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Abstract: The best Weibull distribution methods for the assessment of wind energy 

potential at different altitudes in desired locations are statistically diagnosed in this study. 

Seven different methods, namely graphical method (GM), method of moments (MOM), 

standard deviation method (STDM), maximum likelihood method (MLM), power density 

method (PDM), modified maximum likelihood method (MMLM) and equivalent energy 

method (EEM) were used to estimate the Weibull parameters and six statistical tools, 

namely relative percentage of error, root mean square error (RMSE), mean percentage 

of error, mean absolute percentage of error, chi-square error and analysis of variance were 

used to precisely rank the methods. The statistical fittings of the measured and calculated 

wind speed data are assessed for justifying the performance of the methods. The capacity 

factor and total energy generated by a small model wind turbine is calculated by numerical 

integration using Trapezoidal sums and Simpson’s rules. The results show that MOM and 

MLM are the most efficient methods for determining the value of k and c to fit Weibull 

distribution curves. 

Keywords: the Weibull shape factor; scale factor; probability density function; power density; 

statistical tools 
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1. Introduction 

Energy and environment are the twin major crises in the world [1]. Because of this, both developed 

and developing countries are becoming increasingly more interested in using pollution free, cost 

effective and renewable sources of energy [2]. As a renewable and alternative energy, wind is the most 

common and fastest-growing source of energy in the world [3–5]. The characteristics of wind energy 

are important in different aspects regarding wind energy exploitation [6,7]. Wind is highly variable, 

both in space and in time [8]. The importance of this variability becomes critical since it is amplified 

by the cubic relationship of the available power to the wind speed (p = 0.5ρAV3). The wind power 

production faces the fluctuation of the wind velocity [9–12]. Therefore, accurate knowledge about the 

wind characteristics is needed for planning, design and operation of wind turbines [13–16]. For the 

proper assessment, the variability of the wind over time can be divided into three distinct time scales. 

Firstly, the large time scale variability describes the variations of the amount of wind from one year to 

another, or even over periods of decades or more. Secondly, the medium time scale covers periods up 

to a year. These seasonal variations of the wind are much more predictable. Finally, the short term time 

scale variability covers time scales of minutes to seconds, also well known by the term “turbulence” 

and which is of critical interest in the wind turbine design process [17–23]. For more than half a 

century the Weibull distribution has attracted the attention of statisticians working on theory and 

methods as well as various fields of statistics [22,24–27]. Hundreds of papers have been written on this 

distribution; however the research is still ongoing. Together with the normal, exponential distributions, 

the Weibull distribution is the most popular model in statistics [28,29]. It is of utmost interest to theory 

orientated statisticians because of its great number of special features, and to practitioners because of 

its ability to fit to data from various fields, ranging from life data to weather data or observations made 

in economics and business administration, in health, in physical and social science, in hydrology, in 

biology or in the engineering sciences [30–36]. 

Research is ongoing worldwide on the Weibull distribution to find the most reliable methods for 

wind energy estimation. The main question is how precisely the values of the Weibull shape factor “k” 

and scale factor “c” can be determined [37–39]. For this reason different scientists and engineers 

have developed different methods to find the Weibull parameters for wind energy assessment. That is 

why several methods are found in literature to estimate the Weibull factors [38,40–43]. Recently, 

Mohammadi and Mostafaeipour [44] used two methods (STDM and PDM) for wind data assessment 

in Zarrineh, Iran. In 2012, Costa Rocha et al. [45] dealt with the analysis and comparison of seven 

numerical methods for the assessment of effectiveness in determining the parameters for the Weibull 

distribution, using wind data collected for Camocim and Paracuru cities in the northeast region of 

Brazil. Before that, Chang [41] made a statistical study to compare the performance of six numerical 

methods in estimating Weibull parameters for wind energy application. Seguro and Lambert [43] 

concluded that the maximum likelihood method (MLM) performs better than the popularly used 

graphical method (GM). Akdağ and Dinler [40], Azad and Saha [46], and Azad and Alam [47] 

reviewed three conventional methods and Akdag and Dinler [40] also proposed a new method, namely 

the energy pattern factor method, for estimating the Weibull parameters. Chu and Ke [48] and 

Bhattacharya and Bhattacharjee [49] examined the estimation comparison between the MLM and  

the least squares method [50]. They found that the least squares method significantly outperforms  
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the MLM when sample size is the same. Jowder [51] used empirical and graphical methods to analyze 

the wind power density at 10, 30, and 60 m height in the Kingdom of Bahrain; two Weibull parameters 

were estimated and compared. From the analysis, it was found that the empirical methods provide 

more accurate prediction of average wind speed and power density than the GM. Odo et al. [52] used 

the Weibull distribution based model for prediction of wind energy potential in Enugu, Nigeria over a 

period of 13 years. Oyedepo et al. [53] also analyzed south-east Nigeria wind data that spans from 

24 years to 37 years and was measured at 10 m height. Abbas et al. [54] statistically analyzed the wind 

speed data in Pakistan to determine the best fitting distribution of wind speed. For this purpose, 

two parameters Gamma, Weibull, Lognormal and Rayleigh distributions, and three parameters Burr 

and Frechet distributions were fitted to data and parameters for each distribution were estimated using 

the MLM [42,50,55–61]. 

Seguro and Lambart [43] calculated the value of the Weibull parameters by three methods. They 

recommended that the MLM is useful for time series wind speed data and the modified maximum 

likelihood method (MMLM) is recommended for use with wind data in frequency distribution format. 

Philippopoulos and Deligiorgi [62] statistically simulated the wind speed data in Athens, Greece based 

on the Weibull and autoregressive-moving average (ARMA) method. They found that ARMA methods 

are superior in simulating the frequency distribution of wind speed. Karpa and Naess [63] also 

analyzed the extreme value statistics of wind speed by the average conditional exceedance rate 

(ACER) method. Morgan et al. [64] examined the probability distributions for offshore wind speed. 

They concluded that the two-parameter lognormal distribution performs best for estimating extreme 

wind speeds, but still gives estimates with significant error. Stathopoulos et al. [65] used both 

numerical and statistical models for wind power prediction. Zhou et al. [66] comprehensively 

evaluated wind speed distribution models for a case study of North Dakota country sites. Wind energy 

estimation and analysis of wind regions through the Weibull distribution methods is widely used 

nowadays [35,37,67–80]. 

This study summarizes the results of the 10-min time series wind speed data measured at 20 m and 

30 m height in three windy sites, namely Kuakata, Kutubdia and Sitakunda, located in Bangladesh. 

Table 1 shows the site information in which DL9210 anemometer used to measure wind speed at a 

10-min interval. The anemometers have two sensors each of 32 KB memory and have one/two sockets. 

Statistical work was involved to find the best method of Weibull distribution with high efficiency. 

The assessment of wind energy potential has been done by using the best method of Weibull distribution. 

Section 2 offers a detailed outline of the methodology and associated theories for the statistical analysis. 

The results and discussions are presented in Section 3. Concluding remarks are presented in Section 4. 

Table 1. Site name, location for wind speed measuring at 20 m and 30 m height above surface. 

Wind station name Site name Latitude (°) N Longitude (°) E 
Height above  
the sea level 

Reference 

Station-I Kuakata 21°54.76' 90°08.24' 3 m [81] 
Station-II Kutubdia 21°54.71' 91°52.43' 0–4 m [82] 
Station-III Sitakunda 22°35.68' 91°42.52' 9 m [83] 
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2. Outline of the Methodology and Associated Theories 

To investigate the feasibility of the wind energy resource at any site, there are basically two ways at 

present to evaluate wind power. The first and the most accurate method to calculate wind power 

potential is based on measured values that are recorded at meteorological stations. The second method 

to assess wind power potential is by using probability distribution functions, namely the Rayleigh 

distribution, Chi-squared distribution, Normal distribution, Binomial distribution, Poisson distribution 

and Weibull distribution. In this study, the authors used only the Weibull distribution for wind power 

assessment as presented and discussed below. 

2.1. Weibull Probability Density Function 

The Weibull probability density function is a two-parameter function characterized by a dimensionless 

shape parameter (k) and scale parameter (c in m/s). These two parameters determine the wind speed for 

optimum performance of a wind conversion system as well as the speed range over which the device is 

likely to operate [52,84–87] as given in Equation (1): ( ) = ( ) = ×  (1)

where v, k and c are wind speed (m/s), shape factor (dimensionless) and scale factor (m/s), respectively. 

2.2. Cumulative Distribution Function or the Weibull Function 

Cumulative distribution function is the integration of the Weibull density function. It is the 

cumulative of relative frequency of each velocity interval [31]. The equation of the Weibull Function 

is given by: ( ) = ( ́) ́ (2)

( ) = 1 −  (3)

All these distributions are used to determine the probability of occurrence. The nature of the occurrence 

affects the shape of the probability curve, and in the case of the wind regime, the cumulative curve 

probability nature mostly fits to the Weibull Function. Several methods to estimate Weibull factors are 

found in the literature. Some of these methods are: 

(1) Graphical method (GM); 

(2) Method of moments (MOM); 

(3) Standard deviation method (STDM); 

(4) Maximum likelihood method (MLM); 

(5) Power density method (PDM); 

(6) Modified maximum likelihood method (MMLM); 

(7) Equivalent energy method (EEM). 
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2.2.1. GM 

The graph is constructed in such a way that the cumulative Weibull distribution becomes a straight line, 

with the shape factor k as its slope. Taking the logarithm of both sides, the expression of Equation (3) 

can be rewritten as: 1 − ( ) =  (4)

or: − ln 1 − ( ) = ln − ln  (5)

The above equation represents a relationship between ln(v) and −ln{1 − F(v)}. Therefore, the horizontal 

axis of this plot on the Weibull paper is v while the vertical axis is ln(1 − F(v))−1. The result is a 

straight line with slope k. For v = c, one finds F(v) = 1 − e−1 = 0.632 and t an estimation for the value 

of c, by drawing a horizontal line at F(v) = 0.632. The intersection point with the Weibull line gives 

the value of c. 

2.2.2. MOM 

The MOM is another technique commonly used in the field of parameter estimation. If the numbers 

v1, v2, …, vn represent a set of data, then an unbiased estimator for the n-th origin moment is given by: = 1
 (6)

where  stands for the estimation of mn. In a Weibull distribution, the nth moment readily follows 

from Equation (3). With an expression of the Gamma function Γ(x), the average wind speed can be 

expressed as a function of c and k. The integral found cannot be solved, however it can be reduced to  

a standard integral, the gamma function, as follows: Γ( ) = ×  (7)

where =	  and =	 ; = 1 +  and, after a few manipulations: 

μ = 1 Γ 1 +  (8)

After a few manipulations:  μ = 	 × 	Γ 1 + 1 = 0.8525 + 0.0135 + ( )  (9)

This formula can easily be handled by pocket calculators in energy output calculations. The accuracy 

of the approximation is within 0.5% for 1.6 < k < 3.5.Then from Equation (8) we can find the first and 

the second moments as follows: 

= μ = 1 Γ 1 + 1
 (10)
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and: 

=	μ +	σ = 1 Γ 1 + 2 − Γ 1 + 1
 (11)

When we divide m2 by the square of m1, we get an expression which is a function of the shape 

factor k only: 

	Γ 1 + 2 − Γ 1 + 1Γ 1 + 1  (12)

On taking the square roots of the equation, we have the coefficient of variation (COV): 

= Γ 1 + 2 − Γ 1 + 1
Γ 1 + 1  (13)

In this case, this method can be used as an alternative to the MLM. The value of k and c can be 

easily determined by the following equations: σ = Γ 1 + 2 − Γ 1 + 1
 (14)

σ̅ = 1 + 2
1 + 1 − 1 (15)

After some calculation we can find: 

= 0.9874σ̅ .
 (16)

The Weibull scale factor can be calculated by: ̅ = Γ 1 + 1
 (17)

2.2.3. STDM 

In the STDM, the Weibull factors can be obtained as follows: = σ̅ .
 (18)

and: = ̅Γ 1 + 1  (19)
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where ̅ and σ are mean wind speed and standard deviation of wind speed for any specified periods of 

time respectively, and can be calculated [44,88] as follows: ̅ = 1
 (20)

By determining the mean wind speed	 ̅, the standard deviation σ of wind speed becomes: 

σ	 = ( − ̅)  (21)

or: 

σ	 = 	 1− 1 ( − ̅) (22)

One can find next an expression for σ in terms of k and c with ̅ = c × Γ(1 + 1/k) and also Γ(x) is the 

gamma function and is defined as: Γ( ) = exp(− )  (23)

2.2.4. MLM 

Maximum likelihood estimation has been the most widely used method for estimating the 

parameters of the Weibull distribution. The commonly used procedure of MLM proposed by Cohe [50], 

Harter and Moore [55] and Gove [89] due to its very desirable properties. Let v1, v2, ..., vn be a random 

sample of size n drawn from a probability density function f(vi, θ), where θ is an unknown parameter. 

The likelihood function of this random sample is the joint density of the n random variables and is  

a function of the unknown parameter [89] given as: = ( , θ) (24)

Thus, Equation (24) is the likelihood function. The maximum likelihood estimator (MLE) of θ, 

say	θ, is the value of θ that maximizes L or, equivalently, the logarithm of L. Often, but not always, the 

MLE of θ is a solution of (dlogL)/dθ = 0, where solutions that are not functions of the sample values 

v1, v2, ..., vn are not admissible, nor are solutions which are not in the parameter space. Now, we are 

going to apply the MLE to estimate the Weibull parameters, namely the shape and the scale 

parameters [90]. Consider the Weibull probability density function given in Equation (3), and then the 

likelihood function will be represented as: ( , , ) = −  (25) 

On taking the logarithms of both sides of Equation (25), we obtain the estimating  

log-likelihood function: 
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ln( ) = 	ln( ) − 	 ln( ) + ( − 1) ln( ) −  (26)

Differentiating Equation (26) with respect to k and c in turn and equating to zero, we have: ∂	ln( )∂ = − + = 0 (27)

∂ ln( )∂ = + − = 0	 (28)

From Equation (27): 

= 1 ( )  (29)

When  is obtained, then ̂ is can be determined. To solve  by using the Newton-Raphson method 

as given below, let f(k) be the same as Equation (28) and taking the first differential of f(k), we have: ( ) = − −  (30)

Substituting Equation (29) into Equation (28) gives: 

( ) = 	 + ( )1 ∑ ( ) − ( )1 ∑ ( ) ( )1 ∑ ( ) (31)

Substituting Equation (29) into Equation (30), we get:  

( ) = − + ( )1 ∑ ( ) ln ( )1 ∑ ( )  (32)

Therefore,  is obtained from the equation below by carefully choosing an initial value for ki and 

iterating the process until it converges: 

= − + ∑ 1 ∑ ( )
− + ∑ ( )1 ∑ ( ) ln ( )1 ∑ ( )

−	 ∑ ( )1 ∑ ( ) 	ln ( )1 ∑ ( )
− + ∑ ( )1 ∑ ( ) ln ( )1 ∑ ( )

 

(33)
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2.2.5. PDM 

To obtain the shape factor and scale factor through this method, firstly the energy pattern factor is 

computed. The energy pattern factor usage is for turbine aerodynamic design. The energy pattern 

factor is related to the averaged data of wind speed and is defined as a ratio between mean of cubic 

wind speed to cube of mean wind speed. The energy pattern factor Epf is expressed as [40,45]: =	 Total	amount of power available in the windPower	calculated by cubing the mean wind speed 

or = ∑∑ = ( ) =  
(34)

Once the energy pattern factor is calculated by using the above equation, the Weibull shape factor 

and scale factor can be estimated from the following formulas: = 1 + 3.69
 (35)

= ̅Γ 1 + 1  
(36)

where Epf is the energy pattern factor; and Γ is the gamma function. 

2.2.6. MMLM 

The MMLM can only be considered if the available data of wind speed are already in the shape of 

the Weibull distribution. The solution of the equations in the MLM requires some numerical iteration 

by the Newton-Raphson method [41]. The Weibull parameters are determined by the following equations: =	 ∑ ( ) ( )∑ ( ) − ∑ ( ) ( )( ≥ 0)  (37)

=	 1( ≥ 0) ( ) ( ) (38)

where vi is the wind speed central to bin i; n is the number of bins; f(vi) represents the Weibull 

frequency for the wind speed range within bin I; and f(v ≥ 0) is the probability for wind speed to equal 

or exceed zero. 

2.2.7. EEM 

Consider a random sample of v1, v2, ..., vn by relative frequency of occurrence in a given interval 

of wind speed. Then a random variable observation discrete Wv associated with wind speed can be 

obtained from: = ( ) (39)



Energies 2014, 7 3065 

 

 

This observation random is also related with the Weibull parameters k and c from the equation of 

the probability of occurrence W. W(v) is the observed frequency of the wind speed for the interval of 

(v − 1) ≤ V < v. The mathematical representation of W(v) is: ( ) = ( − 1) − ( ) (40)( ) = − (41)

where Q(v) and the probability of occurrence of wind speeds equal to or higher than v, given by 

Q(v) = 1 − F(v). Then the random observation Wv can be written using Equations (39) and (41) as: = ( ) + = − +  (42)

The first hypothesis says that “The energy density is a parameter that helps in the determination of 

parameters of the Weibull distribution for applications in wind energy”. The related factor part 

deterministic must meet the following conditions: (a) be variable with random value expected value 

equal to 0: E(ε) = 0; (b) be variable random variance with constant: v(ε) = σ2; and (c) the occurrences 

of ε are non-correlated: COV(εi, εj). To ensure the condition of equivalence initially proposed in the 

hypothesis, it is the equality between Equation (4) and =	 ∑ . The equation resulting from 

this transaction expresses the parameter c as a function of speed cubed average of observations and the 

parameter k as: 

c = v1 + 3k  (43)

Substituting Equation (43) into Equation (42) gives: 

=	 ( ) − ( ) + ε  (44)

The estimate of the parameter k may be obtained from an estimator of least squares given by the 

expression [45]: 

−	 ( ) + ( ) = 	 (ε )  (45)

where Wvi is the observed frequency of the wind speed; n is the number of intervals of the histogram 

of speed; vi is the value of the upper limit of the i-th speed interval;  is the mean of the cubic 

wind speed; and εvi is the error of the approximation. Once the value of the parameter k is calculated, 

the value of c can be obtained directly from Equation (43). 
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2.3. COV 

The COV is defined as the ratio between mean standard deviation to mean wind speed expressed as 

a percentage. It demonstrates the mutability of wind speed and can be expressed as [29]: (%) = σ̅ × 100 (46)

2.4. Wind Speed Varies with Altitude 

Wind energy is indirect solar energy because it is generated by the temperature difference between 

the equator and the poles which drives the thermal system by solar radiation. It is known that wind 

speed varies with altitude, however, wind blows relatively slowly at low altitude and wind speed then 

increases with altitude. Different relationships are found in the literature to calculate wind speed at any 

height [91–93]. The Weibull factors used for these calculations must be obtained from the best 

possible method of Weibull distribution. For this purpose, the Weibull factors are initially calculated at 

desired heights, then wind speed and wind power are obtained [94,95]. The calculation procedures use 

the following relationships: η = 0.37 − 0.0881 ln  (47)= 1 − 0.0881 ln (48)

= (49)= 1 + 1
(50)

=	12 ρ ̅ = 	12 ρ ̅ Γ 1 + 3
Γ 1 + 3 = 12ρ Γ 1 + 3 	 (51)

= 12ρ Γ 1 + 3 × (52)

The mean energy density over a period of time, T, is the product of mean power density and  

the time period. k10 and c10 are the shape factor and scale factor at a height of 10 m and η is the power 

law coefficient. kh, ch, vh, zh and Ph are shape factor, scale factor, wind speed and wind power at  

the desired height, respectively. The zref is the reference height. ρ is the air density and for standard 

conditions (i.e., at sea level with temperature of 15 °C and pressure of 1 atmosphere) and is equal to  

1.225 kg/m3 and v is the wind speed (m/s).In this paper the authors used the Weibull factors to find 

wind speed and wind power at a height of 50 m. 

2.5. Statistical Error Analysis/Goodness of Fit 

To find the best method for the analysis, some statistical parameters were used to analyze the 

efficiency of the above mentioned methods. The following tests were used to achieve this goal: 
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(a) zRelative percentage of error (RPE) 	 = , − ,, × 100% (53)

(b) Root mean square error (RMSE) 

= 1 ( , − , )  (54)

(c) Mean percentage error (MPE) 

= 1 , − ,, × 100% (55)

(d) Mean absolute percentage error (MAPE) 

= 1 , − ,, × 100% (56)

(e) Chi-square error χ = ∑ ( , − , ),  (57)

(f) Analysis of variance or efficiency of the method = ∑ ( , − , ) − ∑ ( , − , )∑ ( , − , )  (58)

where N is the number of observations; yi,m is the frequency of observation or i-th calculated value 

from measured data; xi,w is the frequency of Weibull or i-th calculated value from the Weibull distribution; , 	 is the mean of i-th calculated value from measured data. RPE shows the percentage deviation 

between the calculated values from the Weibull distribution and the calculated values from 

measured data. MPE shows the average of percentage deviation between the calculated values from 

the Weibull distribution and the calculated values from measured data, and MAPE shows the absolute 

average of percentage deviation between the calculated values from the Weibull distribution and the 

calculated values from measured data. Best results are obtained when these values are close to zero. 

R2 determines the linear relationship between the calculated values from the Weibull distribution and 

the calculated values from measured data. The ideal value of R2 is equal to 1 [30,44,45,96,97]. 

3. Results and Discussion 

In this statistical analysis, data from three wind monitoring stations were used to diagnose the 

best method of the Weibull distribution. The most important results of this analysis, based on hourly, 

monthly, seasonal and annual figures, are presented. Table 2 shows a lot of information about the sites 

based on monthly mean as well as annual mean wind speed, number of observations in hours, 

maximum and minimum wind speed, standard deviation, and COV/turbulence intensity at 20 m and 

30 m height. 
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Table 2. Monthly mean wind speed (m/s) data for selected wind stations at 20 m and 30 m height. COV: coefficient of variation. 

Wind 
Month of the year 

Yearly mean 
January February March April May June July August September October November December 

Station-I 

H = 30 m 

N (h) 744 672 744 720 744 720 744 744 720 744 720 744 8760 

vmean (m/s) 3.11 3.57 3.54 4.98 4.97 5.07 5.74 5.97 4.95 2.57 2.98 3.22 4.22 

vmax (m/s) 5.08 5.79 5.52 8.26 8.28 7.55 9.46 9.29 9.52 3.5 5.77 7.45 7.12 

vmin (m/s) 1.66 2.25 2.44 2.52 2.32 2.48 3.23 2.34 1.97 1.5 1.31 1.26 2.11 

σ (m/s) 0.78 0.86 0.82 1.54 1.68 1.56 1.61 2.13 2.14 0.54 0.76 1.39 1.32 

COV (%) 25.08 24.09 23.16 30.92 33.8 30.77 28.05 35.68 43.23 21.01 25.5 43.17 30.37 

H = 20 m 

N (h) 744 672 744 720 744 720 744 744 720 744 720 744 8760 

vmean (m/s) 2.15 2.62 2.65 3.76 3.81 3.82 4.44 4.75 3.81 1.76 2.12 2.55 3.19 

vmax (m/s) 3.65 4.14 4.29 6.03 6.25 5.58 8.15 8.21 7.33 2.77 4.9 7.2 5.71 

vmin (m/s) 1.22 1.68 1.78 1.88 1.69 1.77 2.71 1.72 1.53 0.99 0.9 0.97 1.57 

σ (m/s) 0.52 0.69 0.66 1.1 1.24 1.17 1.37 1.83 1.73 0.45 0.65 1.4 1.07 

COV (%) 24.19 26.34 24.91 29.26 32.55 30.63 30.86 38.53 45.41 25.57 30.66 54.9 32.82 

Station-II 

H = 30 m 

N (h) 744 672 744 720 744 720 744 744 720 744 720 744 8760 

vmean (m/s) 3.11 2.8 3.15 3.73 4.24 4.53 5.42 4.74 3.39 2.25 2.96 2.65 3.58 

vmax (m/s) 5.26 5.69 4.81 6.36 6.95 7.35 7.58 7.58 7.48 3.31 4.15 4.37 5.91 

vmin (m/s) 1.64 1.29 1.67 2.22 2.35 2.06 2.82 1.99 1.29 1.25 1.7 1.73 1.83 

σ (m/s) 0.95 1.33 0.69 1.16 1.39 1.52 1.17 1.56 1.74 0.59 0.5 0.64 1.1 

COV (%) 30.55 47.5 21.9 31.1 32.78 33.55 21.59 32.91 51.33 26.22 16.89 24.15 30.87 

H = 20 m 

N (h) 744 672 744 720 744 720 744 744 720 744 720 744 8760 

vmean (m/s) 1.69 1.79 1.9 2.73 3.3 3.81 4.63 3.95 2.58 1.26 1.45 1.11 2.52 

vmax (m/s) 3.51 4.47 3.7 5.1 6.31 6.31 7.26 6.79 7.13 2.41 2.68 2.42 4.84 

vmin (m/s) 0.7 0.64 0.76 1.49 1.39 1.38 2.24 1.61 0.87 0.56 0.59 0.5 1.06 

σ (m/s) 0.71 1.25 0.61 1.08 1.42 1.41 1.18 1.45 1.84 0.46 0.43 0.44 1.02 

COV (%) 42.01 69.83 32.11 39.56 43.03 37.01 25.49 36.71 71.32 36.51 29.66 39.64 41.91 
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Table 2. Cont. 

Wind 
Month of the year 

Yearly mean 
January February March April May June July August September October November December 

Station-III 

H = 30 m 

N (h) 744 672 744 720 744 720 744 744 720 744 720 744 8760 

vmean (m/s) 2.72 3.17 3.36 4.35 4.46 4.81 5.36 5.15 10.09 2.25 2.7 2.32 4.23 

vmax (m/s) 4.16 6.21 5.14 7.36 7.55 8.16 7.59 13.76 39.2 3.48 3.69 3.67 9.16 

vmin (m/s) 1.16 1.24 1.96 2.09 2.63 2.14 2.91 2.31 1.49 1.23 1.86 1.11 1.84 

σ (m/s) 0.84 1.43 0.82 1.42 1.4 1.79 1.14 2.58 13.07 0.48 0.43 0.71 2.18 

COV (%) 30.88 45.11 24.4 32.64 31.39 37.21 21.27 50.1 129.53 21.33 15.93 30.6 39.2 

H = 20 m 

N (h) 744 672 744 720 744 720 744 744 720 744 720 744 8760 

vmean (m/s) 1.96 2.47 2.64 3.72 3.84 4.26 4.79 4.87 5.97 1.43 1.82 1.66 3.29 

vmax (m/s) 3.36 5.61 4.35 6.62 6.86 7.34 6.89 14.35 18.58 2.6 2.67 2.7 6.83 

vmin (m/s) 0.66 0.79 1.33 1.65 2.01 1.56 2.31 1.73 1.28 0.76 0.93 0.86 1.32 

σ (m/s) 0.73 1.45 0.82 1.42 1.42 1.79 1.09 2.88 5.33 0.42 0.36 0.52 1.52 

COV (%) 37.24 58.7 31.06 38.17 36.98 42.02 22.76 59.14 89.28 29.37 19.78 31.33 41.32 
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A sample data frequency distribution and cumulative frequency distribution has been presented in 

Table 3. 

Table 3. Frequency distribution and cumulative frequency distribution for the selected sites 

in June. 

Wind speed 
(m/s) 

Station-I Station-II Station-III 

Frequency 
(%) 

Cumulative 
frequency (%) 

Frequency 
(%) 

Cumulative 
frequency (%) 

Frequency 
(%) 

Cumulative 
frequency (%) 

0–1 0.403 0.403 0.269 0.269 0.134 0.134 
1–2 2.151 2.554 1.882 2.151 0.806 0.94 
2–3 5.242 7.796 3.629 5.78 5.645 6.585 
3–4 9.005 16.801 14.247 20.027 17.339 23.924 
4–5 17.742 34.543 19.086 39.113 24.059 47.983 
5–6 20.43 54.973 24.328 63.441 18.414 66.397 
6–7 18.011 72.984 18.28 81.721 17.742 84.139 
7–8 12.634 85.618 11.559 93.28 8.199 92.338 
8–9 8.602 94.22 5.242 98.522 3.898 96.236 

9–10 4.032 98.252 1.344 99.866 2.016 98.252 
10–11 1.613 99.865 0 99.866 1.344 99.596 
11–12 0.134 100 0.134 100 0.269 99.865 
12–13 - - - - 0.134 100 

The hourly variation of wind speed at the selected altitude has been presented in Figure 1. Wind speed 

is higher during the daytime than the nighttime at every site. The COV/turbulence with the time series 

is at its minimum during the higher windy periods. 

Figure 1. Hourly mean wind speed at 20 m and 30 m height for the selected sites.  

 

The hourly mean COV is presented in Figure 2. An important issue which has been clearly shown  

in Figure 2 is that turbulence is comparatively low at 30 m height than at 20 m height. Therefore, at  

the higher level the wind velocity stream is more uniform, i.e., the COV is lower. 
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Figure 2. Hourly mean COV of turbulence at 20 m and 30 m height. 

 

From the sample frequency distribution (Table 3), it can be clearly seen that more than 50% of the 

frequency is between 5 m/s and 13 m/s of wind speed at every station. Table 3 can be used to clearly 

identify the total number of hours at certain wind speed available in a month. Anyone can find monthly 

wind speed scenario at a glance from the Table. The results are similar for other months at each station. 

Figures 1 and 2, shows the hourly mean variations of wind speed and coefficient of variation for the 

period of 24 h as a mean of a year. It has been shown that the wind speed is low until 8:00 AM to 

10:00 AM, and after that it increases during the day until the maximum value is gained from 2:00 PM 

to 4:00 PM, and afterwards it decrease again until the end of the day. The same wind characteristics 

have been found at 20 m and 30 m height at every station. The maximum and minimum values of 

hourly mean wind speeds at 30 m height are 4.95 m/s at Station-III and 3.10 m/s at Station-II. The variation 

of wind speed at Station-I is lower than the others. The COV is lower when the wind speeds become a 

maximum. Its values are very high at nighttime. From Table 3 and Figures 1 and 2, it is clear that 30 m 

height wind speed data at Station-I shows better results than the other sites. To find the best 

Weibull method, the statistical analysis of the Weibull distribution at 20 m and 30 m height is 

presented in Tables 4–9. 

In the statistical analysis, seven methods were used to determine the shape parameter k and scale 

parameter c of the Weibull distribution. For comparison of these seven methods to each other and to 

find out the efficiency of the methods, six statistical tools were used, i.e., relative percentage error (RPE), 

RMSE, MPE, MAPE, chi-square error (χ2), and analysis of variance or efficiency of the method (R2). 

It is important to note that only one column is required to rank the methods, since the above six criteria 

all gave the same relative results. For a more precisely diagnosis, the authors used these six statistical 

tools to rank the methods. The statistical analysis results for the seven numerical methods and the six 

statistical test results are shown in Tables 4–9 for the three stations at 20 m and 30 m height, respectively. 

The results show that the method of moments (MOM) and MLM give better results than other 

methods, where the value of k and c becomes almost the same by these two methods. For MLM, RPE 

and RMSE becomes zero and the value of MPE becomes negative, because, by this method, the calculated 



Energies 2014, 7 3072 

 

 

value becomes greater than the measured one. But the most important statistical test gives a chi-square 

error of χ2 = 0.0010 and the efficiency of the method is R2 = 0.9997, where the best results are 

obtained when these values are close to zero and unity, respectively. For Station-II, in Table 7, 

MLM and PDM methods show better performance than others. The common factor is that the MLM 

gives the better performance at every site. Therefore, it can be said that the MLM is the fisrt and MOM 

is the second most efficient method for wind data assessment at 30 m height. 

Table 4. The Weibull distribution analysis for Station-I at 20 m height. GM: graphical 

method; MOM: method of moments; STDM: standard deviation method; MLM: maximum 

likelihood method; PDM: power density method; MMLM: Modified maximum likelihood 

method; and EEM: equivalent energy method. 

Statistical 
methods 

The Weibull parameters Statistical test efficiency 

k (-) c (m/s) RPE (%) RMSE MPE (%) MAPE (%) χ2 R2 
GM 3.63 3.55 0.0785 0.0500 0.8283 4.2571 0.1432 0.9577 

MOM 3.58 3.54 −0.0523 0.0408 −0.0394 0.0394 0.0001 0.9999 
STDM 3.99 4.46 26.6736 0.9219 27.9826 27.982 2.2593 0.1542 
MLM 3.5 3.55 0.0000 0.0000 −0.0438 0.3700 0.0005 0.9998 
PDM 3.11 3.53 −0.7845 0.1581 −0.6649 0.6648 0.0285 0.9917 

MMLM 3.54 3.55 0.0784 0.0500 0.0723 0.1885 0.0002 0.9999 
EEM 3.37 3.54 −0.2876 0.0957 0.1507 2.4687 0.0451 0.9866 

Note: Dimensionless shape factor (k) and scale factor (c) in m/s, relative percentage error (RPE), root mean 

square error (RMSE), mean percentage error (MPE), mean absolute percentage error (MAPE), chi-square 

error (χ2), analysis of variance or efficiency of the method (R2). 

Table 5. The Weibull distribution analysis for Station-I at 30 m height. 

Statistical 
methods 

The Weibull parameters Statistical test efficiency 

k (-) c (m/s) RPE (%) RMSE MPE (%) MAPE (%) χ2 R2 
GM 2.71 4.79 0.8880 0.1930 0.6250 1.7040 0.0350 0.9900

MOM 3.87 4.68 −0.5530 0.1530 −0.5420 0.5890 0.0023 0.9990
STDM 2.64 4.78 1.7370 0.2710 2.3310 3.7180 0.2380 0.9320
MLM 3.78 4.68 0.0000 0.0000 −0.0560 0.3440 0.0010 0.9997
PDM 2.58 4.66 −1.2040 0.2250 −1.1870 1.2390 0.0150 0.9960

MMLM 3.18 4.67 −0.8090 0.1850 −0.9210 0.9540 0.0064 0.9980
EEM 3.26 4.73 0.4930 0.1440 0.6290 1.6220 0.0290 0.9920

From Table 4, it can be clearly seen that MOM (χ2 = 0.0001, R2 = 0.9999), MLM (χ2 = 0.0005, 

R2 = 0.9998) and MMLM (χ2 = 0.0002, R2 = 0.9999) give very close results and show better 

performance than other methods. In Table 6, MOM and PDM methods show better results than others. 

In the case of Station-III, MLM and PDM methods show better results than others in Table 8. 

Summarizing these results, it can be easily said that MOM and MLM methods were applicable for 

every height at any location wind data assessment. The PDM method is better for wind data 

assessment at the lower height, but not perfect for the higher height. 
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Table 6. The Weibull distribution analysis for Station-II at 20 m height. 

Statistical 
methods 

The Weibull parameters Statistical test efficiency 

k (-) c (m/s) RPE (%) RMSE MPE (%) MAPE (%) χ2 R2 
GM 3.11 2.70 −3.8742 0.3120 −4.1546 4.5644 0.1336 0.9787

MOM 2.82 2.81 0.0662 0.0408 0.0422 0.0422 0.0002 0.9999
STDM 3.4 3.74 34.2053 0.9278 40.0035 40.003 2.8453 0.3654
MLM 2.84 2.9 3.0463 0.2768 6.7823 7.0891 0.3063 0.9475
PDM 2.65 2.82 0.1324 0.0577 0.1170 0.2672 0.0003 0.9999

MMLM 2.84 2.85 1.5894 0.2000 3.4823 3.6671 0.0795 0.9865
EEM 2.88 2.76 −1.8212 0.2140 −1.9377 2.1966 0.0337 0.9945

Table 7. The Weibull distribution analysis for Station-II at 30 m height. 

Statistical 
methods 

The Weibull parameters Statistical test efficiency 

k (-) c (m/s) RPE (%) RMSE MPE (%) MAPE (%) χ2 R2 
GM 4.17 3.88 −1.8150 0.2550 −1.5198 2.7444 0.0610 0.9790 

MOM 3.99 3.94 −0.5820 0.1440 −0.5930 0.6490 0.0074 0.9974 
STDM 4.47 4.83 22.6440 0.9004 23.8630 23.863 1.9020 0.1780 
MLM 3.92 3.96 −0.0930 0.0580 −0.0920 0.5220 0.0020 0.9990 
PDM 3.25 3.99 −0.2560 0.0960 −0.2560 0.2560 0.0004 0.9998 

MMLM 3.59 3.98 −6.5160 0.4830 −8.3160 8.5270 2.3420 0.2280 
EEM 4.23 4.39 11.1940 0.6330 11.7710 11.771 0.5180 0.7970 

Table 8. The Weibull distribution analysis for Station-III at 20 m height. 

Statistical 
methods 

The Weibull parameters Statistical test efficiency 

k (-) c (m/s) RPE (%) RMSE MPE (%) MAPE (%) χ2 R2 
GM 3.04 3.66 0.0254 0.0289 −0.8825 4.4901 0.1568 0.979 

MOM 3.14 3.62 −0.2536 0.0913 −0.1711 0.1711 0.0031 0.9996
STDM 3.43 4.95 35.1255 1.0743 34.5353 34.535 5.7001 0.0331
MLM 3.13 3.65 0.1775 0.0764 0.0826 0.4453 0.0011 0.9998
PDM 2.77 3.65 −0.0507 0.0408 −0.0311 0.0311 0.0001 0.9999

MMLM 3.14 3.64 −1.1666 0.1958 −0.8205 1.4034 0.0924 0.9877
EEM 2.91 3.66 0.0000 0.0000 −0.449 2.2702 0.041 0.9945

Table 9. The Weibull distribution analysis for Station-III at 30m height. 

Statistical 
methods 

The Weibull parameters Statistical test efficiency 

k (-) c (m/s) RPE (%) RMSE MPE (%) MAPE (%) χ2 R2 
GM 2.1 4.71 −0.5910 0.1580 −0.5250 2.8630 0.0640 0.9950

MOM 3.76 4.45 0.0790 0.0580 0.1320 0.1650 0.0010 0.9999
STDM 2.3 3.73 −21.540 0.9540 −11.410 13.920 20.680 0.3470
MLM 3.66 4.5 −0.4730 0.1414 −0.3095 0.5340 0.0140 0.9990
PDM 2.32 4.74 1.4980 0.2520 −0.0730 3.4630 0.3080 0.9740

MMLM 2.99 4.62 0.1580 0.0820 −0.4510 1.9760 0.0580 0.9950
EEM 3.03 4.09 −11.845 0.7080 −6.0510 7.4310 5.9690 0.5632
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Table 10 summaries the test results of the seven methods and ranking of the methods according to 

their performance and efficiency in wind data assessment. The rankings were done by considering 

minimum error and maximum efficiency according to first to seventh positions respectively. 

Regarding this test, six statistical tools have been used and considered four decimal places of each 

value by numerical iteration methods. One test is enough to rank the methods, but for more precise 

analysis, the authors used more tools which helped to verify the discussion about the best method. 

In this statistical research work, it has been found that the MOM achieved the first position and the 

MLM took the second position in rank. Although the PDM got the third position, this method has 

better performance for low height wind data assessment. At increased height, PDM was a less efficient 

method than others. But MOM and MLM methods were applicable at any altitude with minimum error 

and maximum efficiency. Our first goal has been satisfied by the above statistical analysis where we 

identified the best methods to determine the Weibull distribution. Another goal is to select the best 

wind site by using these best methods, which has been analyzed below. 

Table 10. Ranking of the methods by statistical test results. 

Statistical 
methods 

Station-I Station-II Station-III 
Discussion 

20 m 30 m 20 m 30 m 20 m 30 m 

GM Sixth Sixth Fifth Fourth Sixth Fourth - 
MOM First Second First Third Third First The First choice 

STDM Seventh Seventh Seventh Seventh Seventh Seventh - 

MLM Third First Sixth Second Second Second The second choice 
PDM Fourth Fourth Second First First Fifth The third choice 

MMLM Second Third Fourth Sixth Fifth Third - 
EEM Fifth Fifth Third Fifth Fourth Sixth - 

The procedure mentioned in this study is not only applicable in case study sits, it can be applied  

in any climatic conditions at any site in any countries in the world. For example, Mohammadi and 

Mostafaeipour [44] used STDM and PDM for wind turbine utilization in Zarriuneh at Kurdistan 

mountainous province in Iran. Chang [41] used moment method, empirical method, GM, MLM, 

MMLM and energy pattern factor method at three wind farms (Dayuan, Hengchun and Penghu) 

experiencing different weather conditions in Taiwan. Costa Rocha et al. [45] used EEM, moment method, 

MLM, etc. for wind energy generation in coastal area of the State of Ceara, located in the northeast 

region of Brazil. Dorvlo [98] used moment method, Chi-square method, empirical method and 

regression method for estimation of wind energy in four weather stations (Marmul, Masirah, Sur and 

Thumrait) in Oman. Many authors have already used the methods at different geographical locations 

for wind energy estimation [30,43,99]. The paper presented more generalized form of the Weibull 

distribution methods which is validated by widely acceptable error correction methods for practical 

application. This procedure is applicable at any geographical location; at any weather condition (i.e., 

summer, winter, spring etc.) at any altitude in any country in the world. The main outcome of the study 

is the development of the processes for identifying best methods for wind power generation which is 

applicable to any location. 

Table 11 presents the variation of wind speed during different months of the year and the annual 

mean values. From the average values, the variation of the maximum and minimum wind speed occurred 
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in April to September and October to March respectively at every station. At Station-I, the maximum 

and minimum wind speed occurred in June and October with values of 5.07 m/s and 2.57 m/s, 

respectively. The COV and standard deviation at this site varies between 21.01%–35.68% and 

0.54–2.13, respectively. On the other hand, Station-III has wind speeds similar to Station-I, but the 

COV and standard deviation varies between 15.93%–129.53% and 0.71–13.07, respectively. In August 

and September, the COV is 50.1% and 129.53%, which means that these months have some irregular 

wind behavior, i.e., gusty wind exists during these months. Station-II has wind behavior (wind speed) 

performance lower than other stations. Therefore, Station-I has shown better wind characteristics than 

the other Stations, hence it is the selected wind site. The mean available power and energy in the wind 

at 30 m height at Station-I is analyzed below. 

Table 11. Monthly mean wind speed, power law coefficient (η), the Weibull shape factor 

(k) and scale factor (c) at 20 m, 30 m and 50 m height. 

Month 
Power law 

coefficient η 

Measured value Extrapolated value 

At 20 m height At 30 m height At 50 m height 

v20 k20 c20 v30 k30 c30 v50 k50 c50 
January 0.262 2.15 4.33 2.35 3.11 4.42 3.40 3.55 4.63 3.89 

February 0.25 2.62 4.18 2.89 3.57 4.41 3.91 4.05 4.62 4.44 
March 0.251 2.65 4.12 2.91 3.54 4.41 3.87 4.02 4.62 4.4 
April 0.219 3.76 3.86 4.16 4.98 3.58 5.53 5.57 3.75 6.18 
May 0.219 3.81 3.45 4.25 4.97 3.30 5.55 5.58 3.46 6.21 
June 0.218 3.82 3.95 4.23 5.07 3.84 5.63 5.69 4.02 6.29 
July 0.207 4.44 3.41 4.93 5.74 3.82 6.34 6.39 4.00 7.05 

August 0.203 4.75 2.91 5.34 5.97 3.17 6.69 6.66 3.32 7.42 
September 0.218 3.81 2.4 4.31 4.95 2.52 5.60 5.56 2.64 6.26 

October 0.28 1.76 4.36 1.94 2.57 5.65 2.79 2.98 5.92 3.22 
November 0.266 2.12 3.06 2.34 2.98 3.70 3.26 3.37 3.87 3.73 
December 0.256 2.55 1.99 2.89 3.22 2.49 3.63 3.68 2.61 4.14 

The monthly mean available power is analyzed using both MOM and MLM methods in Table 12. 

From this table, it can be seen that the available power from April to September was above 100 W/m2 

and the maximum and minimum power occurred in August, 179.36 W/m2, and October, 11.8 W/m2, 

respectively. Only two statistical tools (RMSE and Chi-square error) have been used for comparing the 

MOM and MLM methods. Here, the MLM method gives better performance with minimum error. 

Using the MLM method, the Weibull shape factor and scale factor vary between 2.52–5.65 and 

2.79–6.69 m/s. respectively. 

Therefore, the six months from April to September show more potential wind generated power than 

other months in the year. In this research work, the Weibull parameters at heights of 30 m and 20 m 

were determined. 

Table 13 presents the seasonal analysis of wind speed, Weibull parameters and available power at 

20 m and 30 m height. It also presents the extrapolated values at 50 m. The months in each season can 

be classified as winter (November, December and January), spring (February, March and April), 

summer (May, June and July), and autumn (August, September and October). 
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Table 12. Monthly mean power based on measured data and calculated data by 

statistical methods. 

Month 
Power 

(W/m2) 

MOM MLM 

k (-) c (m/s) P (W/m2) RMSE χ2 k (-) c (m/s) P (W/m2) RMSE χ2 

January 18.75 4.50 3.41 21.84 1.7578 

0.9904 

4.42 3.4 21.67 1.7088 

0.9724 

February 27.87 4.71 3.90 32.63 2.1817 4.41 3.91 33.24 2.3173 

March 26.71 4.92 3.86 31.40 2.1656 4.41 3.87 31.96 2.2913 

April 73.11 3.58 5.53 97.57 4.9457 3.58 5.53 97.57 4.9457 

May 71.47 3.25 5.55 101.46 5.4763 3.3 5.55 101.04 5.4378 

June 75.87 3.6 5.63 102.85 5.1942 3.84 5.63 101.21 5.0339 

July 110.11 3.98 6.34 143.45 5.7741 3.82 6.34 144.7 5.8813 

August 123.88 3.06 6.68 181.11 7.5651 3.17 6.69 179.36 7.4485 

September 70.61 2.48 5.58 118.12 6.8927 2.52 5.6 117.25 6.8293 

October 10.05 5.47 2.78 11.70 1.2845 5.65 2.79 11.8 1.3229 

November 16.21 4.42 3.27 19.38 1.7804 3.7 3.26 19.82 1.9000 

December 20.81 2.48 3.63 32.46 3.4132 2.49 3.63 32.37 3.4000 

Table 13. Seasonal mean wind speed in (m/s), the Weibull shape factor (-), scale factor (m/s) 

and power density (W/m2) at 30 m and 50 m height. 

Seasons η 

Measured data Extrapolated data 

At 20 m height At 30 m height At 50 m height 

v20 k20 c20 P20 v30 k30 c30 P30 v50 k50 c50 P50 

Winter 0.24 3.19 3.5 3.55 26.21 4.22 3.78 4.7 59.1 4.76 3.96 5.27 83.6 
Spring 0.24 3.01 4.05 3.32 20.2 4.03 4.13 4.4 48.2 4.55 4.33 5.01 68.7 

Summer 0.21 4.02 3.6 4.47 48.64 5.26 3.65 5.8 108.24 5.89 3.83 6.52 157.2 
Autumn 0.23 3.44 3.22 3.86 34.1 4.5 3.78 5.1 72.3 5.07 3.96 5.63 100.67 

The mean velocity, shape factor, scale factor, etc. at 50 m were extrapolated using Equations (44)–(48) 

and these extrapolated results are presented in Table 14. 

Table 14. Wind power classification. 

Power 

class 
Potential 

Power density and wind 

speed at 10 m (33 ft) 

Power density and wind 

speed at 30 m (98 ft) 

Power density and wind 

speed at 50 m (164 ft) 

Power (W/m2) Speed (m/s) Power (W/m2) Speed (m/s) Power (W/m2) Speed (m/s) 

Class-I Poor P10 ≤ 100 ≤4.4 P30 ≤ 160 ≤5.1 P50 ≤ 200 ≤5.6 

Class-II Marginal P10 ≤ 150 ≤5.1 P30 ≤ 240 ≤6.0 P50 ≤ 300 ≤6.0 

Class-III Moderate P10 ≤ 200 ≤5.6 P30 ≤ 320 ≤6.5 P50 ≤ 400 ≤7.0 

Class-IV Good P10 ≤ 250 ≤6.0 P30 ≤ 400 ≤7.0 P50 ≤ 500 ≤7.5 

Class-V Very good P10 ≤ 300 ≤6.4 P30 ≤ 480 ≤7.5 P50 ≤ 600 ≤8.0 

Class-VI Excellent P10 ≤ 400 ≤7.0 P30 ≤ 640 ≤8.2 P50 ≤ 800 ≤8.8 

Class-VII Excellent P10 ≤ 1000 ≤9.4 P30 ≤ 1600 ≤11.0 P50 ≤ 2000 ≤11.9 

Table 15 also includes yearly or annual mean values. According to this table, the maximum and 

minimum values of wind speed and wind power have been observed in summer and spring with the 

values of 5.26 m/s and 4.03 m/s and the power is 108.24 W/m2 and 48.16 W/m2 respectively at 30 m 
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height. In the literatures, Elliot et al. [100], Yu et al. [101], Ilinca et al. [102] and Zhou et al. [103] 

classified the wind power in seven categories which are shown in Table 14. Considering these wind 

power classes, it has been found that Station-I has poor wind power at every height (i.e., 20 m, 30 m 

and 50 m). For a more realistic analysis, the available energy in the wind of this site was determined by 

using numerical iteration methods and is presented in Table 15. 

Table 15. The most frequent wind velocity (VFmax), velocity contributing the maximum 

energy (VEmax), energy density (ED) and total energy intensity (EDT). 

Seasons VFmax (m/s) VEmax (m/s) Energy density, ED (kW/m2) Total energy intensity, EDT (kW/m2) 

Winter 4.31 5.24 0.0586 129.408 

Spring 4.15 4.88 0.0492 105.082 

Summer 5.35 6.58 0.1148 253.531 

Autumn 4.64 5.63 0.0728 160.667 

Yearly mean 4.31 5.24 0.0586 513.412 

The energy estimation of wind regimes by the Weibull based approach has been presented in  

Table 15. It also shows the most frequent wind speed, velocity contributing the maximum energy, 

energy density and total energy intensity. From the above table, it can be clearly seen that the energy 

density and total energy intensity are higher in summer than during autumn seasons and also are a 

minimum in spring. Therefore, summers have more wind potential than any other seasons. To find out 

the energy generated by a wind turbine, a small model wind turbine (NACA 4418 turbine power curve) 

with rated power of 20 kW or 0.02 MW, rated speed of 8 m/s and hub height of 30 m has been used for 

this calculation. Values of capacity factor and total energy output were obtained using numerical 

integration methods of Trapezoidal Sums and Simpson’s 1/3 Rule and the values were verified to four 

decimal places. From Table 16, it can be seen that, in summer, 13.2938 MW·h of energy can be 

extracted by the suggested model wind turbine. This means that only 147.67 kW/day of power can be 

generated by the wind turbine in summer and the value becomes 50% less in the rainy season. 

Therefore, it can be finally concluded that the analytical results show that Station-I does not have the 

necessary available wind power potential for large turbines but has sufficient wind power for small 

wind turbine both for electricity generation and pumping water for irrigation. 

Table 16. Energy generated by the wind turbine and the capacity factor by numerical 

integration. The turbine rated power is 20 kW or 0.02 MW, rated speed is 8 m/s and hub 

height at 30 m. 

Seasons 

Numerical integration 

Trapezoidal sums Simpson’s rule 

Capacity factor, CF Total energy output, ET (MW·h) Capacity factor, CF Total energy output, ET, (MW·h) 

Winter 0.1238 5.4689 0.1238 5.4689 

Spring 0.0920 3.9283 0.0920 3.9283 

Summer 0.3010 13.2937 0.3010 13.2938 

Autumn 0.1698 7.5005 0.1698 7.5005 

Yearly mean 0.1238 21.6973 0.1238 21.6974 
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4. Conclusions 

In this work, statistical diagnosis of the best Weibull distribution methods for wind data analysis 

is presented. By using the available wind data, the values of shape factor k and scale factor c were 

determined using seven methods and were then investigated as to how efficiently the methods can 

estimate the Weibull factors with minimum error. To satisfy the main objectives of this work, six 

statistical tools were used to find the best method of Weibull distribution. It is important to note that 

any one of these statistical tools, namely RPE, RMSE, MPE, MAPE, chi-square error (χ2), and analysis 

of variance or efficiency of the method (R2) is good enough to rank the methods, however, analysis 

using all of them was done to rank more precisely. The results show that the MOM and MLM are  

the most efficient methods for determining the value of k and c to fit the Weibull distribution curves. 

The PDM is more efficient for low altitude wind data but is not efficient for higher altitude wind data. 

MOM and MLM methods are more efficient with less error and are applicable for any altitude. Other 

methods such as MMLM, EEM, GM and STDM are the least efficient methods to fit the Weibull 

distribution curves for the assessment of wind speed data. Another objective of this work was to find 

the best wind site using the best Weibull distribution methods and calculate available wind power. 

Monthly mean wind speed was found to be relatively higher in Station-I than that of the other sites. 

As a result this is our selected site. The MLM method has shown better results than MOM in 

calculating monthly mean wind power at Station-I. The value of shape factor, scale factor, wind speed 

and power was determined at 50 m height using extrapolation of numerical equations to satisfy the 

wind power classes as discussed in this paper. The poor class wind power has been found in this site in 

each altitude. Furthermore, energy density and total energy intensity per unit area has been analyzed by 

numerical iteration methods. Finally, the energy extracted by a small model wind turbine has been 

analyzed by using numerical integration methods of Trapezoidal Sums and Simpson’s 1/3 Rule. 

This study offers a new pathway on how to evaluate feasible locations for wind energy assessment 

which is applicable at any windy sites in any country in the world. 
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Nomenclature 

P Total power, W/m2 

A Area, m2 

Pe Practically extractable power, W/m2 

k Dimensionless shape parameter 

c Scale parameter (m/s) 
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f(v) Weibull probability density function 

F(v) Cumulative distribution function 

C Constant 

L Likelihood function 

COV Coefficient of variation 

vi Random sample of wind speed central to bin i 

n Number of sample or bin 

f(vi) Weibull frequency for wind speed ranging within bin i ( ≥ 0) Probability for wind speed ≥ 0 

Wvi Observed frequency of the wind speed 

 Mean of the cubic wind speed, m/s 

εvi Error of the approximation 

zref Reference height, m 

kh Weibull shape factor at desired height 

ch Weibull scale factor at desired height, m/s 

vh Wind speed at desired height, m/s 

Ph Power at desired height, W/m2 

N Total number of observations 

yi,m i-th calculated value from measured data 

xi,w i-th calculated value from the Weibull distribution ,  Mean of i-th calculated value from measured data 

R2 Analysis of variance 

Γ Gamma function 

σ Standard deviation of wind speed, m/s 

ρ Air density, kg/m3 

θ Unknown parameter for maximum likelihood function 

η Power law coefficient 

χ2 Chi-square error 
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