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Abstract

Global Circulation Models (GCMs) are a major tool used for future projections of cli-

mate change using different emission scenarios. However, for assessing the hydro-

logical impacts of climate change at the watershed and the regional scale, the GCM

outputs cannot be used directly due to the mismatch in the spatial resolution between5

the GCMs and hydrological models. In order to use the output of a GCM for conducting

hydrological impact studies, downscaling is used. However, the downscaling results

may contain considerable uncertainty which needs to be quantified before making the

results available. Among the variables usually downscaled, precipitation downscaling

is quite challenging and is more prone to uncertainty issues than other climatological10

variables. This paper addresses the uncertainty analysis associated with statistical

downscaling of a watershed precipitation (Clutha River above Balclutha, New Zealand)

using results from three well reputed downscaling methods and Bayesian weighted

multi-model ensemble approach. The downscaling methods used for this study be-

long to the following downscaling categories; (1) Multiple linear regression; (2) Multi-15

ple non-linear regression; and (3) Stochastic weather generator. The results obtained

in this study have shown that this ensemble strategy is very efficient in combining

the results from multiple downscaling methods on the basis of their performance and

quantifying the uncertainty contained in this ensemble output. This will encourage any

future attempts on quantifying downscaling uncertainties using the multi-model ensem-20

ble framework.

1 Introduction

At present, there is a wide variety of Global Circulation Models (GCMs) which can

be used for future projections of climate change using different emission scenarios

(SRES, 2000). However, for assessing the hydrological impacts of climate change at25

the watershed and the regional scale, the GCM outputs cannot be used directly due
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to the mismatch in the spatial resolution between the GCMs and hydrological models.

In principle, hydrological models run on a very fine spatial resolution (in the order of

tens of kilometers, or even less) while the GCMs have spatial resolutions in the range of

hundreds of kilometers. In order to use the output of a GCM for conducting hydrological

impact studies, downscaling is used. It is simply a process of converting the coarse5

spatial resolution of the GCM output into a fine resolution which can involve generating

point/station data of a specific area by using the GCM climatic output variables.

In broad terms, downscaling techniques can be classified into dynamical and sta-

tistical. Further details about the underlying principles and review of their applications

can be found in Hewitson and Crane (1996), Xu (1999), Wilby et al. (2004) and Fowler10

et al. (2007). This paper focuses on studying the uncertainty issues associated with

the use of statistical downscaling. There are a variety of techniques available for sta-

tistical downscaling. Each of these techniques has certain strengths and weaknesses

depending on the working principles involved in the operation of the technique (Xu,

1999). Although the statistical downscaling is very popular and extensively used in15

many studies (Christensen et al., 2007), it usually performs well only for the conditions

and regions where it was originally developed. It is also affected by four major sources

of uncertainties which can significantly influence the reliability of its results and hence

future projections of climate change. These four major sources of uncertainties are;

(1) parent GCM; (2) climate change emission scenarios; (3) observed data; and (4)20

method used for downscaling.

In the context of climate change studies, these four major uncertainty sources form

what is known as the cascade of uncertainty (Mitchell and Hulme, 1999). However,

in climate change studies the uncertainty analysis has focused on studying the uncer-

tainties associated with the first source (parent GCM) and the second source (emission25

scenarios). There is very limited research regarding uncertainty analysis associated

with statistical downscaling, this paper addresses this research gap.

The Bayesian modeling framework introduced by Tebaldi et al. (2005), henceforth,

referred to as TME, is used herein for developing a weighted multi-model ensemble
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(WMME) of different statistical downscaling models to quantify the uncertainty in down-

scaling of monthly precipitation. Three statistical downscaling models are used to test

the multi-model ensemble on the Clutha catchment in New Zealand. The first selected

downscaling model is a weather generator model known as the Long Ashton Research

Station Weather Generator (LARS-WG) developed by Semenov and Barrow (1997).5

The second model is the Statistical DownScaling Model (SDSM) developed by Wilby

et al. (2002). The third model is an artificial intelligence data driven model developed

by the authors using the Gene Expression Programming (GEP) to create symbolic

downscaling functions. The choice of these downscaling models is consistent with the

choices made in many of the recent studies (e.g. Hessami et al., 2008; Khan et al.,10

2006; Semenov 2008; Liu et al., 2008).

Bayesian techniques are powerful in producing improved forecasts by ensembling in-

formation from different sources and providing a measure of forecast uncertainty. They

have many advantages over other probabilistic uncertainty analysis methods (Qian et

al., 2003). The advantages include their ability to deal efficiently with uncertainty, incor-15

porate prior knowledge as well as information from multiple sources and update proba-

bility distributions on the basis of new incoming information. In climate change studies

and weather forecasting, examples of the use of Bayesian techniques in MME can be

found in Coelho et al. (2006), Tebaldi et al. (2005, 2004), Giorgi and Mearns (2002)

and Min and Hense (2006, 2007).20

In this paper a brief overview of the different statistical downscaling techniques is

given first and a review on uncertainty assessment in downscaling is then presented.

Secondly, a discussion about how to deal with downscaling uncertainty using multi-

model ensembles is provided. Thirdly, the multi-model ensemble approach developed

in this paper and its application using three selected downscaling methods are pre-25

sented. Finally, the conclusions of the presented study are given.
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2 Study watershed and data sources

The Clutha River is the biggest river in the South Island of New Zealand. Its catch-

ment above Balclutha (shown in Fig. 1) has been selected as a case study. It is

the second longest river in length (340 km) and the largest river in terms of volume

and catchment area in New Zealand (McKerchar and Henderson, 2003). Its long5

term annual mean flow is approximately 614 m
3/s. The catchment area is around

20 515 km
2

up to Balclutha and mean annual precipitation is around 1448 mm (Na-

tional Institute of Water and Atmospheric Research (NIWA), New Zealand, web model:

http://wrenz.niwa.co.nz/webmodel). The Clutha starts from the high Southern Alps

glaciers, and the river being very hazardous due to its flooding potential. The climatic10

data used in this study were obtained from NIWA. Daily average precipitation data of

23 stations within Clutha at Balclutha watershed having record lengths of thirty years

or more were acquired for the period 1961–2000. The corresponding length of large

scale predictors of Hadley Center’s GCM “HadCM3” for the baseline period as well

as the A2 scenario run for 2070–2099 (also called 2080s) and re-analysis data pre-15

dictors of the National Center of Environmental Prediction (NCEP) on HadCM3 com-

putational grid were obtained from the Canadian Climate Impacts Scenarios (CCIS)

website (http://www.cics.uvic.ca/scenarios/index.cgi/) at daily time steps. The A2 sce-

nario is considered as the worst case scenario among the IPCC’s four basic storylines

(SRES, 2000). In climate change studies, the period of 1961–2000 is used to represent20

the current climate (e.g. Wilby et al., 2002).

In order to get a downscaled time series using a weather generator, the mean daily

precipitation output of HadCM3 covering the whole globe, was obtained from Program

for Climate Model Diagnosis and Inter-comparison (PCMDI) website (https://esg.llnl.

gov:8443/) for the present period of 1961–1989 (called the 20th century run) and the25

A2 scenario run for 2080s.
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3 Review of statistical downscaling approaches

Statistical downscaling is based on the use of statistical tools and rules to develop

local scale hydro-meteorological data using the GCM outputs. Statistical downscaling

approaches can be classified into three broad categories, namely; (1) weather typing;

(2) weather generators; and (3) regression-based downscaling. Although these broad5

downscaling categories may appear to differ radically in their operation, they generally

embody three basic assumptions (cf. Hewitson and Crane, 1998, 2006);

1. selected predictor variables are relevant to the study and the host GCM is able to

simulate them realistically.

2. the empirical relationships/rules developed under the present climate conditions10

are also valid for future climate change conditions.

3. selected predictor variables are able to capture the climate change signal.

The “weather typing” category involves grouping of the local meteorological variables

on the basis of different atmospheric circulation patterns/types. The GCM projected

change in atmospheric circulation types is used to project change in those local vari-15

ables. Further discussion on the operation of this approach and its applications to

climate change studies can be found in Ladd and Driscoll (1980) and Conway and

Jones (1998). A modified version of weather typing includes pattern scaling developed

by Ruosteenoja et al. (2007). Being subjective in nature, this approach is less popular

than other downscaling approaches (Wilby et al., 2004) and hence was not used in this20

study in developing the multi-model downscaling ensemble.

Weather generators which are traditionally used for filling missing data and interpo-

lating or extrapolating the data to indefinite length by using the statistical properties of

the available observed data have become a very popular tool for downscaling (Dibike

and Coulibaly, 2005). A comprehensive review of the theory behind weather gener-25

ators and their evolution over time as well as their use for different purposes can be
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found in Wilks and Wilby (1999). In this study, a weather generator model known as

LARS-WG, developed by Semenov et al. (1998), is used as a member of the ensemble

downscaling model.

The regression based downscaling methods involve developing empirical relation-

ships between large scale GCM data or observed data as “Predictor” variables and5

local or small scale climate variables as “Predictand” variables using traditional linear

and non-linear regression methods (cf. Heyen et al., 1996; Wilby et al., 2002). Ex-

amples of traditional downscaling regression based methods include linear regression,

canonical correlation analysis (CCA) and principle component analysis (PCA) (Dibike

and Coulibaly, 2005). However, in recent years non-linear regression models based on10

soft computing data-driven modeling techniques have also been used. In the context

of downscaling, recent studies have shown that artificial neural network (ANN) models

are good multiple non-linear regression models (e.g. Mpelasoka et al., 2001) and can

be considered as a global correlation detector, but suffer from conventional problems

of a complex model, such as being trapped in local optimum during their calibration15

(Tripathi et al., 2006). Coulibaly (2004) and Liu et al. (2008) suggested the use of

another sophisticated soft computing technique known as genetic programming to per-

form symbolic regression. The advantage of the genetic programming based tool for

developing downscaling functions over ANN is that it provides parsimonious and trans-

parent modeling solutions which can be expected to have less uncertainty in them. In20

this study, a variant of the genetic algorithms known as Gene Expression Programming

(GEP) is used in conjunction with symbolic regression to develop a downscaling model

used in the multi-model downscaling ensemble.

Different inter-comparison studies show advantages of certain statistical downscal-

ing techniques over the others (e.g. Wilby et al., 1998) under certain conditions. How-25

ever, it is important to note that none of the currently available statistical downscaling

techniques was able to reproduce the precipitation with all its characteristics very well.

Thus, there is no universal single statistical downscaling technique that works very

well under all circumstances. According to the “Guidelines for Use of Climate Sce-
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narios Developed from Statistical Downscaling Methods” (Wilby et al., 2004), the user

should carefully select the downscaling method according to the nature of problem

and predictands involved. It also recommends the use of more than one downscaling

method to minimize the uncertainties. This paper endorses this recommendation by

using three downscaling techniques and integrating their results using the Bayesian5

modeling framework to quantify the uncertainty in downscaling of precipitation.

3.1 Uncertainty assessment in statistical downscaling

Due to many noted reasons discussed in the introduction of this paper, the results ob-

tained from downscaling models may have a considerable amount of uncertainty and

a single deterministic point estimate will be wrong. In this case, a probabilistic approach10

for proper uncertainty assessment of the downscaling results should be adopted to ob-

tain a range of projection of climatic variable values rather than a single value. To

our present knowledge, there are only limited studies which deal with the uncertainty

analysis of downscaling results and the first attempt to quantify the uncertainty of down-

scaling is made by Khan et al. (2006). However, more recently Wilby and Harris (2006)15

developed a framework for analysis of uncertainty arising from all sources and used

a weighted multi-model ensemble strategy for minimizing uncertainty. Equal weights

were assigned to the different statistical downscaling methods by employing simple

averaging. Although a simple average approach has shown definite advantages over

a single model approach in terms of robust uncertainty assessment (Hagedorn et al.,20

2005), it may not be acceptable in the case where the downscaling methods show

diversity in the level of performance. In the multi-model ensemble of different statisti-

cal downscaling models developed in this study, different weights are assigned to the

different models. Hence, the variation in model performance and uncertainties asso-

ciated with the individual downscaling model used to produce the ensemble are taken25

into account.
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4 Bayesian way of uncertainty assessment

Due to advancement in computational resources in more recent years, the Bayesian

statistical techniques have become very popular for uncertainty analysis in different sci-

entific research fields. They have many advantages over other probabilistic uncertainty

analysis methods, which are discussed earlier.5

According to the Bayes’ theorem (Bayes, 1763), as soon as the observed data “y”

related to a parameter of interest “x” is available, the prior distribution of the variable

“x”, P (x) is updated to obtain its conditional posterior distribution, P (x|y). This can be

presented in the form of Bayes’s equation as;

P (x|y) ≈ P (y |x) · P (x) . (1)10

In Eq. (1), P (y |x) is the likelihood of data “y” given “x”. In most of the cases, it is not

possible to solve the Bayes’s equation analytically to obtain the posterior distribution.

Instead, the equation is solved numerically using the Monte Carlo simulation method

which involves the generation of a large number of random samples. There are many

variants of the Monte Carlo simulation method which can be used for generating ran-15

dom samples (Qian et al., 2003). The Markov Chain Monte Carlo (MCMC) simulation

method is very popular and hence has been used in this study to derive the posterior

distribution. Further information about the applications of the MCMC method can be

found in Wang (2008), Engeland and Gottschalk (2002) and Qian et al. (2003).

4.1 Bayesian WMME approach and uncertainty assessment20

Figure 2 shows a schematic diagram outlining the steps involved in the Bayesian

WMME approach (based on TME) for uncertainty analysis of multiple statistical down-

scaling methods used in this study. In the above diagram, X0 is the observed Clutha

precipitation, monthly averaged for 1961–1990 period, Xi is the monthly average of the

simulated precipitation of the i th downscaling model for the 30-year period of 1961–25

1990, and Yi is the monthly average of the simulated precipitation of the i th downscal-
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ing model for a future 30-year period of 2070–2099. The subsequent sections provide

a concise summary of the steps involved in the formulation of a Bayesian framework

for WMME. Full details are available in Tebaldi et al. (2005).

4.1.1 Models for data (Likelihood functions)

The operation of the Bayesian multi-model approach requires the specification of prob-5

ability distributions to describe the likelihood functions for the observed data as well as

for the results of three downscaling methods. In this paper, similar to other studies (e.g.

Tebaldi et al., 2005), it is assumed that downscaling models and observed climate data

are statistically independent and that three data sets Xi , Yi and X0 come from Normal

(N) distributions and their means are the true value of the data for the month repre-10

sented by the data. Accordingly, the likelihood functions for the three data sets are

given as (cf. Lopez et al., 2006);

X0 ∼ N(µ, λ−1
0

) , (2)

Xi ∼ N(µ, λ−1
i

) , (3)

Yi ∼ N(ν + β(Xi − µ), (θλi )
−1) , (4)15

λ0 is the observed variability of mean monthly Clutha precipitation as given in Table

4 while µ and ν (assumed to be random variables) are the true values of the present

and future Clutha precipitation, The parameter λ−1
i =σ2

i is the reciprocal of distributional

variance; here it is assumed to be a random variable and a measure of the preci-

sion of the i th downscaling model. In the above Eq. (4), the random variable θ is20

an allowance to have different variances for present and future downscaled output by

a model, while random variable β makes the model robust by introducing a correlation

between present and future downscaling results.
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4.1.2 Specification of parameter priors

The data models or likelihood functions presented above contain the parameters µ, ν,
λi , θ and β which are treated as random variables and in Bayesian terms are required

to have their prior distribution assigned. To keep this Bayesian analysis an objective

one, these parameters were assigned uninformative prior densities (assuming no prior5

knowledge about them). Random variable, λi (i=1, . . . ,3) and θ have Gamma (Ga)

distribution of the form;

λi ∼ Ga(a, b) , (5)

θ ∼ Ga(c, d ) , (6)

where a=b=c=d =0.001 with a unity mean and a large variance over the posi-10

tive real line, thus keeping objectivity in their specification. According to Tebaldi et

al. (2005), the prior distribution selected for λi is a standard choice for the precision

parameters of Gaussian distributions. The prior densities for µ, ν and β are also un-

informative being uniform over the real line which is a further attempt to present an

objective analysis.15

4.1.3 Bayesian analysis

Multiplying Eqs. (2) to (6) by applying Bayes’s theorem gives the required joint posterior

distribution, which is then solved up to a normalizing constant (sums up to 1) to simplify

the computations, giving (cf. Lopez et al., 2006);
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3
∏

i=1

λa−1
i

e−bλi × λiθ
1/2 exp

{

−
λi
2

[

(Xi − µ)2
+ θ(Yi − ν)2

]

}

×θc−1e−dθ × exp

{

−
λ0

2
(X0 − µ)2

}

. (7)

The full conditional posterior distributions for each parameter as a function of all other

parameters are then obtained (Tebaldi et al., 2005), e.g. posterior distribution of pre-

cision parameter λi (used for model weighting) comes out to be a Gamma function5

having mean (cf. Lopez et al., 2006);

λi ≈
a + 1

b +
(Xi−µ)2

2
+

θ[(Yi−ν)−β(Xi−µ)]2

2

. (8)

The two terms (Xi − µ) and (Yi − ν) in the above expression define the criteria of “bias”

and “convergence”, respectively as the former term is model error as compared to true

value and quantifies the i th model’s ability to reproduce the current climate while the10

latter term is a measure of the distance of the future prediction of i th model from the

ensemble mean. Accordingly, a downscaling model showing better skill in reproducing

current climate and its future output is more close to the ensemble mean, and will get

more weight then the one with inferior results.

4.1.4 MCMC simulation15

The joint posterior distribution obtained in the previous step by applying the Bayesian

analysis has a complex form. It cannot be solved in a closed form solution. Hence

it is not possible to obtain directly the marginal posterior distributions of individual pa-

rameters. In such a situation, the MCMC simulation is performed. A large number of

random samples are drawn from the posterior distributions for all parameters. These20

sets of random samples are then used for further statistical analysis.

6546

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/6535/2009/hessd-6-6535-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/6535/2009/hessd-6-6535-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD

6, 6535–6579, 2009

Statistical

downscaling of

precipitation

M. Z. Hashmi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

4.1.5 Uncertainty assessment

The posterior distributions of parameters such as µ and ν were obtained using MCMC

simulation in the previous step. These can be utilized for assessment of uncertainties in

the estimation of individual parameters or downscaled precipitation change projection

in terms of statistical parameters. Therefore, the Bayesian WMME was made to esti-5

mate a signal of percent precipitation change for the Clutha watershed by computing

the posterior distribution of %∆P=100∗(ν−µ)/µ.

Box plots are usually used to describe and compare the distribution of different

groups of data. These plots for posterior distributions of monthly precipitation change

(%∆P ) were produced to present the distribution shape graphically. The difference10

between the 1st (25% quantile) and 3rd (75% quantile) quartile of a probability distri-

bution is called the “inter-quartile range (IQR)” or mid-spread. It gives an idea about

the compactness of the distribution and is represented by a box in the plot. The noted

advantages it offers make it a popular application as a robust measure of variability

and hence uncertainty (Lee, 1995). Therefore, it has been adopted herein as the un-15

certainty assessment tool of the downscaled precipitation change.

In this study, a monthly multi-model downscaling ensemble is developed based on

TME, an improved version of the model developed by Giorgi and Mearns (2002). In

this multi-model ensemble, the three downscaling models are assigned weights based

on their precision parameter calculated using a criteria of “bias” and “convergence” (ex-20

plained in Sect. 4.1.3). TME has been implemented in a computer program developed

using the statistics package R which can be downloaded from; http://www.r-project.org

to develop the multi-model downscaling ensemble.
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5 Applications of the three satistical downscaling methods and MME model to

study watershed

5.1 SDSM Model

SDSM is a multiple regression based tool for generating future scenarios to assess

the impact of climate change. It has the ability to capture the inter-annual variability5

better than other statistical downscaling approaches, e.g. weather generators, weather

typing (Wilby et al., 2002). SDSM is a combination of a stochastic weather genera-

tor approach and a transfer function model (Wilby et al., 2002) needing two types of

daily data. The 1st type corresponds to local predictands of interest (e.g. temperature,

precipitation etc) and the 2nd type corresponds to the data of large scale predictors10

(NCEP and GCM) of a grid box closest to the study area. Correlation and partial corre-

lation analysis is performed in SDSM between the predictand of interest and predictors

to select a set of predictors most relevant for the site in question (Wilby et al., 2002).

Initially, the precipitation data of a selected station from the study watershed (Ophir2)

are used in SDSM. The correlation analysis performed within SDSM between the pre-15

cipitation of this site and the NCEP re-analysis predictors revealed very poor results.

Consequently, offline statistical analysis was undertaken to improve the results to an

acceptable limit. A cross-correlation analysis between the daily precipitation of Ophir2

and the NCEP predictors was an attempt in this regard. An optimal lag or time shift,

required to improve the correlation between each predictor-predictand pair, was iden-20

tified and the correlation results after this analysis are shown in Fig. 3. Examination

of the figure shows that the correlation coefficient values obtained are well below the

acceptable limit as indicated in previous studies (e.g. Hessami et al., 2008). Further

cross-correlation analysis using the data of other stations revealed conclusions similar

to those obtained using the Ophir2 station. Accordingly, these predictors cannot be25

used directly for reliable downscaling at the station scale.

As the outcome of the station scale analysis was not favorable, an areal approach

was adopted. The arithmetic average of the daily data from 23 stations within the
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Clutha watershed, with a record length of at least 30 years, was taken. This areal

average precipitation time series is referred to as “Clutha precipitation”. Cross corre-

lation analysis was again performed between the Clutha precipitation and the NCEP

predictors. Table 2 shows the results of this cross correlation analysis in terms of

predictand-predictor lag (in days) required to get the maximum correlation between5

them. After arranging each NCEP predictor against Clutha precipitation on the basis

of Table 2, the predictor-predictand correlation improved significantly. This has been

highlighted in Fig. 4. Examination of Fig. 4 shows that there are a number of NECP

predictors which have correlation coefficient values in the range of 13% to 25% for

the Clutha precipitation. This range is considered to be acceptable when dealing with10

precipitation downscaling (cf. Wilby et al., 2002).

The lagged NCEP predictors and Clutha precipitation obtained in the previous step

were then used in SDSM for the final analysis. Screening of the most relevant pre-

dictors’ set was performed in SDSM on the basis of correlation and partial correlation

analysis among the predictand and the individual predictors and a set of 10 predictors15

were chosen. This is shown in bold text in Table 1. The predictor selection process is

consistent with similar studies (Dibike and Coulibaly, 2005). The 10 chosen predictors

were used for calibration of the downscaling model.

The Clutha precipitation and NCEP predictors for the period of 1961–2000 were split

into two parts. The first part for 1961–1990 was used for model calibration while the20

remaining data of 1991–2000 were used for model validation (as an independent set

of data). SDSM was calibrated for each month of the year using the same set of 10

selected NCEP predictors for the calibration period. Different values of SDSM set-up

parameters such as “Variance Inflation” and “Bias Correction” were tested. The best

combination of these parameters gave a model with maximum coefficient of determina-25

tion (R2
) and identical standard deviation in the comparison of observed and simulated

data. This model tuning/calibration strategy is in line with the one explained in Dibike

and Coulibaly (2005). Model validation was performed by testing it for an independent

data set of 1991–2000 which also revealed satisfactory results, as given in Sect. 6.1.
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5.2 LARS-WG model

LARS-WG is a weather generation tool. It can be used to synthesize, fill in missing val-

ues or generate for an ungauged site (using observed data properties of a neighboring

gauged site), the daily climatic parameters such as precipitation, temperature and solar

radiation. It takes as an input the long term daily information of the climatic parameter5

of interest for a site. It can also generate the scenarios of changed climate for a site by

perturbing the parameters derived from the observed data to generate synthetic data.

Before using the LARS-WG for downscaling, its performance using the Clutha pre-

cipitation for the period 1961–2000 was analyzed. This precipitation time series was

used as an input to LARS-WG to generate a synthetic daily precipitation time series10

with a record length of 500 years. The statistical properties of the synthetic time series

were compared to those of the observed data in order to gauge the ability of LARS-WG

in reproducing the observed precipitation statistics. The statistical properties include

mean monthly precipitation and monthly standard deviations of precipitation which are

very similar to those used in previous studies (e.g. Dibike and Coulibaly, 2005).15

The downscaling of precipitation using LARS-WG and the output from a GCM is

performed with the help of relative monthly change factors for average precipitation

and average length of dry/wet spell. In the present study, the daily precipitation time

series of HadCM3, representing current climate forcing, for 1961–1989 and a future

time series of 2080s based on SRES A2 scenario run are used in calculating the rel-20

ative change factors. The data extracted from HadCM3 output for the two periods

(present and 2080s) were used by LARS-WG to calculate month-wise mean daily pre-

cipitation and average length of wet and dry spells and hence the change between

the two climate regimes, projected by the GCM. Table 3 gives the month-wise relative

change factors for mean daily precipitation, average wet spell days and average dry25

spell days, as calculated from the HadCM3 daily precipitation data and provided to

the LARS-WG. Once the change factors were calculated they were subsequently used

in LARS-WG to perturb parameters in order to generate a 30-year daily time series,
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representing 2080s.

5.3 GEP Model

As discussed in Sect. 3, studies have shown that soft computing non-linear regression

methods such as ANNs are efficient downscaling models that can capture the com-

plex relationship between the highly variable large scale predictors and the required5

predictands. However, a recent study by Coulibaly (2004) has noted that non-linear

models developed using symbolic regression and genetic programming are powerful

downscaling models for temperature. The symbolic regression is a form of nonpara-

metric regression in which the function relating predictors and predictand variables is

not specified a priori, but the function is constrained to contain a number of mathemat-10

ical or logical expressions to be chosen from a large pre-selected set of mathematical

expressions (symbols) and predictor variables. In the symbolic regression, the genetic

programming which mimics the Darwin evolution theory is used to obtain the optimum

set of symbols and predictor variables. In this study, the GeneXproTools 4.0 software,

a powerful soft computing package is utilized for the first time to perform symbolic15

regression operations using gene expression programming (GEP) to develop a precip-

itation downscaling model. The GEP is a variant of Genetic programming and further

details can be found in Ferreira (2001, 2006).

The software package was provided with the daily input of the same lagged large

scale predictors as were used previously in SDSM and Clutha precipitation as local20

predictand in the form of two data sets. The first set which covers the period of 1961–

1990 is used for training/calibration and the second set which covers the period of

1991–2000 for testing/validation. The results obtained using GEP show a marked im-

provement over SDSM in developing a predictor-predictand relationship in terms of the

obtained coefficient of determination (R2
) (Observed and simulated daily time series25

R2
is “0.48”). In terms of monthly standard deviation, the model developed by GEP

underestimates for all months of the year.
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5.4 MME model

The values of mean monthly precipitation for present (Xi ) and GCM projected (Yi ) were

obtained from downscaling models’ output for the selected watershed. The natural

variability of observed monthly data, λ0, given in Table 4 were also provided as input

data. MCMC simulation is performed with a Gibbs sampler to draw random samples5

from the posterior distributions of parameters (i.e. “µ”, “ν” and “λis”) and was made to

run through 7 50 000 iterations, saving every 50th sample to avoid correlation between

the successive values. A number of initial samples were discarded (as burn-in period)

to include only the final stable output into the analysis. The final set comprised of

5000 samples of each parameter of interest, the selection of the total number of iter-10

ations, “save every” and burn-in period being consistent with other studies (Tebaldi et

al., 2005). The means of the posterior distributions of λis, computed through WMME,

for three downscaling models were computed and then the relative weight (ωi ) to be

assigned to each model was computed. Using this methodology, the relative weights

calculated for each model are given in Table 5.15

6 Results and discussion

6.1 SDSM results

Figure 5 shows comparisons of the observed and SDSM estimated month-wise mean

daily precipitation and its standard deviation, respectively. Examination of Fig. 5 shows

that the calibrated models have reproduced the seasonal values quite well. Although20

the model has slightly underestimated the mean monthly precipitation for the months

of April, June, July and September (<1 mm) and almost equally overestimated for the

months of January, February, March, May, August, October, November and December.

Hence the observed and the estimated annual precipitation are equal.

Further examination of Fig. 5, in terms of monthly standard deviation results, reveals25
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that only for a few months (June, July, September and December), SDSM simulated

standard deviation is below that of the observed data. For all other months of the year,

the simulated and observed standard deviations are in a good agreement.

Downscaling models are often regarded as less skillful to model the standard devia-

tion (or variance) of the observed precipitation with great accuracy (Wilby et al., 2004).5

However, the SDSM model for this study has reproduced the observed standard devi-

ation exceptionally well.

After accomplishing a satisfying calibration, the multiple regression model was vali-

dated using the data of 1991–2000 (as an independent set of data outside the period

for which the model is calibrated) and the results obtained are shown in Fig. 6. Exami-10

nation of this figure reveals that the model is successfully validated.

Next the corresponding large scale predictors of HadCM3 were used to downscale

the future climate data of the selected watershed. The calibrated model was run for 10

corresponding GCM predictors for the current climate (1961–1990) and future (2080s).

The results obtained on the basis of these runs are shown in Fig. 7.15

The future picture sketched by HadCM3 (Fig. 7) shows a mixed trend as for months

of March, September and December, it projects a decrease in mean daily precipitation

as compared to an increase for the rest of the year. Overall the precipitation in this

watershed is projected by HadCM3 to be increased by 1 mm or more by the end of this

century (2080s).20

6.2 LARS-WG results

Visual analysis of LARS-WG results in terms of monthly mean precipitation and stan-

dard deviation are presented in Fig. 8 which shows that means of daily precipitation for

each month are very well modeled by LARS-WG except for the summer months (Jan-

uary, February and December) where they are overestimated. In terms of standard25

deviation, LARS-WG has shown an average performance as it mostly underestimates

the observed data but overall it shows much better results for the months of February

to May and July than for the rest of the year.
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The monthly change factors used by LARS-WG to generate a 30 year data record

representing the 2080s time slice are given in Table 3. A comparison between the

LARS-WG generated future data of 2080s and the observed data of 1961–2000 period

in terms of mean daily precipitation for each month is presented in Fig. 9 to reveal the

change in the precipitation regime of the Clutha watershed between the two analyzed5

time periods. For most of the months, GCM is projecting an increase in mean daily

precipitation except for the months of January, March and December. This increase

varies between 0.2–1.5 mm with May being the month with highest increase.

6.3 GEP results

Graphical presentation of the GEP model training results is provided in Fig. 10. In the10

comparison of observed and simulated data, the GEP model underestimates the mean

daily precipitation for the months of January, March, April and December while the op-

posite is true for the months of May to November. In terms of standard deviation of

precipitation, the GEP model’s results (Fig. 10) are less satisfying as the model consis-

tently underestimates throughout the year. Results obtained using the GCM predictors15

to run the GEP model are presented in Fig. 11. These results show a considerable

increase in precipitation throughout the year for the period of 2080s. The projected

increase ranges from 0.3–3.5 mm, which is larger as compared to the SDSM down-

scaling results.

6.4 MME results20

Skill comparison of downscaling models on the basis of “bias” and “convergence” cri-

teria is one of the main objectives of this study. Table 5 provides this comparison

numerically. The performance of all models is variable for different months of the year

so they have been given weightage accordingly. For example, in the ensemble of three

downscaling models, SDSM has a 30% or higher weightage for most of the year, an25

exception being the month of June. The weightage assigned to LARS-WG is always
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more than 10% but varies between 10–60% throughout the year. The GEP model is

the weakest of the three for most months of the year on the basis of the weightage

assigned to it. But the months of June and July are both exceptional cases, where it

is the best performing model as it has been given the highest weightage. Figure 12a

and b is pictorial representation comparing the skill of three downscaling models on5

the basis of their precision (λi ) value. This figure actually contains the box plots of

the monthly posterior distributions of the model specific precision parameter (λi ) for

all three downscaling models. The vertical position of a box (representing any of the

three models) in comparison to the other two boxes is indicative of the precision of

that model in comparison to the others. A model having large λi indicates it is more10

skillful in matching the true climate response than one with smaller λi . Also, a model

with higher box-plot position will get more weight than one with lower position. Using

this comparison measure, it can be seen that the vertical position of all three boxes is

highly variable for different months of the year. On most occasions, the models differ

considerably in their skill. An exception is the month of May where the three models15

show quite similar performance. In most instances, the model with highest weightage

was either SDSM or LARS-WG. In this way, the MME has taken into consideration the

strength and the weakness of each model and produced a downscaled output which

would be more reliable than either of the individual models.

Figure 13 shows the box plots of monthly posterior distributions of the percent pre-20

cipitation change (%∆P ) providing an overall picture about the nature of the distribu-

tions for each month and the level of uncertainty in the monthly precipitation change

projections after downscaling. The white thick line in each box is the median value.

Examining Fig. 13 in terms of IQR as a measure of uncertainty, a variable trend can

be seen of monthly precipitation change distributions. This shows different degrees25

of uncertainty for different months which is a good representation of magnitudes of

precipitation change among 12 months of the year. The months of May, August and

December have very compact (tight) distributions as compared to the boxes for other

months. For these three months, the small IQR indicates very small uncertainty in their
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positive precipitation change signal. On the other hand, February and April are excep-

tional cases where the quantiles are wide apart giving large IQR. The large uncertainty

thus resulting can be attributed to the GCM and the downscaling models’ bias for these

months. For the months of January, March, April, July and September to November

a lucid change signal is obtained as boxes have some part on both sides of the 0-line.5

The results shown and discussed above further strengthen the idea of employing

Bayesian WMME for multiple downscaling models instead of relying on the output of

an individual model.

7 Conclusions

The objective of the study is to present the application of a Bayesian framework to10

develop WMME of multiple downscaling models and efficiently quantify uncertainty in

the downscaling of monthly precipitation of a watershed. The WMME is based on the

Bayesian framework developed by Tebaldi et al. (2005). Three well reputed downscal-

ing models namely SDSM, LARS-WG and GEP were used. Downscaling experiments

were carried out for precipitation data of the Clutha watershed in South Island, New15

Zealand. The two time slices analyzed for precipitation change were the baseline pe-

riod of 1961–1990 and the future period of 2080s. The large scale data of HadCM3

model has been used for baseline period and future period of 2080s for SRES A2

scenario. By the application of Bayesian framework, the monthly outputs from three

downscaling models and observed data of the watershed were efficiently combined.20

On the basis of the strengths of individual models in comparison to fellow downscaling

models in terms of “bias” and “convergence” criteria, each model was assigned a rel-

ative weight to be used in the WMME. This new application for multiple downscaling

models has proven to be very efficient in terms of quantifying uncertainty contained in

downscaled results and gives new directions for more work on multi-model downscal-25

ing ensembles. The work presented in this paper strongly supports the use of multi-

model ensemble downscaling for providing the required data for hydrological impact
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assessment.
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Table 1. Name and description of all NCEP predictors on HadCM3 grid (bold texted predictors

were used for model calibration).

Sr. no. Predictor Description Sr. no. Predictor Description

1 ncepmslpaz Mean sea level pressure 14 ncepp500az 500 hPa geopotential height

2 ncepp5 faz 500 hPa airflow strength 15 ncepp850az 850 hPa geopotential height

3 ncepp5 uaz 500 hPa zonal velocity 16 ncepp faz Surface airflow strength

4 ncepp5 vaz 500 hPa meridional velocity 17 ncepp uaz Surface zonal velocity

5 ncepp5 zaz 500 hPa vorticity 18 ncepp vaz Surface meridional velocity

6 ncepp5thaz 500 hPa wind direction 19 ncepp zaz Surface vorticity

7 ncepp5zhaz 500 hPa divergence 20 ncepp thaz Surface wind direction

8 ncepp8 faz 850 hPa airflow strength 21 ncepp zhaz Surface divergence

9 ncepp8 uaz 850 hPa zonal velocity 22 ncepr500az Relative humidity at 500 hPa

10 ncepp8 vaz 850 hPa meridional velocity 23 ncepr850az Relative humidity at 850 hPa

11 ncepp8 zaz 850 hPa vorticity 24 nceprhumaz Near surface relative humidity

12 ncepp8thaz 850 hPa wind direction 25 ncepshumaz Surface specific humidity

13 ncepp8zhaz 850 hPa divergence 26 nceptempaz Mean temperature at 2 m
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Table 2. Results of the cross correlation analysis.

Predictor Description Optimal lag with

Clutha precipitation

ncepmslpaz Mean sea level pressure +1

ncepp5 faz 500 hPa airflow strength +1

ncepp5 uaz 500 hPa zonal velocity +1

ncepp5 vaz 500 hPa meridional velocity +1

ncepp5thaz 500 hPa wind direction −1

ncepp5zhaz 500 hPa divergence +1

ncepp8 faz 850 hPa airflow strength +1

ncepp8 uaz 850 hPa zonal velocity +1

ncepp8 vaz 850 hPa meridional velocity +1

ncepp8 zaz 850 hPa vorticity +1

ncepp8thaz 850 hPa wind direction +1

ncepp8zhaz 850 hPa divergence +1

ncepp500az 500 hPa geopotential height +3

All other predictors showed an optimal lag of zero.
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Table 3. Relative change in monthly statistics derived from HadCM3 daily output for present

and A2 future scenario.

Month Mean daily Wet spell length Dry spell length

Jan 1.01 0.90 1.13

Feb 1.13 0.99 1.21

Mar 1.01 0.82 1.05

Apr 0.98 0.99 1.14

May 1.30 1.17 1.09

Jun 1.16 1.10 1.13

Jul 1.20 1.47 1.11

Aug 1.10 1.03 1.08

Sep 1.10 1.15 1.28

Oct 1.14 1.38 1.06

Nov 1.07 0.92 1.07

Dec 0.96 0.98 1.06
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Table 4. Natural variability of observed data calculated as described in Tebaldi et al. (2005).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.25 0.54 0.56 0.48 2.49 1.79 1.74 2.20 0.51 1.25 0.53 1.17
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Table 5. Month-wise relative weighting of the three downscaling models.

Month Relative Weights (%)

SDSM LAR-WG GEP

Jan 45.78 45.41 8.81

Feb 44.83 23.94 31.22

Mar 37.25 54.72 38.73

Apr 44.70 11.95 43.35

May 33.54 39.30 27.16

Jun 3.85 46.48 49.67

Jul 39.33 20.42 40.25

Aug 45.59 48.48 5.93

Sep 33.32 44.61 22.07

Oct 45.92 34.63 19.45

Nov 40.24 41.86 17.90

Dec 51.29 36.18 12.52
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Fig. 1. Watershed boundary of the Clutha River above Balclutha on a terrain map of South

Island, New Zealand (Source: NIWA).
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Fig. 2. Schematic diagram outlining the steps involved in the Bayesian WMME approach.
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Fig. 3. Correlation between Ophir2 precipitation data with NCEP predictors and maximum

range of correlation.

6568

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/6535/2009/hessd-6-6535-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/6535/2009/hessd-6-6535-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD

6, 6535–6579, 2009

Statistical

downscaling of

precipitation

M. Z. Hashmi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 4. Correlation between average Clutha precipitation data with NCEP predictors and maxi-

mum range of correlation.
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Fig. 5. SDSM model calibration for mean daily precipitation of 1961–1990.
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Fig. 6. SDSM model validation for mean daily precipitation of 1991–2000.
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Fig. 7. SDSM: Downscaling results using HadCM3 predictors.
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Fig. 8. Comparison of Clutha precipitation and LARS-WG simulated data for 1961–2000.
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Fig. 9. LARS-WG: Comparison of present and HadCM3 predicted future Clutha precipitation.
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Fig. 10. GEP model training results in terms of mean daily precipitation of 1961–1990.
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Fig. 11. GEP model: Downscaling using HadCM3 data.
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Fig. 12a. Monthly posterior distribution of model specific precision parameter (λi ) for three

models 1=SDSM, 2=LARS-WG, 3=GEP. Top three plots for January, February, March bottom

three for April, May, June.
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Fig. 12b. Monthly posterior distribution of model specific precision parameter (λi ) for three

models 1=SDSM, 2=LARS-WG, 3=GEP. Top three plots for July, August, September, bottom

three for October, November, December.
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Fig. 13. Month-wise posterior distribution of percent precipitation change on the basis of

Bayesian WMME.
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