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Statistical Dynamics of Dual-Power Law Optical Soliton

Anjan Biswas

Abstract: The dynamics of optical solitons with dual-power law noaknity, in pres-
ence of a stochastic perturbation term, is studied in thiepal he soliton perturbation
theory is exploited to obtain the Langevin equation by @rtf which one can con-
clude that solitons travel down the optical fiber with a fixeelan free velocity.
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1 Introduction

The dynamics of pulses propagating in optical fibers has bemajor area of re-
search given its potential applicability in all optical comnication systems. It has
been well established [1-10] that this dynamics is desdrilbe first approxima-
tion, by the integrable Nonlinear Schrodinger Equatioh.@&). Here the global
characteristics of the pulse envelope can be fully detexthiy the method of In-
verse Scattering Transform (IST) and in many instancesntleest is restricted to
the single pulse described by the one soliton form of the NLB/gically though,
distortions of these pulses arise due to perturbations lwaie either higher or-
der corrections in the model as derived from the original els equations [9],
physical mechanisms not considered at first approximati@Raman effects or
external perturbations such as the lumped effect due toddiien of bandwidth
limited amplifiers in a communication line. Mathematicallyese corrections are
seen as perturbations of the NLSE and most of them have begiedthoroughly
by regular asymptotic [4], soliton perturbation [5—7] oeltranform [9] methods.
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Besides the deterministic type perturbations one alsosieadke into account,
from practical considerations, the stochastic type pbédtions. These effects can
be classified into three basic types [8]:

1. Stochasticity associated with the chaotic nature of il pulse due to
partial coherence of the laser generated radiation.

2. Stochasticity due to random nonuniformities in the agtitbers like the fluc-
tuations in the values of dielectric constant the randorratians of the fiber
diameter and more.

3. The chaotic field caused by a dynamic stochasticity mighedrom a peri-
odic modulation of the system parameters or when a periaday af pulses
propagate in a fiber optic resonator.

Thus, stochasticity is inevitable in optical soliton commuations [1-3, 8, 10].

2 Dual-Power Law Nonlinearity

For this law, the dimensionless form of the NLSE is

1
Iqt+§qxx+(lq|2p+VIql4p)q=0 (N

In equation (1),q represents the dimensionless form of the wave profile while
andt are the independent variables that respectively reprebentength of the
optical fiber and the time. There are no known methods inoldhe celebrated
IST method that will integrate (1). However, (1) supportéitary waves of the
form [4]

axt) = A (o) @
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Here,w is the wave numbek is the soliton frequency whiilg is the velocity and
Op is the center of phase of the soliton. Algois the amplitude an8 is the inverse
width of the soliton. Finallyxis the center of the soliton so that one can write
_dx
S odt

For dual-power law case, the solitons exist for

\Y

(8)

2p? 1+2p

—¥W<V<O (9)

The NLSE with dual-power law nonlinearity has three knowtegmals of motion
and the first two of which are the enerdy)(and the linear momentunhA) that are
repectively given by [4]

(10)

and

(11)

2.1 Perturbation terms

Considering the effects of perturbation, [4-10] on the pggdion of solitons
through optical fibers, (24) is modified to

1 .
o+ 50+ (o +v[g*P) g =ieR (12)

where
R=5/0]*"q+ B+ 0 (x,1) (13)

HereR is a spatio-differential operator while the perturbaticergmetere, with
0 < £ < 1, represents the relative width of the spectrum in fiberagptinat arises
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due to quasi-monochromaticity [9]. In presence of perttidoaterms, as in (12),
the integrals of motion are modified. In most instances, aequence of this is an
adiabatic deformation of the soliton parameters like itpEinde, width, frequency
and velocity accompanied by small amounts of radiation calsamplitude dis-
persive waves. For the perturbation terms, in () 0 is the nonlinear damping
coefficient [4], is the bandpass filtering term [9, 10].

The amplifiers, although needed to restore the soliton gnergoduces noise
originating from amplified spontaneous emmision (ASE). alg the impact of
noise on soliton evolution, the evolution of the mean freloacity of the soliton
due to ASE will be studied in this paper. In case of lumped &oation, solitons
are perturbed by ASE in a discrete fashion at the locatiomefamplifiers. It can
be assumed that noise is distributed all along the fiber lesgice the amplifier
spacing satisfiez, < 1 [10]. In (12),0(x,t) represents the Markovian stochastic
process with Gaussian statistics and is assumediixat) [8] is a function oft only
so thato(x,t) = o(t). Now, the complex stochastic tera(t) can be decomposed
into real and imaginary parts as

o(t) = o1(t) +ioa(t) (14)

is further assumed to be independently delta correlatedtimdn (t) andox(t) with
(01(t)) = (02(1)) = (Ou(t) o2(t')) = O (15)

(o1(t)oy(t')) = 2D10(t —t') (16)

(O2(t) 0 (1)) = 2D20(t —t') (17

whereD; andD,, are related to the ASE spectral density. In this paper, gssimed
thatD; = D, = D. Thus,

(a(t))=0 (18)
and
(a(t)o(t')) =2Dd(t—t") (19)

In soliton units, one gets,

I:nFG
D= 20
Nz (20)
whereF, is the amplifier noise figure, while
_ (G-1)?
Fe="GnG (1)

is related to the amplifier gai@ and finallyNp, is the average number of photons
in the pulse propagating as a fundamental soliton.
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2.2 Mathematical analysis

Using these integrals of motion, one can obtain the adialpaiiameter dynamics
of the solitons as

dt ~ pLAP I <p2p2 > [m(q R+ R )clx ¢2
dk €[, " "
T [|/ (gER— gxR*)dx — K/ (Q'R+0R )dx] (23)

whereE is the energy as given by (9) while
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(24)

Now substituting the perturbation terri®sfrom (12) and carrying out the integra-
tions in (21) and (22) yields
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dk SBKBZF(2+ 1+ 2+ rgb)B(1+ ;1)

At~ 4n2A2 111 1b1 11
dt AN F(L1,3+3% B(3:3)

e [a_B(azcoqu oy singsinht

(26)
«l2P (14 acoshr) %

3 2K (01 COSQ+ 02SiNQ) dx
(1+acoshr)2ip
where in (24) and (25)F(a,A;y;z) is the Gauss’ hypergeometric function while
B(I,m) is the beta function. Equations (24) and (25), as it appesurdifficult
to analyse. If the terms witlr; and g, are suppressed, the resulting dynamical

system has a stable fixed point, namely a sink. Now, lingagizhe dynamical
system about this fixed point gives, after simplification

dA 3
i A2m+l _ 5 27
at ( A) 27)
Z—T:—E[K—Z(1+A—K)] (28)
whereA is the fixed point of the amplitude while
£ / 01 COSQ 4 gzSing | o (29)
/-« | (1+acoshr)z (1+acoshr)z

and

7= / [aB 0,COSp — alslnqo)smhr
l+acoshr)

_ 2k (01cosp+ azsincp)] dx (30)

1+ acoshr)flp

Equations (26) and (27) are called thangevin equations which will now be an-
alyzed to compute the soliton mean drift velocity of the teoli If the soliton
parameters are chosen such thatis small, then (27) yields

dk

5 = k(1K) (31)
One can solve (30) fox and eventually the mean drift velocity of the soliton can
be obtained. The stochastic phase factor of the solitonfiseteby

wity) - | (9)ds (32)
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wheret > y. Assuming that is a Gaussian stochastic variable we arrive at

<ew(t,y>> _ Pt-y) (33)
<e[w(t7y)+w(t’7>/ )]> _ ghe (34)

where
=20+t —y—y)—[t—t|-ly—Y| (35)

and
(Z(y)e ¥ty = %(e—w@,y)> — DePt-Y) (36)
Wty -wE Y]y _ e 9 e

(Cy<y)e VTl = 205y~ )& + omr e (37)

Now solving (30) with the initial condition as(0) = 0 and using equations (31)-
(36) the soliton mean drift velocity is given by

(K(t) =~ {100 (39)
¢From (37), it follows that
lim (K (0) = 125 (39)
so that by virtue of (3), one can get in the limit
im (V) = 5 (40)

Thus, for large, the mean drift velocity of the soliton, approaches a congteo-
videdD < 1.

3 Conclusions

In this paper, the dynamics of optical solitons with dualvpolaw nonlinearity in
presence of perturbation terms, both deterministic asagedtochastic, are studied.
The Langevin equations were derived and the correspondingneter dynamics
was studied. The mean drift velocity of the soliton was alsdi In this study,
it was assumed that the stochastic perturbation teri® a function oft only, for
simplicity. However, in realityo is a function of bothx andt and thus making it
a far more difficult system to analyze although such kind tafagions are being
presently studied.
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