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Ensembles of two Global Climate Models (GCMs), CGCM3 and HadCM3, are used to project future
maximum temperature (TMax), minimum temperature (TMin) and precipitation in a part of Sutlej River
Basin, northwestern Himalayan region, India. Large scale atmospheric variables of CGCM3 and HadCM3
under different emission scenarios and the National Centre for Environmental Prediction/National Cen-
tre for Atmospheric Research reanalysis datasets are downscaled using Statistical Downscaling Model
(SDSM). Variability and changes in TMax, TMin and precipitation under scenarios A1B and A2 of CGCM3
model and A2 and B2 of HadCM3 model are presented for future periods: 2020s, 2050s and 2080s.
The study reveals rise in annual average TMax, TMin and precipitation under scenarios A1B and A2 for
CGCM3 model as well as under A2 and B2 scenarios for HadCM3 model in 2020s, 2050s and 2080s.
Increase in mean monthly TMin is also observed for all months of the year under all scenarios of both
the models. This is followed by decrease in TMax during June, July August and September. However,
the model projects rise in precipitation in months of July, August and September under A1B and A2
scenarios of CGCM3 model and A2 and B2 of HadCM3 model for future periods.

1. Introduction

The past and future information about patterns and
variability of surface climate such as temperature
and precipitation are used to evaluate and model,
impact of climate change on different earth sur-
face processes at macro and micro scales (Marshall
et al. 2007; Anandhi et al. 2008). Investigating how
change in climate will alter future temperature and
precipitation along with their spatial and temporal
variability is an area of active research (Basistha
et al. 2009). An appropriate assessment of likely
future temperature and precipitation is done under
different climate scenarios. Climate scenarios which

refer to plausible future climate are a time series
of synthetic weather data (Lapp et al. 2009). The
procedures for development of climate scenarios
have been discussed in literature (Robinson and
Finkelstein 1991; Easterling 1999).
The projection of global climate change on con-

tinental scale under different emission scenarios of
Green House Gases (GHG) is done with the aid
of Global Climate Models (GCMs), sometimes also
referred as General Circulation Models (Mahmood
and Babel 2013). GCMs inherited disadvantages
of having a very coarse spatial resolution (around
200–400 km) and their failure in simulating sub-
grid scale features and physical dynamics (Xu 1999;
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Yang et al. 2010). The decrease in spatial accuracy
of GCMs simulated climate variables occurs from
continental to local scale. This restricts the direct
applications of GCM’s outputs in regional climate
change impact studies. As a result, techniques usu-
ally known as ‘downscaling’ have been invented for
narrowing the gap between the scale of GCMs and
required resolution for impact assessment (Wilby and
Dawson 2013). Based on literature review, down-
scaling can be grouped into two broad categories;
statistical and dynamic downscaling (Christensen
et al. 1997; Fowler et al. 2007).
Dynamical downscaling (DD) involves use of high

resolution Regional Climate Model (RCM) to simu-
late physical processes at fine spatial scale (<50 km)
fromthe host GCM (Giorgi 1990; Jones et al. 1995).
The major drawbacks of RCM are its complex design
and computationally expensive nature (Hewitson
and Crane 1996; Ghosh and Mishra 2010). In statis
tical downscaling (SD), a statistical/empirical rela-
tionship is established between GCMs simulated
large scale atmospheric variables (predictors) such
as specific humidity, temperature, geo-potential
height, etc., with station (local) scale meteorological
variables (predictands) such as temperature and
precipitation (Kim et al. 1984; von Storch et al.
2000; Jain et al. 2009). Based on these statistical/
empirical relationships, local scale predictands such
as temperature can be downscaled at specific site
or station. SD approach has shown advantage over
DD approach as it is faster and simpler in use,
less computationally expensive and applicable for
uncertainty and risk analyses (Wilby et al. 2000;
Yarnal et al. 2001). The requirement of long-time
series of historical weather stations data is a serious
drawback of this approach (Mahmood and Babel
2013).
Further, SD approach has been classified into

three subcategories; weather typing, weather gene-
rator and regression/transform function (Wilby and
Wigley 1997). The strength and weakness of each
approach have been reviewed in more detail by
(Hewitson andCrane 1996; Wilby andWigley 1997;
Wilby et al. 2002; Fowler et al. 2007). Statistical
DownscalingModel (SDSM) is a combination of Mul-
tiple Regressions (MLR) and Stochastic Weather
Generator (SWG) based downscaling methods
(Wilby et al. 2002). It has been widely used
throughout the world to downscale single-site
scenarios of daily surface weather variables from
predictors of GCMs for assessing hydrologic
responses in climate change scenarios (Dibike and
Coulibaly 2005; Gagnon et al. 2005; Aherne et al.
2008; Combalicer et al. 2010; Huang et al. 2011;
Hashmi et al. 2011; Goyal et al. 2012). A couple of
studies, one by Meenu et al. (2012) and another by
Mahmood and Babel (2013), were conducted using
SDSM in Indian subcontinent. They downscaled

daily TMax, TMin and precipitation (PCP) from pre-
dictors of Hadley Centre Coupled Model, version
3 (HadCM3) under A2 and B2 scenarios to access
hydrological impacts of climate change in Tunga–
Bhadra River Basin, India and in Jhelum Basin,
Pakistan–India respectively.
Sutlej Basin, a mountainous river basin is located

in N–W Himalayan region. Recent studies per-
formed over N–W Himalayan region using observed
instrumental records revealed rise in mean sur-
face annual temperature and decrease in summer
precipitation (Bhutiyani et al. 2007, 2009). This
variability in temperature and precipitation has
altered the flow of Sutlej River and resulted in the
decrease of mean annual and summer discharge
respectively (Bhutiyani et al. 2008). The limited
numbers of studies on future projections of tem-
perature and precipitation have been performed
over this region. The study conducted over East
Asian region by Kripalani et al. (2007a) based
on Intergovernmental Panel on Climate Change
(IPCC) Assessment Report Four (AR4) models
predicted significant change in mean annual pre-
cipitation. However, changes in mean precipita-
tion varies from model to model (−0.6% for
Centre National de Recherches Météorologiques
Coupled Model Version 3 (CNRM-CM3) and 14%
for ECHO-G and HadCM3) respectively. Fur-
ther, a rise of 8% in mean monsoon precipitation
was reported under doubling of CO2 scenario by
Kripalani et al. (2007b). Based on the result
derived from 5 GCMs, Sarthi et al. (2012) observed
rise in mean annual temperature (in the range
of 0.6◦–1.8◦C) over the Himalayan and Tibetan
region for the future period. In this line of research,
Kulkarni et al. (2013) used PRECIS (Providing
Regional Climates for Impact Studies) RCM model
and predicted increase in temperature and sum-
mer monsoon precipitation for entire HKH (Hindu
Kush Himalayan) region under A1B emission sce-
nario. The warming is projected in the range of
0.5◦–1◦C for 2020s (2011–2040), 1◦–3◦C for 2050s
(2041–2070) and 4◦–5◦C for 2080s (2071–2099),
respectively. But till today, to the best of the
knowledge of the authors, no studies has so far been
carried out for downscaling of daily TMax, TMin and
precipitation using SDSM in Sutlej River Basin.
This may be due to inaccessibility and scarcity of
well distributed meteorological stations, nonavai-
lability of past records of climate data and complex
physiographic and climatic conditions prevailing in
the basin.
The main purpose of the present study is: (1) to

examine potential applicability of SDSM in daily
downscaling of TMax, TMin and PCP in a part of
Sutlej River Basin (N–W Himalayan region), India,
(2) to investigate efficacy of outputs of third gen-
eration Canadian Coupled Global Climate Model
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(CGCM3) and Hadley Centre Coupled Model, ver-
sion 3 (HadCM3) in downscaling of TMax, TMin and
PCP using SDSM and (3) to investigate future
changes on TMax, TMin and PCP under various
emission scenarios (A1B and A2 of CGCM3 and
A2 and B2 of HadCM3) for the 21st century.

2. Study area

The study area is a part of Sutlej Basin that is
locked up in the hilly state of Himachal Pradesh,
India. Himachal Pradesh is divided into five
distinct physiographic units: (1) Alluvial Plains
(the southernmost zone developed at the foothills
of Siwalik Range), (2) Sub-Himalayan zone, (3)
Lesser Himalayan zone, (4) Central/Great Hima-
layan zone, and (5) Trans-Himalayan zone. Sutlej
River which originates from Mansarovar–Rakastal
lakes (western Tibet) at an altitude of 4570 m
flows in north–west direction through rugged
and dissected terrain of the Central and Lesser
Himalayan ranges before joining the Indus River a
few kilometers above Mithankot in Pakistan. The
major part of this river lies in Indian territory
(1050 km) and remaining in Tibet and Pakistan
respectively.
Sutlej River is a perennial river. It receives water

from glaciers and precipitation during summer and
ground flow during winter. The salient characteris-
tics of the whole Sutlej catchment (up to Bhakara
Dam) are summarized in table 1 (Goswami 2007).
The Sutlej run-off basically consists of two parts,

one part is derived from the melting of the snow
and the other results from the rainfall in the
catchment. Snow and glacier melt has significant
contribution in stream flow and it varies from
season to season, being the maximum in summer
months. However, during monsoon, the lower part
of the basin is generally characterized by high
river flows and occasional floods due to excessive
precipitation.
Sutlej Basin has the highest potential for hydro-

power generation as compared to other basins of
Indus river system due to its unique topographical
setting and availability of abundant water. Hence,

several hydropower projects have been installed or
planned to be installed on this river. The hydro-
power potential of river Sutlej and its tributaries
has been estimated as 10268.5 MW out of which
only 3267.5 MW is being harnessed (SANDRP
2014). Besides, the projects of 357 MW are under
construction and 3944 MW is proposed to be
installed on various stages of the Sutlej River.
Future change in pattern and amount of tem-
perature and precipitation would have significant
implications over river discharge which may affect
sectors like agriculture and hydropower generation
in the basin. This present study is performed over
middle part of the basin extending from Rampur
to Kasol. It has a spread of 2457 km2 and
lies between 31◦05′00′′–31◦39′26′′N latitudes and
76◦51′11′′–77◦45′17′′E longitudes (figure 1).
It falls between Lesser Himalayan zone and

Central Himalayan zone and is characterized by
tropical to temperate climate. The mean annual
rainfall in the basin (study area) is 103 cm and
more than 65% of its annual rainfall is received
from southwest monsoon during months of June,
July, August and September. 14.63% precipitation
has been recorded during winter season (Decem-
ber, January and February) and it mainly occurs
due to western disturbances.

3. Data availability, sources and validation

The station based observed daily time series of
temperature (TMax and TMin) and PCP data for
the period 1970–2005 are acquired for three sta-
tions namely, Kasol, Sunni and Rampur from
Bhakara Beas Management Board (BBMB), India.
This data is used as predictands in SDSM model.
For this study, only those stations are included
that have a complete data record over the period
1970–2000 and are at least 95% complete within
each year. Stations with a consistent observation
time are considered for maintaining uniformity
between predictands and predictors. The missing
data wherever found is filled by using temporal
interpolation method (daily value is computed as
an average of the same day for a period between ±2

Table 1. The salient topographical and hydrometeorological features of the Sutlej Basin up to Bhakara Dam.

Catchment Elevation Average annual Major source of contributions

Reach area (km2) range (m) rainfall (mm) to the stream flow

Tibetan Plateau 37050 4000–6000 Nil Snow and glacier

Spiti Valley 7084 3300–5300 Scarce Snow and glacier

Namgia to Rampur 6490 3000–4800 Little Snow and rainfall

Rampur to Sunni 2068 1200–3000 1000–1500 Rainfall

Sunni to Kasol 700 900–2000 910–1630 Rainfall

Kasol to Bhakhra 3108 600–2000 1520 Rainfall
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Figure 1. Location map of the study area with prevailed climatic characteristics.

Table 2. Geographic and climatic information of stations in Sutlej basin.

Average annual

Elevation temperature (◦C) Average annual Seasonal PCP (cm)

Station Latitude Longitude (m) TMax TMin PCP (cm) Pre-monsoon Monsoon Post-monsoon Winter

Kasol 31◦21′25′′ 76◦52′42′′ 662 28.55 16.79 132.26 14.82 85.65 17.14 14.65

Sunni 31◦14′15′′ 77◦06′30′′ 655 29.02 12.27 101.47 17.98 54.43 13.16 15.90

Rampur 31◦27′15′′ 77◦38′40′′ 976 27.17 13.66 76.34 17.35 34.04 10.17 14.80

years). The geographic and climatic characteristics
of these stations are described in table 2.
The limitations of well-distributed stations along

with prevailed variations in altitude and phys-
iographic conditions among available stations
demand for executing homogeneity test with data
of individual station and other stations in order
to establish spatial and temporal compatibility in
observations (Mutreja 1986; van der Made 1987).
The techniques such as double mass-curves, sim-
ple linear correlation and regression analyses sug-
gested by Bhutiyani et al. (2009) are used for this
purpose. The plotted graphs of double mass-curves
performed for the three stations with each other
show straight lines. Besides, positive bivariate cor-
relations in linear regressions are observed between
the stations as shown in table 3. This reveals high
temporal and spatial uniformity in the inter-annual

variability of temperature and precipitation data
at all the three stations.
The predictors used in this study are: (1)

observed predictors obtained from National Cen-
tre for Environmental Prediction/National Centre
for Atmospheric Research (NCEP/NCAR) reanal-
ysis gridded datasets, and (2) modelled predictors
obtained from CGCM3 and HadCM3 models.
The predictor variables for nearest grid in the
study area are obtained from the websites of
Data Access Integration (DAI) (http://loki.qc.ec.
gc.ca/DAI/predictors-e.html) and Canadian Cli-
mate Impacts Scenarios (CCIS) (http://www.
cics.uvic.ca/scenarios/index.cgi), respectively. The
predictors simulated by CGCM3 model and
HadCM3 model are available on grid resolution
3.75◦ lat.×3.75◦ long. and 2.5◦ lat.×3.75◦ long.
respectively. The study area is registered within



Downscaling of temperature and precipitation 847

Table 3. Statistics of bivariate correlation (r2) analysis computed over Kasol, Sunni and Rampur at 95% confidence level.

TMax TMin PCP

Kasol Sunni Rampur Kasol Sunni Rampur Kasol Sunni Rampur

Kasol 1 0.89 0.90 Kasol 1 0.91 0.92 Kasol 1 0.1 0.06

Sunni 0.89 1 0.90 Sunni 0.91 1 0.94 Sunni 0.1 1 0.48

Rampur 0.90 0.90 1 Rampur 0.92 0.94 1 Rampur 0.06 0.48 1

grid box 21X 16Y (lat. 31.54◦N × 75.00◦E long.) and
box 22X 16Y (lat. 31.54◦N×78.75◦E long.) of
CGCM3 model. Further, it is registered within
grid box 21X 22Y (lat. 32.5◦N×75.00◦E long.),
box 22X 23Y (lat. 30◦N×78.75◦E long.) and box
22X 22Y (lat. 32.5◦N×78.75◦E long.) of HadCM3
model.
The predictors are simulated under historical

GHG and aerosol concentration experiment for
20th century run (20C3M) as well as Special
Report on Emission Scenarios (SRES) for future
run. The future scenarios considered in this study
are A1B and A2 for CGCM3 model and A2 and
B2 for HadCM3 model respectively. The NCEP/
NCAR reanalysis datasets have a grid spacing
of 1.9◦ latitude × 1.9◦ longitude. The NCEP/
NCAR reanalysis predictors have to be re-gridded
to conform to the grid-spacing of CGCM3 and
HadCM3 models. The re-gridded and standardized
predictors were supplied in the zip file. The stan-
dardization of predictors is carried out before sta-
tistical downscaling to minimize biases in mean
and variance of CGCM3 and HadCM3 predictors
with respect to that of NCEP/NCAR reanalysis
data. All the predictor variables are normal-
ized over 1961–1990 periods which is taken as
base line period. The predictor variables are
available on daily time step for period 1961–
2100 for CGCM3 model, 1961–2099 for HadCM3
model and 1961–2001/2003 for NCEP/NCAR,
respectively.

4. Methodology

4.1 Description of statistical downscaling
model (SDSM)

SDSM which started its life in summer 2000 was
developed by R L Wilby and C W Dawson. A com-
bination of MLR and SWG methods are used in
this model (Wilby et al. 2002). MLR is used to
establish empirical relationship between predictors
and predictands of interest and generate regres-
sion parameters, whereas SWG is applied to simu-
late up to 100 daily time series from predictors of
NCEP/NCAR and GCMs based on these regres-
sion parameters (Mahmood and Babel 2013). The
algorithms used in SDSM and presented here have

been discussed in detail by Wilby and Dawson
(2013).
In SDSM, generation of station scale weather

parameters is linearly conditioned by observed large
scale predictors of atmosphere (j=1, 2, ...,n). The
downscaled process is either unconditional or con-
ditional. The downscaling for the conditional pro-
cess like daily PCP depends on an intermediate
variable such as occurrence of a wet day. The occur-
rence of wet day (Wi) on day i is linearly dependent
on predictors Xij .

Wi = α0 +

n
∑

j=1

αj Xij , (1)

under the constraint 0≤Wi≤1. The value of Wi

varies according to prevailing large-scale weather
conditions (represented by the predictor variables)
between 0 and 1. The precipitation will occur if uni-
form random number r≤Wi. Wi is not a Boolean
(0 or 1) number but is a continuous variable
between 0 and 1. For example, on a day with high
pressure, Wi might be equal to 0.2. Then, r is used
to determine whether a rain day will actually occur
depending upon whether r≤0.2.
The amount of total PCP (Pi) downscaled

on day i with return of wet day is shown in
equation (2):

P k
i = β0 +

n
∑

j=1

βj Xij + εi (2)

where k is a transformation (fourth root, inverse
normal or logarithmic) which is applied as PCP
data is skewed in nature. In case of unconditional
processes like daily temperature (TMax and TMin),
a direct linear relationship is established between
the predictand Ui and selected NCEP/NCAR pre-
dictors Xij on individual sites such as:

Ui = γ0 +
n
∑

j=1

γj Xij + εi (3)

where Ui is temperature on day i andXij is selected
NCEP/NCAR predictors on day i. αj , βj and γj
are regression coefficients estimated for each month
using least-squares regression and εi is model
error. It is generated stochastically using a series
of serially independent Gaussian numbers and is
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Figure 2. Flow chart showing steps involved in downscaling and scenario generation (modified after Wilby and Dawson
2007).

added to the deterministic components on daily
basis.
The major steps adopted for downscaling of

TMax, TMin and PCP involve: (1) quality check,
transformation, screening of probable predictors,
(2) calibration of monthly submodel using station
scale TMax, TMin and PCP data and selected pre-
dictors of NCEP/NCAR, (3) generation of present
and future time series for TMax, TMin and PCP from
the gridded datasets of NCEP/NCAR and GCMs
(CGCM3 and HadCM3), and (4) statistical analy-
sis of downscaled projected TMax, TMin and PCP at
each individual station. The various steps followed
in the present study for downscaling and scenario
generation are shown in figure 2.

4.1.1 Quality control check, transformation
and screening of probable predictors

Station-based meteorological data may have errors
in terms of missing records or outliers. Quality
control check function is used to identify such
errors prior to model calibration. The missing data
may be replaced by a data identifier code, i.e.,
−999. In some cases, transformation of predic-
tors or predictands may be of significant interests.
SDSM provides facility to transform data before
calibration using different types of transformations
such as logarithm, power, inverse, lag, binomial,
etc. After quality control check and transforma-
tion, screen variable operation is applied to select
appropriate sets of observed predictors from the
suite of NCEP/NCAR reanalysis datasets based

on scatter plots, correlation and partial correlation
statistics (Wilby and Dawson 2007).

4.1.2 Calibration of monthly submodel
using station scale TMax, TMin and PCP data

and selected predictors of NCEP/NCAR

SDSM is calibrated using observed station scale
data (TMax, TMin and PCP) and screened sets of
observed predictors, i.e., NCEP/NCAR reanalysis
datasets. SDSM offers three different types of sub-
models; (1) monthly, (2) seasonal, and (3) annual
for the downscaling of predictands (TMax, TMin

and PCP) from the large scale predictors. The
monthly submodel derives 12 different regression
equations, one for each month, whereas seasonal
submodel generates four different regression equa-
tions, one for each season. In case of annual sub-
model, a single regression equation is generated
for all 12 months having same model parame-
ters. The process involved in downscaling may be
either unconditional (e.g., TMax, TMin) or condi-
tional (e.g., PCP). There are two methods for opti-
mizing SDSM; (1) Dual Simplex and (2) Ordinary
Least Squares. Both the methods provide compa-
rable results but Ordinary Least Squares is much
faster and has been used in the present study.
Further, monthly submodel type is preferred

because there are large monthly variations in
TMax, TMin and PCP at different stations within
the study region. In monthly submodel, identical
sets of predictors and predictands generate differ-
ent statistical values for each month. This may be
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attributed to the fact that different empirical rela-
tionships are constructed for different months of
the year by this model. The values of E (%) are
used to explain how and to what extent daily vari-
ations in predictands are determined by regional
forcing.

4.1.3 Generation of present and future time series
for TMax, TMin and PCP from the gridded

datasets of NCEP/NCAR and GCMs

After calibrating the model, Weather Generator
function is applied to generate ensembles of syn-
thetic daily time series of TMax, TMin and PCP
representing present climate from screened sets of
NCEP/NCAR predictors. The synthetically gen-
erated daily time series of TMax, TMin and PCP
is compared (in terms of statistics) with observed
records to know how close it is to the present
climate. Finally, Scenario Generator function is
used to simulate future time series of TMax, TMin

and PCP using outputs of GCMs (CGCM3 and
HadCM3) on daily time-step under different emis-
sion scenarios.

4.1.4 Statistical analysis of downscaled
projected TMax, TMin and PCP

At the end, various statistical operations were
performed on downscaled projected time series
of TMax, TMin and PCP in order to see changes
observed in climate of the study area.

5. Results and discussions

This section describes screening of predictors,
calibration and validation of SDSM model used
for downscaling of TMax, TMin and PCP. The per-
formance of developed SDSM along with down-
scaled results are discussed for future periods;
2020s (2011–2040), 2050s (2041–2070) and 2080s
(2071–2099) under A2, A1B and B2 emission sce-
narios. A comparison between downscaled results

of CGCM3 model and HadCM3 model is also made
under a common emission scenario, i.e., A2.

5.1 Screening of predictors

In statistical downscaling, screening of suitable pre-
dictors for downscaling predictands is one of the
most important steps (Hewitson and Crane 1996).
The explanatory power of individual predictor vari-
able varies both spatially and temporally (Wilby
et al. 2002). The choice of predictors can be differ-
ent for different geographical regions depending on
the properties of the predictor and the predictand
to be downscaled (Anandhi et al. 2009).
The qualitative (e.g., scatter plots) as well as

quantitative (e.g., value of explained variance for
different months, correlation, partial correlation (r)
and P values) approaches mentioned by Mahmood
and Babel (2013) are adopted for obtaining the
most suitable sets of predictors from the suite of
NCEP/NCAR predictors at an individual station.
The explained variance explains the level to which
daily variations in the predictand are determined
by predictors (Wilby et al. 2002). The correlation
statistics and P values are used to explain the
strength of relationship between the predictor and
predictand. The high P value signifies that the
predictor–predictand correlation could be chance
related while the smaller P values describe a better
chance for association between variables. This has
been explained in detail with an example. The pro-
cedure involved in screening of NCEP/NCAR pre-
dictors for downscaling of PCP at Rampur station
of HadCM3 model is shown in table 4.

• A super predictor (SP) is chosen based on
correlation coefficient (R1) between predictors
of NCEP/NCAR and predictand (PCP). The
predictor having highest correlation coefficient
among all the predictors (8 in this case) arranged
in descending order is defined as SP. For PCP,
relative humidity at 850 hpa (r850) is defined as
SP at Rampur station.

• In the presence of SP, values of correlation coef-
ficient between predictors and predictand (R1),

Table 4. Procedure adopted in screening of NCEP/NCAR predictors (in case of HadCM3 model) for precipitation at Rampur
station.

Sl. no. Predictor R1 (%) R2 (%) Pr (%) P value PRP (%)

1. 850 hPa relative humidity (r850) 19.5 − − 0.00 −

2. 500 hPa divergence (p5zh) 17.9 41.9 5.18 0.00 44.6

3. 500 hPa relative humidity (r500) 14.8 71.6 6.19 0.07 68.9

4. Surface air flow strength (p f) 14.8 43.2 6.16 0.38 86.4

5. 850 hPa zonal velocity (p8 u) 11.1 31.7 5.29 0.47 14.6

6. 850 hPa vorticity (p8 z) 10.8 28.5 5.12 0.48 11.1

7. Surface wind direction (p th) 9.5 14.8 6.19 0.44 83.1

8. Mean sea level pressure (mslp) 9.1 10.1 6.07 0.00 3.2
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between individual predictors (R2), partial corre-
lation (r) and P value are obtained by regression
from the left over highly correlated predictors (7
in this case) as shown in table 4 above.

• The effect of multi-colinearity in remaining pre-
dictors is minimized by eliminating those predic-
tors which show high correlation with SP. This is
subjective in nature and in some studies the cor-
relation coefficient up to 0.7 is acceptable. As dis-
cussed in the methodology section, the predictors
having high P values (>0.03) are also taken away
in order to keep results statistically significant.

• Percentage reduction in partial correlation
(PRP) for each predictor is derived from the
equation given below:

PRP =
Pr −R1

R1
(4)

where, Pr stands for partial correlation coeffi-
cient and R1 for correlation coefficient.

• The screening of the most appropriate second
predictor is made on the basis of PRP value. The
predictor having minimum PRP value is selected
as second most appropriate predictor. The mean
sea level pressure (mslp) is found to be the sec-
ond most suitable predictor for downscaling of
precipitation at Rampur.

• The selection of third, fourth and other predic-
tors is done by repeating the steps from 2 to 5.

The predictors lagged by −1 day are also created
for variables like mean temperature and specific
humidity using transform function. The predictors
thus screened using the above procedure for
HadCM3 is shown in table 5.
In the same way, the predictors are screened for

CGCM3 model which are shown in table 6.
These screened sets of relevant predictors for

both the models are then used for downscaling of
TMax, TMin and precipitation at individual station.

5.2 Calibration and validation of model

The screened sets of daily NCEP/NCAR predic-
tors and predictands (TMax, TMin and PCP) are
employed for model calibration using 21 years data
(1970–1990). The model is validated using remain-
ing 10 years data (1991–2000) of NCEP/NCAR
and simulation data, i.e., 20C3M scenario for
CGCM3 and HadCM3 models respectively. Dur-
ing the calibration process, monthly submodel is
developed and downscaling process is selected as
unconditional process for temperature while it is
conditional for PCP. The fourth root transforma-
tion is applied to the original PCP data to convert
it to a normal distribution. A total of 20 ensembles
are produced and the mean of these ensembles is T
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used. The results (averaged over three stations)
obtained during calibration and validation are given
in tables 7 and 8 respectively.
The values of explained variance E (%) and

standard error (SE) determine credibility of the
results as values of E (%) are used to explain how
and to what extent daily variations in predictands
are determined by regional forcing (Wilby et al.
2002). There is significant seasonal variations in the
results as comparatively low values of E (%) are
measured for TMax, TMin and PCP during months
of June, July, August and September, i.e., mon-
soon season. This may be attributed to the inherent
errors in simulated precipitation fields as GCMs
show deficiencies in representation of the Indian
monsoon that is one of the most dominant tropical
circulation systems in the general circulation of the
atmosphere (Dai 2006; Rajeevan and Nanjundiah
2009).
The computed mean monthly value of E (%) dur-

ing calibration for TMax, TMin and PCP are 49.3%,
54.5% and 9.5% for CGCM3 and 49.1%, 57.9% and
10.0% for HadCM3 model respectively. Generally,
the value of explained variance (E%) are found bet-
ween 67% to 90% (Gagnon et al. 2005; Combalicer
et al. 2010; Meenu et al. 2012) for temperature
(TMax and TMin) and 10–30% (Wilby et al. 2002;
Masoud et al. 2008; Huang et al. 2011) for precip-
itation. The results obtained in the present study
are closer to such levels.

5.3 Statistical comparison of downscaled results
during calibration and validation

The statistical measures, namely, coefficient of
determination (R2), root mean square error
(RMSE), mean absolute percentage error (MAPE),
mean (µ), standard deviation (SD), standard error
of mean (SE µ) and mean absolute deviation
(MAD) are used to compare observed data with
downscaled data during calibration and validation
period. The value of R2 is indicative of strength
between observed and downscaled (simulated)
values whereas RMSE and MAPE are used to
determine accuracy of the model. R2 value explains
correlation between the observed and downscaled
values and lies between 0 (poor) to 1 (best). How-
ever, µ and SE µ are exercised to test how well the
model predicted the mean values, while SD and
MAD are used to investigate variability of data
simulated by the model. The discussed statistical
measures are first computed for each station and
then the mean values of each statistical measure
are attained from all the stations.
Table 9 shows comparison between statistical mea-

sures of observed and downscaled NCEP/NCAR
for mean monthly TMax, TMin and PCP during
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Table 7. Monthly explained variance (E%) and standard error (SE) averaged over three stations for different months during
calibration (1970–1990).

Model Variables Month J F M A M J J A S O N Dec Mean

CGCM3

TMax E (%) 42.1 46.7 57.5 64.7 61.8 51.3 36.8 31.3 39.6 55.9 56.3 50.3 49.3

SE(◦C) 2.8 2.9 3.1 2.4 2.6 2.5 2.5 2.3 2.1 1.8 2.0 2.3 2.4

TMin E (%) 49.2 59.8 60.0 63.6 48.8 46.0 25.5 35.2 65.3 72.4 68.0 59.3 54.5

SE(◦C) 1.5 1.6 1.9 1.8 2.3 1.9 1.4 1.2 1.4 1.4 1.4 1.4 1.6

PCP E (%) 12.8 12.5 9.9 5.4 5.5 8.2 8.6 7.1 10.2 12.8 10.6 11.9 9.5

SE(mm) 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.4 0.3 0.4 0.4

HadCM3

TMax E (%) 42.1 45.9 57.4 63.7 62.0 51.1 35.4 30.2 38.5 55.6 56.3 50.7 49.1

SE(◦C) 2.8 2.9 3.1 2.4 2.6 2.5 2.5 2.3 2.1 1.8 2.0 2.3 2.4

TMin E (%) 54.0 58.9 61.3 62.8 48.0 48.8 47.9 12.8 65.8 68.3 70.2 60.3 57.9

SE(◦C) 1.5 1.6 1.8 1.8 2.3 1.9 1.6 1.2 1.3 1.5 1.4 1.4 1.6

PCP E (%) 12.2 11.9 14.1 13.1 12.4 7.6 6.6 4.6 13.5 6.9 7.1 9.9 10.0

SE(mm) 0.4 0.4 0.4 0.3 0.4 0.5 0.5 0.5 0.4 0.3 0.2 0.3 0.4

Table 8. Monthly explained variance (E%) and standard error (SE) averaged over three stations for different months during
validation (1991–2000).

Model Variables Month J F M A M J J A S O N Dec Mean

CGCM3

TMax E (%) 44.4 51.4 60.1 65.7 43.5 51.5 27.6 29.5 47.3 56.3 68.7 56.6 50.2

SE(◦C) 2.3 2.4 2.7 2.0 2.6 2.3 2.2 2.0 1.8 1.6 1.6 1.9 2.1

TMin E (%) 40.6 59.9 63.3 62.2 42.8 49.5 20.1 35.2 64.8 65.9 72.8 57.9 52.9

SE(◦C) 1.7 1.6 1.7 1.8 2.1 1.8 1.4 1.1 1.4 1.4 1.3 1.4 1.6

PCP E (%) 15.0 12.5 7.3 10.3 14.8 11.0 6.3 3.5 13.8 24.5 4.3 3.0 10.5

SE(mm) 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.4

HadCM3

TMax E (%) 34.3 48.6 65.8 57.9 48.7 47.6 20.7 22.0 31.3 39.4 60.6 39.5 44.1

SE(◦C) 2.8 2.7 3.1 2.5 2.7 2.9 2.4 2.4 2.1 2.0 1.8 2.1 2.5

TMin E (%) 43.8 60.8 62.7 59.1 40.7 47.8 44.6 48.0 65.1 60.1 75.4 58.5 55.6

SE(◦C) 1.7 1.5 1.8 1.9 2.1 1.9 1.6 1.3 1.3 1.7 1.3 1.4 1.6

PCP E (%) 11.3 12.8 16.8 9.7 9.1 10.5 4.1 2.5 15.4 6.3 8.3 4.1 9.2

SE(mm) 0.4 0.4 0.4 0.3 0.4 0.5 0.5 0.5 0.4 0.3 0.2 0.3 0.4

calibration period under both the models. Tem-
perature variables are downscaled and simulated
better than precipitation as values of all statisti-
cal measures are much closer to the statistics of
observed data. The values of low explained variance
(≤10%) obtained for precipitation during calibra-
tion have resulted in poor correlation (R2 ≤ 0.50)
between observed and downscaled NCEP/NCAR
data. This may be attributed to the spatially non-
conservative nature of precipitation (Gagnon et al.
2005). However, high correlation coefficient and low
RMSE error are gained for TMax (R2 >0.80 and
RMSE <2.40◦C) and TMin (R2 >0.90 and RMSE
<1.94◦C), respectively.
Similarly, results of comparison between

observed and downscaled mean monthly TMax,
TMin and PCP in terms of statistical measures for
validation period are given in table 10. In case of
NCEP/NCAR data, the values of R2 and RMSE
are found in the range of 0.80–0.81 and 2.49◦–
2.53◦C for TMax and in the range of 0.88–0.89 and
2.07◦–2.14◦C for TMin respectively. For 20C3M,
values of R2 and RMSE are found in range of

0.77–0.80 and 2.63◦–2.80◦C for TMax and in range
of 0.89–0.93 and 1.83◦–2.29◦C for TMin respec-
tively. The higher value of R2 is obtained for
TMax and TMin under 20C3M scenario of CGCM3
model as compared to HadCM3 model. Besides,
other statistical measures have also shown a good
agreement with observed statistics but deviation
of amount is noticed between them. However,
comparatively low values of R2≤0.41 (for NCEP/
NCAR and 20C3M) and high values of RMSE
are obtained for precipitation under both the
models.

5.4 Bias correction

The downscaled data inherited uncertainties due
to parameterizations of GCMs and limitations of
SDSM model in defining complex physical pro-
cesses through empirical relationships. Therefore,
the model is unable to downscale and simulate cli-
mate variables (TMax, TMin and PCP) accurately.
Difference between observed and simulated climate



Downscaling of temperature and precipitation 853

Table 9. Statistical comparison of observed and downscaled mean monthly TMax, TMin and PCP during calibration (1970–
1990).

Model Variable Data type µ (◦C) SD (◦C) SE µ (◦C) MAD (◦C) R2 RMSE (◦C) MAPE

CGCM3

TMax OBS 28.18 6.18 0.38 5.29 – – –

NCEP 28.40 5.95 0.37 5.18 0.83 2.39 7.00

TMin OBS 14.48 6.73 0.42 6.19 – – –

NCEP 14.49 6.66 0.42 6.16 0.91 1.93 10.04

PCP (mm) OBS 87.60 98.30 6.20 73.4 – – –

NCEP 86.30 90.20 5.70 68.0 0.50 63.6 273.2

HadCM3

TMax OBS 28.18 6.18 0.38 5.29 – – –

NCEP 28.26 5.90 0.37 5.12 0.83 2.39 7.01

TMin OBS 14.48 6.73 0.42 6.19 – – –

NCEP 14.54 6.79 0.43 6.07 0.92 1.88 19.77

PCP (mm) OBS 87.57 98.19 6.20 73.41 – – –

NCEP 86.70 93.57 5.91 70.47 0.42 68.34 304.33

Table 10. Statistical comparison of observed and downscaled mean monthly TMax, TMin and PCP during validation (1991–
2000).

Model Variable Data type µ (◦C) SD (◦C) SE µ (◦C) MAD (◦C) R2 RMSE (◦C) MAPE

CGCM3

TMax OBS 28.02 6.31 0.57 5.42 – – –

NCEP 28.31 5.66 0.51 4.91 0.80 2.53 7.20

20C3M 28.28 6.13 0.55 5.35 0.80 2.63 5.88

TMin OBS 13.71 7.01 0.64 6.26 – – –

NCEP 14.69 6.57 0.60 5.89 0.88 2.07 4.88

20C3M 14.97 6.80 0.62 6.04 0.92 1.83 3.42

PCP (mm) OBS 86.8 93.7 8.6 70.5 – – –

NCEP 89.5 99.6 9.1 76.6 0.4 76.3 327.0

20C3M 84.3 86.7 7.9 66.5 0.4 65.7 256.7

HadCM3

TMax OBS 28.02 6.31 0.57 5.42 – – –

NCEP 28.46 5.80 0.47 4.98 0.81 2.49 6.98

20C3M 28.29 5.97 0.54 5.26 0.77 2.80 7.34

TMin OBS 13.71 7.01 0.64 6.26 – – –

NCEP 14.70 6.86 0.62 6.10 0.89 2.14 15.50

20C3M 14.97 6.97 0.63 6.12 0.89 2.29 16.76

PCP (mm) OBS 86.77 93.75 8.59 70.52 – – –

NCEP 88.42 95.04 8.71 72.42 0.41 70.36 281.26

20C3M 89.80 101.76 9.33 72.18 0.41 74.09 252.16

variables is found and this is known as bias.
Salzmann et al. (2007) suggested eliminating biases
from the daily time series of downscaled data. In
this study, method discussed by Mahmood and
Babel (2013) is applied for removing biases in the
time series. First of all, biases are computed by
subtracting (in case of temperature) or dividing
(in case of precipitation) the long term monthly
mean (30 years from 1971–2000) of observed data
from the mean monthly simulated control data
(downscaled data by SDSM for the period of
1971–2000 under 20C3M experiment). Then, biases
are adjusted with the future downscaled daily
time series according to their respective months.
Equations (5 and 6) are used to de-bias daily

temperature (TMax and TMin) and precipitation
data.

Tdeb = TSCEN − (T̄CONT − T̄OBS) (5)

Pdeb = PSCEN ×

(

P̄OBS

P̄CONT

)

(6)

where Tdeb and Pdeb are the de-biased (corrected)
future daily time series of temperature and precip-
itation data, whereas TSCEN and PSCEN are biased
(uncorrected) future daily time series of tempera-
ture and precipitation data downscaled by SDSM.
T̄CONT, P̄CONT and T̄OBS, P̄OBS are long term mean
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monthly values of temperature and precipitation
during control simulation (20C3M) and observed
period, i.e., 1971–2000 respectively.

5.5 Downscaling and projection of future changes
in temperature (TMax and TMin) and precipitation

The developed SDSM model is applied to down-
scale and generate future scenarios of daily tem-
perature (TMax and TMin) and precipitation from
predictors of CGCM3 (SRES A2 and A1B) and
HadCM3 (SRES A2 and B2) models for the period
of 2011–2099. Further, the future period is grouped
into 2020s (2011–2040), 2050s (2041–2070) and
2080s (2071–2099) for studying pattern of change
in temperature and precipitation with reference to
base period (1971–2000). The baseline (1971–2000)
corresponds to the observed data. The biases from
daily time series of temperature and precipitation
data are removed as discussed in section 3.4 before
the analysis. For the analysis, daily values of tem-
perature and precipitation are summed to obtain
annual and monthly values at each station. Fur-
ther, mean annual and monthly values of temper-
ature and precipitation are attained from all the
stations.

5.5.1 Change in future annual and monthly
temperature (TMax and TMin)

The change in mean annual TMax and TMin in Sutlej
River Basin under scenarios A1B, A2 of CGCM3
model and A2, B2 of HadCM3 model is given in
table 11. The rise in TMax and TMin is predicted in
future under all scenarios of both the models. In
case of CGCM3 model for TMax, increase is 0.45◦,
0.78◦, and 0.82◦C under A1B scenario and 0.66◦,
0.81◦ and 1.12◦C under A2 scenario for future peri-
ods of 2020s, 2050s, 2080s respectively. For TMin

under scenarios A1B and A2, this is 1.08◦, 1.61◦,

2.05◦C and 1.13◦, 1.74◦, 2.66◦C in 2020s, 2050s and
2080s respectively. Similarly for HadCM3 model,
increase in TMax under A2 scenario is 0.60◦, 1.06◦,
1.82◦C and under B2 scenario is 0.58◦, 0.76◦,
1.25◦C for all three future periods. For TMin under
scenarios A2 and B2, it is 1.18◦, 2.24◦, 3.43◦C
and 1.18◦, 1.87◦, 2.52◦C in 2020s, 2050s and 2080s
respectively. The projected increment is high for
A2 scenario because it has the highest concentra-
tion of carbon dioxide (CO2), i.e., 850 ppm and it
is followed by A1B (720 ppm) and B2 (450 ppm)
scenarios respectively.
The change of pattern in mean monthly TMax

and TMin under scenarios A1B and A2 of CGCM3
model with respect to base period for all three
future periods is shown in figure 3. The significant
increase in mean monthly TMax is predicted from
January to May and from September to Decem-
ber under A1B and A2 scenarios. It is in the range
of 0.02◦–1.63◦C, 0.68◦–1.69◦C, 1.20◦–2.46◦C under
A1B scenario and 0.05◦–2.10◦, 0.44◦–2.26◦, 1.41◦–
3◦C under A2 scenario in 2020s, 2050s and 2080s
respectively. The highest increase in TMax (3◦C) is
anticipated in the month of March under A2 scena-
rios in 2080s. On the contrary, substantial decrease
in TMax is predicted in months of June, July and
August under both the scenarios for future peri-
ods whereas highest decrease can be seen in the
month of July. In case of TMin, increase is observed
throughout year under scenarios A1B and A2 of
CGCM3 model for all three future periods and it is
more prominent in the month of October. The pre-
dicted increase in monthly TMin is in range of 0.10◦–
2.48◦C, 0.29◦– 3.05◦C, 0.49◦–4.38◦C under A1B
scenario and 0.06◦–2.39◦C, 0.42◦–3.76◦C, 0.75◦–
5.10◦C under A2 scenario in 2020s, 2050s and 2080s
respectively.
Similarly, projected change in mean monthly

TMax and TMin for future periods under A2 and
B2 scenarios of HadCM3 model is shown in
figure 4. The overall rise in mean monthly TMax

Table 11. Mean annual change in TMax, TMin and PCP under different emission scenarios in 2020s, 2050s and 2080s.

Future time Change in Change in Change in

Model period Scenario TMax (◦C) TMin (◦C) PCP (cm)

CGCM3

2020s A1B 0.45 1.08 25.09

A2 0.66 1.13 21.79

2050s A1B 0.78 1.61 50.22

A2 0.81 1.74 45.0

2080s A1B 0.82 2.05 58.40

A2 1.12 2.66 88.48

HadCM3

2020s A2 0.60 1.18 9.29

B2 0.58 1.18 8.34

2050s A2 1.06 2.24 45.10

B2 0.76 1.87 32.27

2080s A2 1.82 3.43 87.38

B2 1.25 2.52 24.38
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Figure 3. Mean monthly change in projected TMax and TMin under A1B and A2 scenarios of CGCM3 model.

Figure 4. Mean monthly change in projected TMax and TMin under A2 and B2 scenarios of HadCM3 model.

is predicted from January to May and from Sep-
tember to December whereas decline in months of
June, July and August under scenarios A2 and B2
in 2020s, 2050s and 2080s. The increase in TMax

is in range of 0.16◦–1.61◦C, 0.07◦–1.98◦C, 0.70◦–
1.79◦C under A2 scenario and 0.27◦–1.74◦C, 0.74◦–
2.05◦C, 0.76◦–2.62◦C under B2 scenario, respec-
tively. The highest increase and decrease in TMax is
expected in months of April and June respectively.
The increase observed in mean monthly TMin is in
accordance with the results obtained from CGCM3
model. This is found in range of 0.35◦–2.58◦C,
1.10◦–3.45◦C, 1.74◦–4.85◦C under A2 scenario and
0.15◦–2.34◦C, 0.96◦–3.30◦C, 2.6◦–3.89◦C under B2
scenario, respectively.

5.5.2 Change in future annual and
monthly precipitation

The analysis of downscaled precipitation predicts
rise in mean annual precipitation in Sutlej Basin for

the future periods (2020s, 2050s and 2080s) under
all scenarios of both the models (table 11). This
increase in precipitation may be attributed to an
increase in the surface temperature which in turn
may raise rate of evaporation leading to increased
precipitation (Anandhi et al. 2008). The increase
in mean annual precipitation (with respect to base
period) is expected in range of 24.0%–55.4% under
A1B scenario and 20.8%–84.5% under A2 scenario
of CGCM3 model. For A1B and A2 scenarios,
the maximum (55.4% and 84.5%) and minimum
(24.0% and 20.8%) increase in mean annual precip-
itation is observed during 2020s and 2080s respec-
tively. Similarly for HadCM3 model, the increase
is observed in range of 8.9–83.4% and 8.0–30.8%
under A2 and B2 scenarios. Under both the mod-
els, maximum increase in mean annual precipita-
tion is reported for A2 scenario during 2020s, 2050s
and 2080s.
Further, pattern of change in future mean monthly

precipitation is shown in figure 5 for CGCM3
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Figure 5. Mean monthly change in projected precipitation under A1B and A2 scenario of CGCM3 model.

Figure 6. Mean monthly change in projected precipitation under A2 and B2 scenarios of HadCM3 model.

model under A1B and A2 scenarios. In this case,
significant increase in precipitation with varying
amount is projected in the months of April (1.2–
2.1 cm under A1B and 0.6–2.7 cm under A2), June
(1.7–13.2 cm under A1B and 1.3–23.3 cm under
A2), July (7.3–14.7 cm under A1B and 5.1–18.1 cm
under A2), August (7.4–14.1 cm under A1B and
7.1–17.2 cm under A2), September (4.9–11.0 cm
under A1B and 4.3–18.4 cm under A2) and Octo-
ber (0.7– 2.4 cm under A1B and 2.0–2.6 cm
under A2) during 2020s, 2050s and 2080s respec-
tively. Besides, a slight increase in precipitation
under A1B and A2 scenarios is also observed in
months January and March during 2020s, 2050s
and 2080s followed by May and November during
2050s and 2080s. However, slight decrease (<1.0
cm) in precipitation is recorded during future peri-
ods in February under A1B and A2 scenarios and
in December under A1B scenario respectively.
The results derived under A2 and B2 scenarios of

HadCM3 model are shown in figure 6 which shows
large variability in pattern of monthly future pre-
cipitation. A small decrease (≤ 0.1 cm) in precip-
itation is observed during A2 and B2 scenarios in
months of January, March, November and Decem-
ber followed by considerable rise in July (4.3–14.2
cm under A2 and 4.5–12.9 cm under B2), August
(3.7–8.2 cm under A2 and 3.7–8.2 cm under B2)
and September (0.04–12.8 cm under A2 and 3.2–
10.1 cm under B2) during 2020s, 2050s and 2080s.

The increase observed in projected precipitation
during monsoon season (June, July, August and
September) under both the models could be the
result of the projected intensification of the heat
low over NW India, the trough of low pressure
over the Indo-Gangetic plains, and the land–ocean
pressure gradient during the establishment phase
of the monsoon (Kripalani et al. 2007b). Besides,
small increase in 2020s and 2050s is observed in
precipitation followed by decrease in 2080s under
A2 scenario in months of February and October.
However, under B2 scenario increase in precipita-
tion is observed in February during 2020s, 2050s
and 2080s followed by decrease in May and October
respectively.

5.6 Comparison between downscaled temperature
(TMax and TMin) and precipitation of CGCM3

and HadCM3 models under A2 scenario

The results of downscaled mean annual TMax, TMin,
and precipitation show substantial rise in future
under A2 scenario for both CGCM3 and HadCM3
models. However, rise in annual TMax and TMin

is much higher for HadCM3 model compared to
CGCM3 model. The increase in annual TMax and
TMin for HadCM3 model is 0.60◦, 1.06◦, 1.82◦C and
1.18◦, 2.24◦, 3.43◦C whereas for CGCM3 model
increase is 0.66◦, 0.81◦, 1.12◦C and 1.13◦, 1.74◦,
2.66◦C in 2020s, 2050s and 2080s, respectively.
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Figure 7. Comparison between projected TMax and TMin of CGCM3 and HadCM3 models under A2 scenario.

Figure 8. Comparison between projected precipitation of CGCM3 and HadCM3 models under A2 scenario.

For precipitation, more or less similar pattern of
increase is observed under both the models in
2020s, 2050s and 2080s, respectively. The increase
in annual precipitation is observed as 21.7, 45 and
88.4 cm for CGCM3 model and 9.2, 45.1 and 87.3
cm for HadCM3 model for 2020s, 2050s and 2080s,
respectively.
Figure 7 shows projected mean monthly changes

in temperature (TMax and TMin) under A2 scenario
for both the models. Generally, similar patterns of
change in monthly TMax and TMin are observed in
2020s, 2050s and 2080s for CGCM3 and HadCM3
models but deviation of amount is noticed between
them. Both the models predict increase in future
TMin from January to December. In case of CGCM3
model, the predicted increase is in the range of
0.06◦–2.39◦C, 0.42◦–3.76◦C, 0.75◦–5.10◦C during
2020s, 2050s and 2080s, respectively. The minimum
increase in TMin (CGCM3) is observed in month
of August whereas the maximum increase is in the
month of October. Similarly for HadCM3 model,
the increase predicted is in the range of 0.35◦–
2.58◦C, 1.10–3.45◦C and 1.74◦–4.85◦C in future
periods (2020s, 2050s and 2080s), respectively. The
minimum increase in TMin (HadCM3) is observed

in the months of March (2020s), February (2050s),
January (2080s) and maximum in the month of
October. Generally, increase in TMax is observed
from January to May and September to Decem-
ber whereas decrease in months of June, July
and August under both the models. The decrease
in TMax is more significant under A2 scenario of
CGCM3 model compared to HadCM3 model. The
decrease in TMax (CGCM3) in months of June,
July and August is observed in the range of 0.10◦–
0.94◦C, 0.45◦–1.70◦C and 0.89◦–3.15◦C in 2020s,
2050s and 2080s, respectively. The increase in TMax

instead of decrease is noticed in months of June
(2050s) and July (2020s) under A2 scenario of
HadCM3 model.
Figure 8 shows projected mean monthly changes

in precipitation under A2 scenario for both the
models. The pattern in future monthly precipita-
tion observed under A2 scenario of CGCM3 model
significantly differs from the HadCM3 model. How-
ever, similarity in pattern is detected in months
of July, August, September and October when
both the models show considerable increase in
precipitation for the future periods. The increase
is the maximum for CGCM3 model as compared
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to HadCM3 model. This is projected in range of
5.9–18.1 cm in July, 7.1–17.2 cm in August, 4.3–
18.4 cm in September and 2.0–2.6 cm in Octo-
ber for CGCM3 model during 2020s, 2050s and
2080s, respectively. Besides, slight increase in pre-
cipitation is also observed for CGCM3 model
contrary to HadCM3 model in the months of
January, March and December for the future
periods.

6. Conclusion

SDSM (hybrid of MLR and SWG based downscal-
ing technique) is used to downscale and generate
long-term (2011–2040, 2041–2070 and 2071–2099)
future scenarios of climate variables (tempera-
ture and precipitation) from predictors of CGCM3
and HadCM3 models in the middle catchment
of Sutlej River Basin, India. These future scenar-
ios are generated under forcings of A2, A1B and
B2 emission scenarios. The monthly submodel of
SDSM is found proficient in downscaling of max-
imum and minimum temperature as high correla-
tion (R2 >0.80 for TMax and R2 >0.90 for TMin

for calibration periods and R2 > 0.77 for TMax

and R2 >0.89 for TMin for validation period) are
obtained between downscaled and observed data.
The climate of 20th century was well simulated
by SDSM because the different statistical measures
computed for 20C3M scenario during validation
period show close agreement with the statistics of
observed data. However, comparatively lower val-
ues (R2 <0.50) are observed in case of precipita-
tion. This may be due to limitations of CGCM3
and HadCM3 models in capturing monsoonal
phenomenon resulting in poor simulations of pre-
dictors during this phase of year. Besides, precipi-
tation is an intermediate process and conditioned
by local weather conditions. This indicates com-
plexities involved in downscaling of precipitation.
SDSM projects increase in mean annual tem-

perature and precipitation for the future periods
(2020s, 2050s and 2080s) under both the models for
all the emission scenarios. The projected increase
for TMax varies from 0.45◦–0.82◦C and 0.66◦–1.12◦C
under A1B and A2 scenarios of CGCM3 model
while for TMin it ranges from 1.08◦ to 2.05◦C (A1B
scenario) and 1.13◦–2.66◦C (A2 scenario) respec-
tively. In case of HadCM3 model, increase in TMax

under A2 scenario is projected to vary from 0.60◦

to 1.82◦C and under B2 scenario from 0.58◦ to
1.25◦C respectively. For TMin under scenarios A2
and B2, it varies from 1.18◦ to 3.43◦C and 1.18◦

to 2.52◦C in 2020s, 2050s and 2080s, respectively.
The increase projected in temperature and pre-
cipitation in the present study is more or less
similar in patterns to the projected increase in

the surrounding basins. The study of Mahmood
and Babel (2013) conducted over Jhelum Basin
(Pakistan–India) in NW Himalaya predicted
significant rise in mean annual TMax (0.91◦–3.15◦C
under A2 and 0.69◦–1.92◦C under B2 scenarios),
TMin (0.93◦–2.63◦C under A2 and 0.56◦–1.63◦C
under B2 scenarios) and precipitation (6%–12%
and 8%–14% under A2 and B2 respectively) for
2020s, 2050s and 2080s. Similarly, the study under-
taken by Srinivas et al. (2013) over Beas Basin pre-
dicted increase in amount of TMax and TMin under
A1B, A2 and B1 scenarios of CGCM3 model.
The rise in mean annual TMin is more when com-

pared to TMax in the study area. The projected
increment is higher under scenarios of HadCM3
model as compared to CGCM3 model. However,
contrary to this, relatively higher increase in
mean annual precipitation is observed for CGCM3
model as compared to HadCM3 model. The pro-
jected mean monthly TMax shows increase during
January–May and September–December whereas
decrease is observed in the months of June, July
and August under all scenarios of both the mod-
els. The increase in mean monthly TMin is predicted
throughout the year. The comparison of results
explains that the changes in TMax and TMin pre-
dicted under various forcings of two GCMs used are
different in magnitude but similar in their patterns.
However, results derived from CGCM3 model are
slightly better as compared to HadCM3 model.
This may be attributed to the fact that higher
value of R2 is obtained for TMax and TMin under
20C3M scenario of CGCM3 model (0.80 and 0.92)
as compared to HadCM3 model (0.77 and 0.89).
Significant variations in monthly pattern of future
precipitation are observed under different scenarios
of both the models. However, similarity is observed
in months of July, August and September where
both the models under all scenarios show increase
in precipitation with varying amount for the future
periods.
The future patterns of change in TMax, TMin

and precipitation discussed in this study are based
on plausible scenarios. The large uncertainties are
coupled with the quantitative estimates because
the projected temperature inherited uncertainties
due to uncertainties associated with CGCM3 and
HadCM3 models and limitations of the SDSM in
downscaling of temperature. However, downscaled
TMax and TMin (20C3M) from predictors of CGCM3
and HadCM3 models have shown quite good statis-
tical agreement with observed TMax and TMin due
to higher correlation found between observed and
downscaled TMax and TMin. Thus, it can be con-
cluded that SDSM has performed well in downscal-
ing of TMax and TMin from predictors of CGCM3
and HadCM3 models in a mountainous river basin,
India.
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