
WATER RESOURCES RESEARCH, VOL. 34, NO. 11, PAGES 2995-3008, NOVEMBER 1998 

Statistical downscaling of general circulation model output: 

A comparison of methods 

R. L. Wilby, a,2 T. M. L. Wigley, a D. Conway, 3 P. D. Jones, 3 
B.C. Hewitson, 4 J. Main, 4 and D. S. Wilks 5 

Abstract. A range of different statistical downscaling models was calibrated using both 
observed and general circulation model (GCM) generated daily precipitation time series 
and intercompared. The GCM used was the U.K. Meteorological Office, Hadley Centre's 
coupled ocean/atmosphere model (HadCM2) forced by combined CO2 and sulfate aerosol 
changes. Climate model results for 1980-1999 (present) and 2080-2099 (future) were 
used, for six regions across the United States. The downscaling methods compared were 
different weather generator techniques (the standard "WGEN" method, and a method 
based on spell-length durations), two different methods using grid point vorticity data as 
an atmospheric predictor variable (B-Circ and C-Circ), and two variations of an artificial 
neural network (ANN) transfer function technique using circulation data and circulation 
plus temperature data as predictor variables. Comparisons of results were facilitated by 
using standard sets of observed and GCM-derived predictor variables and by using a 
standard suite of diagnostic statistics. Significant differences in the level of skill were 
found among the downscaling methods. The weather generation techniques, which are 
able to fit a number of daily precipitation statistics exactly, yielded the smallest differences 
between observed and simulated daily precipitation. The ANN methods performed poorly 
because of a failure to simulate wet-day occurrence statistics adequately. Changes in 
precipitation between the present and future scenarios produced by the statistical 
downscaling methods were generally smaller than those produced directly by the GCM. 
Changes in daily precipitation produced by the GCM between 1980-1999 and 2080-2099 
were therefore judged not to be due primarily to changes in atmospheric circulation. In 
the light of these results and detailed model comparisons, suggestions for future research 
and model refinements are presented. 

1. Introduction 

The present generation of global general circulation models 
(GCMs) and higher-resolution limited area models (LAMs) of 
the climate system are restricted in their usefulness for many 
subgrid scale applications (including those to hydrology) by 
their coarse spatial resolution and the uncertain reliability of 
their output on timescales of months or less, especially for 
variables pertaining directly to the hydrologic cycle [Carter et 
al., 1994]. As Hostetler [1994] has observed, the parameteriza- 
tions used in GCMs and in hydrological models are least reli- 
able on the scale(s) at which these models interface. Hydro- 
logical models are frequently concerned with small, 
subcatchment scale processes and must parameterize regional- 
scale ones, whereas atmospheric models deal most proficiently 
with fluid dynamics at the planetary scale and parameterize 
many regional and smaller-scale processes. 

Climate model resolution issues have important implications 
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for studies driven by the outputs of such models because of the 

potential magnitude of future climate change and the demon- 
strated sensitivity of resource systems to such change [Gleick, 
1987]. This sensitivity, in turn, frequently arises because 
changes in water availability can have major effects on vege- 
tation and, consequently, on all surface energy fluxes [Hender- 
son-Sellers, 1993]. The scale mismatch between vegetation and 
land-surface processes, and the large-scale atmospheric circu- 
lation leads to problems that are further exacerbated because 
they often involve the most uncertain components of climate 
models, water vapor, and cloud feedback effects [Rind et al., 
1992]. 

Indeed, the International Geosphere-Biosphere Programme 

(IGBP) and the GEWEX Continental Scale International 
Project (GCIP) were established with the specific mandate to 
investigate the complex interactions between the physical and 

biological components of the environment and their responses 
to anthropogenic change. A major focus of the Biological As- 
pects of the Hydrologic Cycle (BAHC) component of IGBP 
has been the development of tools for generating the high- 
resolution meteorological inputs required for modeling ecohy- 

drological processes [Bass, 1996]. Statistical "downscaling" ap- 
proaches have subsequently emerged to satisfy the need to 
interpolate regional-scale atmospheric predictor variables 
(such as area averages of precipitation or temperature, and 
circulation characteristics such as mean sea level pressure or 

vorticity) to station-scale meteorological series [Hay et al., 
1991, 1992; Karl et al., 1990; Kim et al., 1984; Wigley et al., 1990]. 
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Figure 1. Location of the six North America study regions 
with respect to the grid of the Hadley Centre coupled ocean/ 
atmosphere model, HadCM2 [Johns et al., 1997; Mitchell and 
Johns, 1997]. 

Fundamental to the approach is the assumption that stable 
empirical relationships can be established between atmo- 

spheric processes occurring at disparate temporal and/or spa- 
tial scales. 

Since the early 1970s, many such relationships have been 
identified. Mesoscale weather patterns have been used to 
model numerous meteorological parameters such as precipita- 
tion occurrence in Washington State [Pittock, 1977; Hughes 
and Guttorp, 1994]; space-time daily rainfall patterns in the 
Ruhr catchment [Bardossy and Plate, 1992] and eastern Ne- 
braska [Matyasovszky et al., 1993]; monthly-mean temperature 
and precipitation in Oregon state [Wigley et al., 1990]; extreme 
precipitation events and diought conditions in the Delaware 
River basin [Hay et al., 1991]; low-frequency precipitation 
events in the British Isles [Wilby, 1998]; wintertime rainfall in 

Iberia [yon Storch et al., 1993]; and estimates of daily pan 
evaporation rates in southern Louisiana [McCabe and Muller, 
1987]. Secondary relationships between circulation patterns 
and environmental time series include those encapsulated in 
studies of flooding in Arizona [Duckstein et al., 1993]; low-flow 
frequency analyses in the River Coln, United Kingdom [Wilby 
et al., 1994]; sea level anomalies in the Japan Sea [Maochang et 
al., 1995] and the Baltic Sea [Heyen et al., 1996]; episodic soil 
loss from farmland in southern England [Favis-Mortlock et al., 
1991]; and surface water acidification in the East Midlands 
[Wilby, 1993]. 

The general limitations, theory and practice of downscaling 
are now well described in the literature [see, e.g., Giorgi and 
Mearns, 1991; Grotch and MacCracken, 1991; Kattenberg et al., 

1996; yon Storch et al., 1993; Wilby and Wigley, 1997]. The aims 
of this paper are more specific, namely, (1) to compare the 
performance of several statistical downscaling methods for six 

contrasting regio. ns in the United States using a suite of daily 
precipitation diagnostics; (2) to compare changes in daily pre- 
cipitation between a "present-day" (1980-1999) and a "per- 
turbed" (2080-2099) climate scenario produced directly by a 
general circulation model (GCM), with the corresponding 
changes produced by the different statistical downscaling 
methods. The latter set of experiments were undertaken in 

order to demonstrate that significant differences in precipita- 
tion scenarios can arise when a common set of GCM predictors 
are applied to different statistical downscaling techniques. 

The GCM used was the U.K. Meteorological Office, Hadley 
Centre's coupled ocean/atmosphere model (HadCM2) forced 
by combined CO2 and albedo (as a proxy for sulphate aerosol) 
changes [Johns et al., 1997; Mitchell and Johns, 1997]. In this 
experiment, referred to as the SUL run, the model run begins 
in 1861, and the model is forced with an estimate of historical 

forcing to 1990 and a projected future forcing scenario over 

1990-2100. The historical forcing is only an approximate rep- 
resentation of the "true" forcing (which itself is quite uncer- 
tain) so the GCM results for model years 1980-1999 would not 

be expected to accurately represent present-day conditions 
(see Appendix A). Nevertheless, they are as good as one can 
get with currently available GCM data. For the future, we 

chose model years 2080-2099 to maximize the changes. We 
use 20-year periods for the GCM data as a balance between 

increasing the signal-to-noise ratios for change while minimiz- 
ing the change occurring through the period, and, at the same 
time, providing enough data to calibrate the statistical models. 

2. Standard Data Sets and Precipitation 
Diagnostics 

Seven data sets were compiled for the purpose of the model 
calibration and comparison exercise: 

1. Observed daily precipitation over 1979-1995 for five 

sites in each of six regions shown in Figure 1. The "target" 
regions were 2.5 ø latitude by 3.75 ø longitude boxes correspond- 
ing to the HadCM2 grid. Sites were either within the target 
box, or within 1 ø latitude and longitude of the target box. The 
five sites were used to calculate unweighted, area-average daily 
precipitation, and an "optimum" station (or "key site") was 
selected from each region for single-site downscaling. The sta- 
tion data were obtained from the U.S. National Climatic Data 

Center (NCDC), while the chosen data sampling period 
(1979-1995) corresponds to the availability of climate reanal- 
ysis data, described in items 2 and 3 below. 

2. Observed daily grid point data spanning 1979-1995 for 
mean sea level pressure (MSLP) and 500 mbar height for a net 
of nine points centered on each of the six regions (Table 1; 
Figure 1). The data were obtained from the National Center 

for Environmental Prediction (NCEP) reanalysis [Kalnay et al., 
1996], regridded to the HadCM2 grid. 

3. Daily surface (2 m) temperature data (mean of four 
6-hourly values) spanning 1979-1995 for the six central grid 
points of item 2 from the NCEP reanalysis, also regridded to 
the HadCM2 grid. 

4. Daily gridpoint MSLP and 500 mbar height data for a 

Table 1. Downscaling Study Regions: Central Latitudes 

and Longitudes for the Primary HadCM2 Grid Boxes 

Together With an Identifying Geographical Location 

Location Abbreviation Latitude Longitude 

Salem, Oregon SLM 45øN 123.75øW 
Minneapolis, Minn. MSP 45øN 93.75øW 
Philadelphia, Pa. PHL 40øN 75øW 
Yucca Mountain, Nev. YUC 37.5øN 116.25øW 

Oklahoma City, Okla. OKC 35øN 97.5øW 
Jackson, Miss. JKS 32.5øN 90øW 
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Table 2. Standard Daily Rainfall Diagnostics Used in 

Comparisons 

Diagnostics Unit 

Daily Rainfall Diagnostics 
Mean wet-day amount mm 
Standard deviation of wet-day amount mm 
Median wet-day amount mm 
95th percentile of wet-day amount mm 
P oo (probability of a dry-day conditional on the previous 

day being dry) 
p • (probability of wet-day conditional on the previous 

day being wet) 
rr w (unconditional probability of a wet-day) 

Spell Statistics 
Lw (mean wet-spell length in days, which is directly 

related to p • •) 
L d (mean dry-spell length in days, which is directly 

related to Poo) 
Standard deviation of Lw and L d days 
90th percentiles of Lw and L a days 

Low-Frequency Diagnostic 
Standard deviation of monthly precipitation total mm 

A wet day was defined as a day with nonzero precipitation ->0.05 mm. 

net of nine points centered on each of the six regions from the 
HadCM2 SUL run, spanning 1980-1999 and 2080-2099. All 
GCM data were provided by the Hadley Centre (D. Viner, 
personal communication, Climate LINK project, Climatic Re- 
search Unit, 1996). 

5. Daily temperature data for the six central grid points 
spanning 1980-1999 and 2080-2099 from the HadCM2 SUL 
run based on the mean of Tma x and Tmi n. 

6. Daily precipitation data for the six central grid points 
from the HadCM2 SUL run for 1980-1999 and 2080-2099. 

7. Derived GCM and observed (NCEP) gridpoint vorticity 

data based on the MSLP data in items (2) and (4). Vorticity is 
one of three indices (namely, vorticity, airflow strength and 
direction) that were originally employed by Jones et al. [1993] 
and Hulme et al. [1993] in an objective weather typing system 
for the British Isles. These indices have since been used as 

predictor variables for downscaling studies in Europe [Conway 
et al., 1996], Southeast Asia [Wilby et al., 1998] and North 
America [Wilby, 1998b]. 

In addition to using a common data set, the comparisons 
were integrated by using a standard suite of diagnostic statistics 

(Table 2). These diagnostics give an overview of the character 
of daily rainfall variability and enable the various models to be 
evaluated by comparing statistical descriptors of their daily 

precipitation with those for observed data. The diagnostics 
describe the daily variability via first and second moments, wet 

and dry-day renewal process probabilities and spell lengths, 

and low-frequency variability, via the standard deviation of 
monthly totals. 

In general, the significance of differences in diagnostic sta- 
tistics between models or between models and observations 

was assessed using empirical sampling distributions. In specific 

cases, idealized estimates of the sampling distribution vari- 
ances were available, and these allow rough estimates of the 

significance of differences for such cases. The diagnostics were 
also used to assess differences between sites, differences be- 

tween single-site and area-average characteristics, and changes 
between the present and the future. 

3. Comparison of Downscaling Methods 

Table 3 summarizes the GCM and downscaling models used 

in the comparison. More detailed descriptions of the statistical 
models may be found in Appendix B, in Wilby et al. [1996] or 
in the references provided in Table 3. There are four broad 
categories of model: the HadCM2 general circulation model; 

Table 3. Precipitation Models Used in the Comparison Exercise 

Notation Description References 

HadCM2 Hadley Centre coupled ocean-atmosphere model forced by combined CO2 and Johns et al. [1997], Mitchell and Johns [1997] 

ANN1 

ANN2 

WGEN 

SPEL 

B-Circ 

C-Circ 

sulfate aerosol forcing. Two 20 year periods were selected: present climate 
(1980-1999) and a perturbed, future climate (2080-1999). 

Artificial Neural Network calibrated against observed single site and area 
average precipitation, and forced using daily mslp and 500 hpa heights 
obtained from the two HadCM2 periods. 

Artificial Neural Network calibrated against observed single site and area 
average precipitation, and forced using daily mslp and 500 hpa heights and 
near-surface temperatures obtained from the two HadCM2 periods. 

First-order, two-state Markov process of daily rainfall occurrence. Wet-day 
precipitation amounts are modelled using gamma distributions. Downscaled 
future precipitation was produced by perturbing WGEN parameters in 
proportion to the changes in model parameters calibrated using the 
HadCM2 present and future data. 

An alternating negative binomial recurrence process for wet- and dry-spell 
lengths. Wet-day precipitation amounts are modelled using gamma 
distributions. Downscaled future precipitation was produced by perturbing 
SPEL parameters in proportion to the changes in model parameters 
calibrated using the HadCM2 present and future data. 

Binned vorticity method of resampling observed daily rainfall sets. Downscaled 
precipitation is modeled by sampling rainfall occurrence and amounts from 
discrete vorticity classes. Only the distribution of daily vorticity values is 
assumed to change between the present and future climate. 

Semistochastic precipitation occurrence and intensity driven by vorticity. 
Downscaled precipitation is modelled using nonlinear empirical relationships 
between vorticity and wet-day occurrence/persistence/mean amounts. Only 
the distribution of daily vorticity values is assumed to change between the 
present and future climate. 

Hewitson and Crane [1992a, b, 1994, 1996], 
Crane and Hewitson [1997] 

Hewitson and Crane [1992a, b, 1994, 1996], 
Crane and Hewitson [1997] 

Richardson [1981], Wilks [1989, 1992], 
Gregory et al. [1993], V•lby et al. [1996] 

Wilby et al. [1996] 

Conway and Jones [1996, 1998], Conway et al. 
[1996] 

Wilby et al. [1996, 1998], Conway et al. [1996] 
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Table 4. Root-Mean•Square Errors (RMSE) for Single (Key) Site Analyses: Seasonal 
Models 

Average 
Observed ANN2 B-Circ C-Circ WGEN SPEL 

Diagnostic Value RMSE RMSE RMSE RMSE RMSE 

Mean 8.41 4.53 8.40 8.36 ...... 

(5.83) (1.53) (0.19) (...) (.--) 
0.79* 0.94* 0.99* ...... 

Median 3.84 3.61 3.77 4.16 4.16 4.05 

(2.12) (0.97) (1.06) (0.57) (0.60) 
0.85' 0.94' 0.95' 0.99* 0.99* 

SD wet 11.84 3.66 11.88 11.75 11.34 11.42 

(9.71) (2.47) (1.65) (0.92) (0.90) 
0.70* 0.90* 0.96' 0.99* 0.99* 

95% wet 31.02 11.75 31.17 30.09 31.14 31.25 

(24.66) (5.61) (4.07) (2.23) (2.35) 
0.73' 0.93' 0.97* 0.99* 0.99* 

Poo 0.74 0.46 0.74 0.73 ...... 

(0.33) (0.03) (0.02) (...) (...) 
0.70* 0.96* 0.99* ...... 

p • 0.•5 0.83 0.55 0.55 ...... 
(0.36) (0.05) (0.03) ('") (.-.) 
0.38* 0.93* 0.99* ...... 

ß r• 0.37 0.76 0.37 0.37 ...... 

(0.47) (0.06) (0.01) ('") ("') 
0.61' 0.93' 0.99* ...... 

Mean L,• 5.01 1.93 4.95 4.99 ...... 
(4.33) (0.89) (0.40) (...) (..-) 
0.76* 0.96* 0.99* ...... 

Mean L• 2.47 6.86 2.47 2.51 ...... 

(5.88) (0.39) (0.14) (...) (...) 
0.32* 0.93* 0.99* ...... 

SD L,• 5.04 1.30 5.13 4.45 4.52 4.90 

(5.52) (2.04) (1.35) (1.41) (1.37) 
0.83' 0.88* 0.96' 0.97* 0.94' 

SD L• 1.92 6.97 1.95 1.92 1.92 1.94 

(6.66) (0.43) (0.22) (0.15) (0.15) 
0.36' 0.93' 0.98' 0.99* 0.99* 

90% L,• 11.13 3.46 10.58 10.84 11.00 11.33 

(13.87) (2.32) (1.33) (1.02) (1.21) 
0.75* 0.95* 0.99 0.99* 0.99* 

90% L• 4.88 15.54 4.83 5.02 5.00 5.08 

(10.43) (1.37) (0.50) (0.46) (0.61) 
0.45' 0.86' 0.99* 0.98' 0.98' 

SD month 54.77 54.55 55.51 49.10 47.83 51.15 

(16.98) (16.36) (11.23) (11.30) (7.31) 
0.98' 0.80* 0.93' 0.94' 0.97* 

Observed (1979-1995) values are provided in order that the RMSEs may be compared with the mean 
diagnostics for the sites. RMSE values were calculated over six sites times four seasons (n -- 24). Linear 
correlation coefficients for observed versus simulated diagnostics (n = 24) are indicated by asterisks. The 
dots in the WGEN and SPEL columns indicate that the calibration procedure necessarily produces a 
perfect fit. 

two artificial neural network approaches (ANN1 and ANN2); 
two stochastic rainfall models (WGEN and SPEL); and two 
methods based on vorticity (airflow) indices (B-Circ and C- 
Circ). All the downscaling models were calibrated using ob- 
served (1979-1995) precipitation and/or circulation data. 

The initial aim of the project was to compare the perfor- 
mances of the different statistical downscaling methods in sim- 
ulating both single-site and area-average observed daily pre- 
cipitation data. Note that, for some diagnostics, WGEN and 

SPEL simulate the observations precisely. In these cases, a 
comparison of results is meaningless in intermodel terms. Of 

the two ANN approaches, ANN2 (which includes temperature 
as a predictor variable) was selected for the comparison be- 
cause we considered the additional predictor would improve its 
performance when applied to the future climate state. Both the 
binned vorticity (B-Circ) and the continuous vorticity (C-Circ) 

models were included in the comparison, although it should be 
noted that they have strong conceptual similarities. 

Tables 4 and 5 give details of the goodness of fit in model 
calibration, for single sites and area averages, respectively. 
Goodness of fit can be judged by comparing the mean values of 
the various statistics (averaged over the six sites and four sea- 
sons, i.e., n = 24) but is further quantified using an overall 
root-mean-square error (RMSE), and linear correlation coef- 
ficients. RMSE values and correlation coefficients were calcu- 

lated for each downscaling model by comparing pairs of down- 
scaled and observed diagnostics for the 1979-1995 calibration 

period. For example, for diagnostic "X", each comparison in- 
volves 24 pairs of values (six sites by four seasons). The RMSE 
is determined by summing over the 24 squares of model- 
observed differences. The importance of •hese RMSE values 
can b e assessed qualitatively by comparing them with the ob- 
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Table 5. Root-Mean-Square Errors for Area-Average Analyses: Seasonal Models 

Average 
Observed ANN2 B-Circ C-Circ WGEN SPEL 

Diagnostic Value RMSE RMSE RMSE RMSE RMSE 

Mean 4.26 3.75 4.27 4.20 ...... 

(1.17) (0.15) (0.09) (...) (...) 
0.94* 0.99* 0.99* ...... 

Median 1.94 3.01 1.98 1.98 1.93 1.84 

(0.80) (0.12) (0.37) (0.21) (0.26) 
0.90* 0.99* 0.95' 0.99* 0.99* 

SD wet 5.92 3.01 5.92 6.33 6.04 6.14 

(3.28) (0.16) (0.93) (0.40) (0.45) 
0.93' 0.99* 0.96' 0.99* 0.99* 

95% wet 16.20 9.67 16.16 15.56 16.38 16.62 

(7.78) (0.58) (1.52) (1.03) (1.32) 
0.94' 0.99* 0.98' 0.99* 0.99* 

œoo 0.60 0.46 0.56 0.58 ...... 
(0.19) (0.05) (0.03) (...) (-.-) 
0.83* 0.98* 0.98* ...... 

p• 0.77 0.86 0.75 0.76 ...... 
(0.15) (0.03) (0.02) (--.) (...) 
0.40* 0.99* 0.99* ...... 

vr w 0.63 0.79 0.63 0.63 ...... 
(0.25) (0.01) (0.01) (...) (...) 
0.60* 0.99* 0.99* ...... 

Mean La 2.69 1.88 2.43 2.58 ...... 
(1.34) (0.33) (0.22) (...) (...) 
0.73* 0.98* 0.97* ...... 

Mean L w 4.83 8.27 4.36 4.64 ...... 
(6.39) (0.48) (0.29) (...) (...) 
0.21' 0.99* 0.99* ...... 

SD L,• 2.36 1.27 1.85 2.01 2.16 2.37 
(1.83) (0.71) (0.51) (0.38) (0.09) 
0.69* 0.95' 0.95' 0.97* 0.99* 

SD L w 4.55 8.25 3.93 4.08 4.36 4.52 
(6.70) (0.94) (0.94) (0.66) (0.81) 
0.33' 0.98' 0.97* 0.98' 0.96' 

90% L a 5.63 3.42 4.79 5.19 5.54 5.79 
(3.59) (1.18) (0.67) (0.65) (0.58) 
0.54' 0.95' 0.97* 0.95' 0.97* 

90% L w 10.54 18.33 9.33 10.04 10.63 10.75 
(15.10) (1.48) (1.07) (0.76) (1.70) 

0.21' 0.98* 0.97* 0.99* 0.96* 

SD month 41.36 41.23 33.28 32.62 31.38 37.66 

(6.96) (10.67) (12.11) (12.44) (6.87) 
0.98' 0.89' 0.84' 0.87' 0.93' 

Observed (1979-1995) values are provided in order that the RMSEs may be compared with the mean 
diagnostics for the sites. RMSE values were calculated over six sites times four seasons (n = 24). Linear 
correlation coefficients for observed versus simulated diagnostics (n = 24) are indicated by asterisks. The 
dashes in the WGEN and SPEL columns indicate that the calibration procedure necessarily produces a 
perfect fit. 

served mean values of each diagnostic. Note that the calibra- 
tion diagnostics produced by the two airflow models were the 
mean values produced from 100 stochastic simulations, 
whereas for ANN2 only one precipitation realization was used 
to calculate the diagnostics. In the airflow models, the airflow 
index (vortiCity) defines only the parameters of the precipita- 
tion distributions. Individual precipitation time series are then 

produced stochastically, day by day, by sampling from these 
distributions. In contrast, in the ANN models, the circulation- 

precipitation link is deterministic. Only one precipitation time 
series is produced corresponding to the observed circulation 

sequence. For WGEN and SPEL, several RMSE results were 
obtained using analytical methods. Note also that the RMSE 

and correlation coefficients are used here solely as overall 

indicators of model performance for the 1979-1995 period, 
not as a metrics for comparing the spatial patterns of modeled 
and observed diagnostics. 

Both the RMSE and correlation statistics reveal that the 

WGEN and SPEL methods were superior to all other methods 

for the majority of the diagnostics. These two approaches have 
an a priori advantage, however, because they are constrained 
to reproduce the mean wet-day amount and the renewal pro- 

cess diagnostics (Poo, P•) exactly (and hence Z'w and mean 
spell lengths, which are functions of the renewal process prob- 

abilities). Since the geometrically-distributed spell lengths re- 
quired by the Markov-chain occurrence formulation used in 
WGEN are a special case of the negative binomial spell length 

distribution used in the SPEL model (see Appendix B) it is not 

surprising that the results are similar for both models. Differ- 
ences between these models were most noticeable for longer- 
duration wet and dry spell simulations. For example, even 

though the overall spell-length distributions were similar (Ta- 
ble 4), specific items differed markedly: winter wet spells at 
Philadelphia in the range of 10-12 days were ---2-3 times less 
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likely under SPEL, while fall dry spells at Salem in the range of 
20-25 days were approximately three to five times more likely 
under SPEL compared with WGEN. These differences may 

arise from the small sample sizes and reflect "overfitting" of 
the SPEL model parameters in cases where the geometric spell 
lengths of the WGEN model are adequate. 

The comparison of model performances in Tables 4 and 5 

provides useful insights into the limitations of each downscal- 
ing technique. A major limitation of both the circulation-based 
models and of WGEN and SPEL approaches was their marked 
failure to capture realistically the standard deviation of 

monthly rainfall totals. In other words, these models do not 

adequately simulate lower frequency variations in precipitation 
variability. In most cases, the downscaling methods underesti- 
mate the low-frequency variability. This behavior is typical of 
commonly employed stochastic weather generator models 
[e.g., Gregory et al., 1993; Mearns et al., 1996], but it has not 
previously been pointed out in the circulation-based downscal- 

ing approach. It is noteworthy that the SPEL method performs 
substantially better than WGEN in this regard. 

By comparing the generically similar B-Circ and C-Circ 
models it is evident that the B-Circ model simulates the dis- 

tribution of wet-day amounts better than the C-Circ model at 

the area-average level, and worse at the single-site level. In 

simulating occurrence statistics (including spell lengths), the 
C-Circ model is slightly superior at both spatial scales. These 

findings are consistent with previous results obtained for single 
sites in the British Isles [Conway et al., 1996]. The relatively 
poor simulation of area-average wet-day amounts by the C- 
Circ model is attributed to a simplifying assumption regarding 

the distribution of wet-day amounts (see Appendix B). By 
amending this distribution, it may be possible to produce more 
realistic daily precipitation amounts using C-Circ. 

Tables 4 and 5 show both airflow models consistently per- 
form better during the calibration period than the ANN2 
method. In fact, the ANN2 method is superior for only one 

RMSE (the standard deviation of the area-average monthly 
precipitation amounts) and two correlation coefficients (the 
standard deviation of both the single site and area-average 
monthly precipitation amounts). This relatively poor perfor- 
mance of ANN2 can be attributed to the model's tendency to 
produce far too many "wet" days. Because of this limitation, all 

the conditional wet- and dry-day probabilities and the spell 
lengths were in serious error and differed markedly from re- 
sults with the B-Circ, C-Circ, WGEN, and SPEL models. This 

problem arises because the ANN model, as used here, does not 

separate the amount and occurrence aspects of the precipita- 
tion process. Instead, the model produces an amount for every 
day, and labels days wet or dry according to some threshold: 

here, a dry day was defined by amounts (which could be neg-. 
ative) <0.5 mm. A possible solution to this would be to adopt 
a two-tiered ANN approach in which the first step determines 
whether or not precipitation has occurred and, if it has, the 
second step calculates the actual wet-day amount. 

The fact that ANN2 generally produced better simulations 
of the standard deviation of monthly precipitation totals for 
the area averages and single sites suggests that the upper 
atmosphere and surface temperature data used to drive the 
model are perhaps most pertinent to precipitation simulation 
over time intervals greater than a single day. In contrast, low- 
frequency variations in precipitation amounts are the most 
problematic in the WGEN and SPEL methods. Unlike the 

ANN and the vorticity models, there are no physical predictors 

in WGEN or SPEL with which to force longer-term variations 
that may be related to such processes. 

Overall, the results presented in Tables 4 and 5 show that the 

vorticity based models (i.e. C-Circ and B-Circ) can simulate 
single-site, daily precipitation amounts to within an average 
error (RMSE divided by observed value) of <2.5%, uncondi- 
tional wet-day probabilities (Trw) to within 2%, and mean 
wet-/dry-spell lengths to within 9%. In contrast, the standard 

deviation of monthly precipitation totals was captured only to 
within 10-30%. As noted previously, the WGEN and SPEL 

methods necessarily have zero error for calibrated daily pre- 
cipitation renewal process probabilities and mean wet-day 
amounts. However, in common with other empirically based 

approaches, there is no certainty that the parameter values in 
any of the statistical models will remain constant as the climate 

changes. 

4. Changes in Downscaled Precipitation Between 
1980-1999 and 2080-2099 

In this section we examine changes in precipitation character 
predicted by the various downscaling methods both at the 
single (key) site and area-average level. These experiments 
demonstrate the range of downscaled precipitation scenarios 
that can arise from different uses of a common set of GCM 

predictor variables. For the area-average precipitation, we also 
compare the downscaled changes with those taken directly 
from the GCM. For WGEN and SPEL, the changes are driven 
by the HadCM2 precipitation changes directly. For the other 

downscaling methods, the precipitation changes are driven by 
HadCM2 circulation changes (as well as temperature in the 
case of the ANN2 neural network method). 

Table 6 summarizes results for individual stations in terms of 

the average of the absolute percentage changes in downscaled 
precipitation diagnostics between 1980-1999 and 2080-2099. 

Overall, the two ANN methods exhibited the greatest propor- 
tional changes at the key sites, and the C-Circ vorticity model 
the least. Excluding the ANN model results, the diagnostic 
with the smallest change when averaged over all sites and 

seasons was the conditional dry- to dry-day probability (Poo), 
and the diagnostic with the biggest change was the standard 
deviation of monthly precipitation amounts. There was no con- 

sensus regarding the region with the smallest changes (when 
averaged over all diagnostics), but 4/6 models suggested great- 
est changes for Yucca Mountains. Similarly, 4/6 models point 
to December-January-February (DJF) as the season with the 
largest changes, and 5/6 models suggested March-April-May 
(MAM) as the season with smallest changes. 

Table 7 summarizes results for area averages in terms of the 
average of the absolute percentage changes in downscaled 
precipitation diagnostics between 1980-1999 and 2080-2099. 

HadCM2 results are shown for comparison. Once again, the 
two ANN methods exhibited the greatest proportional 
changes, and the C-Circ vorticity model the least. There was no 

consensus as to the diagnostic with the largest change, but 7/8 
models (including HadCM2) record the conditional wet-wet 
day probability as changing least. As before, the majority of 
models point to Yucca Mountains as the grid box with largest 
changes; 3/8 models agree that Jackson changes the least. 
Seven out of eight models select DJF as the season with largest 
changes, and 7/8 select SON as the season with smallest 
changes. 

The magnitudes of change generated by the area-average 
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statistical models may be compared with those obtained di- 
rectly from HadCM2. For WGEN and SPEL, changes in all 
diagnostics are necessarily similar to those for HadCM2 (Table 
7) because the WGEN and SPEL parameters were perturbed 
using HadCM2 precipitation data directly. WGEN and SPEL, 
nevertheless, still tend to underestimate changes in spell length 
characteristics relative to the direct GCM changes. Interest- 
ingly, WGEN and SPEL generate the largest percentage 
changes in monthly precipitation variability, even though these 
models tend to underestimate the magnitude of this statistic. 

For the ANN models, changes in precipitation amount sta- 
tistics (first four rows in Table 7) are considerably smaller than 
the HadCM2 changes, even for ANN2, which uses tempera- 
ture as an additional driver for change (as a proxy for changes 
in atmospheric moisture content under the assumption that 
relative humidity changes are small). In contrast, renewal pro- 
cess probability and spell length statistics for the ANN models 
show larger changes than HadCM2. As noted above, however, 

the ANN models perform very poorly in simulating these sta- 
tistics, so these results should be treated circumspectly. Month- 
ly-total precipitation variability changes are much smaller for 
ANN than is observed in HadCM2. 

For the B-Circ and C-Circ models, changes in all diagnostics 
are much less than those generated by HadCM2 (except for the 
monthly variability changes simulated by B-Circ). For precip- 
itation amount statistics, this is clearly due to the fact that 

purely circulation-based methods can never capture effects due 
to all relevant physical processes; particularly, in this case, 
because of circulation-independent changes in the moisture- 

holding capacity of the atmosphere. The result is more surpris- 
ing for the occurrence and spell statistics, where one might 
expect these changes to be explained more fully by changes in 
the circulation. 

It is clear from the above analyses that in an average sense, 
changes in diagnostics derived directly from the GCM are 
generally larger in magnitude than changes derived from the 
area-average statistical downscaling models. For the GCM, the 

average results reflect, at the individual-region and seasonally 
specific level, the many instances where the model produces 
statistically significant changes in the diagnostics. How, then, 
do the downscaling model and GCM results compare at this 
detailed level? The former clearly give smaller changes, but are 
they at least in the same direction as those produced by the 
GCM? To answer this question, we correlated the daily pre- 
cipitation changes, diagnostic by diagnostic, across all regions 
and seasons (n - 6 x 4 = 24). The results are shown in 
Table 8, where only correlations significant at the 0.05 level are 
listed. 

Table 8 shows that the change results for WGEN and SPEL 

correlate significantly with the GCM results for all diagnostics 
(although, for some renewal statistics such as P oo, the corre- 
lations are quite low). This is a consequence of the methods 
used to perturb the WGEN and SPEL parameters, which are 
based solely on GCM precipitation changes (see Appendix B). 
For both ANN1 and ANN2, changes in the diagnostics show 
strong correlations with those from the GCM for all diagnos- 
tics except those that refer to dry-spell simulation. In contrast, 
neither the B-Circ nor C-Circ model diagnostics changes were 
significantly correlated with the GCM results for the vast ma- 
jority of diagnostics. 

These two results (i.e., the failure of the vorticity models to 
give precipitation changes anywhere near as large as given by 
the GCM; and the poor correlations between the vorticity- 

Table 6. Single (Key) Site Results for Different 
Downscaling Models: Averages of Absolute Percentage 
Changes in Precipitation Diagnostics Between 1980-1999 
and 2080-2099 ' 

Diagnostic 
(n = 24) WGEN SPEL ANN1 ANN2 B-Circ C-Circ 

Mean wet 26 29 12 11 4 3 

Median wet 24 25 15 13 8 3 

SD wet 28 37 9 8 3 5 

95% wet 28 33 10 10 4 4 

Poo 5 2 21 22 2 2 
p• 11 9 6 5 3 2 
Z'w 14 18 15 14 4 4 
Mean L a 17 12 34 30 6 5 
Mean Lw 12 7 50 44 3 2 
SD La 16 18 52 38 6 6 
SD Lw 16 12 50 47 4 4 
90% L a 20 14 46 37 7 6 
90% Lw 16 10 50 50 4 4 
SD monthly 28 37 8 8 26 10 

Grid box 

(n = 56) WGEN SPEL ANN1 ANN2 B-Circ C-Circ 

SLM 16 9 32 44 7 7 

MSP 15 27 17 19 4 4 

PHL 14 14 18 14 5 5 

YUC 21 35 47 7 13 5 

OKC 21 19 29 25 9 3 

JKS 14 16 40 20 4 4 

Season 

(n = 84) WGEN SPEL ANN1 ANN2 B-Circ C-Circ 

DJF 26 26 30 35 19 6 

MAM 15 13 14 15 11 3 

JJA 23 22 54 36 9 6 

SON 15 24 25 32 3 3 

Overall mean 

(n - 336) WGEN SPEL ANN1 ANN2 B-Circ C-Circ 

All data 20 22 32 29 12 5 

The top group gives absolute percentage changes in each diagnostic 
averaged over regions and seasons (n -- 6 x 4). The second group 
averages over diagnostic and seasons. (n - 14 x 4) for each region. 
The third group averages over diagnostics and regions (n - 14 x 6) 
for each season. The final value gives averages over diagnostics, re- 
gions and seasons (n = 14 x 6 x 4). 

driven and direct-GCM changes) have some important impli- 
cations. First, they imply that, while vorticity is an important 
determining factor in explaining the interannual variability of 
present-day precipitation diagnostics, it is less important in 
controlling future changes on longer timescales. (The likeli- 
hood of this was the reason for including temperature in the 
ANN2 simulations.) This problem is exacerbated by the fact 
that vorticity changes in the GCM are small at all sites and in 

all seasons (well below statistical significance). This does not 
mean circulation is not an important determinant, since the 
ANN results, which include circulation data via individual grid 
point values, show much larger changes. However, the poor 
ANN performance in simulating present-day statistics casts 
doubt on the credibility of the ANN change results in general. 
Our conclusion, in spite of the ANN results, is that additional 
predictor variables beyond vorticity (and beyond circulation 
more generally) are required before one can confidently down- 
scale future climate with methods such as those used here. 
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Table 7. Area-Average Results for the Different Downscaling Models and HadCM2: 

Averages of Absolute Percentage Changes in Precipitation Diagnostics Between 
1980-1999 and 2080-2099 

Diagnostic 
(n = 24) WGEN SPEL ANN1 ANN2 B-Circ C-Circ HadCM2 

Mean wet 26 29 10 10 3 3 27 

Median wet 25 27 13 15 5 3 36 

SD wet 28 34 8 7 2 5 26 

95% wet 28 31 9 9 2 4 29 

Poo 6 4 15 15 2 3 9 
p• 5 5 5 7 1 1 4 
,r w 6 7 14 13 2 2 6 
Mean Ld 10 8 26 21 2 3 11 
Mean Lw 12 8 28 34 3 3 14 
SD Ld 17 13 37 25 3 4 22 
SD Lw 14 12 32 38 4 34 23 
90% La 12 10 31 26 3 5 17 
90% L w 15 12 36 32 3 3 15 
SD monthly 27 30 8 8 27 13 24 

Grid box 

(n = 56) WGEN SPEL ANN1 ANN2 B-Circ C-Circ HadCM2 

SLM 13 9 24 34 3 6 18 

MSP 13 20 13 13 3 5 16 

PHL 14 16 11 11 4 5 17 

YUC 31 33 35 27 11 4 34 

OKC 19 19 27 16 10 5 20 

JKS 11 10 12 17 4 4 15 

Season 

(n = 84) WGEN SPEL ANN1 ANN2 B-Circ C-Circ HadCM2 

DJF 23 26 26 28 20 8 28 

MAM 14 15 13 11 10 4 18 

JJA 20 20 32 20 9 4 21 

SON 13 15 13 22 3 3 14 

Overall mean 

(n = 336) WGEN SPEL ANN1 ANN2 B-Circ C-Circ HadCM2 

All data 18 19 22 21 7 5 21 

The downscaling models used here were calibrated using observed data. The top group gives absolute 
percentage changes in each diagnostic averaged over regions and seasons (n = 6 x 4). The second group 
averages over diagnostic and seasons (n - 14 x 4) for each region. The third group averages over 
diagnostics and regions (n = 14 x 6) for each season. The final value gives averages over diagnostics, 
regions and seasons (n = 14 x 6 x 4). 

A second interpretation of these results is that they may also 
reflect deficiencies in the way circulation and precipitation are 

related in the GCM. A full analysis of these issues is beyond 

the scope of the present paper, but we note in passing that the 
relationships between precipitation diagnostics and vorticity in 
the 1980-1999 GCM data were both weaker and of quite 

different character compared with those in observed data. 

5. Conclusions and Future Research 

Opportunities 

In the comparison using observed data, there were marked 
differences in the circulation-based statistical downscaling 

models: the B-Circ and C-Circ models performed similarly and 

were much better than the ANN (neural network) models. The 
B-Circ model was superior for area-average wet-day amounts, 

while the C-Circ model was superior for area-average renewal- 

process statistics, and for all statistics at the single-site level. 
The C-Circ model's performance on wet-day amounts could 
probably be improved by fitting a better distribution to the 

calibration data. The ANN model's deficiencies were traced to 

poor simulations of wet-day occurrence (too many wet days), a 

deficiency that could perhaps be overcome by adopting a two- 

tier approach separating the occurrence and amount aspects. 

The WGEN and SPEL models performed similarly, except in 

their simulations of low-frequency variability where SPEL is 

superior (albeit, still deficient). For spell-length simulations 
there is clearly scope to improve the higher moments obtained 

with SPEL by fitting more sophisticated (and possibly autocor- 

relation) length distributions. 

The area-average precipitation changes simulated by the 

downscaling models (driven by GCM vorticity changes for B- 

Circ and C-Circ, by mslp and 500 mbar heights for ANN1 as 

well as temperature changes for ANN2, and GCM precipita- 

tion changes for WGEN and SPEL) showed numerous impor- 

tant differences from those based directly on GCM output. 

The B-Circ and C-Circ models produced much smaller 

changes than the GCM, with the vorticity-based changes some- 

times being in the opposite direction to those for the GCM 
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Table 8. Significant (p -< 0.05) Correlations Between Changes in Downscaled Area 
Average and HadCM2 Precipitation Diagnostics Between 1980-1999 and 2080-2099 

Diagnostic WGEN SPEL ANN1 ANN2 B-Circ C-Circ 

Mean wet +0.98 +0.92 +0.47 +0.27 

Median wet +0.91 +0.86 

SD wet +0.89 +0.70 +0.57 +0.46 

95% wet +0.91 +0.87 +0.47 +0.51 

Poo +0.70 +0.56 +0.40 
p • • +0.83 +0.78 +0.67 +0.71 +0.44 
ß r w +0.84 +0.72 +0.65 +0.63 +0.49 
Mean L a +0.84 +0.67 
Mean L w +0.89 +0.52 +0.79 +0.76 
SD L a +0.70 +0.66 
SD L w +0.73 +0.43 +0.61 +0.54 
90% L a +0.57 +0.45 
90% L w +0.80 +0.52 +0.56 +0.48 

Correlations were calculated over all regions and seasons (n = 24). The results of the statistical models 
are those based on observed data. 

(since these correlations were not statistically significant they 
are not shown in Table 8). The small changes produced by 
C-Circ and B-Circ clearly result from the limited explanatory 
power of vorticity in the climate-change context, in contrast to 
the stronger role this circulation variable has in explaining 

observed interannual variability [see Conway et al., 1996]. In 
determining changes in the character of precipitation variabil- 
ity, vorticity change is only one of a number of driver mecha- 

nisms. Better simulations will require the incorporation of 
other predictor variables into this type of downscaling model. 
For the ANN models, much larger changes were simulated 

(more comparable to those generated directly by the GCM), 
but the realism of these changes is uncertain because of the 
poor validation performance of these models. For WGEN and 

SPEL, an interesting feature is that these models simulate 
relatively large changes in the interannual variability of 
monthly precipitation totals, even though this variability is not 
explicitly forced (e.g., by circulation changes). 

Thus the present study has demonstrated significant varia- 
tions in the behavior of the selected statistical downscaling 
methods using daily precipitation data drawn from climatologi- 
cally different regions in the United States. As is often the case, 
the research has raised many questions concerning the refine- 
ment and future application of the downscaling techniques. 
These issues are distilled here into a number of potentially 
fruitful research areas. 

Although the present study considered six contrasting re- 
gions in the US, the total area investigated still amounted to 
<1% of the North American land area. There is considerable 

scope therefore for the extension of the study to additional 

sites within the United States and elsewhere (e.g., to date there 

has been a real paucity of studies in the southern hemisphere). 
Increasing spatial coverage raises the issue of spatial auto- 

correlation, and the need to investigate spatial variations in 
downscaling model parameters. By establishing either physical 
or empirical relationships between model parameters and fac- 

tors such as topography, aspect, or proximity to large water 
bodies, it may be possible to extend and improve conventional 

downscaling methods [e.g., Daly et al., 1994]. Similarly, our 
analyses have confirmed the problem that weather generators 
have in simulating low-frequency variability. Both the WGEN 
and SPEL models could be improved by the inclusion of time- 

varying parameters that are better able to reflect monthly and 

interannual variations in precipitation. This problem was also 

evident in the circulation-based methods. By relating temporal 
variations in parameter values to variations in atmospheric and 
oceanic phenomena such as the E1 Nifio Southern Oscillation 

(ENSO) phenomenon or the North Atlantic Oscillation 
(NAO), it may be possible to improve the low-frequency per- 
formance of the downscaling methods and so increase confi- 
dence in extrapolated details of future climate scenarios [e.g., 
Wilby, 1997]. 

The present study used only a limited suite of predictor 

variables. By increasing the number of driving variables (with- 
out going so far as to compromise model parsimony) it may be 
possible to develop improved and more universally applicable 

downscaling models. For example, both the binned (B-Circ) 
and continuous (C-Circ) vorticity methods would benefit from 
the inclusion of other airflow indices (e.g., airflow strength and 
direction, and divergence, rather than just vorticity). We noted, 
in addition, the possible importance of including better mea- 

sures of atmospheric moisture holding capacity in downscaling 
models of precipitation. 

An important application for downscaling analyses is in 
GCM validation and diagnosis. The comparison of the B-Circ 

and C-Circ precipitation change results with the corresponding 
HadCM2 changes revealed possible inconsistencies in the 
GCM's relationships between precipitation and circulation 
that could be investigated more directly. The empirical rela- 
tionships between NCEP vorticity and observed precipitation 

(occurrence and wet-day amounts) were not as evident in the 
equivalent GCM vorticity and GCM precipitation compari- 
sons. In some instances, the GCM produced increases in vor- 
ticity accompanied by lower seasonal rainfall, opposite to what 
is observed in the current real-world climates of the study 
regions [Wilby, 1998b]. 

Finally, conventional downscaling methods take, as their 

initial input, changes in predictor variables between GCM in- 
tegrations of present and future climates. This presupposes the 
veracity of the GCM with respect to the observed climatol- 

ogy of the target. An alternative strategy might be to sto- 

chastically generate the predictor variables (such as vortic- 
ity) based on changes in their statistics. By using 
downscaling models driven by stochastic atmospheric se- 
quences, it may be possible to explore the range of future 

possibilities more comprehensively. 



3004 WILBY ET AL.: STATISTICAL DOWNSCALING OF GCM OUTPUT 

Appendix A: O/AGCM Data 

The O/AGCM has been run both in an unforced mode, 

commonly referred to as the "control run," and forced by 

time-dependent variations in CO2 and CO2-plus-albedo 
changes. The latter case, used here, is referred to as the "SUL" 

experiment. In the O/AGCM SUL experiment, the initial 

(1861) state comes from an initial section of the unforced 
control run; and the control run in turn uses a CO2 level of 323 

ppmv and begins with Levims [1982] "present-day" ocean tem- 
peratures. The experiment then follows a forcing history that 
roughly parallels observations to 1990 and forcing that corre- 
sponds to the central IS92 emissions scenario [Leggert et al., 
1992] subsequently. Thus, the initial state does not correspond 
to 1861 conditions, but the changes in forcing from 1861 on- 
wards do correspond approximately to real-world changes. 

Because of this, in none of the experiments performed with 
this model is the present-day climate simulated in a fully con- 
sistent way. A strict validation of the model against observa- 

tions is therefore not possible. The unforced run corresponds 
approximately to present-day (1970s) conditions for ocean 
temperatures and greenhouse-gas concentrations, but not for 

aerosols. (The 323 ppmv CO2 level used was the actual level in 
1968). In t6rms of total global-mean forcing (CO2, other green- 
house gases and aerosols), 323 ppmv was the equivalent CO2 
level in 1979 (based on the IPCC forcing history from Katten- 
berg et al. [1996]). For the sulfate aerosol forcing pattern, 
however, the unforced run corresponds to preindustrial condi- 
tions. Thus the unforced run simulates a climate state that is a 

mixture of preindustrial and present-day conditions. The same 
inconsistency problem applies to the SUL perturbation run. If 
one takes the "present" (e.g., 1980-1999) from the SUL run, 
this partially simulates aerosol forcing effects but has a CO2 
level that corresponds to conditions around 2020-2040 (de- 
pending on how one considers the forcing of non-CO2 gases). 
We choose to use the 1980-1999 SUL results for our present- 
day period but note that this is not strictly a fair test of the 
model. 

Appendix B: Statistical Downscaling Models 

B1. Weather Generators (WGEN and SPEL) 

BI.1. The models. Two stochastic "weather generators" 
are considered. The first, referred to as "WGEN" is the con- 

ventional chain-dependent-process stochastic model [Katz, 
1977a, b] for daily precipitation occur?ence and amount. This 
process constitutes the precipitation part of the commonly 
used WGEN "weather generator" [Richardson, 1981]. In 
WGEN, daily precipitation occurrence is represented as fol- 
lowing a two-state, first-order Markov chain characterized by 

the two conditional probabilities 

P0• = Pt{precipitation on day tlno precipitation on day t 

- 1 } (la) 

p• = Pr{precipitation on day tlprecipitation on day t - 1} 
(lb) 

Equivalently, and more conveniently in the present context, 
the Markov chain can be characterized by the unconditional 

wet-day probabilities (Ww) and the lag-1 autocorrelation (r) 

P0• (2) • - 1 + Pol -- P• 

r =p• -P0• (3) 

In WGEN as implemented here, precipitation amounts are 
modeled as independent gamma variates, with probability den- 
sity 

f(x) = (x/•3) a-• exp [-x/•3J/•3F(a) x, a, •3 > 0 

The second stochastic model, which we refer to as "SPEL," 

is similar but somewhat more elaborate in structure. Precipi- 
tation occurrences are simulated using a renewal process, in 
which the lengths of alternating wet and dry spells (i.e., runs of 
one or more consecutive wet or dry days) are represented as 
being drawn from two-parameter (p, k) negative binomial 
distributions [Johnson et al., 1992, Chapter 5]. That is, the 
frequency distributions of lengths (L) of wet and dry spells (in 
days) are represented by separate probability distribution func- 
tions of the form 

Pr{L = x} = k - 1 pk(1 - p)X-• 

x-1 

p•'(1 p)x-• l-[ k + i- 1 = - --; x = 1, 2, 3, (5) 
l 

i=1 

The first-order Markov model (1) is effectively a special case of 
(5), since first-order Markov dependence implies a geometric 
distribution for the spell lengths [e.g., Foufaula-Georgiou and 
Lettenmaier, 1987]. The geometric distribution is a special case 
of (5), which occurs when the parameter k = 1. 

Precipitation amounts on wet days are also modeled using 
gamma distributions in the SPEL model, but separate distri- 

butions are used for single wet days, for the first wet day of a 

multiday wet spell, and for the subsequent wet days of multiday 
spells. These three gamma distributions are constrained to 
have the same shape parameter a but have separate scale 
parameters/31,/32, and/33. Maximum likelihood methods were 
used to fit all the model parameters for both WGEN and 
SPEL. 

B1.2. Downscaling procedure. Construction of changed- 

climate scenarios using GCM results and the above stochastic 

models proceeds in two steps, referred to here as "extrapola- 
tion" and "downscaling." In the extrapolation step, significant 
differences (at the 0.05 level, as determined using likelihood 
ratio tests) between the parameters characterizing the present- 
day (1980-1999) and future (2080-2099) series are applied in 
a consistent manner to the corresponding parameters charac- 
terizing the respective series of area-averaged observations. 
The second step is to then downscale these changes in the 
area-average model parameters to the local station level. 

Extrapolation adjustments are made separately to the occur- 
rence and intensity parameters. For the WGEN model, clima- 
tological wet-dry probabilities (2) are adjusted linearly on a 
log-odds scale, 

L(•) = In [•/(1 - •)], (6) 

so that 

7i'adj = L-l{L(w0) + [L(•e) - L(wc)]} (7) 

The subscripts 0, P, and C here denote observed data, and 
"perturbed" and "control" GCM series, respectively. The lag-1 
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correlations (3) are adjusted linearly on the scale of the Fisher 
Z transform, 

Z(r) -- 0.5 In [(1 + r)/(1 - r)] (8) 

so that 

Fad j = g-l{g(Fo) q- [g(Fp) - g(Fc)]} (9) 

The two-parameter gamma distributions are extrapolated 
through proportional adjustments to their shape and scale 
parameters: 

O•ad j -- OtoOte/ot c (10a) 

/3ad j = /30/3d•3 C (lOb) 

The adjustments (10) also yield proportional adjustments to 
the means and variances of the gamma distributions. 

For the SPEL model, extrapolation adjustments for the neg- 

ative binomial spell length parameters are made proportionally 
to the means and variances of the spell-length distributions, in 
a way that ensures/• > 1 and 0 2 > O: 

(jCLad j -- 1)= (iLL 0 -- 1)(jCLp -- 1)/(iLL C -- 1) 

k0ke (1 - p0)(1 - Pe) Pc 

- kc (1 -pc) pope (11) 
2 2 2 2 

0-adj : 0-00-•>/0-C: (JCLadj- 1)pC/pope (12) 

Solving (11) and (12) yields the extrapolation expressions 

Padj = PoPe/Pc (13a) 

k0ke (1 - p0)(1 - Pe) Pc 

kadj = k C (1 - Pc) Pc - POPe (13b) 

for the adjusted negative binomial parameters. Extrapolated 
values of the gamma distribution shape and scale parameters 

are computed using (10a) and (10b), respectively. 
For the second step, downscaling GCM-derived climate 

changes from the gridbox, or area-average scale to the individ- 

ual station scale, requires that the relevant relationships be- 

tween the stochastic model parameters at the two scales be 
known or estimated. The approach taken here was to estimate 

these relationships using regression equations linking observed 

station-level and area-average stochastic model parameters, 

pooling all six grid boxes and all seasons. For the WGEN 

models, these equations are 

In [*rs/(1 - *rs)] = -1.41 + 1.37 In [*r.•/(1 - *r.•)] (14a) 

R 2= 79%, 

Z(rs) = -.112 + 1.03Z(r.•) R 2= 70%, (14b) 

#,s = 2.00#,A R 2= 73%, (14c) 

2 3.720-•2 g 2 74%. (14d) O'$ • --- 

Here the subscript "s" indicates station-level parameters, and 

the subscript "A" indicates the extrapolated (adjusted) area- 
average parameters defined by (7), (9), and (10). For the SPEL 
occurrence-process models, the corresponding downscaling re- 

gression equations are 

In (#'D,s- 1) = 0.572 + 1.32 In (I&D,A -- 1) (15a) 

R 2= 79%,, 

In (txw•- 1) = -1.40 + 1.27 In (txw, A- 1) (15b) 

R 2= 69%, 

In 2 2 2 (0-D,•) = 0.477 + 1.44 In (15C) (0-D,A) R = 79%, 

In (0-•,•) = -1.87 + 1.04 In ( 2 R 2 O-w,.0 = 76 %, (15d) 

where the subscripts "D" and "W" denote dry and wet spells, 
respectively. Parameters for the three-distribution gamma dis- 

tribution model for precipitation were downscaled using 

iLL1, s = 4.44#,1,.• R 2= 56%, (16a) 

#,2,s = 2.80#,2,.• R 2= 31%, (16b) 

/x3• = 1.94/x3,.• R 2 = 71%, (16c) 

0 -2 = 3.52 2 R 2= 68% (16d) 3,s 0-3,A ß 

One additional step was employed to arrive at the final 

downscaled station-level parameters to account for the fact 

that the regression relationships in (14)-(16) are not perfect 
downscaling algorithms. As an example, in the case of the 

WGEN parameter *r, the "extrapolation" equation (7) is ap- 
plied again, but now with the subscript "0" pertaining to the 

original station-series parameter, the subscript "P" indicating 

downscaled station-level parameters obtained using (14a) with 
the extrapolated/adjusted area-average parameter, and the 
subscript "C" indicating downscaled values using the regres- 

sions in (14a) with the original fitted area-average *r. This final 
step is intended as an adjustment for the lack of fit of the 

downscaling regressions, and is imposed so that the final down- 

scaled values reflect primarily the differences between the two 

GCM integrations, rather than any lack of fit of the regression 

equations (14)-(16). To the extent that parameter differences 
between the two GCM series are judged to be statistically 
significant, this procedure applies those changes to the station- 

level parameters in a way that cancels most or all of the lack of 

fit in the downscaling regressions. 

B2. Artificial Neural Networks (ANN1 and ANN2) 

In ANN downscaling a quantitative function is derived di- 

rectly relating two data sets (e.g., daily precipitation as a pre- 
dictand and atmospheric circulation variables as predictors). In 
this regard, ANNs are analogous to multiple regression, al- 

though mathematically dissimilar. In the same way that multi- 

ple regression develops a quantitative relationship between a 

predictand and a set of predictors, so does an ANN, although 

with no supposition regarding the form of the function or the 

degree of nonlinearity. In theory, an ANN is capable of rep- 

resenting any arbitrary nonlinear relationship. An overview of 

ANNs may be found in the work of Hewitson and Crane [1994], 

and a more detailed outline of the procedures as applied in this 

paper may be found in the work of Crane and Hewitson [1997]. 

An ANN is composed of set of simple processing nodes, 

each of which receives inputs from other nodes, and outputs 
values to further nodes. The resultant net of nodes will have 

some nodes dedicated to receiving primary inputs, and some to 

providing final outputs from the overall net. Each node is 

connected to others via weighted links, and calculates a sum of 

the weighted inputs. This sum is then transformed by some 

function that may be either linear or nonlinear such as a step 

function, or a bounded differentiable nonlinear function (like 
a sigmoid), which becomes the node output value. Nodes are 
generally arranged in layers, with an input layer connected to 
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a hidden layer which is in turn connected to an output layer. 

Given this structure, a useful analogy of how the ANN repre- 

sents a complex function is that of inverse Fourier transforms. 

In the same way that inverse Fourier transforms combines 

simple sine and cosine waves to create a more complex wave, 

so ANNs combine simple nonlinear functions to create a more 

complex function. 

In the present downscaling application the ANN is config- 
ured with only one output node to provide the downscaled 

information for the target location. All nodes were established 

with a sigmoid transfer function and were arranged with an 

input layer of nodes, one hidden layer, and a single node 

output layer. 

Development of the actual function represented by the ANN 

is accomplished through a training procedure. There are nu- 

merous methods that may be used for training, but all, in some 

form or other, represent a minimization procedure. Initially, 

the weights in the ANN are set to small random values. The 

ANN is then presented with input data for which known target 

output values are available. The full set of input samples is 

presented sequentially to the ANN, and the error between the 

ANN output and desired output values noted. The training 

procedure then adjusts the weights in an attempt to minimize 

the error, and the training data are again presented to the 

ANN. In this manner the training algorithm carries out a 

minimization search procedure over the error surface itera- 

titely to find the global minimum; or, at least, a local minimum 
close to the global minimum. 

In the present downscaling application, the training algo- 
rithm used was "back-propagation," whereby the error after 
each pass of the data is "back-propagated" through the net 

from the output node to the input nodes, with proportional 
errors assigned to each node. The weights connecting each 

node are then adjusted in a direction to minimize the error. In 

its simplest form this is equivalent to a gradient descent algo- 
rithm. The form utilized here, however, makes some additional 

assumptions about the shape of the error surface in the vicinity 

of local to each node in order to speed up the convergence, and 
avoid becoming trapped in a local minimum. Full details of the 

algorithm are available with the shareware software package 
NevProp, available at ftP://ftp'scs'unr'edu/pub/cbmr/nevprøp- 
dir 

The ANN training procedure has some potential pitfalls. 

First, is the possibility of overtraining (equivalent to overfitting 
in regression analysis). Because of the ability of the ANN to 
represent highly complex relationships, it is possible for the 
ANN to learn to relate the noise (i.e., physically or unrelated 
variance) in the input to the target output data' To avoid this, 
a random portion (25%) of the training data is removed from 
the training process and retained for testing purposes. During 

the training procedure, the ANN is then repeatedly evaluated 
against the independent test data until the performance of the 

ANN on the test data no longer improves. A second pitfall 

arises from the inherent nonlinearity of the method. As with all 

nonlinear statistically derived relationships, one must be care- 
ful in applying the ANN outside the calibration data domain. 

Once the training of the ANN is completed, the ANN func- 
tion may be applied to further input dat a with the assumption 
that the new data falls within the span of the training data. In 

the downscaling this is carried out using the HadCM2 GCM 

atmospheric data for daily mean sea level pressure, mean tem- 

perature and 500 mbar geopotential heights to generate sub- 

grid-scale precipitation. 

B3. Continuous Vorticity Method (C-Circ) 

In this model, second-order polynomial regression equations 
of the form 

p• = a + bZ + cZ 2 (17) 

Po• = d + eZ + fZ 2 (18) 

• = # + hZ + iZ 2 (19) 

were used to derive empirical relationships between the ob- 

served wet-wet (p•) or dry-wet day (Po•) conditional prob- 
abilities and the vorticity (Z). The observed mean wet-day 
amounts (•) at each location were also modelled using sec- 
ond-order polynomial regression against the Z index. 

Using the polynomial equations for the daily precipitation 
occurrence and intensity processes, daily precipitation 

amounts are generated stochastically using the following pro- 

cedure. For each day, the vorticity value determines (through 
(17) if the previous day was wet, or (18) if it was dry) the 
probability (p) that the day is a wet day. Then, a uniformly 
distributed random number r• (0 < r• -< 1) is chosen. If the 
value of r• is less than or equal to p the day is selected as wet, 

otherwise dry. The expected daily precipitation amount (•) 
for the given value of Z is then determined using (19). Finally, 
the actual wet-day precipitation amount (•) is determined 
using 

R = -qb•(r2) (20) 

where r 2 is a second uniformly distributed random number 

(0 < r 2 --< 1) and tb is a random scaling factor used to inflate 
the variance of R to accord better with observations. If the 

mean of tb is one, the equality of means of R and/• is pre- 
served. Present and future daily precipitation characteristics 

(occurrence and amounts) are calculated using either observed 
or GCM-derived daily vorticities respectively. 

B4. Vorticity Binning Method (B-Circ) 

The binning method consists of generating distributions of 

rainfall (or absence of rainfall ) events, for categories of air flow 
indices from the historical record [Conway et al., 1996]. Distri- 

butions are generated for each of the four seasons (DJF, 
MAM, JJA, SON) and for eight categories of vorticity ranging 
in the present case from less than -4 to over +8 in steps of 2 

units. (Note that the vorticity values we used involved scaling 
factors that depended on the particular grid spacing and so 

cannot be directly compared with conventional numerical val- 
ues.) In addition, although there is a certain degree of persis- 
tence in vorticity, in order to fully reproduce the persistence of 
wet and dry periods i n the observed record two additional 
categories are defined, days when the previous day was wet and 
days when it was dry. This leads to a total of 8 x 4 x 2 - 64 

distributions which are then resampled randomly to generate a 
new series of daily rainfall from either observed or GCM, 

derived series of vorticity. 
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