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Abstract A statistical downscaling method (SDSM) was
evaluated by simultaneously downscaling air temperature,
evaporation, and precipitation in Haihe River basin, China.
The data used for evaluation were large-scale atmospheric
data encompassing daily NCEP/NCAR reanalysis data and
the daily mean climate model results for scenarios A2 and
B2 of the HadCM3 model. Selected as climate variables for
downscaling were measured daily mean air temperature,
pan evaporation, and precipitation data (1961–2000) from
11 weather stations in the Haihe River basin. The results
obtained from SDSM showed that: (1) the pattern of change
in and numerical values of the climate variables can be
reasonably simulated, with the coefficients of determination
between observed and downscaled mean temperature, pan
evaporation, and precipitation being 99%, 93%, and 73%,
respectively; (2) systematic errors existed in simulating
extreme events, but the results were acceptable for practical

applications; and (3) the mean air temperature would
increase by about 0.7°C during 2011~2040; the total annual
precipitation would decrease by about 7% in A2 scenario
but increase by about 4% in B2 scenario; and there were no
apparent changes in pan evaporation. It was concluded that
in the next 30 years, climate would be warmer and drier,
extreme events could be more intense, and autumn might be
the most distinct season among all the changes.

1 Introduction

Increasing concentration of CO2 and other greenhouse
gases, along with intensifying human activities, are perturb-
ing the global energy balance, heating up atmosphere, and
causing global warming (Xu 1999; Wentz et al 2007). It has
been pointed out in the fourth report of the Intergovern-
mental Panel on Climate Change (IPCC) that the global
surface temperature has increased by 0.74°C in the latest
century (1906–2005), and the increasing rate is about
0.13°C/10 years in the past 50 years; this report also
predicted that surface temperature would continue to
increase at a rate of 0.2°C/10 years in the next 20 years
and would increase by about 1.1–6.4°C during the next
century (IPCC 2007). Global warming will disturb the
worldwide water cycle; in turn, the changed hydrological
regime will affect nearly every aspect of human activities,
such as fish management and health of ecosystems, industrial
and municipal water supply, water energy exploitation, human
health, etc.

The state-of-art General Circulation Models (GCMs) can
reproduce important processes about global- and continental-
scale atmosphere and predict future climate under different
emission scenarios. Although there are many uncertainties in
different GCMs, they are still the most adapted approach, to
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date, to obtain information on climate change. Since spatial
resolutions of GCMs are often coarse (hundreds of kilometer),
there is a mismatch of scale between GCMs and the scale of
interest for regional impacts (an order or two orders of
magnitude finer scale). For many regional and local applica-
tions, users of climate model results have long been
dissatisfied with the inadequate spatial scale of climate
scenarios produced from coarse resolution GCMs outputs
(Cubasch et al. 1996; Risbey and Stone 1996; Eric and
Salathe 2003). In the past couple of decades, different
downscaling methods have been proposed in order to deal
with the problem of spatial scale mismatch, and these methods
have been widely used in their cradles, such as Europe and
USA (Hanssen-Bauer et al. 2005; Fowler and Wilby 2007;
Hellstrom et al. 2001; Wilks 1989; Murphy 2000; Hayhoe et
al. 2004; Vrac et al. 2007; Coulibaly 2004; Wetterhall et al.
2005, 2006, 2007).

Downscaling methods can be broadly divided into
two classes: dynamical downscaling (DD) and statistical
(empirical) downscaling (SD). In DD, the GCM outputs
are used as boundary conditions to drive a Regional Climate
Model or Limited Area Model and produce regional-scale
information up to 5~50 km. This method has superior
capability in complex terrain or with changed land cover
(Wang et al. 2004; Kite 1997). However, this method entails
higher computation cost and relies strongly on the boundary
conditions provided by GCMs. In contrast, SD gains local-
or station-scale meteorological time series (predictands) by
appropriate statistical or empirical relationships with surface
or troposphere atmospheric features (predictors; Xu 1999;
Wilby and Wigley 1997; Fowler et al. 2007). Since this
method is inexpensive to use and is as powerful as its
dynamic competitor, it has been widely employed in climate
change impact assessments. However, its drawback is that
it needs much longer historical time series to build the
appropriate statistical relationship. In addition, one of the
assumptions of SD, which is the built statistical relation-
ship, is still valid in the future; this assumption cannot be
tested at present.

According to techniques for application, SD methods
can be classified into three categories: regression methods
(Von Storch et al. 1993; Kang et al. 2007; Burger and Chen
2005); weather pattern-based approaches (Bardossy and
Plate 1992); and stochastic weather generators (Richardson
1981). No matter whether the method is simple or complex,
it is always based on some kind of a regression relationship.
Regression methods depend on linear or nonlinear relation-
ships between predictands and predictors. Nowadays, many
regression methods, such as Artificial Neural Networks
(Tripathi et al. 2006), Multiple Linear Regression (MLR),
Canonical Correlation Analysis (Busuioc et al. 1999; Frias
et al. 2006), and Principal Component Analysis, have been
widely used in the hydrologic response assessment. SDSM

is a hybrid of a regression method and weather generator
(Wilby et al. 1999, 2002, 2003). Many comparative studies
(Fowler et al. 2007; Wilby et al. 1998; Khan et al. 2006;
Harpham and Wilby 2005; Dibike and Coulibaly 2005)
have shown that this method is simple to handle and has, by
and large, superior capability and is, therefore, widely applied
(Wilby and Harris 2006).

In China, statistical downscaling methods have gradually
started to receive increasing attention (Fan 2006; Yuan et al.
2005; Fan et al. 2005, 2007; Chen and Chen 2001; Chen et
al. 2006; Liao et al. 2004). When compared with western
countries, studies on downscaling have, however, been
meager, and most of these studies are limited to daily
precipitation using a weather generator method (Liao et al.
2004). SDSM has once been used in the upper and middle
reaches of the Yellow River Basin, China (Zhao and Xu
2008; Liu et al. 2008) and has mainly focused on maximum
and minimum temperatures as well as precipitation. Simul-
taneously downscaling of precipitation, temperature, and
evaporation has not been reported elsewhere at present.

The objective of this article, therefore, is twofold: (1) to
investigate the adaptability of SDSM for simultaneously
downscaling mean temperature, pan evaporation, and pre-
cipitation in Haihe River basin and discuss strengths and
weaknesses of the method when applied to semiarid regions
in China; (2) to provide local-scale climate change informa-
tion under future emission scenarios, which will be used in
the ongoing research on water resources assessment under
future climate change. To the best of our knowledge, such
study has not been reported at least for Chinese regions.
This study may be a valuable reference for many others
who are going to apply SDSM to other regions of China
and also provide valuable database for future climate
change scenarios in the Haihe River basin covering Beijing
and several other large cities and economic regions.

2 Study area and data

2.1 Study area

The Haihe River basin, located between 112–120° E and
35–43° N, has a total area of about 31.8×104 km2; 60% of
the area is occupied by hills and plateau area, and the
remaining 40% is a plain area. To the north of the catchment
is the Yan Mountain, to the south is the Taihang Mountain,
and to the east of the catchment is the North China plain.

The climate of Haihe River basin ranges from semi-
humid and semiarid continental monsoon. It is arid and dry
in spring, hot and humid in summer, sunny in autumn, and
cold and dry in winter. The multiyear average air temperature
gradually rises from northwest to southeast, and multiyear
average pan evaporation is between 1,500 and 2,000 mm/
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year (Ren 2007). The Haihe River basin has the least
rainfall along the east coast of China, with multiyear annual
rainfall being about 350–750 mm/year and mainly concen-
trated in July and August. The spatial distribution of rainfall
is also uneven; there is more rain along the coast due to
strong sea–land wind or along the windward side of the Yan
Mountain and Taihang Mountain affected by orographic
uplift. However, rainfall on the leeward side is obviously
less than that on the windward side because mountains
obstruct the water vapor and make the airflow sink down
(Shi 1995).

Mean temperature, pan evaporation, and precipitation are
the important climate parameters (Fan and Liu 1992). The
migration of rain belts, as well as the change of tempo-
spatial distribution and intensity of precipitation, has a
direct influence on the total amount of water resources,
while temperature and pan evaporation can indirectly affect
the hydrologic trend due to the interaction with land surface
processes on a longer time scale.

The basin area was represented as a grid with 3.75°
(longitude)×2.5° (latitude), which is identical to the HadCM3
resolution. This region centers at 116.25° E and 40° N, i.e., the

region C1 in Fig. 1. Because all of the typical topographies,
such as coast, plain, and mountains, are contained in this
region, it is a representative area for downscaling studies.
There are 11 weather stations in the region C1, including
those important cities, such as Beijing, Tianjin, Zhangjiakou,
etc. These cities occupy special political and socioeconomic
centers in China. In the past decades, groundwater in North
China plains has been seriously overexploited, resulting in a
wide disparity between water demand and water supply.
Consequently, it is of urgent significance to also study how
to guarantee sustainable utilization of water resources in
these cities under changing environment and increasing
uncertainty.

2.2 Data

Measured daily mean air temperature, pan evaporation, and
precipitation of 11 weather stations from 1961 to 2000 were
selected from the daily observation data of China Meteo-
rological Administration. Since daily pan evaporation data
have missing values for some stations, two continuous data
periods for pan evaporation, i.e., 1962.1.1–1966.8.31 and
1970.9.1–2000.12.31, were chosen for this study, while for
air temperature and precipitation, the complete period from
1961–2000 was used. The basic information about these
three predictands can be seen in Table 1.

There are 23 different atmospheric variables, and these
were derived from the daily reanalysis dataset of NCEP/
NCAR for 1961–2001 at a scale of 2.5° (long.)×2.5° (lat.),
as well as outputs of scenarios A2 and B2 of HadCM3 from
1961 to 2099, with a spatial resolution of 3.75° (long.)×
2.5° (lat.; Table 2). First, we interpolated the NCEP data in
order to adjust its resolution to the same as scenarios A2
and B2 of HadCM3 model then normalized all of these
atmospheric data as:

but ¼ ut � u

su
ð1Þ

in which but is the normalized atmospheric variable at time t,
ut is the original data at time t, u is the multiyear average
during the period, and σu is the standard deviation. The
results can be directly downloaded from the internet using
the site: http://www.cics.uvic.ca/scenarios/sdsm/select.cgi

3 Methodology

As a first step, a quantitative statistical relationship between
large-scale atmospheric variables and local-scale variables
was established (Chen 2000) as:

Y ¼ F Xð Þ ð2Þ

Fig. 1 Location map of weather stations in Haihe River basin, in
which, the Haihe River basin has been divided into nine grids by
green lines, with the name indicated by red letter; black triangle
means 52 weather stations in Haihe River basin; red dot means 11
weather stations in study region—region C1, and black letter indicates
the names of weather stations in region C1
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in which Y means the local predictand, X(x1, x2,..., xn)
represents n large-scale atmospheric predictors, and F is the
built quantitative statistical relationship.

SDSM uses large-scale atmospheric variables to condi-
tion the rain occurrence as well as the rainfall amount in
wet days. It can be expressed as follows (Wetterhall et al.
2005; Wilby et al. 1999, 2003):

wt ¼ a0 þ
Xn
j¼1

ajbu jð Þ
t þ at�1wt�1 ð3Þ

in which t is time (days), ωt is the conditional possibility
of rain occurrence on day t, bu jð Þ

t is the normalized predictor,
αj is the regression parameter deduced by an ordinary
least square method, and ωt−1 and t−1 are the conditional
probabilities of rain occurrence on day t−1 and lag-1 day
regression parameters, respectively. These two parameters
are optional, depending on the study region and predic-

tand. We used a uniformly distributed random number
rt (0≤rt≤1) to determine the rain occurrence and supposed
that rain would happen if ωt≤rt.

On a wet day, rainfall can be expressed by a z-score as:

Zt ¼ b0 þ
Xn
j¼1

bjbu jð Þ
t þ bt�1 þ " ð4Þ

in which Zt is the z-score on day t, βj is the calculated
regression parameter, and βt−1 and Zt−1 are the regression
parameter and the z-score on day t−1, respectively. As
mentioned above, they are also optional; ε is a random error
term represented by the normal distribution N(0, s2

").
Then, rainfall yt on day t can be written as:

yt ¼ F�1 f Ztð Þ½ � ð5Þ
in which 7 is the normal cumulative distribution function
and F is the empirical distribution function of yt.

Table 1 Basic information about 11 weather stations in the Region C1

station code station name Abbr. longtitude latitude altitude m Mean annual temperature °C pan evaporation mm/yr rainfall mm/yr

54405 Huailai hl 115°30′ 40°24′ 537 9.5 2124 381

54401 Zhangjiakou zk 114°53′ 40.47′ 724 8.6 1933 401

53593 Weixian wx 114°34′ 39°50′ 910 6.9 1621 406

54308 Fengning fn 116°38′ 41°13′ 660 6.7 1636 467

54518 Langfang lf 116°23′ 39°07′ 9 12.1 1776 510

54423 Chengde cd 117°56′ 40°58′ 377 9.1 1530 526

54602 Baoding bd 115°31′ 38°51′ 17 12.8 1645 533

54527 Tianjin tj 117°10′ 39°06′ 3 12.6 1678 547

54511 Beijing bj 116°17′ 39°56′ 54 12.2 1841 575

54623 Tanggu tg 117°43′ 39°00′ 3 12.5 1969 589

54429 Zunhua zh 117°57′ 40°12′ 55 10.8 1607 744

Area-average 304 10.3 1760 516

The time span of mean annual temperature and rainfall is 40 years, which is between 1961.1.1~2000.12.31, while 35 years for pan evaporation,
that is, 1962.1.1.~1966.8.31 and 1970.9.1~2000.12.31

Table 2 The 23 candidates of atmospheric variables for predictors

Variable Description Variable Description

p5_f Geostrophic airflow velocity at 500 hPa p8_f Geostrophic airflow velocity at 850 hPa

p5_u Horizontal wind at 500 hPa p8_u Horizontal wind at 850 hPa

p5_v Zonal wind at 500 hPa p8_v Zonal wind at 850 hPa

p5_z Vorticity at 500 hPa p8_z Vorticity at 850 hPa

p5zh Divergence at 500 hPa p8zh Divergence at 850 hPa

p500 Geopotential height at 500 hPa p850 Geopotential height at 850 hPa

r500 Relative humidity at 500 hPa r850 Relative humidity at 850 hPa

p__f Surface geostrophic airflow mslp Mean sea level pressure

p__u Surface horizontal wind rhum Near surface relative humidity

p__v Surface zonal wind shum Near surface specific humidity

p__z Surface vorticity temp2 2-m air temperature

p_zh Surface divergence
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Fig. 2 Predictors (in black bolds) and corresponding regions (in red) for different predictands; a for mean temperature (°C); b for pan evaporation
(mm); c for precipitation (mm). In which, the meaning of predictors are same as in the Table 2
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As far as daily temperature and pan evaporation are
concerned, we just need to consider the stochastic amount,
so Eq. 3 is not needed.

4 Downscaling daily mean temperature, pan evaporation,
and precipitation

4.1 Calibration and validation of SDSM

4.1.1 Selecting predictors

The climate in China is strongly controlled by the East
Asian monsoon, in which the atmosphere circulation
feature is quite different between winter and summer, and
the scale of circulation pattern is large. Thus, it is a huge
challenge in China to choose predictors in the wide tempo-
spatial space (Samel et al. 1999). The procedure adopted in
the study for selecting suitable predictors for each pre-
dictand is as follows:

First, all of the 23 atmospheric variables in nine regions
(region C1 and surrounding eight regions, i.e., NW, NN,
NE, W1, E1, W2, C2, and E2) were taken as potential
predictors; second, the SMLR method was employed with
the confidence level of selection and rejection being 0.001
and the magnitude of probability of every predictor was
considered in every region and month; third, the most
sensitive regions and predictors for each station month by
month were analyzed, and the analysis results of 11 stations
was integrated; and finally, 12 predictors were selected for
each predictand (Fig. 2).

It is clearly seen that different atmospheric predictors
control different local variables: mean temperature is most
sensitive to surface and near surface atmospheric factors, and
its predictors cover all of the nine regions. In the northwest,
surface vorticity and horizontal wind play an important role,
while in the southeast, mean sea level pressure is more
prominent. As to the pan evaporation, the most relevant
predictors occur above 700 hPa. In the north, airflow is
horizontally transferred at 500 hPa, while in the middle and
southern parts, the predictors are relative humidity at 500 and
850 hPa level. When precipitation is concerned, in the north,
the airflow is zonally transferred above 700 hPa while
horizontally transferred below 700 hPa; in the southern part,
the water vapor is mainly transferred to the north by vorticity
at 850 hPa. All of these are similar to the conclusion about
the water vapor transmission in the North China deduced by
Fan and Liu (1992).

4.1.2 Calibration and validation of SDSM

In this study, the calibration periods for mean temperature
and precipitation were 30 years from 1961 to 1983 and

1994 to 2000, and the validation period was 1984–1993.
For pan evaporation, the calibration period was 25 years
excluding a few years with missing data as mentioned
before, that is, 1962.1.1–1966.8.31, 1970.9.1–1983.12.31,
and 1994.1.1–2000.12.31.The validation period was the
same as for temperature and precipitation.

Taking the selected NCEP reanalysis data as predictors,
we built SDSM month by month considering the lag-1 day
autoregression. The threshold of wet day was 0 mm. The
calibration results are shown in Table 3.

Table 3 shows that the values of μ, Cv, and Cs of
simulated air temperature are in good agreement with those
of the observed values; at the α=0.01 confidence level, the
coefficient of determination (R2) between simulated and
observed air temperature at all stations exceeded 99%.
The simulated and observed values of μ, Cv, and Cs for

Table 3 Comparison of mean value (μ), coefficient of variation (Cv),
coefficient of skewness (Cs), determination coefficient (R2), and Root
Mean Square Error between observed and simulated results for each
station in the calibration period (1961–1983 and 1994–2000) and the
validation period (1984–1993; α=0.01)

μ Cv Cs R2 RMSE

Temperature (°C)

Calibration

OBS 10.332 1.213 −0.216
NCEP 10.341 1.211 −0.218 0.9952 0.78

Validation

OBS 10.397 1.192 −0.22
NCEP 10.32 1.199 −0.213 0.9974 0.57

H3A2 10.261 1.212 −0.225 0.9692 1.96

H3B2 10.186 1.234 −0.245 0.97 1.95

Evaporation (mm)

Calibration

OBS 4.883 0.723 0.874

NCEP 4.888 0.726 0.8 0.9255 23.34

Validation

OBS 4.635 0.707 0.737

NCEP 4.941 0.709 0.76 0.9815 11.49

H3A2 4.712 0.683 0.73 0.8906 24.75

H3B2 4.783 0.69 0.73 0.8645 28.72

Precipitation (mm)

Calibration

OBS 1.417 4.528 8.803

NCEP 1.354 4.354 9.285 0.7296 28.66

Validation

OBS 1.4 4.293 7.958

NCEP 1.198 4.453 9.307 0.8949 14.58

H3A2 1.311 3.997 8.264 0.7553 21.34

H3B2 1.277 4.056 8.264 0.7205 22.6
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evaporation were also very similar; the average R2 value
for pan evaporation was around 93%. As to precipitation,
its μ value for simulations was slightly lower than that for
observations, the difference between simulated and ob-
served Cv and Cs values were in general within 10% except
on very few occasions. The R2 values for the downscaled
precipitation were slightly lower than that for the other two
predictands; on the average, R2 was about 73%.

To validate the SDSM method, three sets of atmospheric
data were used, i.e., from NCEP, as well as scenario A2 and
B2 from HadCM3 model (noted as H3A2 and H3B2,
respectively). The results for the validation period are also
shown in Table 3. It is seen that the mean temperature was
well simulated from NCEP, H3A2, and H3B2 with the R2

values being up to 97%. However, when downscaling pan
evaporation and precipitation, R2 from NCEP were remark-
ably better than from H3A2 and H3B2; and H3B2 was a
little worse than H3A2. The error was mainly reflected in the
high values which might be because SDSM was calibrated
with NCEP data; therefore, the built parameters had biases
when the model was driven by the H3A2 and H3B2 data.
Other statistics, i.e., μ, Cv, and Cs were comparable between
downscaled and observed data.

4.2 Comparison of statistical indices of downscaling
for the validation period

The preceding section has shown that mean values of all
three predictands were well simulated by SDSM; however,
extreme climate events, such as droughts, floods, or hot spells,
potentially have a much greater impact on water resources
management than have average values. Possible future risks
under extreme climate have, therefore, been paid more and
more attention. It is, therefore, necessary to assess the capacity
of SDSM to grasp the features of extreme events. With
reference to STARDEX statistical indices, different indicators
were employed for different predictands.

4.2.1 Mean temperature

It is seen in Fig. 3 that the pattern of seasonal variation of
mean temperature was well downscaled with all three
datasets (NCEP, H3A2, H3B2), and the results from NCEP
were the best. In simulating the T_Max and T_Max_5Tot,
the results from H3A2 and H3B2 were obviously system-
atically larger, while in simulating the T_Min, the results
were lower than observations. The overestimation or
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Maximum daily mean temperature (T_Max), c Minimum daily mean
temperature (T_Min) and d Maximum 5-day continuous cumulative

temperature (T_Max5_Tot) between observed and generated values in
the validation period (1984–1993)
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underestimation was most distinct in April. All of these
showed that: (1) the mean value and seasonal variation of
mean temperature can be accurately simulated by SDSM
fed by NCEP, H3A2, or H3B2 and (2) the T_Max was
somehow overestimated and T_Min was underestimated by
the H3A2 and H3B2 data.

4.2.2 Pan evaporation

The results for pan evaporation are shown in Fig. 4. It is
seen that in simulating the E_Sum, the NCEP results
overall were slightly larger than observations, especially
between April and July. The simulation from H3A2 and
H3B2 had the peak shifted by 1 month from May to June.
The seasonal pattern of simulated E_90Percentile, E_Max,
and E_Max5_tot were similar, e.g., an overestimation in
summer and an underestimation in later spring. In general,
the results were acceptable for practical use.

4.2.3 Precipitation

Daily precipitation at a station or at a local scale is the
pivotal input variable to a rainfall-runoff model and plays a

critical role in the study of climate change impact on
hydrological systems (Chen et al. 2006). Furthermore, both
the rain occurrence and the amount of precipitation are
stochastic processes; therefore, the downscaling of precip-
itation is always a difficult problem (Doyle 1997).

It can be seen in Fig. 5 that the simulated mean monthly
precipitation was broadly lower, especially in the rainy season
of June and July except for P_90Pop and P_90Pop_Tot.
Therefore, we can deduce that the high rainfall and concen-
trated period precipitation cannot be well captured by the
model. The overestimation of P_Max in June was because
Beijing, Tianjin, and Zunhua stations had recorded rain as
high as 139.2, 130.5, and 69.1 mm/day, respectively, on 27
June, 1986. The return period of this rainfall in June in Beijing
and Tianjin was estimated to be about 50 years. In addition,
Chengde and Tanggu had 40 return period storms on 1991.6.8
and 1984.6.15, with rainfall of 79.1 and 121.3 mm/day,
respectively. The abnormal amount of storm rainfall at these
five stations contributed to the high value of area-average
precipitation in June. Since the validation period only had
10 years, the simulation could not accurately reflect the
abnormal storm events. As to the P_90Percentile, the
simulation was generally underestimated, and the underesti-
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mation was most obvious in summer with the results from
H3A2 and H3B2. The measured P_90Percentile was abnor-
mally high in November; from the historical data, it was found
that the P_90Percentile at coastal stations, such as Baoding,
Langfang, Tianjin, and Tanggu stations, was significantly
higher than at other stations in November, with the amount
being up to 10 mm/day, while other stations had a rainfall of
4–8 mm/day. Due to the marine lag effect, the temperature at
these stations was higher in November; the cold air from
inland to Bohai Sea meets the warm air from ocean and form
clouds and local rain events. As to the P_90Pop and
P_90Pop_Tot, the simulated rain occurrence and amount
were accurate by and large. As to the wet-day%, the simulated
results from NCEP data were similar to the measured values,
except for an underestimation in July and August. The
simulated values with H3A2 and H3B2 were systematically
larger in the first half of the year while accurate in the second
half of the year. Consequently, for the Max_Dspel, the
simulation from H3A2 and H3B2 was underestimated in the
first half of the year and an overestimation occurred in
autumn, especially in September.

A close look at the historical measured data reveals that
the Max_Dspel of stations along Taihang Mountain and
Yan Mountain, such as Weixian, Huailai, Zhangjiakou,
Fengning, and Chengde, were much smaller than other
stations in September, with dry spell being about 9 or
10 days, which can be attributed to the orographic rainfall
when warm and humid airflow climbed the mountain and
blocked by the mountains. Therefore, SDSM has some
limitation in simulating the rainfall affected by special
terrains. Above all, SDSM can quite accurately reflect the
total amount of precipitation and seasonal change patterns,

although this method also has some limitation in simulating
the orographic rainfall. In conclusion, underestimation of
the total amount and some extreme values to some extent
can be attributed to the short validation period which is
heavily influenced by some extreme events appearing in the
record with a return period much larger than that in the
validation period.

4.3 Downscaling daily mean temperature, pan evaporation,
and precipitation under future emission scenarios

According to worldwide rule, the spell of 1971–2000 was
taken as the current climate (C), and the spell of 2011–
2040 was taken as the near future predicted climate (F) in
this study. The patterns of change about mean temperature,
pan evaporation, and precipitation were then analyzed,
using only H3A2 and H3B2 data. The downscaled results
for the current climate and the difference between the
current and future climate change are shown in Tables 4, 5,
and 6.

4.3.1 Mean temperature

From Table 4, it can be seen that when compared with
current climate, the mean temperature would increase by
about 0.7°C in the next 30 years. The most warming
amplitudes may happen in autumn and slightly decrease in
winter and keep basically the same in spring and summer.
In the future, the T_Max and T_Max5_Tot would largely
increase, especially in autumn, and the increase with H3B2
would be more than with H3A2. As to the future T_Min,
the simulated values would be lower in H3B2 but higher

T_Mean T_Max T_Min T_Max5_Tot

A2(F-C) B2(F-C) A2(F-C) B2(F-C) A2(F-C) B2(F-C) A2(F-C) B2(F-C)

DJF 0.508 0.535 1.691 0.920 0.921 −0.456 12.032 9.209

MAM 0.383 0.736 1.234 1.472 1.262 −0.527 0.233 5.129

JJA 0.544 0.679 0.266 −0.278 0.506 2.516 2.589 0.047

SON 0.985 1.136 0.848 2.483 −0.109 −1.437 3.751 11.156

Annual 0.605 0.771 0.278 −0.249 0.921 −0.456 2.588 0.079

Table 4 Comparison of the
difference of statistical indices
of mean temperature between
current (1971–2000) and future
climate (2011–2040) conditions

The meanings of four statistical
indices are same as showed in
the caption of Fig. 3

E_Sum E_Max E_90Percentile E_Max5_Tot

A2(F-C) B2(F-C) A2(F-C) B2(F-C) A2(F-C) B2(F-C) A2(F-C) B2(F-C)

DJF −4.057 −5.072 −0.023 −0.129 −0.109 −0.086 −0.813 −0.769
MAM 13.016 −13.432 0.097 −0.489 0.201 −0.231 0.078 −1.542
JJA 31.443 0.541 0.541 0.012 0.557 0.072 2.346 −0.656
SON 2.814 −8.881 0.300 −0.164 0.097 −0.175 1.611 −1.055
Annual 43.081 −27.013 0.442 −0.134 0.347 −0.068 2.052 −0.812

Table 5 Comparison of the dif-
ference of statistical indices of
pan evaporation between current
(1971–2000) and future climate
(2011–2040) conditions

The meanings of four statistical
indices are same as showed in
the caption of Fig. 4
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than in H3A2 when compared to the current climate and
would decrease more in autumn. Above all, in the future,
the T_Mean would increase, and extreme events would be
more obvious, and the largest amplitude of change would
happen in autumn.

4.3.2 Pan evaporation

In Table 5, it can be seen that the change trend of H3A2 and
H3B2 is different; the pan evaporation in H3A2 would
increase in spring, summer, and autumn, while decrease in
winter, and H3B2 had no change; on average, the annual
pan evaporation amount would increase by about 8 mm,
and the more increase would happen in summer. In the
future, the E_Max had no much obvious change; the
E_90Percentile would also increase in the future and
mainly concentrated in summer. In conclusion, the change
pattern of pan evaporation was not very clear in the future.

4.3.3 Precipitation

It is shown clearly in Table 6 that the annual amount of
precipitation would decrease by about 7% in H3A2 while
increase by about 4% in H3B2, and the change was mainly
found in summer. In winter, there was an increase in both
A2 and B2 scenarios. In the future, the P_Max and
P_Max5_Tot would have little decrease in A2 but increase
in B2, especially in autumn. In the future, the threshold of
storm (P_90Percentile) had no remarkable change. As to
the storm occurrence (P_90Pop), the number of days would
decrease by about 9 days in A2 while increase by about
7 days in B2, especially in summer. When it came to the
P_90Pop_Tot, there was no obvious variation. In the future,
the change of wet-day% could be neglected. As for the
Max_Dspel, it would basically become shorter, especially
in winter. Above all, when compared with the current
climate, the amount of precipitation would largely decrease;
the maximum spell of dry-day would become shorter; rain
occurrence had no significant change; the intensity of
extreme precipitation event as measured by P_Max and
P_Max5_Tot could be strengthened in B2, while weakened
in A2.

5 Conclusions

Statistical downscaling methods are effective measures to
fill the gap between large-scale climate change and local-
scale hydrological response; among them, SDSM is widely
used for its simplicity and superior capability. In this study,
SDSM is applied to the Haihe River basin, China, and we
investigated its applicability by downscaling mean temper-
ature, pan evaporation, and precipitation, which are impor-T
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tant for assessing the impact of climate change on water
resource management. Furthermore, we analyzed their
patterns of change for 2011–2040, which would pave the
way for the study of hydrological impacts under future
climate change in the Haihe River basin.

It is a big challenge to select predictors under the strong
influence of East Asia monsoon and complex climate
conditions. We found that different sets of predictors to
different predictands can be selected from a wide space by
using the SMLR method, and these predictors have some
physical meaning. As to the mean temperature, it is more
sensitive to the near surface atmospheric variables, the
airflow from northwest is transferred mainly by vorticity
and horizontal wind, and the southeast airflow is affected
mainly by sea surface mean pressure. As to the pan
evaporation, northern zonal wind at 500 hPa level and
humidity in central and middle part would have influence;
as far as precipitation is concerned, in the north, it is
mainly affected by meridional airflow above 700 hPa and
horizontal airflow below 700 hPa, and in the south it is
mainly influenced by the vorticity at 850 hPa level.

Calibrating and validating SDSM with the NCEP
reanalysis data selected by the SMLR method have proven
to be successful, and the amount and the pattern of change
can be simulated well. The best result is the mean temperature
with R2 equal to 99%, followed by pan evaporation with R2

between 87% and 96%, and precipitation with R2 equal to
about 73%. The simulation from H3A2 and H3B2 is worse
than that from NCEP data in the validation period, partly
because SDSM is fitted using the NCEP data. Above all,
using selected predictors from the SMLR method and
feeding them to SDSM, the variation characteristic of mean
temperature, pan evaporation, and precipitation can be
reasonably produced, and this method is adaptable in the
Haihe River basin.

It is concluded that the T_Mean can be accurately
simulated; however, the result from H3A2 and H3B2 has
systematic errors in simulating extreme events; it can
overestimate high values and underestimate low values. In
the next 30 years from 2011 to 2040, the temperature
extreme events would be more significant, especially in
autumn.

In the future, the change pattern of pan evaporation is
not obvious since the factors working on evaporation are
complicated.

The amount of precipitation and the pattern of seasonal
change in storms can be better simulated; however, the
extreme events in July and August can be underestimated;
it is partly because the abnormal condition caused by
special terrain and special weather events appear in the
validation period. When compared with current climate,
the total amount of precipitation would largely decrease;
the maximum spell of dry-day would be shortened,

especially in winter; the intensity of extreme precipitation
events would be augmented in B2 scenario while
weakened in A2 scenario.

Although SDSM and the SMLR method can well
simulate mean values and trend of changes, however, they
have limitations in special terrains and in conditions
affected by special local weather events. Their simulation
capacity in producing extreme events needs to be validated
further, so it calls for the lengthening of the observation
data time series on one hand and the improvement of the
model itself on the other hand.
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