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ABSTRACT

This work shows that local-scale climate projections obtained bymeans of statistical downscaling are sensitive to

the choice of reanalysis used for calibration. To this aim, a generalized linear model (GLM) approach is applied to

downscale daily precipitation in the Philippines. First, theGLMs are trained and tested separately with two distinct

reanalyses (ERA-Interim and JRA-25) using a cross-validation scheme over the period 1981–2000. When the

observed and downscaled time series are compared, the attained performance is found to be sensitive to the

reanalysis considered if climate change signal–bearing variables (temperature and/or specific humidity) are in-

cluded in the predictor field. Moreover, performance differences are shown to be in correspondence with the

disagreement found between the raw predictors from the two reanalyses. Second, the regression coefficients

calibrated either with ERA-Interim or JRA-25 are subsequently applied to the output of a global climate model

(MPI-ECHAM5) in order to assess the sensitivity of local-scale climate change projections (up to 2100) to re-

analysis choice. In this case, the differences detected in present climate conditions are considerably amplified,

leading to ‘‘delta-change’’ estimates differing by up to 35% (on average for the entire country) depending on the

reanalysis used for calibration. Therefore, reanalysis choice is an important contributor to the uncertainty of local-

scale climate change projections and, consequently, should be treated with as much care as other better-known

sources of uncertainty (e.g., the choice of theGCMand/or downscalingmethod). Implications of the results for the

entire tropics, as well as for the model output statistics downscaling approach are also briefly discussed.

1. Introduction

Statistical downscaling (SD) techniques are nowadays

routinely applied to translate coarse-resolution output

from global climate models (GCMs) to local-scale

climate information required by impact and adaptation

studies. These techniques, however, have been de-

veloped and applied almost exclusively for extratropical

regions (Hewitson and Crane 1996; Wilby and Wigley

1997; Trigo and Palutikof 2001; Hanssen-Bauer et al.

2005; Fowler et al. 2007; Maraun et al. 2010; Gutiérrez
et al. 2013). Nevertheless, for low-latitude regions

(e.g., tropical Africa or southeast Asia), where the

demand for reliable local-scale climate information is

of paramount importance due to a large vulnerability
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to changing environmental factors (Wilby et al. 2009),

studies are rare or even nonexistent to date since

manifold problems still hinder the successful applica-

tion of SD in these regions (Hewitson et al. 2014).

In the so-called perfect-prog approach, local-scale

climate variability, typically represented by (gridded)

weather station records, is statistically linked to quasi-

observations from reanalysis datasets (Marzban et al.

2006). The success of perfect-prog schemes in the

extratropics relies on the fact that a large fraction of

local-scale climate variability can be described by at-

mospheric phenomena operating on spatial scales on

the order of thousands of kilometers, typically having

a lifetime of several days. At this scale, reanalysis datasets

are known to be skillful, in the sense that their spatio-

temporal resolution captures the relevant processes such

as extratropical cyclones and the associated fronts

(Grotch andMacCracken 1991;Widmann et al. 2003). At

lower latitudes, however, the atmospheric drivers of local-

scale climate variability operate on much finer scales

(both spatial and temporally) and are generally poorly

captured by reanalysis datasets (Manzanas et al. 2014).

Moreover, observational coverage is generally sparse in

the tropics, leading to considerable differences between

distinct reanalyses (Trenberth et al. 2001; Sterl 2004;

Brands et al. 2012, 2013) and to errors with respect to

observational records (Manzanas et al. 2014), which in

turn can complicate the detection of a relationship with

the local-scale climate variability.

Therefore, the present work tests whether reanalysis

choice is relevant for the application of SD in the tropics.

A generalized linear model (GLM) approach is

separately calibrated for two distinct reanalyses (ERA-

Interim and JRA-25) in order to downscale daily

precipitation over the Philippines, using a long-term,

quality-controlled precipitation dataset that essentially

eliminates predictand-induced uncertainty (Hewitson

et al. 2014). Because of its geographical location between

the monsoonal and inner tropics, the Philippines pro-

vides an ideal testbed for SD studies.

First, following a cross-validation scheme for the period

1981–2000, the downscaling results are shown to be sen-

sitive to reanalysis choice if climate change signal–bearing

variables such as temperature and/or specific humidity are

used as predictors. Second, when the reanalyses-

calibrated coefficients are applied to predictor data

from a GCM (MPI-ECHAM5)—in which case signal-

bearing predictor variables should be applied in order to

capture the ‘‘correct’’ climate change signal (Goodess and

Palutikof 1998; Wilby et al. 1998)—the sensitivity to re-

analysis choice is largely amplified, leading to differences

in the projected ‘‘deltas’’ of up to 35% (on average for the

entire country) for both reanalyses.

The paper is outlined as follows: In section 2, the con-

sidered datasets are described and a brief introduction to

the precipitation climate of the Philippines is provided.

The applied downscaling technique is described in

section 3 and the results are presented through section 4.

Section 5 provides the conclusions and a brief discussion

on the implications for the entire tropics as well as the

model output statistics downscaling approach.

2. Data

a. Predictands

Daily precipitation amounts from 42 gauges main-

tained by the Philippine Atmospheric, Geophysical and

Astronomical Services Administration (PAGASA)

were considered as predictand data for the period 1981–

2000 (see Fig. 1b). These station time series, which in the

following are classified into the four precipitation cli-

mate types (CTs) defined in Coronas (1920), were se-

lected after a rigorous quality control, thus minimizing

the predictand-induced uncertainty (Hewitson et al.

2014). As can be seen in Fig. 1c, precipitation along the

coastlines of the northern part of the archipelago (CT1

and CT2) exhibits a strong seasonal cycle, which is driven

by alternating monsoonal winds. In particular, during the

southwest monsoon (June–September), precipitation

peaks at the stations pertaining to CT1 while CT2 is af-

fected by relative dryness. However, the opposite is the

case during the northeast monsoon (October–February).

During the dry months (March–May), easterly winds

prevail, leading to orographic precipitation along the

mountain ranges in the east of the archipelago (see

Fig. 1a) and to relatively high precipitation amounts for

the stations pertaining to CT2. At the stations pertaining

to CT3 and CT4 (mainly situated in the center and south

of the archipelago), precipitation is bounded tomesoscale

dynamics and is not directly driven by the monsoons,

leading to a weak seasonal cycle. Additionally, in-

terannual variability is larger for CT1 and CT2 than for

CT3 and CT4 (Fig. 1d). For a comprehensive description

of the climate in the Philippines, the interested reader is

referred to Coronas (1920), Flores and Balagot (1969),

and Kintanar (1984) as well as to the PAGASA website

(http://www.pagasa.dost.gov.ph/).

b. Predictors

Atmospheric variables describing circulation, mois-

ture, and convection are generally considered to be

among the most informative predictors for perfect-prog

SD of precipitation (Charles et al. 1999; Timbal et al.

2003; Bürger and Chen 2005; Cavazos and Hewitson

2005; Dibike and Coulibaly 2005; Haylock et al. 2006;
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Hewitson and Crane 2006; Fowler et al. 2007; Hertig and

Jacobeit 2008; Timbal and Jones 2008; Sauter and

Venema 2011). If SD is applied in climate change con-

ditions (i.e., to predictor data obtained from a given

GCM), the GCM is assumed to perfectly reproduce

the same climatological properties provided by the re-

analysis used for calibration (Hewitson and Crane 1996;

Wilby et al. 2004). In other words, the ‘‘performance’’ of

the GCM (Giorgi and Mearns 2002) must be evaluated

for the relevant predictor variables. An important di-

lemma of perfect-prog SD is that GCMs generally per-

form better for circulation and temperature variables

than for moisture ones (Räisänen 2007; Brands et al.

2011, 2013). Yet, moisture information should be

included into the predictor field in order to 1) improve

the statistical link-function (i.e., the predictive potential

of the SD method) and 2) capture the ‘‘correct’’ climate

change signal (Goodess and Palutikof 1998; Wilby et al.

1998).

With these precepts in mind, and after consulting the

expertise of local meteorologists as well as the results

from previously published studies (Kang et al. 2007;

Chu et al. 2008; Paul et al. 2008; Chu andYu 2010), a set

of different predictor combinations was chosen (see

Table 1). These combinations consist of circulation var-

iables alone (zonal wind component at 850 and 300hPa;

P1: U850, U300), circulation and specific humidity (P2:

U850, U300, Q850), circulation and temperature (P3:

FIG. 1. (a) Topography of the Philippines. (b) Location of the 42 gauges considered, classified into the four pre-

cipitation climate types (CTs) described in the text. Each CT is indicated by a specific color. (c) Intra- and (d) in-

terannual variability of spatial average precipitation amount for each CT (period: 1981–2000).
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U850,U300, T850) and circulation, specific humidity, and

temperature (P4: U850, U300, Q850, T850). In addition,

Q850 and T850 were considered as single predictor var-

iables. Note that Q850 is used instead of column in-

tegratedwater vapor or precipitablewater since the latter

variables are usually not provided by the common GCM

databases.

The predictor variables listed in Table 1 were ob-

tained from two distinct reanalyses and one GCM: The

European Centre for Medium-Range Weather Fore-

casts (ECMWF) ERA-Interim reanalysis (Dee et al.

2011), the Japanese 25-year Reanalysis (JRA-25)

(Onogi et al. 2007), and the Max Planck Institute (MPI)

ECHAM5 GCM (Giorgetta et al. 2006); see the ac-

knowledgments for data sources. For the case of

ECHAM5, control and A1B scenario data from the

third transient run developed within the ENSEMBLES

project were retrieved. To keep consistency between the

time steps available for both reanalyses and the GCM,

daily instantaneous values at 0000 UTC were chosen in

all cases. Because of distinct native resolutions, the

predictor data from all sources were regridded onto

a common regular 28 grid using bilinear interpolation.

3. Downscaling technique

The downscaling technique used here to build transfer

functions from the predictors (x1, . . . , xn) to the pre-

dictand (y) is based on generalized linear models

(Nelder and Wedderburn 1972), which allow for non-

normal error distributions. The conditional expected

value of the predictand given the predictors is linked via

a monotonic function to a linear combination of the

predictors b0 1b1x1 1 ! ! ! 1bpxp, where b0, . . . , bp

are the regression coefficients. These models have been

used in numerous previous downscaling studies dealing

with precipitation (e.g., Brandsma and Buishand 1997;

Chandler and Wheater 2002; Abaurrea and Asín 2005;
Fealy and Sweeney 2007; Hertig et al. 2013).

In this work, the two-stage implementation commonly

used for precipitation downscaling is applied (see, e.g.,

Chandler and Wheater 2002). First, a GLM with Ber-

noulli error distribution and logit link-function (also

known as logistic regression) is used to downscale daily

precipitation occurrence (a threshold of 0.5mm was

used to define occurrence). Probabilities equal or

greater (smaller) than 0.5 are considered as rainfall oc-

currences (absences). Second, a GLMwith gamma error

distribution and log link-function is applied to down-

scale daily precipitation amount. Unlike in other studies,

the stochastic component of the GLM is excluded from

each of the twomodels (occurrence and amount); that is,

expected values are predicted in any case. This is done to

isolate the effect of reanalysis uncertainty on the

downscaling results.

For each gauge, predictor data at the four nearest grid

points are considered for both the occurrence and

amount models. For the case of the reanalyses and the

GCM in the control period, each predictor variable is

standardized grid box by grid box to have zeromean and

unit variance. Standardization brings the first- and

second-order moments of the reanalysis and GCM data

into agreement and thereby provides a better approxi-

mation for the assumption of ‘‘perfect’’ GCM perfor-

mance than using untransformed data. The GCM

scenario data are standardized by removing the mean of

the control period from the mean of the corresponding

scenario period and dividing by the standard deviation

of the control period.

To avoid overfitting, a k-fold cross-validation ap-

proach (Gutiérrez et al. 2013) was followed, with k5 4

nonoverlapping test periods of five years each, covering

the full period 1981–2000. To circumvent spurious trend

effects, the five years forming each test period were

randomly chosen.

4. Results

a. Reanalysis differences in the predictor data

The top panel of Fig. 2 shows a comparison between

ERA-Interim (taken as reference) and JRA-25 for

the four predictor variables in Table 1 over the Co-

ordinated Regional Climate Downscaling Experiment

(CORDEX)-East Asian domain (http://wcrp-cordex.ipsl.

jussieu.fr/images/pdf/cordex_regions.pdf) for the period

1981–2000. The left column shows the mean difference

(bias) between both reanalyses, expressed as a percent-

age of ERA-Interim’s standard deviation. The middle

column displays the ratio of variances (RV), defined as

s2
J /s

2
E, where s2

J (s
2
E) is the variance of JRA-25 (ERA-

Interim), respectively. In the right column, the Pearson

correlation coefficient (r) between the two reanalyses is

depicted.

As can be seen, there are appreciable differences

(systematically lower for U850 and U300 than for Q850

TABLE 1. Considered predictor combinations.

Abbreviation Predictor variables

P1 U850, U300

P2 U850, U300, Q850

P3 U850, U300, T850

P4 U850, U300, Q850, T850

Q850 Q850

T850 T850
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FIG. 2. (top) Comparison between ERA-Interim (taken as reference) and JRA-25 for the four predictor variables in Table 1 (in rows)

over the period 1981–2000. An explanation of the applied comparison metrics (in columns) is provided in the text. The Philippines

archipelago is indicated by the black boxes. (bottom right) Pearson correlation coefficient (r) between the two reanalysis time series, as

a function of latitude (displayed are zonal averages) for the Philippines archipelago. Different colors indicate different predictors. (bottom

left) Grid box coordinates used for computing the zonal averages.
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and T850) between both reanalyses for the three vali-

dation measures considered, indicating that the perfect-

prog assumption (reanalysis data reflecting ‘‘real’’

large-scale atmospheric conditions) does not hold for

the area under study. Nevertheless, with respect to their

application for SD, recall that the reanalysis time series

are standardized to have zero mean and unit variance

before ‘‘entering’’ the downscaling scheme (section 3).

Consequently, differences in the mean and variance be-

tween the two reanalyses (left and middle columns) do

not affect the SD results, whereas differences in the third-

and fourth-order moments (i.e., skewness and kurtosis;

see, e.g., Brands et al. 2011) and in day-to-day variations

(right column) remain and are expected to affect them.

In the bottom panel of Fig. 2, the zonally averaged r

between the predictor time series from JRA-25 and

ERA-Interim is displayed for the specific case of the

Philippines archipelago. The gridbox coordinates are

mapped on the left-hand side and r as a function of

latitude is displayed on the right-hand side. Noticeably,

U850 exhibits values around 0.95 at all latitudes, which

indicates that both reanalyses are in nearly perfect

agreement for this variable. However, a north–south

gradient is found for the remaining variables. In partic-

ular, correlations for T850 and Q850 drop from 0.95 to

0.70 and from 0.75 to 0.50, respectively, probably re-

flecting the increasing influence of subgrid processes—

subject to reanalysis/model-dependent parameterization

schemes—toward the equator.

b. Differences in cross-validation results

Figure 3 displays the Spearman correlation coefficient

(rs) between daily observed and downscaled pre-

cipitation time series over the period 1981–2010 for

FIG. 3. Cross-validation results for each CT as measured by the Spearman correlation coefficient (rs) between

downscaled and observed daily precipitation amount (period: 1981–2000). Different colors correspond to different

predictor combinations (see the legend) and solid (dashed) lines refer to the results obtained from using ERA-

Interim (JRA-25) predictor data. The mean and standard deviation of the four cross-validation results are indicated

by lines and error bars respectively. For eachCT, results are sorted by the latitude of the stations (decreasing from left

to right). CT-specific spatial average values are shown on the right-hand side of each panel; points (asterisks) cor-

respond to the results from using ERA-Interim (JRA-25) predictor data.
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different predictor combinations—P1 (U850, U300),

Q850, T850, and P4 (U850, U300, Q850, T850)—when

considering predictor data fromERA-Interim and JRA-

25 (solid and dashed lines, respectively). In each panel,

the results for a specific CT are shown. Lines and error

bars correspond to the mean and standard deviation of

the cross-validation results (computed upon the four

folds considered). Along the x axis, stations are sorted

by decreasing latitude (from left to right). On the right-

hand side, the CT-averaged rs are indicated. Points

(asterisks) correspond to ERA-Interim (JRA-25) pre-

dictor data.

For both reanalyses, the combination of circulation,

humidity, and temperature predictors (P4) yields high-

est correlation coefficients. The predictive potential is

slightly lower for using circulation variables alone (P1)

and further decreases if circulation is excluded from the

predictor field, that is, for using Q850 and T850 sepa-

rately or in combination (the latter not shown).

Moreover, for the sole use of circulation variables

(P1), the downscaling results are generally not sensitive

to reanalysis choice, except for the stations situated in

the south (CT4). This is in agreement with the small

differences found between ERA-Interim and JRA-25

for U300 andU850 as well as with the slight north–south

uncertainty gradient detected for U300 (see Fig. 2).

However, for Q850 and T850, appreciable reanalysis-

induced differences are observed. In particular, Q850

from ERA-Interim yields better results than Q850 from

JRA-25, whereas the opposite is the case for T850

(with the exception of CT1). This indicates that the

‘‘real’’ statistical relationship between Q850 (T850) and

local-scale precipitation is more accurately captured by

ERA-Interim (JRA-25).Moreover, when considering the

‘‘best’’ predictor combination (P4), results are systemat-

ically better for ERA-Interim than for JRA-25. Notably,

the southward loss of predictive potential occurring in all

CTs except CT2 is in agreement with the southward in-

crease of reanalysis uncertainty (Figs. 2 and 3).

For a geographical overviewof these results, Fig. 4 shows

the mean pointwise cross-validation rs when considering

ERA-Interim (left column) and JRA-25 (middle column)

predictor data, with each row corresponding to a specific

predictor combination. The corresponding differences—

JRA-25 minus ERA-Interim—are displayed in the right

column, so positive (negative) values indicate that JRA-25

(ERA-Interim) ismore appropriate for SD.Because of the

lower predictive potential described above, results for the

single predictor variables (Q850 and T850) are not in-

cluded in Fig. 4.

The spatial pattern of predictive potential is similar

for the four predictor combinations. Highest rs values

are obtained in the north and along the eastern coastline

of the archipelago, whereas a gradual decrease is ob-

served toward the south. For circulation predictors only,

both reanalyses perform similarly (first row). However,

if Q850 (T850) is added to circulation, better results are

obtained for ERA-Interim (JRA-25) (second and third

rows, respectively). Notably, for the case of including

T850, the advantage of JRA-25 over ERA-Interim is

most obvious along the eastern coastline. When consid-

ering the ‘‘full’’ predictor combination (P4), ERA-

Interim systematically outperforms JRA-25 at all stations.

To further assess the increase in predictive potential

from adding temperature and moisture information to

circulation, Fig. 5 shows the difference in rs [d(rs)] ob-

tained when adding Q850 and T850 separately (P2 and

P3, respectively) and in combination (P3) to the ‘‘basic’’

circulation variables (P1). Results for calibrating with

ERA-Interim and JRA-25 are given in the left and

middle column, respectively. Additionally, the corre-

sponding differences—JRA-25 minus ERA-Interim—

are shown in the right column. Positive (negative) values

indicate a larger increment for JRA-25 (ERA-Interim).

In congruence with Figs. 3 and 4, the performance

improvement attained when adding Q850 (T850) is

larger for ERA-Interim (JRA-25) than for JRA-25

(ERA-Interim). Moreover, when including Q850 1

T850, the improvement is larger for ERA-Interim than

for JRA-25. The previous results prove that, depending

on the choice of reanalysis, up to 0.10 correlation points

can be missed on the local scale for particular predictor

combinations.

c. Differences in climate change projections

In this section it will be shown that local-scale climate

projections obtained by SD are sensitive to the choice of

reanalysis used for calibration. To this aim, the regression

coefficients obtained from separately calibrating the

GLMswith either ERA-Interimor JRA-25 are applied to

predictor data from MPI-ECHAM5. This is done for the

reference period 1981–2000 (using control run data)

and for three different future periods (2011–40, 2041–70,

and 2071–2100), using scenario run data (A1B, run 3).

The underlying assumption of this procedure is that the

predictor–predictand relationships obtained above remain

stationary in time (Vrac et al. 2007).

The climate change projections are obtained bymeans

of the deltamethod, that is, by subtracting the reference/

control period’s mean from the mean of the corre-

sponding target scenario period (Räisänen 2007). Deltas

are shown as relative (%) deviations from the mean in

the reference period (0% 5 no deviation).

Figure 6 shows, from left to right, three panels, one for

each of the future periods considered. In each panel, the

deltas projected by applying the coefficients learned from
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FIG. 4. Spearman correlation coefficient between observed and downscaled daily

precipitation amount for different predictor combinations (in rows), when consid-

ering predictor data from (left) ERA-Interim and (middle) JRA-25. Displayed is the

mean value of the four cross-validation results. Black frames indicate the better-

performing reanalysis for a specific predictor combination. (right) JRA-25’s

performance minus ERA-Interim’s performance. The numbers in each panel cor-

respond to the spatial average values for all stations or those stations pertaining to

a specific CT (All and CT1–4, respectively).
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FIG. 5. Performance improvement (with respect to P1) for different predictor combinations (in rows), when

considering predictor data from (left) ERA-Interim and (middle) JRA-25. For each row, the black frame in-

dicates the better-performing reanalysis. (right) The performance improvement differences (JRA-25 minus

ERA-Interim). The numbers in each panel correspond to the spatial average values for all stations or those

stations pertaining to a specific CT (All and CT1–4, respectively).
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ERA-Interim (JRA-25) are shown in the left (middle)

column, while the corresponding differences (JRA-25’s

delta minus ERA-Interim’s delta) are provided in the

right column; each row corresponds to a particular pre-

dictor combination. The numbers in each map indicate

the spatial mean value for all stations (All) or those sta-

tions pertaining to a specific CT (CT1–CT4, respectively).

As can be seen, a negligible delta is found for any

future period if precipitation is downscaled from circu-

lation variables alone (first row). Note that this is in

agreement with the time evolution of U850 and

U300, which is virtually constant throughout the whole

twenty-first century (first and second rows in Fig. 7),

indicating that the large-scale circulation (as simulated

by MPI-ECHAM5) over the target region is not sensi-

tive to climate change.

However, if Q850 and/or T850 are added to circula-

tion, the projected deltas increase as a function of lead

time (i.e., are larger for the end of the century; see the

second, third, and fourth rows). This holds valid for us-

ing Q850 and T850 as separate predictors (not shown).

Remarkably, precipitation deltas for Q850 and T850 are

larger than for P4, indicating that the inclusion of cir-

culation damps the climate change signal (not shown).

The fact that Q850—either alone (not shown) or in

combination with U850 and U300 (P2 in Fig. 6)—leads

to the largest delta differences proves that the down-

scaling results are especially sensitive to reanalysis

FIG. 6. The effect of reanalysis uncertainty on future precipitation projections. Displayed are precipitation deltas for three future

periods (from left to right, 2011–40, 2041–70, and 2071–2100, all with respect to the control period 1981–2000). Each future period makes

up a column. For each column, the left (middle) panel shows the deltas obtained from applying the regression coefficients learned from

ERA-Interim (JRA-25) to predictor data fromMPI-ECHAM5. The right column displays the difference between the JRA-25’s delta and

ERA-Interim’s delta. The numbers in each panel correspond to the spatial average values for all stations or those stations pertaining to

a specific CT (All and CT1–4, respectively).
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choice when this variable is included in the predictor

field. For P2, reanalysis-induced delta differences reach

35% (45%) for the entire country (CT1) at the end of

the century (2071–2100).

Finally, note that the reanalysis-induced differences in

the downscaled time series are proportional to the climate

change signal imposed by the GCM (cf. Figs. 6 and 7).

Also, the magnitude of the projected deltas seems to be

related to the cross-validation results of section 4b. In

particular, larger deltas are obtained for the ‘‘better’’

performing reanalysis, that is, ERA-Interim (JRA-25)

when Q850 (T850) is added to circulation.

FIG. 7. Mean value—as simulated by MPI-ECHAM5 (A1B scenario, run 3)—in the three considered future periods

(2011–40, 2041–70, and 2071–2100, in columns) for each of the predictor variables listed in Table 1 (in rows).
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5. Conclusions and discussion

In this study, a generalized linear model (GLM) ap-

proach is applied to downscale daily precipitation in the

Philippines. To explore the effect of reanalysis un-

certainty on statistical downscaling (SD), two distinct

reanalysis datasets are used to obtain the link functions

(regression coefficients) relating the local-scale pre-

dictands to the large-scale predictors. When comparing

observed and downscaled daily precipitation time series

over the period 1981–2000 using a cross-validation scheme,

results are found to be sensitive to the reanalysis dataset

selected for calibration, which is in agreement with the

few previous studies addressing this issue (Koukidis and

Berg 2009; Hofer et al. 2012; Park et al. 2013). However,

with spatial average (local scale) correlation differences

of 0.03 (0.10) at the utmost, this sensitivity is relatively

small at this point.

The reanalysis-calibrated coefficients are subsequently

applied to predictor data from a global climate model

(GCM) in order to generate local-scale climate pro-

jections for the whole twenty-first century. In this case,

the reanalysis-induced differences detected in present

climate conditions are considerably amplified when

signal-bearing variables—which are indispensable for

capturing the correct climate change signal—are included

in the predictor field. In particular, the projected deltas

for the end of the century (2071–2100 minus 1981–2000)

are found to differ by up to 35% (on average for the

whole country) for the two reanalyses considered.

Therefore, the choice of reanalysis used for calibration in

perfect-prog SD is an important contributor to the un-

certainty of local-scale climate change projections and,

consequently, should be treated with as much care as

other well-known uncertainty sources, such as the choice

of GCM or downscaling method (Dibike and Coulibaly

2005; Chen et al. 2012).

Although these conclusions have been deduced for

a specific region (the Philippines), they are likely to hold

valid for the entire tropics since previous studies point

out that reanalysis uncertainty is a general problem at

low latitudes, especially for climate change signal–

bearing predictor variables on daily time scale (Brands

et al. 2012, 2013). Also, the presented results rely on

a single GCM and therefore should be reconfirmed with

alternativeGCMs (with distinct model physics) in future

studies. Besides, an exhaustive assessment on the pre-

dictive potential of alternative predictor variables in the

tropics, such as velocity potential or streamfunction, and

on the corresponding differences induced by reanalysis

choice might be a useful future task.

Apart from being relevant for perfect-prog SD,

reanalysis uncertainty is expected to be equally relevant

for themodel output statistics approach, in whichGCMs

are nudged to reanalysis data in order to force them to

follow the ‘‘observed’’ large-scale variability (Eden et al.

2012). Here, it has been shown that the ‘‘real’’ large-

scale atmospheric variability in the tropics is likely to be

misrepresented by reanalyses and, consequently, also by

the aforementioned nudged GCMs. Finally, since re-

gional climate models can be nested into different re-

analysis datasets, reanalysis uncertainty is also likely to

affect the dynamical downscaling approach (Park et al.

2013).
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