 replicates, as well as standard deviations

and minimum and maximum number of collisions for several different pool numbers. The

pool number indicates the order in which the pools were created. In comparison to TR, all

four designs (OC, SF1, SF6, and MC) perform much better with respect to collisions for the

majority of the pools. SF1, SF6, and MC are the three methods that were designed with
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the goal to minimize the number of collisions within each pool. All three designs perform

better than OC for at least half of the pools created.

[Table 3 about here.]

SF1 and SF6 fulfill the design criterion equally well. There is no significant difference

between the averaged number of collisions in SF1 and SF6 (t = 0.67, p-value = 0.5049).

Figure 6 shows, for less than approximately 270 pools, SF1 and SF6 meet the design criterion

better than OC. Because both methods choose only compounds from the preselected 4,096

compounds that cover the space, as the candidate set becomes smaller with an increasing

pool number, the total number of collisions within the pools increases exponentially for

SF1 and SF6. This increase suggests starting with a somewhat larger initial diverse set, say

7,000 rather than 4,096 compounds.

MC gives the best collision performance of all pooling designs. When selecting com-

pounds that go into pools for the MC design, we are not as restricted in the choice of

compounds since we choose from the complete chemical library. MC shows an excellent per-

formance across all 390 pools created, and it significantly outperforms all other designs (t

= 124.31, p-value ≤ 0.0001). This supports our conjecture that selecting 4,096 compounds

as a first step, although computationally efficient, is too restrictive. The coverage step does,

however, serve a useful function. The only difference between TR and OC in Figure 6 is

the optimal coverage step. When performed, optimal coverage by itself significantly reduces

collision (t = 82.16, p-value ≤ 0.0001).

Figure 7 shows the 10 compounds from a pool with low number of collisions (9 colli-

sions) and Figure 8 shows the 10 compounds from a pool with high number of collisions

(83 collisions). Figure 9 shows a comparison of the six BCUT values of the 10 compounds

from the low collision pool, pool 1, and the 10 compounds from the high collision pool,
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pool 390. Except for BCUT1, the descriptor values for pool 1 are more spread than the

descriptor values for pool 390. The histogram of BCUT1 in Figure 2 shows that the values

of the BCUT1 descriptor mainly fall in the area of -1. This explains why almost no differ-

ence can be seen in Figure 9 for the BCUT1 values of the 10 compounds from pool 1 and

the 10 compounds from pool 390. Therefore, with respect to our descriptor space, the 10

compounds from the low collision pool are more diverse, or more structurally different than

the 10 compounds from the high collision pool.

A visual comparison of compounds in pools 1 and 390 quickly reveals that compounds

in pool 390 have more aromatic rings than compounds in pool 1. Molecular weights of the

10 compounds from the high collision pool range from 213 to 546, with most compounds

being close to 400. Molecular weights of the 10 compounds from the low collision pool range

from 134 to 525, showing more diversity than the high collision pool. However, although

compounds in the high collision pool seem to be more similar to one another with respect

to the number of aromatic rings and molecular weight than compounds in the low collision

pool, this does not translate into chemical similarities with respect to specific chemical

functional groups that correspond to similar binding behavior. Compounds in the high

collision pool are still very diverse in terms of shape, rigidity and other properties that may

be important in terms of binding abilities. In order to capture chemical features that are

more significant for binding abilities, such as shape and rigidity, other chemical descriptors

need to be investigated.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]
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Synergism, Blocking and Additivity as Functions of Collision.

As mentioned earlier, OC, SF1, and SF6 each use the same set of 4,096 individual compounds

for each replicate. Therefore, the differences we observe in the average number of collisions

occurring in each pool are due entirely to the different methods of pooling these 4,096

individual compounds. Initially, SF1 and SF6 select compounds that have minimal collisions

but after 270 pools are created, the number of collisions occurring in each pool increases

exponentially. Both areas, low collision and high collision, can be of interest to the researcher.

If low collision occurs within a pool, the compounds in this pool live far away from one

another in the chemical space. Residing in different areas of the chemical space is interpreted

by us and others as being structurally dissimilar to one another. Compounds that are

structurally different might have, when combined, a higher potential to act synergistically

with each other or to block one another. In the area of combination therapy, it can be of

interest to study synergism and blocking at an early stage in the drug discovery process.

Pools with a low number of collisions, and therefore structurally different compounds, could

provide an excellence strategy to study these effects. Blocking can also cause a high rate

of missed positive compounds, called false negatives, since typically no retesting is done

on individual compounds that reside in an inactive pool. Being aware of pools with a

high potential of blocking compounds can help to decrease the number of false negatives; a

mathematical model can point to potentially active compounds that reside in blocked pools.

Pools with a high number of collisions occurring in them contain compounds that live

closer to each other in the chemical space. If compounds are very similar to each other,

they have a high potential for additivity. Additivity is the effect of combining weakly active

similar individual compounds to get significant activity when tested in a pool. This is

similar to testing the compounds at a higher concentration. Typically, we are not interested
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in compounds that are only active when tested at high concentrations. When looking for

a new lead compound, high potency compounds are desired for several reasons. First, a

smaller amount of the highly active compound is needed to get activity. Second, a highly

active compound is more likely to be selective as it more exactly fits the target protein or

receptor, and by inference it is less likely to fit another protein well, hence the compound

is expected to be less toxic. The TR design has high number of collisions, which is not

desirable.

Similarity of Designs Across Replicates and Design Criteria.

We first consider the similarity of compounds across the 20 replicates. We look at compounds

that are chosen at the first stage of the design, when trying to obtain optimal coverage. As

OC, SF1, and SF6 are based on the same sets of 4,096 compounds, we only give results

for OC. Results for MC are based on the 3,900 individual compounds that form the pools.

These results are summarized in Table 4. The notation sim@m indicates the number of

compounds simultaneously appearing in m of the 20 replicates. Table 4 shows that in the

OC design a majority of the compounds are included in all 20 replicates. This explains the

small variance of number of collisions for OC, SF1 and, SF6 in comparison to TR, as seen

in Table 3.

[Table 4 about here.]

Further investigation of the 2,105 repeatedly included compounds for OC show that these

compounds come from areas of the space where not too many compounds are available to

simultaneously obtain good coverage for all 1-D, 2-D,and 3-D subspaces. For example, in

the 1-D subspace for BCUT1, 131 of the 2,105 compounds are the only compounds existing

in their cells. Hence, in order to cover these cells, the design must always select the same

compounds. Averaged across all six 1-D subspaces, there are 178 cells on average in each
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1-D subspace that only contain compounds from the 2,105 repeatedly included compounds.

The SpaceFill algorithm selects these compounds over and over because it has no other

compounds to choose from these cells. Since the UCC value for OC is significantly better

than the UCC value for TR, we can assume that these 2,105 repeatedly selected compounds

play an important role in achieving a good coverage of the chemical space.

7 SUMMARY AND CONCLUSIONS

We constructed four pooling designs that fulfill one or both of the proposed design crite-

ria of optimal coverage and minimal collision. All four designs provide better coverage of

the chemical space than the benchmark design, TR. SF1, SF6, and MC also create pools

with a very low number of colliding compounds. The collision performance of SF1 and SF6

decreases exponentially after a certain number of pools have been created, thus producing

both low-collision and high-collision pools. SF6 is preferred over SF1 on the basis of compu-

tational efficiency, since SF6 creates 6 pools for every 1 pool created by SF1. MC uniformly

achieves fewer collisions than all other designs for all pools created. The drawback of MC is

that it is not as computationally efficient as SF1 and SF6 since, for each step in the exchange

algorithm, a much larger candidate set of compounds must be searched. Additionally, UCC

is not as small as in OC, SF1, and SF6.

Summarizing, we can say that all four pooling designs achieve dramatically better per-

formance when compared to randomly constructed pools for both optimal coverage and

minimal collision. They offer an opportunity to screen compounds in a more efficient but

also more informative way. These designs open the possibility to study the effects of blocking

and synergism. Among all designs considered here, MC has the best performance.

Formal analysis of pooled screening data obtained from these pooling designs is planned

for future research. Zhu et al. (2001) and Yi (2002) suggest model-based likelihood ap-
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proaches for the analysis of pooling designs. Both include the effects of blocking and the

latter includes the effect of synergism in their models. These analysis techniques, as well as

the more standard recursive partitioning (Young and Hawkins 1998; Rusinko et al. 1999),

will be applied to pooled data obtained through our proposed pooling designs.
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Figure 1: One-way Pooling experiment where pooling is by column. Pool 1 illustrates syn-
ergism and Pool 8 illustrates blocking. Pools 4 and 11 show regular activity.
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Figure 3: Equal Frequency and Equal Width Binning. Outer cells are formed by placing 1%
of the compounds into them (EF). Remaining 62 cells have equal width.
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descriptor is 1 if any compound in the pool is 1; otherwise the pool descriptor is 0.
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Figure 6: Collision plot. Twenty replicates were created for each method. Number of colli-
sions is averaged across all 20 replicates. Pools are plotted in the order they were built.
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Figure 7: Compounds from a low collision pool. Only 9 collisions occur among these 10
compounds.
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Figure 8: Compounds from a high collision pool, with 83 collisions occurring among the 10
compounds. All compounds have similar molecular weight and contain more aromatic rings.
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Figure 9: BCUT values for the 10 compounds in a low collision pool, pool 1, and for the
10 compounds in a high collision pool, pool 390. The BCUT values for the compounds in
pool 1 are more spread than the values for the compounds in pool 390.

38



List of Tables

1 Four pooling designs (OC, MC, SF1, and SF6) and a benchmark pooling
design, Total Random (TR). The table illustrates which design criteria are
satisfied (has value 1) by each pooling design. . . . . . . . . . . . . . . . . . 40

2 UCC and percent of cells covered, pc, averaged across 20 replicates. UCC

and pc are evaluated for compounds chosen in the first stage of the design.
OC, SF1 and SF6 use the same 4,096 compounds for each of the 20 replicates.
UCC and pc for the MC design is based on 3,900 compounds. Small UCC

value implies better coverage of the candidate set by the selected subset. . . 41

3 Number of collisions across all pools, for pool 1, pool 270, and pool 390,
averaged across all 20 replicates; Mean, Standard Deviation, Minimum, and
Maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Similarity of compounds across 20 replicates. sim@m is the number of com-
pounds simultaneously appearing in m of the 20 replicates. . . . . . . . . . . 43

39



Table 1: Four pooling designs (OC, MC, SF1, and SF6) and a benchmark pooling design,
Total Random (TR). The table illustrates which design criteria are satisfied (has value 1)
by each pooling design.

Design Criteria

Design Optimal Coverage Minimal Collision

Total Random, TR 0 0
Optimal Coverage, OC 1 0
Minimized Collision, MC 0 1
SpaceFill 1, SF1 1 1
SpaceFill 6, SF6 1 1
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Table 2: UCC and percent of cells covered, pc, averaged across 20 replicates. UCC and pc

are evaluated for compounds chosen in the first stage of the design. OC, SF1 and SF6 use
the same 4,096 compounds for each of the 20 replicates. UCC and pc for the MC design is
based on 3,900 compounds. Small UCC value implies better coverage of the candidate set
by the selected subset.

UCC value

Design Mean SD Min Max

Total Random, TR 22355.1 415.9 21572.3 22991.1
Minimized Collision, MC 14647.2 362.6 13916.3 15275.8
Optimal Coverage, OC 5745.9 6.9 5731.7 5757.7

Percent Covered (pc)

Design Mean SD Min Max

Total Random, TR 55.5 0.42 54.6 56.2
Minimized Collision, MC 70.2 0.21 70.0 70.7
Optimal Coverage, OC 79.1 0.06 79.0 79.3
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Table 3: Number of collisions across all pools, for pool 1, pool 270, and pool 390, averaged
across all 20 replicates; Mean, Standard Deviation, Minimum, and Maximum.

OC MC
Collision All Pool 1 Pool 270 Pool 390 All Pool 1 Pool 270 Pool 390

Mean 26.1 26.6 28.3 29.0 13.2 10.2 15.1 14.6
SD 11.9 7.9 12.9 7.9 6.7 3.2 5.3 5.7
Min 3 15 7 13 1 5 7 8
Max 108 44 55 48 191 17 24 26

SF1 SF6
Collision All Pool 1 Pool 270 Pool 390 All Pool 1 Pool 270 Pool 390

Mean 22.3 10.9 29.0 59.7 22.5 12.7 24.4 50.3
SD 14.5 2.9 12.2 21.6 14.7 5.5 9.7 15.5
Min 0 5 9 30 1 5 4 26
Max 161 16 55 106 198 25 45 83

TR
Collision All Pool 1 Pool 270 Pool 390

Mean 50.2 55.3 60.2 41.5
SD 22.9 27.5 29.9 13.4
Min 8 20 23 21
Max 219 104 143 62
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Table 4: Similarity of compounds across 20 replicates. sim@m is the number of compounds
simultaneously appearing in m of the 20 replicates.

m 20 19 18 17 16 15 14 13 12 11 10

TR, sim@m 0 0 0 0 0 0 0 0 0 0 7
OC, sim@m 2105 279 245 184 193 161 154 150 167 162 166
MC, sim@m 1399 322 203 183 183 175 168 162 195 185 201

m 9 8 7 6 5 4 3 2 1 0

TR, sim@m 15 90 319 1011 2541 4749 7055 7435 4960 1567
OC, sim@m 169 208 206 230 266 300 415 569 1006 22414
MC, sim@m 247 277 310 351 437 561 775 1199 2874 19342
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