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We review the fundamental principles of statistical experimental design, and their application to

quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of

Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic

biases due to the experimental procedure, and help optimize our ability to detect true quantitative

changes between groups. We also discuss the issues of pooling multiple biological specimens for a

single mass analysis, and calculation of the number of replicates in a future study. When applicable,

we emphasize the parallels between designing quantitative proteomic experiments and experiments

with gene expression microarrays, and give examples from that area of research. We illustrate the

discussion using theoretical considerations, and using real-data examples of profiling of disease.

Keywords: Quantitative proteomics • Statistical design of experiments • Analysis of Variance • Mixed
models • Randomization • Replication • Blocking • Pooling • Sample size

1. Introduction

Quantitative proteomics monitors patterns of protein abun-

dance in biological samples under various conditions and

states. It plays an important role in understanding the func-

tioning of living organisms, and in search of biomarkers for

early detection, diagnosis and prognosis of disease. Tremen-

dous progress in performance of mass spectrometers, as well

as in experimental workflows that these instruments support,

make mass spectrometry-based investigations particularly suit-

able for quantitative proteomics. It is now possible to measure

with high sensitivity the abundance of peptides obtained from

protein digestion by liquid chromatography coupled with

online mass spectrometry analysis (LC-MS), or based on stable

isotope labeling of proteins where samples are labeled chemi-

cally (e.g., in isotope coded affinity tag, ICAT; or isobaric tags

for relative and absolute quantification, iTRAQ) or metabolically

(e.g., in stable isotope labeling with amino acids in cell culture

SILAC) mixed together.1-3 These analyses can be performed

in both global (hypothesis-free) or targeted (hypothesis-driven)

mode.4

Once mass spectra are collected, a typical computational

analysis of these experiments involves extraction and quanti-

fication of spectral features, which can be peaks in the initial

MS1 spectra (characterized by their ratio of mass over charge

and retention time) in label-free workflows, peaks in MS2 and

MS3 spectra for labeling workflows, or transitions from targeted

SRM experiments. A variety of computational tools for feature

extraction and quantification have recently been developed and

optimized.5 The list of quantified features is subsequently

subjected to statistical and machine learning analysis steps

which aim at class comparison (i.e., hypothesis testing), class

discovery (i.e., unsupervised clustering) and class prediction

(i.e., supervised classification).6,7

Despite the progress, all quantitative investigations fail to

deliver reproducible and accurate results if proper attention is

not devoted to the experimental design. A comparison of two

populations, such as disease patients and controls, will result

in systematic mistakes if biological samples were selected or

handled in different ways not intended by the purposes of the

experiment. No amount of improvement in instrument sensi-

tivity, sophisticated statistical analysis or increase in number

of biological replicates will be able to correct these mistakes.

At the same time, an unbiased experimental design that fails

to account for known sources of technical variation will result

in inefficient comparisons, and hamper the ability to find true

quantitative changes. The issues of bias and efficiency in

proteomic research have recently received a lot of attention,

and sources of bias8 and of experimental variation have been

widely discussed.9-11 These discussions emphasized the need

for applying principles of statistical experimental design in

quantitative proteomics.

This paper reviews the fundamental principles of statistical

design of experiments,12-14 and provides guidelines for their

applications in quantitative mass spectrometry-based pro-

teomics. Successful application of these principles will help

increase reproducibility of the conclusions by avoiding bias,

and maximize the sensitivity of the statistical analysis proce-

dures. We will illustrate the discussion by examples in disease-

related research; however, the same principles apply in other
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experiments, for example, when working with model organ-

isms. We will focus on studies aiming at class comparison, that

is, at finding spectral features that significantly differ in

abundance between disease groups. We will assume that

biological samples are already selected from the underlying

populations and are independent, and will avoid more complex

designs such as repeated measurements on a given individual

in time.

We will examine in detail the choices of allocating experi-

mental resources in the context of label-free and labeling

workflows. It is not our goal to judge the relative performance

of these workflows. Instead we will give examples of resource

allocations in each case, while emphasizing properties of the

corresponding designs from the statistical perspective. We will

assume that spectral features are appropriately extracted, and

quantified on a continuous scale. We also assume that an

appropriate normalization procedure that removes systematic

differences in intensities of individual MS runs, labeling agents,

and so on is already applied. We will not consider feature

quantification based on spectral counting, or protein quanti-

fication on the basis of multiple peptides.

Most concepts and issues of experimental design in quan-

titative proteomics hold in the broader class of high-throughput

experiments in molecular biology. In particular, analysis of data

from gene expression microarrays has similar objectives,15 and

experimental designs for microarrays have attracted much

research. A series of specialized designs has been proposed,16-18

and validity and reproducibility of microarray-based clinical

research has also been discussed.19 We will emphasize the

parallels between designing quantitative proteomic and mi-

croarray experiments, and will give examples from this area

when appilcable to proteomics. Our conclusions are applicable

to other proteomic technologies such as selected reaction

monitoring (SRM, also known as multiple reaction monitoring

(MRM)) and in-gel proteomics, as well as to the profiling

experiments outside of the proteomic research such as NMR-

and MS-based metabolomics.

2. Fundamental Principles of Statistical Design of
Experiments

Statistical analysis is used in studies of large groups of

individuals given the information collected on a smaller subset.

An example of statistical analysis is illustrated in Figure 1 where

one compares two large groups of individuals, such as patients

with a disease and healthy controls. We are interested in

comparing the abundance of a spectral feature between the

two populations. To this end, we select subsets of patients from

each population. Statistical inference uses feature abundance

measured on the selected individuals to make conclusions

regarding the entire underlying populations.

Experimental design is a protocol that defines the popula-

tions of interest, selects the individuals for the study from the

populations and/or allocates them to treatment groups, and

arranges the experimental material in space and time. Experi-

mental design has two goals. First, it ensures that statistical

inference avoids bias, that is, it avoids systematic errors in our

conclusions regarding the populations. Second, it ensures that

the experiment is efficient, that is, it minimizes the random

variation for a given amount of cost. The formal mathematical

methodology for the statistical design of experiments was

introduced by R. A. Fisher,20 who considered three fundamental

principles: replication, randomization and blocking.

Replication serves two purposes. First, it allows one to assess

whether the observed difference in a measurement is likely to

occur by random chance. For example, the experimental design

in Figure 2a involves a single individual from both healthy and

disease groups. The observed difference can represent the true

difference between the populations, but can also be an artifact

of selecting these specific individuals, or of the measurement

error. An experimental design with replication, such as in

Figures 2b and c, allows us to distinguish these situations. In

Figure 2b, experimental variation is small, and the observed

difference is likely to be informative of the disease. In Figure

2c, the experimental variation is large, and the observed

difference is more likely to be due to chance.

The second purpose of replication is to ensure the reliability

of our conclusions drawn from the observed data. Increasing

the number of replicates results in a more precise inference

regarding differences between the groups. In the example of

Figure 2c, a larger number of replicates may allow us to

demonstrate that, despite large experimental variation, the

observed difference is indeed systematic.

Randomization also serves two purposes. First, it guards us

against biases caused by undesirable, and potentially unknown

experimental artifacts. Figure 3 illustrates an experiment in the

presence of an undesirable instrumental drift in time. In the

nonrandomized (sequential) experimental design in Figure 3a,

spectra from healthy individuals were acquired in days 1-2,

and from disease patients in days 3-4. This design creates a

confounding effect, that is, it introduces two convoluted reasons

for the difference between the groups, and biases our conclu-

sions regarding the disease. Randomly selecting individuals

from the underlying population, and randomizing the order

of sample processing and spectral acquisition, avoids such a

situation. The artifacts will be roughly equally distributed across

groups as shown in Figure 3b, thereby eliminating the bias.

The second purpose of randomization is to allow the

observed measurements to be regarded as random samples

from underlying populations as shown in Figure 1. This is

necessary since most statistical analysis techniques are based

on the random sampling assumption.

Blocking helps reduce the bias and variance due to known

sources of experimental variation. A completely randomized

design in Figure 3b has two drawbacks. First, randomization

of the order of spectral acquisition can potentially produce

unequal allocations, for example, in assigning more disease

patients toward days 3 and 4. Second, the variability within

each group in Figure 3b is inflated by a combination of the

Figure 1. A schematic representation of the statistical inference

procedure. (a) Random sampling ensures that the individuals in

the study are representative of the population of interest.ȳH and

ȳD are data-derived estimates of the population means. (b) A

statistical model provides a mathematical description of the

observed data. (c) The data and the model are used to make

conclusions regarding the entire populations.
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biological and of the day-to-day variation, and it may be

difficult to detect the true differences between the groups.

Block-randomized designs improve upon these two aspects.

In the example of Figure 3c, a block-randomized design pairs

two randomly selected individuals (one from the healthy group

and one from the disease group) within each day, and

randomly assigns the order of spectral acquisition within the

pair. This enforces a balanced allocation of groups between

days and prevents the bias. We then consider differences

between the individuals in each pair. In Figure 3c, one can see

that, although there is large within-group variation, pair-specific

differences are consistent and point in the same direction.

Thus, the block-randomized design can be more efficient in

uncovering the true differences between the groups.

Even the most careful experimental design is wasted if the

subsequent statistical analysis fails to take into account the

structure of the data. For example, if in the block-randomized

design in Figure 3c we ignore the paired allocation of individu-

als within a day and compare average feature intensities in each

group, we do not improve our ability to detect the true

differences. In general, a statistical model is necessary to

mathematically describe the structure of the data (such as

replication, randomization and blocking), and the assumptions

regarding the characteristics of the experimental noise. The

model will allow us to formally characterize the properties of

data-derived quantities, and select the most efficient experi-

mental design and method of statistical inference.

In proteomic experiments, we have options of working with

feature intensities on the original scale, with ratios of feature

intensities of samples from different disease groups, or with

log-transformed intensities. It is generally believed that the true

biological effects underlying these experiments are multiplica-

tive in nature, and the use of ratios reflects this assumption.

However, the ratios do not provide a natural framework for

handling replication.21 In contrast, analysis of differences of

the log-transformed intensities fits naturally into the framework

of analysis of variance (ANOVA), and there are numerous

examples of successful application of ANOVA in proteomic

research22-24 as well as in the context of gene expression

microarrays.25-28

On the logarithmic scale, the quantity of interest is ∆ ) µH

- µD, which represents the logarithm of the fold change of

feature abundance, that is, the logarithm of the ratio of

intensities between the groups. In the examples of Figures 1

and 3, analysis of variance will allow us to characterize the bias

of jyH - jyD as its systematic deviation from µH - µD, and

precision as Var(jyH - jyD). In the following, we will evaluate

experimental designs in proteomic research according to their

ability to eliminate the bias and reduce Var(jyH - jyD) in spectral

feature quantification.

3. Application of the Principles of Experimental Design

3.1. Randomization: Avoiding Bias from Sources of Un-

desirable Variation. Bias in experimental design occurs when

healthy individuals and disease patients are selected or handled

in systematically different ways, not intended by the purpose

of the study. One can distinguish two sources of bias.8 The first

source is due to selection of individuals from the corresponding

Figure 2. (a) Experimental design with no replication; horizontal lines are measurements from the single individual in each group. In

absence of replication, one cannot determine whether the observed difference is systematic, or due to random chance. (b) Experimental

design with replication. Circles represent measurements from patients, and horizontal lines are average measurements in each group.

Small variation indicates that the difference in group means is unlikely to occur by random chance alone. (c) Large variation indicates

that the difference in group means is likely to occur by random chance.

Figure 3. (a) Sequential acquisition creates a confounding effect: the difference in group means can be due to both differences between

groups and differences between days. (b) Complete randomization removes the confounding effect. The variance within each group

is now a combination of the biological difference and of the day-to-day variation. (c) Paired design uses day as a block of size 2. The

design allows one to compare differences between individuals from two groups within a block.
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populations, for example, when disease patients differ from

heathy patients in age, gender, race or some other (known or

unknown) important characteristics. The second source is due

to systematic differences in protocols of specimen collection

or spectral acquisition between the groups. For example, Banks

et al.29 studied the influence of sample processing, such as

differences in anticoagulant reagent, serum collection tubes,

or sample storage time. Hu et al.30 discuss how a change of

experimental protocol in the middle of a study, sample

degradation and differences in spectral acquisition time biased

the results.

Biases due to these sources of variation cannot be removed

by increasing the sample size, or by demonstrating the repro-

ducibility of the results in a repeated instance of the same

workflow. Instead, randomization should be incorporated

whenever possible into the experimental design during both

selection of individuals and data acquisition.

Randomized selection of individuals is easiest in the case

of a designed experiment where the investigator has full control

of group membership of each individual. For example, in an

experiment where rats are artificially induced with a disease,

we can define a single population of rats, and randomly assign

individual rats to disease or control. When assigning individuals

to groups, it is important to use a random number generator.

(One can imagine that, if instead of using random allocations,

the experimenter assigns the first rats removed from the cage

to the treatment group, rats that are slower and easier to handle

will be more likely to be assigned to the treatment, thereby

biasing the results.)

In observational studies that are typical in clinical research,

the experimenter has no control on the disease status of an

individual. Groups of patients may differ in complex ways that

bias the comparison of disease versus controls. A vast literature

exists on selecting patients for observational studies, and

coverage of this topic is beyond the scope of this review. See,

for example, Mann et al.31 for a summary of these methods.

Allocation of the experimental material in space and time

can be designed to avoid bias from sample handling and

spectral acquisition. One design option is to fix known sources

of experimental variation that are under the experimenter’s

control throughout the study. While this approach removes bias

due to these sources and reduces the variation, it limits the

scope of inference to this particular laboratory setting, and

reproducibility of the experiment in other workflows should

be independently verified.8,9 In addition, known sources of

variation should be consistently reassessed in light of constantly

changing technology.

The second design option is to randomly assign the order

and location of sample storage, processing and spectral acqui-

sition to all samples in the study. The unknown sources of

variation will be roughly equally distributed across groups,

eliminating the bias and providing the foundation for inference

in multiple laboratory settings.

When a source of variation has a systematic trend in space

and time, for example, as related to location of a sample on a

plate or to instrumental drift, it results in a correlation between

adjacently located samples. Randomization will not eliminate

the correlation, but will reduce its overall extent with increasing

replications. Thus, for studies with a fairly large number of

individuals, randomization allows us to apply methods of

statistical inference and to assume that the measurements are

nearly independent. Occasionally, randomization may provide

an undesirable pattern, for example, scheduling spectral ac-

quisition of most healthy individuals to the beginning of the

experiment, and of disease individuals toward the end. This

case is unlikely for studies of moderate and large size. For small

studies, formal solutions have been proposed to avoid such

situations,32 but there is no final answer. In practice, the

experimenter will typically discard an undesirable allocation,

and select another randomization sequence.12 As before, it is

necessary to use a random number generator when assigning

all random allocations.

Finally, it is possible to develop multistage experimental

designs where one limits the scope of inference to control the

variation in the initial stages of the investigation, and increases

the scope of inference in subsequent stages of the study. This

approach is increasingly used in proteomic research.11

3.2. Replication: Selection of Replicate Types To Maximize

Efficiency. Proteomic experiments can introduce additional

levels of replication, such as multiple instances of sample

preparations, and multiple mass spectrometry runs for a given

sample preparation. What kind of replication will be most

appropriate given a fixed number of mass spectrometry runs?

When is it necessary to acquire both biological and technical

replicates? We answer these questions by means of the mixed

effects Analysis of Variance (ANOVA) model that describes the

replicate structure of the data.

Design with no technical replicates is the simplest experi-

mental design for a label-free experiment where one acquires

a single mass spectrometry run per individual while randomly

assigning the order of sample preparation and spectral acquisi-

tion. This is a completely randomized design as illustrated in

Figure 3b. The statistical model corresponding to this design

is described in Figure 4. If we denote σ2 the variance of a

spectral feature in our experiment, and I the number of

individuals per group, then the variance of the estimated

difference between disease groups 1 and 2 is

Design with technical replicates contains multiple instances

of sample preparations and multiple mass spectrometry runs

for a same patient. The statistical model for this design is shown

in Figure 5. The presence of multiple types of replicates allows

us to partition σ2 into σ2
) σIndiv

2
+ σPrep

2
+ σError

2 . When the

number of individuals I, sample preparations J and mass

spectrum runs K is the same in both groups,

One can see that Var(jyH - jyD) in both eqs 1 and 2 are

dominated by the number of individuals I. Thus, an increase

in I results in a smaller variance, thereby making it easier to

Figure 4. Statistical model for a completely randomized design

with a single mass spectrum replicate per patient. i indicates the

index of a disease group, and j(i) the index of a patient within

the group. All Errorj(i) are assumed independent.

Var(yjH - yjD) ) 2σ2/I (1)

Var(yjH - yjD) ) 2(σIndiv
2

I
+

σPrep
2

IJ
+

σError
2

IJK ) (2)
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detect true differences between the means. In eq 2, an increase

in sample preparations J and mass spectrum runs K will only

reduce a part of the variance, at the expense of an increasing

number of runs. We conclude that in situations where the

limiting factor is the total number of runs, a design with the

maximum number of individuals and no technical replicates

is the most efficient. This conclusion holds for all quantitative

experiments combining measurements from biological and

technical replicates. It was obtained theoretically for gene

expression microarrays,26 and empirically in the context of

iTRAQ workflow by Gan et al.33

3.2.1. Example. The practical impact of selecting the num-

ber and type of replicates depends on the specific values of

σIndiv
2 , σPrep

2 and σError
2 . We illustrate this using a pilot LC-MS

experiment. Specifically, plasma samples from two patients

with diabetes and two normal controls were subjected to two

instances of glycopeptide enrichment,34 and three replicate LC-

MS runs were performed on each sample preparation in a label-

free workflow using a Qstar Pulsar I Q-TOF MS spectrometer

(Applied Biosystems). Features in LC-MS profiles were deter-

mined, quantified and aligned using SpecArray software suite,35

and variance components σIndiv
2 , σPrep

2 and σError
2 were estimated

separately for each feature by fitting the mixed model in Figure

5. Figure 6a shows the distributions of the three variance

components over all features. The median values of the

variances are σIndiv
2

) 0.0621, σPrep
2

) 0.0118 and σError
2

) 0.1026.

As is frequently the case, the experimental error is the largest

source of variation in this system. The combined median values

of the technical variances are 1.84 times larger than the median

of the biological variation.

Figure 6b demonstrates that the most substantial decrease

in variance in a future study will be obtained by increasing the

overall number of patients in each group. For example, an

experimental design with 5 individuals per group and 3

technical replicates (a total of 15 mass spectrometry runs per

group) will result in a larger value of Var(jyH - jyD) than a design

which allocates all 15 runs to 15 distinct individuals. The

technical replicates are most helpful when working with small

sample sizes. If the number of biological samples is fixed at 5

and can not be increased, three technical replicates of each

sample will reduce the variance by more than a half. Since σPrep
2

in this experiment is relatively small, the additional decrease

in variance due to sample preparation is also small. Supporting

Information contains figures similar to Figure 6b, obtained with

other ratios of experimental versus biological variation.

3.3. Blocking: Reducing Variance Due to Known Sources

of Undesirable Variation. When sources of undesirable varia-

tion are known but cannot be fixed throughout the experiment,

one can improve the efficiency of the design by taking these

sources into account. For example, changes in technical

support, sample processing plates, separation columns and

days of spectral acquisition create experimental blocks, that is,

groups of mass spectrometry runs that are potentially more

homogeneous within than between groups. In a labeling

workflow, the labeling process introduces an additional block-

ing factor in that the samples that are labeled with different

reagents and mixed together undergo the same MS experi-

mental procedures. Observations on samples undergoing MS

simultaneously (i.e., in one block) are more similar than

observations on samples undergoing MS separately. Thus, one

can assess the difference between disease groups more ef-

ficiently within each block than between blocks.

The statistical model in the presence of blocking variables

is described in Figure 7. The model makes explicit the contri-

butions of different sources of variation, and decomposes the

total variation σ2 from eq 1 into σ2
) σBlock

2
+ σIndiv

2
+ σError

2 .

Although the model is valid generally, the variance of a

comparison between disease groups depends upon the specific

Figure 5. Statistical model for a mixed effects analysis of variance (ANOVA). i is the index of a disease group, j(i) the index of a patient

within the group, k(ij) is the index of the sample preparation within the patient, and l(ijk) is the replicate run. Indiv(Group)j(i), Prep(Indiv)k(ij)

and Errorl(ijk) are all independent.

Figure 6. The pilot label-free experiment of patients with diabetes. (a) Variance components σIndiv
2 , σPrep

2 and σError
2 over all quantified

features. Each box contains the middle 50% of the features, the horizontal line within a box is the median, dots are the outliers. (b)

Var(ȳH - ȳD) of a complete randomized design in eq 2. (c) Var(ȳH - ȳD) for randomized block design in eq 3 and completely randomized

design in eq 4, with no technical replicates. “Large” σBlock
2

) 5(σIndiv
2

+ σError
2 ), and “small” σBlock

2
) 0.5(σIndiv

2
+ σError

2 ).
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layout of allocations of individuals to blocks. The goal of

experimental design is therefore to optimally allocate treatment

groups and subjects to blocks, in order to remove the bias and

minimize the variances of comparisons of interest.

We start the discussion of strengths and weaknesses of

blocking in multigroup experiments using a simple example

of a label-free experiment. We will then provide examples of

more complex designs that are often applicable to labeling

workflows. According to the discussion in Section 3.2, we will

assume that the experiment has no technical replicates, that

is, spectra from each individual are acquired in a single MS

run.

3.3.1. Blocking in Label-Free Workflows. In a label-free

workflow, it is often possible to identify as blocks experimental

units that contain an equal number of individuals per disease

group. For example, such units can be batches of sample

processing, sample plates, or a person manipulating the plates.

When a source of variation has a continuous temporal or

spacial trend, blocks can be selected somewhat arbitrarily as

convenient. For example, in the case of instrumental drift in

time, blocks can be defined as sets of adjacent runs containing

an equal number of individuals from each disease group.

Randomized complete block design includes one sample

from each disease group in a block. A block can be generally

viewed as an independent replicate of the experiment (or nearly

independent when blocking by spectral acquisition time, as

discussed in Section 3.2). Randomized sample allocations are

still necessary for this design; however, blocking imposes a

restriction upon the randomization: we randomize the alloca-

tion of individuals to runs separately within each block, but

not between blocks.

According to the model in Figure 7, the variance of the

difference between any two groups is14

where I denotes the total number of individuals in a group. To

make the comparison with the completely randomized design,

we can rewrite the variance of a comparison in eq 1 as

Thus, the advantage of the block design is that it reduces the

variance in eq 4 by removing σBlock
2 .

The practical advantage of the block design depends upon

the relative importance of σBlock
2 , and on the number of

individuals I in each group. When σBlock
2 is large as compared

to σIndiv
2

+ σError
2 , blocking is more efficient since it minimizes

the variance of the comparison. However, when σBlock
2 is small,

blocking does not produce a substantial reduction in variation.

Moreover, statistical theory indicates that in this situation

blocking is inefficient due to the loss of the effective number

of observations (i.e., degrees of freedom). For example, analysis

in Figure 3c studies 4 differences within each block, that is,

the effective number of 4 observations, as opposed to 8

observations in Figure 3b. When not compensated by a strong

reduction in variance, the loss of degrees of freedom under-

mines the efficiency of the design.12 Finally, blocking becomes

irrelevant when I is large.

3.3.1.1. Example. We illustrate the efficiency of blocking

using the diabetes pilot study in Section 3.2. We set σIndiv
2 and

σError
2 to the medians of the experimental values as before, and

investigate the use of instances of sample preparation (or any

other experimental step) as experimental blocks. We assume

for simplicity that each block contains one individual from each

disease group, and consider two hypothetical scenarios of

between-block variation: “small” σBlock
2

) 0.5(σIndiv
2

+ σError
2 ), and

“large” σBlock
2

) 5(σIndiv
2

+ σError
2 ). Figure 6c displays the variances

in eqs 3 and 4 for these experimental configurations, and

demonstrates that blocking can increase the efficiency in the

case of large between-block variance and moderate experiment

size. In our diabetes study, the median variance σPrep
2

)

0.07(σIndiv
2

+ σError
2 ). This small variance indicates that blocking

by sample preparation is not necessary in this setting, unless

the number of individuals is small. Supporting Information

contains figures similar to Figure 6c, obtained with other ratios

of experimental versus biological variation.

3.3.2. Blocking in Labeling Workflows. Stable isotope label-

ing workflows, and also multichannel gels, combine samples

from multiple individuals within the same run. This introduces

an additional blocking factor. For example, with workflows such

as ICAT, measurements on samples undergoing MS simulta-

neously are more similar than measurements on samples

undergoing MS in separate runs. With iTRAQ, measurements

obtained within a single MS/MS spectrum are more compa-

rable than measurements obtained across different MS/MS

spectra and runs (for simplicity of presentation, in the following

we will assume that a single MS/MS spectrum is used to

quantify the abundance of a peptide in each run).

MS runs (and MS/MS spectra) form blocks of relatively small

size, that is, the number of disease groups that can be jointly

allocated within a run is relatively small as compared to the

number of the groups. Thus, it may be impossible to include

individuals from all disease groups in one block. The goal of

an experimental design is to allocate individual samples to

labeling reagents and runs in a way that avoids bias, and

reduces the variance of comparisons between groups. A variety

of such designs exist. They all proceed by systematically

creating a minimal replicate set, that is, a set of blocks that

contains the minimal number of individuals from all groups,

and repeat the sets multiple times for experiments of larger

size. These designs are typically used with more than two

groups, and estimates of µ (in notation of Figure 1) may differ

from the sample mean jy. Thus, we will denote the variance of

a comparison between two disease groups as Var(D̂1 - D̂2).

Figure 7. Statistical model for a mixed ANOVA with random blocks. i is the index of a disease group, j(i) is the index of a patient within

the group, k is the index of the block, and l(ijk) is the replicate run. Blockk, Indiv(Group)j(i) and Errorl(ijk) are all independent.
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The designs differ in exactly how one allocates individuals

to blocks. The following two designs are generally used, and

are particularly appropriate when the block size (i.e., the

number of labels in the experiment) is moderate or large.

Randomized complete block design is described in the

previous section, and is applicable in labeling workflows where

the number of labels equals the number of disease groups. For

example, Figure 8a illustrates a randomized complete block

design in a four-label workflow studying four disease groups.

Since one individual from each disease group can be included

in a block, each block corresponds to its own independent

replicate set. The variance of comparisons between groups

Var(D̂1 - D̂2) in this case is as in eq 3, and I in the formula can

be interpreted simultaneously as both the number of individu-

als per group and the number of minimal replicate sets.

Balanced incomplete block design is applicable when the

number of disease groups exceeds the number of individuals

in a block. This is the case, for example, of a two-label

experiment studying three or more disease groups, four-label

experiment studying five or more groups, and so on. A minimal

replicate set of the design allocates individuals from all pairs

of disease groups in a same block an equal number of times.

It is possible to either randomize, or to systematically rotate,

the label allocations within each block. We illustrate this design

with an example of a five-group experiment using a four-label

workflow (Figure 8b), and a two-label workflow (Figure 9a). The

variance of comparisons between any pair of groups is12

where nb is the block size (i.e., the number of labels), ng is the

number of groups, np is the number of times that individuals

from a given pair of disease groups occur in a same block

within a minimal replicate set, and ns is the number of minimal

replicate sets.

When the block size is small, such as in the case of two-

label workflows, a variety of more specialized designs can be

considered. These designs were introduced for use with two-

color gene expression microarrays,21,26 and were extensively

evaluated in subsequent publications. We illustrate these

designs using two examples of label allocations. More details

regarding these designs, as well as variance calculations for

specific experimental workflows can be found in Dobbin and

Simon.28 Woo et al.36 extend these designs to the 3- and 4-label

microarrays.

Reference design controls for between-block variation by

means of a common reference sample allocated to all blocks.

The reference sample itself is generally not of interest, but helps

eliminate the between-block variation when comparing the

remaining samples and groups. It is possible to randomly assign

the labels within a block, or to always allocate the same label

to the reference sample in experiments of small size. An

example of the reference design in a four-group and two-label

experiment is illustrated in Figure 9b, and the variance of

comparison between any two nonreference groups is

where I can be interpreted as both the number of individuals

per group and the number of minimal replicate sets. This

expression is general and does not depend on the number of

groups under investigation. Kerr et al.37 found that the choice

of the reference sample in the case of gene expression mi-

croarrays has no practical impact on the efficiency of the

design.

Loop design is an alternative to the reference design. The

design cycles samples through the blocks in a systematic

manner as shown in Figure 9c. It is possible to either random-

ize, or to systematically rotate, the label allocations within each

block. The general formula of the variances of a comparison

Figure 8. Experiments with a four-label workflow; “X” indicates a unique biological sample. (a) Randomized complete block design

with four disease groups: each block contains one individual from each disease group. (b) Balanced incomplete block design with four

labels and five disease groups: individuals from each pair of groups appear in the same block an equal number of times.

Figure 9. Five-group experiments with a two-label workflow; “X” indicates a unique biological sample, “R” indicates a reference sample,

and “L1” and “L2” indicate the (optional) systematic labeling scheme. (a) Balanced incomplete block: individuals from each pair of

groups appear in a same block once. (b) Reference design: each block contains a reference sample which is the same in all blocks, and

one additional unique individual. (c) Loop design: pairs of individuals from different groups cycle through blocks.
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between two groups is more complicated, and depends on both

the number of disease groups, and the number of blocks that

separate the two disease groups under comparison in the

design. In the special case of 5 disease groups in Figure 9c, the

variances are

if two disease groups are “connected” in the same block, and

if two groups are “disconnected”, i.e. are one block apart. When

more blocks separate the two groups of interest in the design,

the variance of the comparison increases even more.

Each of these designs can be useful in some experimental

circumstances. In particular, each design only exists for a

certain combination of number of disease groups, number of

runs, and block size. For example, in the case of a 4-label

workflow, the randomized complete block design only exists

for studies of at most 4 disease groups, and the balanced

incomplete block with 5 groups will require a number of

biological replicates that is an exact multiple of 4 (Figure 8).

Similar constraints apply in the case of a 2-label workflow.

In an experimental situation where multiple designs can be

used, a good design minimizes the variances in eqs 3-8.

However, one should also consider other features of the

designs, such as the total number of MS runs, and robustness

of the design to failure or loss of some runs. The randomized

complete block design, when feasible, requires the smallest

number of runs, and is the most robust to run failures. The

loss of a run effectively amounts to the loss of one set of

biological replicates, but it will not otherwise affect the bal-

anced structure of the experiment and the variance of the

comparison in eq 3. Both balanced incomplete block and loop

designs require more runs, and are not robust to run failures.

The loss of a run destroys the balanced structure of a minimal

replicate set, and will result in an increase in the variance of

the comparison. An additional drawback of the loop design is

that it is not equally precise when comparing pairs of disease

groups, and one must allocate samples from comparisons of

primary interest into neighboring blocks. Finally, the reference

design is robust to run failures and is easy to implement.

However this simplicity comes at the price of an excessive

number of runs, and half of the resources are spent on

acquisition of spectra for a reference sample that is not of

interest.

3.3.2.1. Example. Figure 10 illustrates the performance of

the designs in an experiment with 5 disease groups, assuming

the same values of the variance components as in Section 3.2.

Figure 10a compares the variances of a hypothetical 5-label

workflow which can accommodate all 5 disease groups in a

randomized complete block design (e.g., in the case of 8-label

iTRAQ where only 5 labels are used) with the balanced

incomplete block designs for 4- and 2-label workflows. The

figure illustrates the advantage of larger experimental blocks.

The 5-label workflow, if feasible, produces the smallest variance

of a comparison, and exists for any number of biological

replicates. The least efficient design is a 2-label workflow. Both

4-label and 2-label workflows exist fully replicated only for a

number of biological replicates that is a multiple of 4.

Figure 10b compares balanced incomplete block, loop and

reference designs in a situation where the 2-label workflow is

the only possible choice. One can see that the balanced

incomplete block design is an optimal choice since it minimizes

the variance of the comparison, however the design does not

always exist. The reference design exists for any number of

biological replicates, but results in a slightly larger variance.

The variance of a comparison for the loop design is similar to

that of the balanced incomplete block when the disease groups

are connected (i.e., appear in the same block), but closer to

the reference design when the disease groups are disconnected

(i.e., one block apart). Figure 10c further compares these

designs in terms of the number of runs. Although the variance

of a disconnected pair of groups is similar to that of the

reference design, the reference design is less efficient in that it

requires a larger number of runs. Supporting Information

contains figures similar to Figure 10b,c, obtained with a series

of other ratios of experimental versus biological variation.

The variances in Figure 10 are theoretical in that they assume

that all workflows have the same σIndiv
2 and σError

2 . While adding

more labels increases the efficiency and power of the experi-

ment, in practice, the increase in efficiency can be offset by a

Figure 10. Variances Var(D̂1 - D̂2) of a comparison between two disease groups in a 5-group experiment. (a) A 5-label workflow with

a randomized complete block design in eq 4, and 4- and 2-label workflows with a balanced incomplete block design in eq 5. (b and c)

A 2-label workflow with a balanced incomplete block in eq 5, reference design in eq 6 and loop design in eqs 7 and 8.
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reduced dynamic range and increased variability in the mul-

tilabel system.36 Thus, in order to fully compare various

experimental designs, variances used in Figure 10 should be

estimated separately for each workflow from the corresponding

prior experiments.

3.3.3. Additional Comments. The designs above can be

extended to handle multiple and inter-related sources of

variation. For example, one can specify several types of blocks,

and combine blocking with technical replication. Alternatively,

it may be necessary to account for a statistical interaction

between disease group and block. Another extension can be

required in a labeling workflow in the presence of unequal

efficiency of labeling reagents across features, a case docu-

mented and analyzed in studies of gene expression.16,38 Most

extensions will change the corresponding ANOVA models, and

affect the expressions of Var(D̂1 - D̂2). However, the principles

of replication, randomization and blocking will always apply.

The higher the complexity of the ANOVA model, the more

replicates are necessary to estimate the associated terms and

variance components from the data. Therefore, when the

number of available replicates is small, this limits the feasible

statistical models and designs. Several strategies can be pursued

when working with a small sample size. First, it is important

to conduct pilot studies in a similar setting to identify the major

sources of variation, and the sources that can be discarded.

Second, if a major source of variation is identified, it is

preferable to keep this source fixed throughout the experiment,

as discussed in Section 3.1. While this strategy limits the scope

of inference, it simplifies the model and improves our ability

of detecting differences. Third, when a major source of variation

cannot be fixed, randomization can produce suboptimal al-

locations in experiments with small sample size. For example,

in a labeling workflow, it can unintentionally assign more

samples from a disease group to a particular label, and

introduce a bias as discussed in Section 2. This can be avoided

by enforcing a systematic allocation of individuals to all labels

as illustrated in Figure 9a,c, and discussed in Dobbin et al.16,38

The allocation will not reduce Var(D̂1 - D̂2), but will help avoid

bias. Finally, Empirical Bayes ANOVA combines information

on feature-specific variances over all features to improve the

power of detecting a fold change in small experiments. Such

models have been proposed for gene expression microarrays,39,40

and are made available for proteomic research, for example,

through the Corra framework.41

It is important to note that these strategies provide only a

partial remedy to the problem of a small sample size, and will

not substitute the insight that can be gained from increasing

the number of biological replicates.

4. Pooling: Reducing Biological Variation and Number of
Runs

An experimental design can require decisions regarding

pooling biological specimens from the same disease group prior

to mass analysis. Pooling is often considered out of necessity,

for example, in order to increase the volume of the sample to

achieve proper performance of the assay, or to reduce the

overall cost of the experiment. Another potential motivation

of pooling is to improve the ability of finding differences

between groups by reducing the overall subject-to-subject

variation. One can envision two scenarios: combining all

samples from a disease group into a single pool and combining

several samples at a time to produce several pools. As always

in questions of experimental design, pooling strategies should

be characterized on the basis of bias and variance of the

comparisons between disease groups.

First, combining all subjects from a disease group in a single

pool seriously undermines the usefulness of the experiment.

This strategy results in a single measurement per spectral

feature per disease group, as in the situation shown in Figure

2a. Such pooling makes it impossible to assess the underlying

variability in an experiment without technical replicates (σ2 in

eq 1), or in the case of multiple technical replicates (σIndiv
2 in

eq 2). As we have seen, an experimental design that does not

allow characterization of the biological variation can not

produce a valid inference, and should not be done.

An alternative strategy involves creating multiple pools from

different subsets of individuals. If each subject belongs to a

single pool, the pools can be viewed as independent biological

replicates, and the general inferential procedure in Figure 1

applies. However, feature quantification from the pooled

samples is susceptible to multiple sources of bias. The first

obvious source is due to technical aspects of the experiment.

For example, pipetting errors may cause specimens to have

unequal contributions to the pool, resulting in a biased signal.

It is also more difficult to detect outlying or contaminated

samples. If contamination in a specimen is not detected prior

to mixing, the entire pool is affected and it will be difficult to

determine which member of the pool was affected. The second,

less obvious source of bias, is due to the choice of the

measurement scale used at the statistical analysis stage. As

discussed in Section 2, the true biological measurements are

generally viewed as multiplicative in nature, and peak intensi-

ties resulting from quantitative experiments are log-trans-

formed prior to statistical analysis. Yet physically mixing the

samples amounts to averaging the signal on the raw scale, and

the averages on these two scales are not equivalent. To

summarize, the application of pooling strategy is based on the

assumption of biological averaging, that is, on the assumption

that the sources of bias listed above are small and can be

neglected.

If the assumption of biological averaging holds, there is a

theoretical advantage in creating multiple groups of pools for

class comparison. Consider, for example, a label-free LC-MS

experiment and the statistical model in Figure 5, and assume

for simplicity that a single sample preparation and a single

technical replicate is acquired per biological mixture. In the

absence of pooling, the variance of a comparison of feature

intensities between groups, where each group has I individuals,

is

If instead each biological mixture is a pool of r individual

specimens, the corresponding variance is

Thus, increasing the number of biological replicates by pooling

allows one to reduce the variance of the comparison, without

changing the total number of runs. The theoretical advantage

of pooling has been studied extensively in the context of gene

expression microarray.42-44 In particular, Zhang and Gant44

calculated efficiencies of pooling designs while incorporating
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the analysis of associated costs in terms of money, time, or

other resources, and developed an online application that

performs on-demand calculations. They concluded that the

largest gain from a pooled design with respect to the cost is

when the cost per subject is relatively low as compared to the

cost per assay.

The practical utility of pooling in a proteomic experiment

will depend on the extent to which the assumptions of

biological averaging holds. Shih et al.45 and Kendziorski et al.46

empirically evaluated this assumption in the context of gene

expression. They found that the measurement scale affected

approximately 25% of the genes in their experiment, and

different conclusions regarding differential expression of these

genes were made in presence or in absence of pooling.

Additional work is needed to evaluate the appropriateness of

the biological averaging assumption in the context of various

proteomic workflows.

Our final comment is that pooling limits the type of analysis

that can be performed on the resulting spectra. Although

combining samples into pools does not prevent class com-

parison with ANOVA, it prevents investigations that involve

class discovery and class prediction that are necessary, for

example, in the context of diagnostics and prognostics. Such

analyses cannot be performed without a quantitative measure-

ment for each separate individual.

5. Sample Size Calculations for a New Experiment

An important aspect of experimental design is calculation

of the number of biological and technical replicates necessary

for a future study. The number of replicates should be relatively

large to ensure that the experiment can detect important

differences with a high enough probability. It should also be

relatively small to avoid prohibitively large costs. Sample size

calculations depend on a series of experimental characteristics

which include allocation of resources according to the previ-

ously described designs, anticipated difference in feature

intensities, and the overall number of features. In the following,

we discuss sample size calculations for one feature, and then

extend the calculations to the more realistic multiple-feature

situation.

5.1. Sample Size Calculation for Comparing Group

Means of One Feature. The goal of a comparison between two

groups is to test the null hypothesis of equality of average peak

intensities between healthy and disease patients Ho : µH ) µD

(where µH and µD are the population means described in Figure

1), versus the alternative hypothesis Ha : µH * µD. Results of

the hypothesis testing procedure belong to one of the four

scenarios summarized in Table 1. We define the significance

level of the test as R ) Prob{making Type I error}, and the power

of the test as the probability of obtaining the evidence sup-

porting the research, that is, 1 - " ) 1 - Prob{making Type II

error}.

To calculate the sample size, we fix the significance level R

and power 1 - " of the test at the desired levels, and specify

the smallest difference between population means ∆ ) |µH -

µD| that we would like to detect. Finally, we need to have access

to information from previous investigations conducted under

similar physiological and experimental conditions to calculate

representative values of σIndiv
2 and σError

2 . Separate estimations

of σIndiv
2 and σError

2 are only possible in pilot experiments

containing technical replicates. Experiments with a single

technical replicate provide a joint estimate of σIndiv
2

+ σError
2 ;

however, this is sufficient for many planned designs.

When a large number of biological replicates is anticipated,

the following formula14 approximately relates ∆ and Var(D̂1 -

D̂2):

where z1- " and z1- R/2 are respectively the 100(1 - ")th and

the 100(1 - R/2)th percentiles of the standard Normal distribu-

tion. The formula can be applied to variances of comparisons

from various experimental designs (such as in eqs 1-8), and

solved to determine the minimal sample size. In particular, for

the simple two-group comparison in eq 1, the number of

biological replicates per disease group I is calculated as

When the anticipated sample size of an experiment is small,

the quality of the approximation in eq 11 can be poor. An

alternative iterative computational procedure based on the

Student distribution can be used instead. The procedure has

been described,12 and its implementation is available from a

variety of statistical software systems such as SAS and R.

Extensive examples, including SAS code, are given in ref 47.

Finally, an alternative procedure for sample size calculations

involves computer simulations, whereby one generates syn-

thetic data representing a variety of biological conditions and

experimental designs, and observes the frequency of type I error

and the power of the test. Such simulations have been applied

in the context of proteomic experiments in ref 48.

5.1.1. Example. We use the label-free diabetes data set to

calculate the sample size for a single feature in a future

experiment. We set the probability of type I error to R ) 0.05

and the power of the test to 1 - " ) 0.8, and vary ∆ between

0.1 and 0.4. Because of the logarithm transformation, the fold

change of the signal on the raw scale is defined as e∆ (or 2∆

when using logarithm with base 2).

Figure 11a illustrates the sample size calculation with dif-

ferent types of replicates discussed in Section 3.2, using Var(jyH

- jyD) in eq 2. We fix the number of sample preparations J and

technical runs K for each patient to 1 or 3, set σIndiv
2 , σPrep

2 and

σError
2 to the medians of the experimental values as in Section

3.2, and solve the approximate formula in eq 11 for the number

of individuals per group I. One can see that if the number of

runs is fixed, allocating all the runs to the biological replicates

allows one to detect the smallest fold change. On the other

hand, if the number of individuals cannot be increased,

multiple technical replicates will also help reduce the detectable

fold change, but to a smaller extent and at the expense of the

number of runs. Supporting Information contains figures

similar to Figure 11a, obtained with different values of experi-

mental and biological variation.

Table 1. Outcomes of Testing the Null Hypothesis H0 : µH )

µD for a Single Experimental Feature

no detected
difference

detected
difference

true equal abundance type I error

true different abundance type II error

Var(D̂1 - D̂2) e ( ∆

z1-" + z1-R/2
)

2
(11)

I g 2(z1-" + z1-R/2

∆/σ )
2

(12)
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Figure 11b illustrates the sample size calculation in the

presence of blocking, using “small” σBlock
2

) 0.5(σIndiv
2

+ σError
2 ),

and “large” σBlock
2

) 5(σIndiv
2

+ σError
2 ) as in Section 3.3.1. The figure

further demonstrates the advantage of the block design in that

it requires a smaller number of biological replicates to detect

a small-to-moderate fold change, and the difference is par-

ticularly important when the between-block variation is large.

5.2. Sample Size Calculation for Comparing Group

Means of Multiple Features. In proteomic experiments, one

is rarely interested in changes in abundance of a single feature

in the data. Instead, we are interested in comparing the

abundances of a potentially large number of features which

are simultaneously detected as part of the experiment. A variety

of multivariate generalizations of the type I error rate and of

the power of the test exist, along with the statistical procedures

for their control. The use of these generalizations in the context

of gene expression microarrays is reviewed in ref 49. The choice

of the multivariate type I error rate and of multivariate power

will affect the testing procedures, and will also affect the

calculations of the sample size.

A powerful multivariate generalization of the type I error is

the False Discovery Rate (FDR), defined as the expected propor-

tion of unduly detected differences in the list of rejected null

hypotheses.50 In other words, FDR is the average false positive

rate that would be obtained under multiple repetitions of the

same experiment. Listgarten and Emili7 and Karp et al.51

emphasize the importance of controlling the FDR when

comparing abundances of multiple features in quantitative

proteomics.

Consider an experiment where we simultaneously compare

the abundance of m features, m0 out of which do not differ in

the underlying populations. The outcome of the comparison

is summarized in Table 2. Conditional on the feature identi-

fication, m and m0 can be considered fixed. However, R, S, T,

U, V in the table are random variables that depend on the

observed data, and only R is actually observed. FDR is defined

mathematically as

where E[] denotes the expected value. Benjamini and Hoch-

berg50 propose to control the FDR at the desired level q

according to the following procedure. First, order the p-values

of the m comparisons from the largest p(m) (i.e., the least

significant) to the smallest p(1) (i.e., the most significant).

Next, vary j from m down to 1, and compare p(j) to

(j/m)q. Once we encounter the first p-value such that p e (j/

m)q, we reject the null hypothesis for this test, as well as all

other null hypotheses that correspond to lower p-values. It can

be shown that the FDR in the resulting list of rejected null

hypotheses does not exceed q. A variety of statistical software

tools, including SAS and R, contain packages performing this

procedure.

The Benjamini-Hochberg procedure can be used to calcu-

late the number of biological replicates in a future experiment

with multiple features, while controlling the FDR. The authors

show50 that the procedure controls the average type I error Rave

over all features in the experiment at

where (1 - ")ave is the average power over all features. Sample

size estimates can be made by first estimating Rave using eq

14, and then calculating the sample size required to achieve

Rave and (1 - ")ave for a single feature according to eq 11. The

procedure requires the specification of an additional quantity,

the anticipated ratio m0/m1. An example of application of this

procedure in proteomic research can be found in ref 22. An

Figure 11. Number of individuals per disease group for a new label-free experiment. (a) Single feature: a completely randomized

design, R ) 0.05. (b) Single feature: a randomized block design and a completely randomized design with no technical replicates.

“Large” σBlock
2

) 5(σIndiv
2

+ σError
2 ), and “small” σBlock

2
) 0.5(σIndiv

2
+ σError

2 ), R ) 0.05. (c) Multiple features: a randomized block design as in

(b), q ) 0.05.

q ) E[ V
max(R, 1)] (13)

Table 2. Outcomes of Testing m Null Hypotheses H0 : µH ) µD

Simultaneously for m Experimental Features, Conditionally on

the Features Detected and Quantified by a Signal Processing

Procedurea

no. of features
with no detected

difference

no. of features
with detected

difference total

no. true

nondiff.

features

U V m0

no. true

diff.

features

T S m1 ) m - m0

Total m - R R m

a R, S, T, U and V are random quantities, but only R is observed.

Rave e (1 - ")ave ·q
1

1 + (1 - q) ·m0/m1

(14)
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alternative approach to estimating sample size in the case of

multiple features involves computer simulation.

5.2.1. Example. We continue the example of the label-free

diabetes experiment. We use the variance components dis-

cussed in Section 3.2, and assume a randomized block design

with no technical replicates. We now consider the sample size

necessary for a simultaneous comparison of abundance of

multiple features. We set the FDR q ) 0.05 and the average

power (1 - ")ave ) 0.8, and vary ∆ (and the corresponding fold

change on the original scale) as above. In addition, we consider

two experimental scenarios. The first corresponds to a relatively

large proportion of features that do not change in abundance

between two disease groups, where m0/(m0 + m1) ) 0.99. This

translates into m0/m1 ) 99, and Rave ) 0.0004. The second

scenario corresponds to a moderate proportion of unchanging

features where m0/(m0 + m1) ) 0.5. This translates into m0/m1

) 1, and Rave ) 0.0205. Thus, the simultaneous testing requires

a more conservative Rave when controlling FDR at q ) 0.05.

Figure 11c displays the number of biological replicates per

disease group for the label-free randomized block design. A

more conservative Rave results in a larger sample size. Studies

with larger proportions of unchanging features require a larger

number of biological replicates to control the False Discovery

Rate.

6. Discussion

Statistical design of experiments is unfortunately often

mistaken for calculations of the number of replicates. This

notion is incorrect since, as we have seen, different experi-

mental designs can yield very different power of a comparison,

given the same number of biological replicates or runs. Thus,

sample size calculation is only one out of many aspects of

planning a future experiment.

Experiment planning should start by clearly stating the

scientific question of interest, and identifying the population(s)

of interest that will allow one to answer the question. Although

this sounds obvious, failure to state the question and to identify

the underlying populations is one of the most common causes

of inadequate study designs. The next step is to translate the

question of interest into specific statistical hypotheses, for

example, by specifying which comparisons between which

groups will be considered. With these comparisons in mind,

one should determine a procedure for recruiting individuals

into the study that ensures an unbiased and accurate repre-

sentation of the underlying populations.

Once the biological specimens are obtained, a decision

should be made regarding their allocation in space and time

at different stages of sample processing and spectral acquisi-

tion. As we have seen, allocation strategies should be judged

on the basis of a statistical model that reflects the similarities

and differences in the resulting spectra. Choice of the ap-

propriate statistical model is one of the most difficult aspects

of the design, and should be based on the detailed knowledge

of the experimental procedure, and on quantitative data from

pilot studies or from previous similar experiments.

When selecting a model, one should consider all potential

sources of experimental variation, use data from previous

experiments to calculate variance components such as σIndiv
2

and σError
2 , and ensure that both the statistical model and

experimental design account for the major sources of variation.

We would like to emphasize that variance components vary

between experimental workflows and laboratories, as well as

according to computational signal processing tools that are

subsequently applied, and should be calculated anew for each

experimental setting. Moreover, more than one statistical model

can be potentially appropriate. For example, an alternative to

the model in Figure 5 can contain both technical replicates and

blocking factors; an alternative to the model in Figure 7 can

relax the additive structure, and contain a statistical interaction

between disease groups and blocks. Data from previous experi-

ments should be used to select a model that is most appropriate

for each experimental workflow.

Finally, all the statistical models are based on distributional

assumptions, such as normality of the random quantities

involved. Applying a logarithm transformation to peak intensi-

ties is usually necessary to ensure that these assumptions are

plausible. Considering the log transform at the design stage is

important since variance components and model choice can

be dramatically different when analyzing the data on the raw

or on the log scale. Once one or several candidate models are

set up, one proceeds with sample size calculations such as in

Figure 11 in order to select the most desirable design.

In summary, many mistakes can be avoided if experimental-

ists work with statisticians at the early design of experiment

stage, prior to collecting biological specimens and acquiring

data. Inviting a statistician when the data are already collected

may be too late to correct these mistakes.
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