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Statistical Dynamics of Dual-Power Law Optical Soliton

Anjan Biswas

Abstract: The dynamics of optical solitons with dual-power law nonlinearity, in pres-
ence of a stochastic perturbation term, is studied in this paper. The soliton perturbation
theory is exploited to obtain the Langevin equation by virtue of which one can con-
clude that solitons travel down the optical fiber with a fixed mean free velocity.
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1 Introduction

The dynamics of pulses propagating in optical fibers has beena major area of re-
search given its potential applicability in all optical communication systems. It has
been well established [1–10] that this dynamics is described, to first approxima-
tion, by the integrable Nonlinear Schrödinger Equation (NLSE). Here the global
characteristics of the pulse envelope can be fully determined by the method of In-
verse Scattering Transform (IST) and in many instances, theinterest is restricted to
the single pulse described by the one soliton form of the NLSE. Typically though,
distortions of these pulses arise due to perturbations which are either higher or-
der corrections in the model as derived from the original Maxwell’s equations [9],
physical mechanisms not considered at first approximation like Raman effects or
external perturbations such as the lumped effect due to the addition of bandwidth
limited amplifiers in a communication line. Mathematically, these corrections are
seen as perturbations of the NLSE and most of them have been studied thoroughly
by regular asymptotic [4], soliton perturbation [5–7] or Lie tranform [9] methods.
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Besides the deterministic type perturbations one also needs to take into account,
from practical considerations, the stochastic type perturbations. These effects can
be classified into three basic types [8]:

1. Stochasticity associated with the chaotic nature of the initial pulse due to
partial coherence of the laser generated radiation.

2. Stochasticity due to random nonuniformities in the optical fibers like the fluc-
tuations in the values of dielectric constant the random variations of the fiber
diameter and more.

3. The chaotic field caused by a dynamic stochasticity might arise from a peri-
odic modulation of the system parameters or when a periodic array of pulses
propagate in a fiber optic resonator.

Thus, stochasticity is inevitable in optical soliton communications [1–3,8,10].

2 Dual-Power Law Nonlinearity

For this law, the dimensionless form of the NLSE is

iqt +
1
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qxx +
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|q|2p + ν |q|4p)q = 0 (1)

In equation (1),q represents the dimensionless form of the wave profile whilex
and t are the independent variables that respectively representthe length of the
optical fiber and the time. There are no known methods including the celebrated
IST method that will integrate (1). However, (1) supports solitary waves of the
form [4]
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Here,ω is the wave number,κ is the soliton frequency whiilev is the velocity and
σ0 is the center of phase of the soliton. Also,A is the amplitude andB is the inverse
width of the soliton. Finally, ¯x is the center of the soliton so that one can write

v =
dx̄
dt

(8)

For dual-power law case, the solitons exist for

−
2p2

B2

1+2p
(1+ p)2 < ν < 0 (9)

The NLSE with dual-power law nonlinearity has three known integrals of motion
and the first two of which are the energy (E) and the linear momentum (M) that are
repectively given by [4]
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2.1 Perturbation terms

Considering the effects of perturbation, [4–10] on the propagation of solitons
through optical fibers, (24) is modified to

iqt +
1
2

qxx +
(

|q|2p + ν |q|4p
)

q = iεR (12)

where

R = δ |q|2mq+ βqxx + σ(x, t) (13)

Here R is a spatio-differential operator while the perturbation parameterε , with
0 < ε ≪ 1, represents the relative width of the spectrum in fiber optics that arises
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due to quasi-monochromaticity [9]. In presence of perturbation terms, as in (12),
the integrals of motion are modified. In most instances, a consequence of this is an
adiabatic deformation of the soliton parameters like its amplitude, width, frequency
and velocity accompanied by small amounts of radiation or small amplitude dis-
persive waves. For the perturbation terms, in (12),δ < 0 is the nonlinear damping
coefficient [4],β is the bandpass filtering term [9,10].

The amplifiers, although needed to restore the soliton energy, introduces noise
originating from amplified spontaneous emmision (ASE). To study the impact of
noise on soliton evolution, the evolution of the mean free velocity of the soliton
due to ASE will be studied in this paper. In case of lumped amplification, solitons
are perturbed by ASE in a discrete fashion at the location of the amplifiers. It can
be assumed that noise is distributed all along the fiber length since the amplifier
spacing satisfiesza ≪ 1 [10]. In (12),σ(x, t) represents the Markovian stochastic
process with Gaussian statistics and is assumed thatσ(x, t) [8] is a function oft only
so thatσ(x, t) = σ(t). Now, the complex stochastic termσ(t) can be decomposed
into real and imaginary parts as

σ(t) = σ1(t)+ iσ2(t) (14)

is further assumed to be independently delta correlated in bothσ1(t) andσ2(t) with

〈σ1(t)〉 = 〈σ2(t)〉 = 〈σ1(t)σ2(t
′)〉 = 0 (15)

〈σ1(t)σ1(t
′)〉 = 2D1δ (t − t ′) (16)

〈σ2(t)σ2(t
′)〉 = 2D2δ (t − t ′) (17)

whereD1 andD2 are related to the ASE spectral density. In this paper, it is assumed
thatD1 = D2 = D. Thus,

〈σ(t)〉 = 0 (18)

and

〈σ(t)σ(t ′)〉 = 2Dδ (t − t ′) (19)

In soliton units, one gets,

D =
FnFG

Nphza
(20)

whereFn is the amplifier noise figure, while

FG =
(G−1)2

G lnG
(21)

is related to the amplifier gainG and finallyNph is the average number of photons
in the pulse propagating as a fundamental soliton.
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2.2 Mathematical analysis

Using these integrals of motion, one can obtain the adiabatic parameter dynamics
of the solitons as

dA
dt

=
ε

pLAp−1

(

p+1
2p2

)
1

2p
∫ ∞

−∞
(q∗R + qR∗)dx (22)

dκ
dt

=
ε
E

[

i
∫ ∞

−∞
(q∗xR−qxR

∗)dx−κ
∫ ∞

−∞
(q∗R + qR∗)dx

]

(23)

whereE is the energy as given by (9) while
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Now substituting the perturbation termsR from (12) and carrying out the integra-
tions in (21) and (22) yields
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dκ
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where in (24) and (25),F(α ,λ ;γ ;z) is the Gauss’ hypergeometric function while
B(l,m) is the beta function. Equations (24) and (25), as it appears,is difficult
to analyse. If the terms withσ1 and σ2 are suppressed, the resulting dynamical
system has a stable fixed point, namely a sink. Now, linearizing the dynamical
system about this fixed point gives, after simplification
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Equations (26) and (27) are called theLangevin equations which will now be an-
alyzed to compute the soliton mean drift velocity of the soliton. If the soliton
parameters are chosen such thatζA is small, then (27) yields

dκ
dt

= −ε [κ −ζ (1−κ)] (31)

One can solve (30) forκ and eventually the mean drift velocity of the soliton can
be obtained. The stochastic phase factor of the soliton is defined by

ψ(t,y) =
∫ t

y
ζ (s)ds (32)
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wheret > y. Assuming thatζ is a Gaussian stochastic variable we arrive at

〈eψ(t,y)〉 = eD(t−y) (33)

〈e[ψ(t,y)+ψ(t ′,y′)]〉 = eDθ (34)

where

θ = 2(t + t ′− y− y′)−|t − t ′|− |y− y′| (35)

and

〈ζ (y)e−ψ(t,y)〉 =
∂
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∂ 2
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Now solving (30) with the initial condition asκ(0) = 0 and using equations (31)-
(36) the soliton mean drift velocity is given by

〈κ(t)〉 = −
D
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1− e−ε(1−D)t
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¿From (37), it follows that

lim
t→∞

〈κ(t)〉 = −
D

1−D
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so that by virtue of (3), one can get in the limit

lim
t→∞

〈v(t)〉 =
D

1−D
(40)

Thus, for larget, the mean drift velocity of the soliton, approaches a constant pro-
videdD < 1.

3 Conclusions

In this paper, the dynamics of optical solitons with dual-power law nonlinearity in
presence of perturbation terms, both deterministic as wellas stochastic, are studied.
The Langevin equations were derived and the corresponding parameter dynamics
was studied. The mean drift velocity of the soliton was obtained. In this study,
it was assumed that the stochastic perturbation termσ is a function oft only, for
simplicity. However, in realityσ is a function of bothx andt and thus making it
a far more difficult system to analyze although such kind of situations are being
presently studied.
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