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ABSTRACT

Tropical cyclone (TC) activity is examined using the Columbia Hazard model (CHAZ), a statistical–dynamical

downscaling system, with environmental conditions taken from simulations from phase 5 of the Coupled Model

Intercomparison Project (CMIP5) for both the historical period and a future scenario under the representative

concentration pathway 8.5. Projections of individual global and basin TC frequency depend sensitively on the

choice of moisture variable used in the tropical genesis cyclone index (TCGI) component of CHAZ. Simulations

using column relative humidity show an increasing trend in the future, while those using saturation deficit show a

decreasing trend, although both give similar results in the historical period. While the projected annual TC fre-

quency is also sensitive to the choice ofmodel used to provide the environmental conditions, the choice of humidity

variable in the TCGI ismore important. Changes in TC frequency directly affect the projected TCs’ tracks and the

frequencies of strong storms on both basin and regional scales. This leads to large uncertainty in assessing regional

and local storm hazards. The uncertainty here is fundamental and epistemic in nature. Increases in the fraction of

major TCs, rapid intensification rate, and decreases in forward speed are insensitive to TC frequency, however.

The present results are also consistent with prior studies in indicating that those TC events that do occur will, on

average, be more destructive in the future because of the robustly projected increases in intensity.

1. Introduction

As Earth’s climate warms due to increasing concen-

trations of greenhouse gases, tropical cyclones (TCs) are

expected to change. Among the more confident expec-

tations are that TC precipitation and wind speeds will

increase, and that the impact of storm surge will increase

due to rising sea levels (Knutson et al. 2010; Woodruff

et al. 2013; Walsh et al. 2016; Camargo and Wing 2016;

Sobel et al. 2016). There is much less confidence in

projections of changes in TC frequency, or in the spatial

distributions of storm genesis, track patterns, and

translation speeds. The uncertainties are, in general,

even larger at the scale of individual basins than at

the global scale, and larger still at subbasin scales. Yet

changes in frequency and track patterns influence all

other aspects of the hazard at any specific location,

making hazard assessment challenging. Here we study

projections of various measures of TC climatology on

both global and basinwide scales under warming cli-

mates. We use environmental conditions derived from

coupled global Earth systemmodels, downscaled using a

statistical–dynamical tropical cyclone hazard model.

Projections of tropical cyclone frequency are of par-

ticular interest. With low confidence, many recent studies

have suggested a decline in the global number of TCswith

warming (e.g., IPCC 2013; Knutson et al. 2010), with a

few exceptions (e.g., Emanuel 2013; Bhatia et al. 2018;

Fedorov et al. 2018). One hypothesized mechanism for
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the reduction is the decrease of mean ascending mid-

tropospheric vertical velocity in genesis regions due to

increasing static stability (Held and Zhao 2011; Sugi and

Yoshimura 2012; Sugi et al. 2012). Another is an in-

crease in the saturation deficit, which increases the time

scale for the free troposphere in a TC to reach saturation

through surface evaporation (Emanuel 2008; Rappin

et al. 2010). On the other hand, possible mechanisms for

increasing annual TC frequency include increases in

potential intensity (PI), and in particular, increases in

the area over which the PI is sufficiently large to sustain

genesis, due to the reduction in the meridional temper-

ature gradient and relative warming at the poleward

boundaries of the historical zones of TC activity

(Fedorov et al. 2018; Viale and Merlis 2017). In a recent

study using the 25-km High-Resolution Forecast-

Oriented Low Ocean Resolution (HiFLOR) model at

the Geophysical Fluid Dynamics Laboratory (GFDL),

Bhatia et al. (2018) showed an increasing trend in TC

frequency as the climate warms. This increase is in agree-

ment with the downscaling results of Emanuel (2013)

for phase 5 of the Coupled Model Intercomparison

(CMIP5), but in disagreement with many previous studies,

as reviewed, for example, inWalsh et al. (2016).Unlike the

case of TC intensity, where PI theory complements nu-

merical experiments, there is no established theory for TC

genesis to help us interpret the conflicting results from

different modeling studies.

For regional hazards, changes in the spatial patterns of

TC genesis and track are potentially as important as

changes in basinwide frequency, if not more so. Any

changes in the sizes or positions of the main genesis lo-

cations are likely to affect the distributions of storm

tracks (Wang and Chan 2002; Camargo et al. 2007;

Daloz et al. 2015). Changes in large-scale steering flows

may also change the preferred direction and speed of

TCs’ forward motion (Colbert et al. 2013). Murakami

andWang (2010) found a decrease in the TC occurrence

in the tropical western North Atlantic, but an increase in

the tropical eastern North Atlantic, notwithstanding an

overall reduction in the North Atlantic genesis. Yokoi

et al. (2013) showed that the increases in the frequency

of eastern Japan storms are due to changes in the storms’

translation direction, which resulted from the southward

shift of the subtropical jet axis and resultant intensifi-

cation of westerly steering flows. With a set of global

climate models (GCMs), Nakamura et al. (2017) further

identified an eastward and a poleward shift in the ty-

phoon tracks as the climate warms. Using observed

tracks from 1945 to 2015, Kossin (2018) found a slow-

down of TCs’ mean translation speed. Such a slowdown

has not yet been shown to be a feature of future pro-

jections, but it is arguably consistent with the projection

of a slowing down of the atmospheric circulation (Held

and Soden 2006; Vecchi et al. 2006), which is in turn

due to amore stable tropical atmosphere (Ma et al. 2012;

He and Soden 2015).

In contrast to genesis and track, it is broadly agreed

that greenhouse gas–driven warming will result in stron-

ger storm intensities. This expectation is supported by PI

theory as well as numerical model simulations. The

emergence of the signal thus far is likelymuted by aerosol

cooling, whose impact on PI is comparable, but of op-

posite sign, to the greenhouse gas–driven increase (Ting

et al. 2015; Sobel et al. 2016). The greenhouse warming is

expected to increasingly outpace aerosol cooling in future

(Westervelt et al. 2015). The fraction of TCs that become

intense (exceeding category 3 or 4 on the Saffir-Simpson

scale, depending on the study) is projected to increase

under continued warming; Knutson et al. (2015), Sugi

et al. (2017), and Yoshida et al. (2017), for example,

showed that fraction of intense TCs will increase, even

though overall TC frequency will decrease. On the other

hand, Bhatia et al. (2018) projected that both the fraction

of intense TCs and overall TC frequency will increase.

Because TCs rarely reach major hurricane strength with-

out undergoing rapid intensification [RI; i.e., intensity in-

creases of more than 35kt (24h)21 (1kt ’ 0.51ms21)]

(Lee et al. 2016b), the increasing numbers of strong storms

is likely to mean increasing numbers of storms undergoing

RI as well (Kowch and Emanuel 2015; Emanuel 2017).

Using 24-hourly storm data from both observations and

the high-resolution GCM simulations, Bhatia et al. (2019)

further found a significant increase in the frequency of RI

events in the past 30 years of historical observations and in

future climate projections.

We are interested in how global climate change will

influence TC hazards regionally. To do this, we use a

statistical–dynamical downscaling approach in which we

downscale six CMIP5models using the ColumbiaHazard

model (CHAZ), developed in previous work (Lee et al.

2018). The CHAZmodel, the CMIP5 model simulations,

and the downscaling experiments themselves are de-

scribed in section 2. Differences in the large-scale condi-

tions in CMIP5 models between current and projected

future climates are shown in section 3.We discuss changes

in the statistics of synthetic storms’ genesis, tracks, and

intensities on global and basinwide scales in sections 4 and

5. In section 6 we show the estimated TC hazards from

CHAZ simulations, followed by conclusions in section 7.

2. Methods and experiment design

a. The Columbia Hazard model

The Columbia Hazard model (CHAZ) has been de-

veloped and tested using data from the recent historical

4816 JOURNAL OF CL IMATE VOLUME 33

Unauthenticated | Downloaded 08/27/22 08:10 PM UTC



climate. The model is composed of three separate

components, which predict genesis, track, and intensity,

respectively. The method is described in detail in Lee

et al. (2018), but we give a brief summary here.

The genesis model seeds the domain with weak vor-

tices (or disturbances) using a seeding rate that depends

on environmental conditions through a tropical cyclone

genesis index (TCGI). The index is described by Tippett

et al. (2011) and Camargo et al. (2014). The weak seed

vortices are then passed to the intensity and track

models to determine the storms’ further evolution. The

track model moves each storm forward by advection by

the environmental wind plus a ‘‘beta drift’’ component.

The advection is calculated using steering flow, de-

fined as

V
steering_flow

5 0:8V
850

1 0:2V
250

, (1)

where V are monthly mean wind at 850 and 200 hPa,

plus a stochastic component based on eddy statistics that

represents the effects of submonthly wind fluctuations

(Emanuel et al. 2006).

The intensity model (Lee et al. 2015, 2016a) has two

components. The first is an empirical multiple linear

regression model, which advances the TC intensity

in time along the track based on the surrounding

large-scale environment and is similar in construction

to statistical models used in operational forecasting

(DeMaria et al. 2005). The second is a stochastic

component that accounts for the internal storm dy-

namics and does not depend explicitly on the envi-

ronment, but only on the storm’s current state and

recent history. Intensity at landfall is calculated

from a separate regression model that takes into ac-

count the proximity to land, as well other environmental

conditions.

Ambient environmental variables required by the

CHAZ model are potential intensity (PI; Bister and

Emanuel 2002), deep-layer (850–250hPa) vertical wind

shear (SHR), moisture variables [relative humidity and/

or saturation deficit (SD)], the absolute vorticity at

850hPa (h850), and the steering flow [Eq. (1)]. We use

monthly data interpolated to daily resolution. The only

exception is the eddy statistics used in the track model,

which are calculated using daily winds. Humidity enters

in multiple ways: the intensity model uses area-averaged

midlevel humidity (Lee et al. 2015) while TCGI uses

grid values of either column-integral relative humidity

(CRH; Tippett et al. 2011) or SD (Camargo et al. 2014).

SD is the difference between the column integrated

water vapor and the same quantity at saturation, and

the CRH is their ratio. Both are calculated following

Bretherton et al. (2004). The choice between these two

humidity variables in TCGI will prove consequential in

this study.

b. Downscaling experiments and CMIP5 models

In this study, synthetic storms are generated by

downscaling six models from phase 5 of the Coupled

Model Intercomparison Project (CMIP5; Taylor et al.

2012). They are the National Center for Atmospheric

Research (NCAR) Community Climate System Model

4 (CCSM4; Gent et al. 2011); the Geophysical Fluid

Dynamics Laboratory Climate Model, version 3, from

(GFDL CM3; Donner et al. 2011); the UK Met Office

Hadley Center Global Environment Model, version 2,

Earth System (HadGEM2-ES; Jones et al. 2011),

the Max Planck Institution Earth System Model with

medium resolution (MPI-ESM-MR; Zanchettin et al.

2012); the Model for Interdisciplinary Research on

Climate, version 5 (MIROC5; Watanabe et al. 2010),

from theUniversity of TokyoCenter for Climate System

Research, the National Institute for Environmental

Studies, and Japan Agency for Marine-Earth Science

and Technology Frontier Research Center for Global

Change; and the Meteorological Research Institute of

Japan’s Climate General Circulation Model 3 (MRI-

CGCM3; Yukimoto et al. 2012). Those models were

selected following Emanuel (2013), allowing direct

comparison with that study. While more models are

available from CMIP5, it turns out that the greatest

uncertainty in our results derives not from the model

being downscaled but from the choice of moisture

variable used in TCGI, as described below. Thus, six

models are more than adequate to illustrate the most

challenging issue that arises in this study.

Applying the TCGI to a set of simulations of the

GFDL High-Resolution Atmospheric Model (HiRAM;

Zhao et al. 2009) at 50-km horizontal grid spacing,

Camargo et al. (2014) found that using saturation deficit

(SD) as the moisture variable in the TCGI results in a

reduced frequency of TCs globally in a warming climate,

while using CRH results in an increase. The results from

the SD choice were consistent with the directly simu-

lated storm genesis reduction fromHiRAM, while those

from the CRH choice were not. Based on this, as well as

on a simple theoretical argument, it was suggested that

SD is a better choice for the moisture variable of TCGI

for climate change studies. These results, however, were

contingent on the HiRAM simulations; Camargo et al.

(2014) was a ‘‘perfect model’’ study, taking that model—

which at the time agreed qualitatively with most other

global models at comparable resolutions—as the target

to be explained. As discussed in the introduction

(section 1), however, there is now a larger uncertainty in

the future projection of TC frequency, as simulations
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from a global model with 25-km horizontal grid

spacing show an increasing trend (Bhatia et al.

2018), as do the downscaling simulations of Emanuel

(2013). Many other models still project decreases,

however, and given the absence of physical theory

for TC frequency, this leads us to be uncertain about

the sign, let alone the magnitude of expected future

changes.

Considering the complex set of results from the prior

studies cited above, here we design two sets of simula-

tions. In the first, CRH is used as the moisture variable:

m5 exp(b1 b
h
h
850,c

1b
CRH

CRH1 b
PI
PI1 b

SHR
SHR),

(2)

while SD is used in the second:

m5 exp(b1 b
h
h
850,c

1 b
SD
SD1 b

PI
PI1 b

SHR
SHR).

(3)

Here m is the estimated seeding rate and b is the inter-

cept; bX represents the coefficient of parameter X. The

subscript c in h850,c indicates that TCGI uses absolute

vorticity clipped at 3.7 3 1025 s21 (Tippett et al. 2011).

We call these two sets of experiments TCGI_CRH and

TCGI_SD.

The two versions of TCGI and six CMIP5 models

give a total of 12 experiments. In each experiment, we

generate 120 simulations of each year from 1981 to 2100.

The CHAZ track set records 6-hourly storm location (in

longitude and latitude) and maximum wind speed (kt).

Large-scale environmental conditions for the period of

1981–2005 are taken from the historical simulations,

and those for the periods from 2006 to 2100 are from

future climate simulations under representative con-

centration pathway 8.5 (RCP8.5) scenarios. To un-

derstand the modulation of TC activity by climate

change, we analyze trends from 1981 to 2100 as well as

differences in the climatologies of the periods: 1981–

2005, 2006–40, 2041–70, and 2071–2100. The last pe-

riod (2071–2100) is referred to as the late twenty-first

century. For convenience, we refer to simulations of

the historical period as HIST and those for the late

twenty-first century as RCP85 hereafter.

c. TC basins and observations

We analyze TC climatology both globally and basin-

wide. Following the conventional definitions, the seven

TC basins are the north Indian Ocean (ni; west of

1108E), western North Pacific (wnp; 1108–1808E), east-

ern North Pacific (enp), North Atlantic (atl), south

Indian Ocean (sin; 08–908E), northern Australia (aus;

908–1608E), and South Pacific (spc; 1608E–1208W).

The TC season for the Southern Hemispheric basins

crosses the calendar year, from December to May, and

thus annual values (such as annual TC frequency) in

these basins are usually calculated from July to June

(Schreck et al. 2014). In this study, however, we cal-

culate annual values using calendar year, January to

December, for all basins. We are looking at TC cli-

matologies over 20–30 years, rather than at interan-

nual variability; thus it is not necessary to calculate

annual values following the individual TC seasons.

Furthermore, it is easier to attribute the impact of

TC activity in individual basins to the global total

when the annual values are defined over the same

period.

Simulated TC climatologies from the historical periods

are compared to the observations from the International

Best Track Archive for Climate Stewardship v03r08

(IBTrACS; Knapp et al. 2010). IBTrACS contains data

from various operational centers. Here we use those

from the National Hurricane Center (NHC) and Joint

TyphoonWarning Center (JTWC).We use the 6-hourly

storm location (in longitude and latitude) andmaximum

wind speed (kt) from 1981 to 2013.

d. Bias correction

When downscaling CHAZ from the CMIP5 model

data, the parameters in the equations for genesis, storm

motion, and intensity change may need to be adjusted.

The model was trained using observation-based re-

analysis data, and the most appropriate statistical rela-

tionships between environmental parameters and TC

genesis, track, and intensity might differ when using

climate models’ environmental fields, due to biases in

the models’ climates. However, CMIP5 climate models

do not simulate realistically the observed TC frequency

and (especially) intensity distributions, due to their

low horizontal resolutions (Camargo 2013). So, adjust-

ing CHAZ to capture their simulated TC climatologies

would defeat the purpose of using a statistical–dynamical

downscaling approach. While we are interested in the

differences in the synthetic storm climatologies under

RCP8.5 scenario relative to those from historical period,

it is appropriate to calibrate the model results first. By

comparing the annual TC frequency in HIST to the ob-

servations, we derive a multiplicative factor that will be

used as a correction when applied to the TCGI. The

correction factor is uniform in time but varies by basin.

Then, the same correction is applied to all the simulations

for warming climate. We derived correction factors for

storm speed and landfall hazards during postprocessing.

No bias correction is applied to the TC intensity, because

CHAZ is capable of generating storm intensities realis-

tically, including the bimodality in basin distributions of
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lifetime maximum intensity (LMI) associated with RI

(Lee et al. 2018, 2016b).

3. Large-scale environments in the CMIP5 models

Before analyzing the CHAZ results, we investigate

the changes in large-scale environmental parameters

simulated by the CMIP5 models from the historical

to the late twenty-first-century periods. Changes in en-

vironmental conditions relevant to TC activity in a

warming climate under the RCP8.5 scenario in individual

CMIP5 models have been discussed in a few previous

studies (Camargo 2013; Park et al. 2017). Our analyses

focus on ensemble-averaged differences of the six vari-

ables used in the CHAZ model (Fig. 1). We use only the

data during the TC seasons, namely, May–November for

the North Hemisphere and December–April for South

Hemisphere. Differences are considered to be signifi-

cant, as indicated with gray dots in Fig. 1, if they exceed

the ensemble standard deviation.

Similar to findings from previous studies (e.g., Yu

et al. 2010; Camargo 2013), Fig. 1a shows that PI in-

creases with warming throughoutmost of the tropics and

subtropics. The exceptions are the eastern North Pacific

and SouthAtlantic basins, where PI decreases. Since few

storms have formed in these basins in recent history, the

decreases in these basins are presumably of little rele-

vance to future TC activity. The largest increase is found

over the equatorial eastern Pacific, where the mean

values of PI increases by as much as 10ms21, suggesting

an El Niño–like pattern in the future. This El Niño–

like pattern is documented in many previous studies

FIG. 1. Differences in the large-scale environment used in the CHAZmodel between the historical period and the late

twenty-first century on a 28 3 28 grid spacing during theTC season. In theNorthernHemisphere, the environmental fields

are averaged over May–November while in the Southern Hemisphere they are averaged over December–April. Gray

dots show regions where the difference is larger than one standard deviation of the data from historical period.

1 JUNE 2020 LEE ET AL . 4819

Unauthenticated | Downloaded 08/27/22 08:10 PM UTC



(e.g., Vecchi and Soden 2007; Vecchi et al. 2008). Changes

in the SHR and h850 are significant in a few localized

regions. The increase in vertical wind shear over the

Caribbean Sea and southern part of Gulf of Mexico

(Fig. 1b), as well as the increase in the low-level vorticity

over the equatorial and easternNorth Pacific (Fig. 1e) are

possibly related to the El Niño–like pattern, as El Niño

shifts the rising branch of theWalker circulation eastward

and enhances the deep convection over the equatorial

Pacific (Park et al. 2017). A recent work by Seager et al.

(2019) found that such pattern may be in error, as a

consequence of the models’ well-known cold tongue

double-ITCZ biases. Nevertheless, our results from the

six models used here are overall consistent with the 14-

model CMIP5 multimodel ensemble-mean differences

shown in Camargo (2013).

The middle panels of Fig. 1 compare changes in the

two moisture variables used in TCGI experiments.

Changes in the CRH are modest in amplitude and

nonuniform in sign, while those of SD are substantial

and everywhere negative. SD and CRH have very similar

spatial patterns in the current climate (not shown). Both

describe how far the atmosphere is from saturation, but

they do so differently: CRH represents the ratio between

water vapor and saturatedwater vapor pressure, while SD

is the absolute difference. As saturated water vapor in-

creases with the temperature, CRH remains close to

constant (e.g., Held and Soden 2006; Sherwood et al.

2010; Wright et al. 2010) and SD decreases (Camargo

et al. 2014). As an example, Fig. 2 shows the temperature

dependences of SD and CRH from GFDL CM3 simula-

tions using the area-average values over all longitudes

from 08 to 408N. The same difference holds at individual

grid points. Thus, it is difficult to determine which is a

better variable to use in TCGI from historical observa-

tions, while nonetheless the two behave very differently

under global warming. We will see below that the dif-

ference has large consequences for TC frequency.

Changes in the steering flow [Eq. (1)] are shown in

Fig. 1f. The steering flow over the near-equatorial north

Indian Ocean shows a significant decrease, suggesting that

storm translation speeds should decrease here. In contrast,

the steering flow increases over the northern part of that

basin. An increase in the steering flow also occurs over the

Caribbean Sea. In other TC basins, changes in the steering

flow are small in magnitude and spatially variable in sign.

4. Two plausible changes in the annual TC

frequency

a. Global perspective

Time series of the annual TC frequency from the

two sets of CHAZ simulations with different humidity

variables (Fig. 3a) diverge in the future. In the TCGI_CRH

experiments, the global-mean TC frequency increases

by roughly 35 storms from the historical period to

the end of the twenty-first century, with a mean rate of

increase of 0.31 storms per year. In the TCGI_SD ex-

periments, the multimodel, global mean annual TC

frequency drops by roughly 0.63 storms per year, a re-

duction of around 60 storms by 2100. This bifurcation is

due to differences in the seeding rate in TCGI (Fig. 3b)

that depend on the choice of humidity variable. In

Eq. (2), changes in PI dominate and result in increasing

m as the climate warms. Using our results in Eq. (3), the

influence of SD surpasses that of PI and leads to a large

reduction in m. This finding is consistent with Camargo

et al. (2014) as discussed in section 2b. While the sign of

the projected tendency is not sensitive to the choice

of the CMIP5 model being downscaled, the magnitude

of the change is (Table 1). Among the six CMIP5models

used here, in the TCGI_CRH experiments, GFDLCM3

shows the largest rate of increase, 0.56 storms per year,

while MRI-CGCM3 has the smallest, 0.07 storms per

year. In the TCGI_SD experiments, the GFDL CM3

and HadGEM2-ES models decrease at rates greater

than 0.7 storms per year whileMIROC5 has the smallest

rate of decrease, 0.5 storms per year. For reference, the

trends in the directly simulated TC frequencies in these

CMIP5 models used here, as shown in Camargo (2013),

are decreasing in the GFDL CM3 (30%), HadGEM2-

ES (50%), and MIROC5 (50%) models, and increasing

in MPI-ESM-MR (20%) andMRI-CGCM3 (30%). The

changing rates in parentheses are rough estimates from

medians in Fig. 7 in Camargo (2013). Note that the

numbers of storms shown in these low-resolutionmodels

are sensitive to the tracking routines used to detect

them. For example, Camargo (2013) found that CCSM4

FIG. 2. Scatterplots of NorthernHemisphere (08–408N) seasonal-

mean midlevel (500 hPa) atmospheric temperature (K) vs SD and

CRH. Data are from GFDL CM3.
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produced too few storms to examine the changes with

warming, but Tory et al. (2013) used a different tracking

routine and found a reduction in TC frequency in the

warming climate in that model.

Downscaling the same six CMIP5 models but using

a different statistical–dynamical downscaling model,

Emanuel (2013) found that the global TC frequency

increases from 80–85 storms per year for the historical

period to 120 storms per year (ranges from 90 to 125

storms per year) at 2100. One of the differences between

our methods and Emanuel’s is that we use TCGI to

determine our seeding rate while he uses a random

seeding approach with a globally uniform rate. The TC

frequency (genesis rate) in both models can be seen as a

combination of the seeding rate, that is, the rate at which

precursors that are inserted initially, and the survival

rate, that is, ratio of storms that intensified from these

precursors. In Emanuel’s approach, the increasing trend

in CMIP5 is due to changes in the survival rate, because

the seeding rate does not change. The warming climate

allows more vortices to intensify and grow into ma-

ture storms. In our approach, changes in the TC annual

frequency are due to changes in the seeding rate

(Fig. 3b). The slopes (Table 1) of the trends of the an-

nual TC frequency and seeding rate are slightly differ-

ent, though, because the survival rate changes as well, if

only slightly. In both experiments, the survival rate

(Fig. 3c) decreases, implying that if the random seeding

technique is used in the CHAZ—a target for future

work—we may find a reduction in the annual TC fre-

quency. It is worth noting here that the recent finding of

an increase in TC count from the 25-km resolutionGCM

by Bhatia et al. (2018), discussed in the introduction

(section 1), is attributed to an increase in the number of

precursors (Vecchi et al. 2019).

The ensemble-mean annual frequency over all the

experiments, including both TCGI_CRHandTCGI_SD

(orange lines in Fig. 3a), is arguably not meaningful,

because no individual model simulation comes near it.

This leaves us in a challenging situation. As both ver-

sions of TCGI yield similar results for the historical

period, we cannot determine from historical evidence

which of the two is more correct. There is a theoretical

argument for using SD (Emanuel et al. 2008): SD better

FIG. 3. Time series of (a) the CHAZ-simulated annual global TC frequency, (b) the TCGI-estimated seeding

rate, and (c) the survival rate of the synthetic storms. Thin lines show downscaling results from each of the CMIP5

models, indicated by color. The box-and-whisker diagram in (a) shows the median (orange) and the 5th, 25th, 75th,

and 95th percentiles. The thick blue and red lines show the ensemble mean from the TCGI_CRH and TCGI_SD

experiments, respectively.

TABLE 1. Changes in the annual frequency and TCGI seeding rate (number of storms per year).

CCSM4 GFDL CM3 HadGEM2-ES MPI-ESM-MR MIROC5 MRI-CGCM3

Annual frequency

TCGI_CRH 0.19 0.56 0.34 0.40 0.28 0.07

TCGI_SD 20.59 20.73 20.75 20.64 20.51 20.59

TCGI seeding rate

TCGI_CRH 0.34 0.80 0.68 0.49 0.62 0.21

TCGI_SD 20.68 20.89 20.89 20.81 20.55 20.66
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reflects the increase in the thermodynamic inhibition of

TC formation in a warming climate; more surface fluxes

are required to saturate the column on mesoscale, a

prerequisite to genesis (Emanuel 2018). However, this

argument has not been articulated in detail nor tested in

any demanding way, and we do not view it as ade-

quate to settle the matter—particularly when the best

global high-resolution dynamical simulations are similarly

equivocal to our results, with the latest results from

Bhatia et al. (2018) and Vecchi et al. (2019) showing an

increase and others showing decreases.

Unlike the case with intensity, where PI theory offers

some guidance (Bister and Emanuel 2002), or precipi-

tation, where increases are very robustly supported by a

range of evidence (e.g., Knutson et al. 2010), there is no

general theory for TC frequency on either a basin or

global scale that we might use to guide our interpreta-

tion of numerical model results (e.g., Walsh et al. 2016).

The bottom line is that, as far as we can tell, there are

two very distinct but possible scenarios, or ‘‘storylines’’

(Shepherd 2016; Shepherd et al. 2018) of future changes

in TC frequency. The uncertainty is epistemic, and we

cannot assign probabilities to the two storylines other

than saying that we cannot rule out either one. Given

this current state of knowledge, we can and should ex-

plore the consequent changes in other aspects of the TC

climatology and hazard corresponding to these two

different storylines.

b. Basinwide perspective

For individual basins, the bifurcation between the

TCGI_CRH and TCGI_SD experiments (left panels in

Figs. 4 and 5) is not as dramatic as it is globally (Fig. 3).

In the Atlantic, the eastern North Pacific, north Indian

Ocean, south Indian Ocean, and northern Australia, the

lowest 5th–25th percentiles of the annual frequency

distributions for TCGI_CRH overlap with the 75th–

95th percentiles in the TCGI_SD experiments. We can

still see a clear divergence between the two sets of ex-

periments, however.

The right panels in Figs. 4 and 5 show the distribution

of the annual TC frequency from observations and

simulations from the historical period (HIST) and late

twenty-first century (RCP85). For each curve, the mean

is marked by a dotted line. Since the means of the HIST

results are adjusted toward the observations, they have

the same values (black dotted line) by construction.

While we correct only the mean values for genesis,

the simulated distributions (colored dashed curves) are

close to those from observations (black curves) in the

Atlantic, eastern North Pacific, and northern Australian

regions, indicating that the CHAZ model successfully

reproduces the differing observed interannual frequency

in these regions. Over the western North Pacific and the

north and south Indian Ocean, CHAZ overestimates

the probabilities in the tails of the distributions of the

formation rates. In the South Pacific, CHAZ underes-

timates the chance of more than 18 storms in a year.

The distributions of annual TC frequency in the

RCP85 from the TCGI_CRH experiments are shifted

toward the right relative to the historical period (com-

paring the dashed blue lines to the solid blue lines in the

right panels in Figs. 4 and 5), consistent with the in-

creasing trends in frequency in those experiments. In the

western North Pacific, the rate of increase is 0.12 storms

per year, and the mean annual TC frequency increases

from 25.44 storms per year in the current climate to

37.85 storms per year by the late twenty-first century

(50%). The mean number increases by 7.27 storms per

year (40%) in the eastern North Pacific, and by 2.95

(62%), 2.75 (25%), 1.79 (20%), 1.55 (12%), and 0.98

(16%) storms per year in the north Indian Ocean,

northernAustralia, south Indian Ocean, North Atlantic,

and South Pacific, respectively. Relatively speaking, the

north Indian Ocean has the largest rate of increase,

followed by the Pacific basins. In most TC basins, the

100-yr values (those that occur with 1% probability in a

given year) of the mean annual TC frequency in the

historical period become about 10 times more likely by

the late twenty-first century. Increases in the extreme

values of Atlantic annual frequency are smaller than

those in other basins. When SD is used in the TCGI,

the mean frequencies decrease, as expected from the

global results above, and the distributions of annual TC

freqeuncy in the late twenty-first century shift left ac-

cordingly. The rates of decrease are larger than the in-

creasing rate in the TCGI_CRH experiments in all

basins except in the north Indian Ocean, where there is

no room for large reductions (in an absolute sense) in

the TC frequency since the numbers in the historical

climate are already low. The largest rates of decrease

occur in the two northern Pacific basins where the mean

frequencies drop by 13.3 and 9.06 storms per year over

the western and eastern North Pacific, respectively. In

contrast to the TCGI_CRH results, which show a wide

range in the rates of increase across basins, the fractional

rates of decrease in the TCGI_SD results are all around

50% with, the largest decrease, 66%, in the Atlantic.

5. Changes in the TC tracks and intensity

a. Track pattern

To examine changes in the track patten, we calculate

track density using TC occurrence on 58 3 58 grid per

year. The projected changes (Fig. 6), at least in sign,

simply reflect the changes in the TC frequency. Patterns
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in Fig. 6a, which shows TCGI_RH results, are domi-

nated by results from GFDL CM3, the CMIP5 model

with the largest upward trend. On the regional scale,

there is a greater model to model variability. Using

CRH as the TCGI’s moisture variable, more than four

CMIP5 downscaling simulations agree on the positive

trend (increase in TC frequency) over the westernNorth

Pacific, north Indian, and western south Indian Oceans,

FIG. 4. (a),(c),(e),(g) Time series of annual-mean frequency for four Northern Hemisphere TC basins. Legends

show the slope of the trend. (b),(d),(f),(h) Relative probability of the annual TC frequency from observations (black

solid line) and the HIST (colored dashed line) and RCP85 (colored solid line) simulations. Shading indicates the

confidence interval using bootstrapping 400 times with half of the ensemble members and with 10% of the members.

In all panels the bluish color shows results from TCGI_CRH while the orangish color shows those in TCGI_SD.
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as well as the South Pacific east of Australia. In the

eastern to central North Pacific, North Atlantic, eastern

south Indian Ocean, and central South Pacific, on the

other hand, at least three CMIP5 downscaling simula-

tions show no changes or decreasing trends. In the

TCGI_SD experiment, results forced by all six CMIP5

models agree on a global declining trend.

b. Changes in translation speed

Another question of interest is whether TC transla-

tion speed is influenced by climate change, as suggested

by Kossin (2018) based on observations. Here we con-

sider this question using our CHAZ simulations. We

consider only data frompoints near land, between 358N/S,

because of our interest in the hazard to human society.

‘‘Near land’’ is defined as when there is a landmass

within 300-km radius from the storm center. The re-

striction on the latitude in our analysis is to avoid the

inclusion of storms expected to undergo extratropical

transition.

The relative probability distribution in Fig. 7 shows

that the most frequent observed forward speed values

lie in the range of 10–15 kmh21, with fewer than 10%

of storms having translation speeds in the range of

0–5 kmh21. Those features are captured by the CHAZ

model. Comparing the distributions from HIST and

RCP85, the probabilities of translation speeds below

15kmh21 increase by 1%–2% globally. The increase is

quite small, and the range of one standard deviation

from RCP85 overlaps those from HIST. The exact

change in the probabilities varies by basin. We see

similar increases in the North Atlantic and western and

eastern North Pacific, but not in the Indian Ocean

(Fig. 8). In the SouthernHemisphere TCbasins, we see a

slight increase in the probabilities of a slow-moving

storm over the South Pacific and Australia area, but not

FIG. 5. As in Fig. 4, but for Southern Hemisphere TC basins.
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over the south Indian Ocean (not shown). The standard

deviation of the translation speed from RCP85 is larger

than from the HIST, indicating a larger variability in the

large-scale wind fields among the CMIP5 models in a

warming climate.

Trend analyses also suggest that there is a small de-

cline in near-land forward speed, at least globally. From

1981 to 2100, the slope of the global mean value is

roughly263 1023kmh21 yr21 in both TCGI_CRH and

TCGI_SD experiments. While the decreasing trend, as

well as the increasing probability of slow-moving TCs

we find, is consistent in sign with the results of Kossin

(2018) using observations from 1945 to 2014, the

trend we find is much smaller. Trend analyses are

sensitive to the beginning and ending year. With our

near-land and latitude restrictions, the observed

trend is 20.097 km h21 yr21 from 1945 to 2013 and

20.021 km h21 yr21 from 1981 to 2013. The observed

trend is also influenced by a few very slow-moving

storms (Hall and Kossin 2019).

c. Lifetime maximum intensity

Next, we analyze the distributions of lifetime maxi-

mum intensity (LMI) as well as the numbers of major

TCs (category 3 or greater) in the historical period and

late twenty-first century (Fig. 9). In our simulations,

changes in the number of major TCs largely reflect the

changes in the total TC frequency. The ensemble-

mean annual frequency of major TC increases from

20 to 32 storms per year globally in the TCGI_CRH

(blue lines), while it drops from 20 to 8 storms per

year in the TCGI_SD. Similar results can be found for

individual basins.

The fraction of TCs reaching high intensities, how-

ever, increases as the climate warms regardless of

whether SD or CRH is used in the TCGI. The relative

distribution of LMI in Figs. 10a and 10c shifts toward

the right from the historical period (gray) to 2006–40

(green), 2041–70 (yellow), and the late twenty-first

century (red). As discussed in section 2a and in Lee

et al. (2016b), the shoulder feature in Figs. 10a and

10c) is due to storms that undergo RI. The shift to the

right in the LMI distribution means that the fraction

of storms that undergo RI is increasing, which is

shown in Figs. 10b and 10d. The ensemble mean RI

liklehood increases from 1% to 5% from the historical

period to the late twenty-first century. The RI ratio

slope is largest (0.0267 yr21) for the MPI-ESM-MR

and smallest for the CCSM4. There is a decreasing

trend for the MIROC5 results, but in all other models

the RI ratio trend is in qualitative agreement with

Bhatia et al. (2019).

The RI ratio trend varies by basin as well as the choice

of forcing climate model. The largest increasing trends

in theGFDLCM3 in Figs. 10b and 10d are due to storms

over the Atlantic and eastern North Pacific (Fig. 11).

Over the eastern North Pacific, storms from MPI-ESM-

MR and HadGEM2-ES also show large increasing

trends but those from CCSM4 and MIROC5 in the

TCGI_SD have decreasing trends. The increasing

RI ratio trends in the Southern Hemisphere basins

are smaller than in the Northern Hemispheric ba-

sins (Fig. 12).

Mean LMI latitude where TCs reach their peak in-

tensity is observed being shifted in the past 30 years

(Kossin et al. 2014). In the CHAZ (Table 2), we noticed

a poleward migration projection globally, as well as

in the Atlantic and the western and eastern North

Pacific. Our results in the western North Pacific agree in

sign with Kossin et al. (2016), who used synthetic storms

from Emanuel’s system (Emanuel 2013). CHAZ, how-

ever, has a smaller migration rate. It is 0.0738 and 0.0498

decade21 for TCGI_CRH and TCGI_SD experiments,

FIG. 6. Changes in the track density on a 58 3 58 grid spacing

in (a) TCGI_CRH and (b) TCGI_SD experiments. Gray dots are

where at least four CMIP5 downscaling results show the same sign.
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respectively. The migration rate is 0.138 decade21 in

Kossin et al. (2016). For reference, the observed

value is 0.158–0.188 decade21 from 1980 to 2013. The

projected poleward migrations in both Atlantic and

eastern North Pacific from CHAZ are inconsistent to

the recent observed trend. Detailed analyses are re-

quired in the future in order to explain the above

differences.

6. Return periods

We compute return period curves for wind speed on

3.68 3 1.88 grids to describe the comprehensive impact of

climate change on TC hazard at the regional scale. The

return period is defined as the mean recurrence in-

terval for an event exceeding a given threshold any-

where within a specific area, assuming stationary

statistics, or equivalently the inverse of the annual

probability of an event exceeding that threshold. The

return period, while being widely used, does not

consider other storm characteristics that are crucial to

regional storm hazard, such as storm size and forward

speed. Recent work by Stern et al. (2017) suggested

that it would be better to include impact from storms

in the surrounding area of the point in question;

Stansfield et al. (2020) calculated track density as the

number of hours per year the point in question is

impacted by TCs. We acknowledge the importance of

these factors but stick with the conventional return

period definition to understand the first-order changes

in the regional TC hazards.

Here, we use 6-hourly track data with a threshold of

category 4 hurricane wind speed on the Saffir–Simpson

scale (113 kt). The underlying assumption of a return

period calculation is that the record is much longer than

the longest return periods being estimated. Estimates

from observations are shown as a reference, but can only

capture the shorter return periods (Fig. 13a). From ob-

servations, the probabilities of TCs with category 4 or

stronger intensity are highest over the western Pacific

(east of 1208E), followed by the eastern North Pacific

between 158 and 208N and west of 1208W. Return pe-

riods from synthetic storms during the historical period

have similar patterns to those observed, but over a wider

area (Figs. 13b,c).

In the late twenty-first century, return periods from

the TCGI_CRH experiments show an overall decrease,

that is, increases in the annual probabilities (the reddish

color in Fig. 13d). This is due to increases in both storm

frequency and storm intensity. In the northern Gulf of

Mexico, the annual numbers of category 41 TCs are

decreasing and therefore the return periods over these

areas are increasing. Changes in the return period

of category 41 storms in the TCGI_SD experiments

show an overall increase (i.e., decreases in the annual

probabilities; bluish color in Fig. 13e), which is due

to the reduction in TC frequency. We again notice a

few localized areas where return periods of category

41 TCs are decreasing. Some high-resolution models

that show a decrease in total TC frequency also show

an increase in the frequency of category 41 TCs

(corresponding to a decrease in the return period) in

some regions (Knutson et al. 2015; Sugi et al. 2017;

Yoshida et al. 2017).

7. Conclusions

We have used a statistical–dynamical downscaling

approach to characterize the TC climatology and the

consequent TC hazard under future climate projections.

We downscale six CMIP5 models (CCSM4, GFDL

CM3, HadGEM2-ES, MPI-ESM-MR, MIROC5, and

FIG. 7. The relative probabilities of storm forward speed globally from observations (gray) and synthetic storms

from HIST and RCP85 in the (a) TCGI_CRH (bluish colors) and (b) TCG_SD (reddish colors). The ensemble-

mean distributions from HIST are shown in darker colors while those form RCP85 are in lighter colors. Vertical

lines delineate one standard deviation.
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MRI-CGCM3) using the CHAZmodel. The large-scale

predictors CHAZuses are potential intensity (PI), deep-

layer vertical wind shear (SHR), low-level vorticity,

moisture variables [midlevel relative humidity and

column-integrated relative humidity (CRH) or satura-

tion deficit (SD)], and ambient steering winds. As

the climate warms, PI increases significantly while SD

decreases (Fig. 1). Changes in the other predictors are

relatively small and spatially variable.

In the CHAZ simulations, the trend in TC frequency

is controlled by the moisture variable used in the genesis

component, TCGI. When CRH is used (experiment

TCGI_CRH), there is an increasing trend in the pro-

jected annual-mean TC frequency (genesis rate), whereas

FIG. 8. As in Fig. 7, but for Northern Hemisphere TC basins.
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when SD is used (experiment TCGI_SD) we see a de-

clining trend (Fig. 3). This is true for all six CMIP5

models we have downscaled.While the choice of CMIP5

model providing the environmental fields has some in-

fluence on the results, the choice of humidity variable in

the genesis index is more important. The divergence in

the projected TC frequency trend is consistent with the

results from the ‘‘perfect model’’ study by Camargo

et al. (2014).

On the basin scale, the difference between the CRH

and SD results is still present, but not as dramatic as on

the global scale (Figs. 4 and 5). In the North Atlantic,

the north and south Indian Oceans, and the northern

Australian region, the bottom 10th percentile of the

simulated frequency has a declining trend in the TCGI_

CRH results and overlaps with those in the top 10th

percentile of the TCGI_SD results. The changes in the

annual TC frequency are important because they affect

not only the projected TC occurrence (e.g., as manifest

in track density; Fig. 6) but also other measures that

combine frequency and intensity and that are important

for the overall hazard, such as the numbers of storms

exceeding high intensity thresholds (Fig. 9).

Other aspects of TC climatology, such as the annual-

mean storm forward speed and frequency-independent

measures of intensity (e.g., the mean LMI, fraction of

major TCs, and fraction of storms undergoing RI), are

not sensitive to the choice of CRH versus SD. Globally,

we see a slight decreasing trend in the TC forward speed

(Fig. 7), a small increasing trend in both LMI and RI

FIG. 9. The annual count for global storms’ LMI from observa-

tions (black) and synthetic storms in the TCGI_CRH (bluish) and

TCGI_SD (orange). Dashed blue and orange lines are the en-

semble mean fromHISTwhile the solid lines are fromRCP85. The

blue and orange shading show the ensemble spread for RCP85

simulations. Values in the legend indicate annual numbers of

storms of Saffir-Simpison category 3 and above in each dataset.

FIG. 10. (a) Relative probabilities of global LMI from observations (black) and CMIP5 synthetic storms in the

TCGI_CRH experiment during historical periods (light gray), 2006–40 (green), 2041–70 (yellow), and 2070–99

(red). (b) Time series of RI ratio from CMIP5 synthetic storms in the TCGI_CRH experiments. The solid lines

show the trends of the RI ratio from individual CMIP5models, and the slope is indicated in the legend. (c),(d) As in

(a) and (b), but for the TCGI_SD experiments.
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fraction (Fig. 10), and a notable poleward migration of

LMI location (Table 2). On the basin scale, the relative

probabilities of occurrence of slow-moving storms near

land increase with warming over the Atlantic and east-

ern North Pacific, while there is no clear change in other

basins (Fig. 8). The upward trend in the RI likelihood in

the eastern to central Pacific is the largest compared to

those in the other basins. The RI rate varies from one

CMIP5 model to another, though, and GFDL CM3 re-

sults have a clearer upward trend (Figs. 11 and 12). The

poleward migration of LMI is significant in the Atlantic

and the western and eastern North Pacific (Table 2).

The bifurcation in the simulated trend in TC fre-

quency is a challenging result. As both versions of TCGI

FIG. 11. Time series of RI ratio from CMIP5 synthetic storms in (left) TCGI_CRH and (right) TCGI_SD ex-

periments in the Northern Hemisphere TC basins. The solid lines show the trends in the RI ratio from individual

CMIP5 models, and the slope is indicated in the legend.
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yield similar results for the historical period, we cannot

determine from historical evidence which of the two is

more correct. While there is some theoretical basis to

prefer SD to CRH as a humidity predictor, in our view it

is not strong enough to be decisive. While it is deeply

unsatisfying to find results that depend, qualitatively and

strongly, on a choice of a predictor in an empirical

genesis scheme, the resulting uncertainty—if not its

cause—mirrors that currently found in the best state-of-

the-art global dynamical models, one of which shows

increases in frequency while others show decreases. The

large discrepancy in the projected annual TC frequency

leads to discrepancies in regional and local storm

hazard. The uncertainty here is fundamental and epi-

stemic in nature, and not easily quantified; we have no

basis for assigning probabilities that one or the other

simulation is correct. This is a case where the ‘‘storyline’’

approach (Shepherd 2016; Shepherd et al. 2018),

in which one considers different scenarios of climate

change itself (as opposed to scenarios only of the so-

cioeconomic drivers) without necessarily attaching

probabilities to them, may be appropriate. This study

also highlights the importance of improving our under-

standing of the fundamental physics controlling TC

FIG. 12. As in Fig. 11, but for synthetic storms in the Southern Hemisphere TC basins.

TABLE 2. Changes in the multimodel, annual-mean LMI latitude in degrees per 100 years with 95% confidence intervals.

global atl enp wnp ni sin aus spc

TCGI_CRH 0.31 6 0.06 0.63 6 0.23 0.87 6 0.10 0.73 6 0.11 20.02 6 0.24 0.57 6 0.14 20.07 6 0.12 20.14 6 0.18

TCGI_SD 0.10 6 0.08 0.79 6 0.32 0.72 6 0.13 0.49 6 0.15 20.35 6 0.47 0.08 6 0.19 0.08 6 0.15 20.14 6 0.19
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frequency (e.g., Walsh et al. 2016). Regardless of the

changes in frequency, however, our results are consistent

with other studies in indicating that those TC events that

do occur will, on average, be more destructive in the

future because of the robustly projected increases in

intensity.
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FIG. 13. (a) Return period map of storms exceeding category 4 hurricane strength (113 kt) based on 1981–2012

observations, calculated in 3.68 3 1.88 boxes. (b) Return period map for storms exceeding category 4 hurricane

strength from CMIP5 synthetic storms in the TCGI_CRH in the HIST period. (c) As in (b), but for TCGI_SD.

(d),(e) Differences in return period maps between HIST and RCP85. Blue tones represent areas with increasing

return period (less risk) while the red tones represent areas with decreasing return period (increasing risk) in the

warming climate.
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