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The statistical effect of interactions which drives many-particle systems toward equilibrium 

is expected to change the qualitative and quantitative features of particle creation in expanding 

universe. To investigate this problem a simplified model called the finite-time reduction model 

is formulated and applied to the scalar particle creation in the radiation dominant Friedmann 

universe. The number density of created particles and the entropy production due to particle 

creation are estimated. The result for the number density is compared with that in the 

conventional free field theory. It is shown that the statistical effect increases the particle 

creation and lengthens the active creation period. As for the entropy production it is shown 

that it is negligible for scalar particles in the Friedmann universe. 

§ 1. Introduction 

There has been a considerable amount of work in recent years on the subject 

of quantum field theory in curved spacetime, and especially on the creation of 

particles in dynamical spacetime.!) Most of the previous work, however, has 

been concerned with noninteracting quantum fields. When we take into account 

interactions of quantum fields, there appear some new phenomena. One of them 

is the multi-particle production from vacuum due to the interaction terms of 

Lagrangians. This phenomenon was recently studied by Birrel et al. 2) Another 

phenomenon is the thermalization of created particles and the associated entropy 

production. We study problems concerned with the latter phenomenon in this 

paper. 

In stationary spacetime, a closed system containing many particles generally 

evolves toward an equilibrium state due to interactions after some characteristic 

time whatever its initial state is. This suggests that, in dynamical spacetime, 

the effect of interactions which drives the system toward equilibrium and the 

effect of the dynamical change of spacetime which causes the system deviate from 

equilibrium through particle creation will compete. Such non-equilibrium pro

cesses generally produce entropy. Thus we can expect the entropy production 

due to particle creation and the associated heating up of universe. Furthermore, 

each quantum state (or more precicely speaking, the density matrix) representing 

an equilibrium state specified by a set of values of thermodynamical parameters 

changes with time because the definition of particles changes with time in 

dynamical spacetime. Hence the statistical effect of interactions, which drives 
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1416 H. Kodama 

systems toward equilibrium, is also expected to change the qualitative and quanti

tative features of particle creation themselves. 

The main purpose of this paper is to estimate these statistical effects of 

interactions on particle creation for scalar fields in Robertson-Walker universes, 

especially Friedmann universe. Since there exists no exact satisfactory formula

tion yet which derives statistical effects of interactions from first principles,3) we 

study the problem by the following simplified model, which we call the finite-time 

reduction model. First we divide the cosmic time into a sequence of short time 

intervals [tj, tHd, whose length called a reduction time in this paper varies from 

one interval to another in general. At time t = tj the scalar fields are assumed to 

be in the thermal equilibrium state given by the temperature of the universe at 

that time. Then the fields evolve following the free field theory in the interval [tj, 

tHd, and at t= tj+1 the quantum state of the fields suddenly changes to the new 

equilibrium state given by the temperature of the universe at t= tj+J. Thereafter 

the same process is repeated. 

This sudden change of the state is the central point of the model, and 

regarded as simulating the change of the state due to the statistical effect of 

interactions during each interval which actually occurs continuously. Thus in 

this model nature of interactions chiefly comes into the argument through the 

length of the reduction time. 

A more precise formulation is given in § 2 with some discussion on associated 

various problems after a brief explanation of the motivation and the background 

of the model based on the generalized master equation. In § 3 we derive the main 

formulas which express the number and the entropy of created particles during 

each interval by the cosmic scale factor, the temperature and the reduction time 

at the interval. Then we apply these formulas to the radiation dominant 

Friedmann universe and estimate the total number and the total entropy produc

tion. In § 4 for the comparison with the result of § 3 we estimate the particle 

creation from vacuum in Friedmann universe following the conventional free field 

theory. The comparison is made in § 5 after the summarization of the result in 

§ 3. Some cosmological implications are commented. Section 6 is devoted to 

discussion. The proofs of various mathematical formulas used in the text are 

given in the appendices. Throughout this paper the absolute units c=h= G=l 

are employed. 

§ 2. Formulation 

In order to explain the physical background of our phenomenological model, 

we first briefly review the argument which is used to show that a quantum system 

containing many particles evolves in time toward equilibrium. Let H T( t) = H( t) 

+ HI( t) be the Hamiltonian of the system and D( t) be the density matrix, in the 
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Statistical Effect of Interactions on Particle Creation 1417 

interaction picture with respect to the free Hamiltonian H Ct). We assume that 

the interaction of the particles composing the system is sufficiently weak. Then 

the time evolution of D( t) is given by 4) 

:It DU) = i l' IDU), (2°1) 

where.£ I( t) is the linear operator acting on operators defined by 

(2°2) 

for any operator U. Let {IVt>} be a complete set of eigenstates of H(t) at time 

t, and let us define the projection operator P( t) by the action on an operator U 

PU) () == ~IVt><Vtl U IVt><Vtl. (2 0 3) 
v 

In general P( t) should be replaced by a more general coarse grained operator. 

However, since such state-coarse-graining does not play an important role in the 

following, we assume the simplest form given by Eq. (2°3). After a simple 

calculation we can derive from Eq. (2 0 1) the following generalized master 

equation for jj(t)==PU)D(t):4) 

it jj(t) = g}(t )jj( t) 

+ [ g} ( t ) + i P ( t ) l' I ( t ) ]:::V ( t, to) (1 - P ( to ) ) D ( to ) 

+ [fP< t) + i PU)1' I(t)] lot dt':::V(t, t')[ - P(t') + i l' l( t')]jj( t'), 

(2 0 4) 

where 

(2°5) 

in which T denotes the time-ordered product. 

In the case in which the Hamiltonian is conservative, we can assume that P 
is time-independent. Then it follows from Eq. (2 0 4) that 

it jj(t) = i P l' I( t):::V(t, to )(1-P) D(to) 

+ i P .£ I(t )1 t 

dt':::V(t, t') i.£ I( t')jj(t'). to (2°6) 
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1418 H. Kodama 

In the lowest order with respect to 1'1, we can put ~V( t, t') "'" 1 - rJ in the second 

term. Further we can show 5
) that1'ICt)~[ICt') vanishes for t-{'Pre, in which 

re is a characteristic time scale of the duration of particle collisions, if re is much 

shorter than the relaxation time scale rr in which the density matrix D( t) 

changes significantly. Thus by the time coarse graining of the scale re, Eq. (2-6) 

can be written as 

(2-7) 

where 

(2-8) 

In the usual argument in the quantum statistical mechanics,4) it is assumed that 

(1-fP)DCto)=O. Then since !R(t) is a dissipative operator, Eq. (2-7) suggests 

that D( t) approaches one of the zero-eigenvalue states of iJ( representing an 

equilibrium state, though this has not been exactly proved yet. 

In ordinary systems, the assumption (1- rJ) DCto) = 0 is acceptable since 

systems are regarded to be constantly measured with a certain spacetime ac

curacy. However, for the systems such as the quantum fields in dynamical 

spacetime we are interested in, this assumption is no longer valid. For example 

consider the situation in which a universe which has been stationary experiences 

an abrupt expansion during a short period and then becomes stationary again. 

In this case, since the definitions of particles in the two stationary regions do not 

coincide, the density matrix describing the state of quantum fields does not satisfy 

the condition (1-fP)D=O shortly after the abrupt expansion even if this condi

tion was satisfied before the expansion. Nevertheless this system is expected to 

evolve toward some equilibrium state after a sufficiently long time as long as it 

contains many particles per unit volume. 

This observation suggests that the operator~( t, to) has a damping property, 

namely, ~VCt, to)~O for t-to'Prr.
3

) This implies that the non-diagonal com

ponents of the density matrix with respect to {Iv>} are smeared away by the 

interaction in the time scale rr. The central point of the arguments in the 

present paper is to assume that ~( t, t') really has this property at least effec

tively and to investigate the influence of this assumption on the particle creation 

in expanding universe. Under this assumption Eq. (2-4) is written as 

it PuC t) "'" ~(!R w'( t) +'6' w'( t» Pu'( t) 

- ~ J~Tr dt' Pu'( n<vtl P( t)~V(t, n P( t')(lvt'><vt·l)lvt> , (2-9) 
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Statistical Effect of Interactions on Particle Creation 1419 

where 

(2-10) 

and YLAt)=<vtlfR(t)lvt'>, and cgw,(t) denote the matrix components of the 

terms linear in P in the last term of Eq. (2-4). These terms linear in P represent 

the particle creation directly induced by the existence of interaction terms in the 

Hamiltonian. Since we are chiefly interested in the statistical effect of interac

tions on particle creation, we neglect these terms in the following. On the other 

hand, the last term of Eq. (2-9) quadratic in P represents the genuine particle 

creation due to the change of the particle definition with time and survives even 

if'£ 1=0. As is seen by the comparison with Eq. (2-4), this term represents the 

particle creation rate per unit time for the case in which the initial state is set at 

time t- Tr so that the density matrix at that time satisfies the condition (l-fP)D 

= O. Thus the statistical effect of interactions produced by the damping property 

of ~V(t, t') erases the history dependence of particle creation over time scale 

longer than Tr, hence is expected to affect the essential features of particle 

creation. 

Unfortunately we cannot solve Eq. (2-9) directly. Thereupon we instead 

study the problem by a simplified model formulated in the following which 

incorporates the essential features of Eq. (2 -9). Since.£ I( t) becomes important 

only for t-to<Tr in ~(t, t), the last term of Eq. (2-9) can be interpreted as 

representing that the particle creation occurs freely during the time scale Tr and 

then after this time scale the non-diagonal components of D( t) produced by this 

particle creation become negligible through interactions. This means that we 

can incorporate the statistical effect of interactions by s.imply diagonalizing the 

density matrix with respect to {Ivt>} in every time interval Tr. Hence we replace 

Eq. (2-9) by the following model. We divide the time into a sequence of intervals 

[tj, ti+d (ajt == ti+l - t} ~ Tr is called the reduction time in this paper), and assume 

that the state of the system at t= tj is represented by a density matrix Dj which 

is diagonal with respect to {Ivtj>}. Di+l is related with D j by 

(2-11) 

where 

V(j+1, j)== Texp - i !jtj+IHI(t)dt. (2-12) 

Hence the change of the expectation value of a physical quantity 0 (t) which is 

diagonal with respect to {Ivt>} is given by 

aj< 0>==< Ui+l>-< Uj> 

= ajU +Tr 0 j+l( V(j + 1, j)Dj V(j + 1, j)~l_ Dj ), (2-13) 
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1420 

where 

H Kodama 

< uj>=Tr ujDj, 

8j u =Tr U J+1Dj-Tr U jDj. 

(2·14) 

(2·15) 

The first term 8 j U in Eq. (2 ·13) represents the change of < u> due to particle 

creation and the second term represents the change due to interactions. To study 

the particle creation following this model in detail we must specify the types of 

fields and the spacetime structure of universe, assign the well-defined operators to 

physical quantities concerned, and introduce further simplifications. 

In the present paper we only consider scalar fields in a spatially flat Robert

son-Walker6
) universe with a metric 

(2·16) 

From now on we always work with the conformal time r; unless otherwise stated, 

which is related with the physical time t by 

t= f~R(r;')dr;' . (2·17) 

We assume that there exists sufficiently abundant background matter in the 

universe compared with the scalar particles concerned. Hence the interactions 

of the scalar particles with the background matter play the central role, and 

consequently the reduction time 8 t( = R8r;) is determined by these interactions. 

Further we assume that the thermal equilibrium of the scalar particles with the 

background matter is reached within the reduction time, and Dj is expressed as 

Dj=Z;l exp[-(Hj-,ujNj)/Tj ]; 

(2·18) 

where N is the number operator for the scalar fields, ,u is the chemical potential 

of the scalar particles and T is the temperature of the universe. Then if the 

chemical reaction is sufficiently slow, Eq. (2·13) can be written as 

(2·19) 

where L1j and r j are the creation and the annihilation rate of the quantity < u> 

through the chemical reactions. In contrast if the chemical reaction is very 

rapid, we can assume the chemical equilibrium at each time t = tj and 8 j < u> has 

no relation with 8 j U. 
As the physical quantities we only consider the number and the energy of 

particles. One important problem we are interested in is how much the universe 

is heated up by the particle creation. To study this problem, as is shown below, 

it is convenient to take Q = RH as the basic quantity in stead of H itself. 
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Statistical Effect of Interactions on Particle Creation 1421 

Suppose that the background matter is composed of only massless particles, 

and let H BG and D BG be their Hamiltonian and density matrix, respectively. 

Then, since the total energy is conserved through interactions, it follows from 

Eq. (2-13) that 

(2-20) 

Noting that Tr(H]!G D~G) can be written as CR/ T/ with a constant C, we can 

rewrite Eq. (2-20) as 

(2-21) 

where Rj = R( 71j). From this equation we find that the sum of aj Q over all 

intervals is related only with the initial and the final state of the universe. 

Furthermore the third term in the left-hand side, the background matter part, is 

directly related with the change of entropy of the background matter.7l From 

these facts, we call ajQ the entropy production due to particle creation. 

If the number production and/or the entropy production due to particle 

creation is sufficiently large, they affect the temperature and the expansion of the 

universe. In this case we must determine Ti+I, f1i+1 and Ri+1 from Tj, f1j and Rj 

step by step. The prescription for this is given by Eq. (2 -19) for (] = N, 

Eq. (2-21) and one of the Einstein equations, [(Rj+I-Rj)/a71Y~R/=(8J[/3)R/pj 

(where p is the total energy density of the universe).6) 

The remaining task in the formulation of our model is to specify the oper

ators Hand N, and the eigenstates {IVt)} explicitly. For that purpose we first 

recapitulate the fundamental formulas for the quantum free scalar fields in a 

Robertson-Walker universe_ For the sake of simplicity we write down the 

formulas only for a single neutral scalar field in this section. If we want to 

discuss multiple fields and/or charged fields, we only have to sum up the quan

tities corresponding to each component field in the final expressions. 

The Lagrangian density of a neutral scalar field ¢ in a curved spacetime with 

a metric gPI/ is given by!) 

(2-22) 

where m is the mass of the field,!7 is the Ricci scalar of the metric gPI/, and; is 

the coupling parameter of the scalar field with the geometry. In the spatially flat 

Robertson-Walker universe given by (2-16), ~[ is written as 

(2-23) 

where the dot denotes the differentiation with respect to the conformal time 71. 

We quantize ¢ following the usual canonical scheme. I) In order to av6id the 
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1422 H. Kodama 

familiar difficulty B) associated with infinite volume, we limit the field in a finite 

coordinate volume V = L3 by the periodic boundary condition in the intermediate 

stage of calculation and take the V --> = limit in the final expressions. Then we 

can express cp by creation and annihilation operators, ak t and ak, as follows: 

(2-24) 

where k runs over the lattice points given by (27r/L)n with integer vectors n, and 

(2-25) 

The mode functions {f k (lJ)} in Eq. (2 -24) are a set of solutions of the equation 

i k +Qk
2
fk=0; 

Qk2=k2+m2R2+(~-l)R-1k , 

and satisfy the normalization condition 

fkik*-fk*ik=i. 

(k=lkl) 

Each choice of a set {f k (lJ)} determines one Fock representation of CP. 

(2-26) 

(2-27) 

(2-28) 

Since Hand N should commute with each other in order that the chemical 

potential is well-defined, the specification of H entails that of N and {11I~>}. 

Namely it is the most natural to take as {11I~>} the Fock basis diagonalizing H( lJ) 

at time lJ, and as N the corresponding number operator. Thus we only have to 

give H. As is clear from the above consideration, H should be the canonical 

Hamiltonian. However, as is well known, this requirement does not determine 

H uniquely in dynamical spacetime due to the freedom of the choice of the 

canonical variable. 9
) In spatially flat Robertson-Walker universe this freedom is 

represented by the momentum dependent canonical transformation 

(2-29) 

where cp k (lJ) = J vd3 xcp( lJ, x) CLj k (x). Let us specify the mode functions {f k(~')( lJ)} 

corresponding to the Fock basis at lJ = lJ', {11I~'>}, by the ratio of i k (lJ') to f k (lJ'), 

-il1k +Yk(l1k >0 and Yk is real): 

(2-30) 

Then we can easily show that the Fock representation which diagonalizes the 

canonical Hamiltonian corresponding to if; k is characterized by the following 

choice of 11k and Y k :9) 

,11k 2=k2+m2R2+~R-1R-).k -lXk -2R-1).k(R).k -1)" +(R-1).kyAk , (2-31) 
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Statistical Effect of Interactions on Particle Creation 1423 

(2·32) 

where Ak represents the contribution to the Hamiltonian from the total deriva

tive term of the Lagrangian which can be added arbitrarily_ 

What is interesting is that we can limit the freedom of the choice of A k (TJ ) and 

Ak (TJ) by the general conditions resulting from the requirement that our for

malism is consistent. One condition is that the Fock bases {I!lv)} at different 

times should span the same Hilbert space. The other condition is the finiteness 

of the entropy production oQ at each time interval. The first condition imposes 

the following constraint on r k : 10) 

(2·33) 

Applying this constraint to Eq. (2·32), we obtain 

(2·34) 

On the other hand, as is shown in Appendix A, the second condition yields the 

constraint on A k : 

(2·35) 

Since we can unfortunately find no principle to determine the small-k behavior of 

Ak and Ak , we will take from now on the simplest choice, suggested by Eqs. (2· 

34) and (2·35): 

(2·36) 

Another problem associated with the specification of H is the well-known 

divergence problem. ll ) In general in curved space time the regularized 

Hamiltonian is composed of the normal material part and the vacuum polariz

ation part. 12
) The latter part becomes important only in the era in which the 

spacetime curvature scale is of the order of Planck length. 13
) However, as will 

be discussed later, our model is not applicable to such an era. Thereupon we 

neglect the vacuum polarization part and assume that the normal-ordered 

Hamiltonian with respect to the Fock representations which diagonalize the 

Hamiltonian at each time yields a good approximation of the genuine regularized 

Hamiltonian henceforth. 

To summarize, we take as H the canonical Hamiltonian obtained by taking 

if; = R1> as the canonical variable. Then the mode functions {J k(j)( TJ )} 

corresponding to the Fock representation diagonalizing this Hamiltonian at TJ 

= TJj are specified by the conditions 

(2·37) 
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1424 H. Kodama 

Let a1(j) and akU) be the creation and the annihilation operators corresponding to 

these mode functions. Then the particle number operator at 7j = 7jj, Nj, and the 

Hamiltonian at 7j = 7jj, Hj, are expressed as follows: 

Nj = L: N kU) ; 
k 

(2·38) 

(2·39) 

Finally for later applications let us express oN and oQ in terms of the 

Bogoliubov transformation coefficients, I) akU) and /3kU), between the two Fock 

representations at 7j = tjj and 7j = 7ji+I. These coefficients are defined by the 

relation 

jk(i+I)( 7j) = aku>fkU)( 7j) + /3kU>fkU)( 7j)* , 

which is equivalent to the relation 

(2·40) 

(2·41) 

Substituting Eqs. (2·38), (2·39) and (2·41) into Eqs. (2·15) for Nand Q, we 

obtain the following expressions for the basic quantities: 

ojN = L:1/3ku)nl+'2 Tr(DjN kU»)], (2·42) 
k 

OjQ=L:[Qk(7ji+I)I/3kU)1
2{1 +2 Tr(DjN k(j»)} +(ojQk)Tr(DjN kU»)], (2·43) 

k 

where OjQk = Qk(7jj+l)-Qk(7jj). The first terms in Eqs. (2·42) and (2·43) cor

respond to the particle creation from vacuum, and the second terms to the induced 

creation due to the existence of particles.B
) In contrast, the third term in Eq. 

(2·43) represents the kinematical entropy production due to the time dependence 

of Qk( 7j), and has no relation with particle creation. 

§ 3. Particle creation in the finite-time reduction model 

In this section we evaluate the number and the entropy production of created 

particles in expanding universe by the finite-time reduction model formulated in 

§ 2. First of all we remark on the applicable range of this model. In this model 

it is assumed that newly created particles come in thermal equilibrium with the 

background matter of universe within the reduction time scale. This assumption 

holds only when the reduction time at, which is the order of the characteristic 

time scale of interactions, is much shorter than the cosmic expansion time scale 

rexp=R/(dR/dt), namely, the condition 

(3·1) 
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Statistical Effect of Interactions on Particle Creation 1425 

is satisfied. Thus our model is applicable only to the period in which this 

condition is satisfied. In the period in which at/rexp:J> 1 interactions of particles 

are effectively frozen and the particle creation should be evaluated by the 

conventional free field theory. 

First we evaluate the particle creation during each reduction time interval 

[T}, T} + aT}] without specifying the expansion law of the universe. We omit the index 

of intervals from now on. In order to eliminate the artificial volume dependence, 

we rewrite Eqs. (2·42) and (2·43) into the density forms. Let us write aN and 

aQ as Va(R3 nc ) and Va(R 4 pc). Further we replace L:k by the integration 

(27[)-3 VJd3 k. Then after a short calculation we obtain the following formulas: 

(3·3) 

where 

(3·4) 

Since we assume the condition (3· 1), we only consider the lowest order effect 

in at/rexp. In this approximation the Bogoliubov coefficient 13k in the interval 

[T}, T} + aT}] is given by (see Appendix A) 

1/31 2~ 1 m
4
R2R2 . 2(Q 5> ) 

k -4 Qk6 SIll kuT}, (3·5) 

where aT} =at/R. Substituting this equation into Eqs. (3·2) and (3·3), and chang

ing the integration variable from k to x = Qk/mR, we obtain 

a ( R3 nc ) = II + 12 ; (3·6) 

1 mR2 100 j x-I . 2 

II = 87[2 ~ 1 dx XS SIll (mRaT}x), (3·6a) 

1 __ 1_ mR2 100 

d R=T . 2( Ra )( mxlT - I)-I 
2 - 47[2 R 1 X XS SIll m T}X e , (3·6b) 

and 

(3·7) 

(3·7a) 
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1426 H. Kodama 

(3'7b) 

(3'7c) 

We have set f.-l = 0 in these equations because we assume that the scalar particles 

are in chemical equilibrium with the background matter for T:?> m, and 12, 14 and 

Is can be neglected compared with II and 13 for T<" m in the first order approxi

mation. It is not difficult to write down the corresponding formulas for the 

general case f.-l =1= 0 in the following. 

In order to estimate the integrals we consider the following three cases. The 

necessary mathematical formulas are given in Appendix B. 

(i) T>m and mRor;<1 

From Eqs. (B'5), (B'9), (B'12), (B'13) and (B'15) it follows that 

0(R3 nc ) ~ 3RR(_I_+_I_ L )0 
or; m 32Jr 24Jr 2 m r;, (3'8) 

1 4 3· ( T)2 +12m R R m ,. (3'9) 

where 'Y is the Euler constant. 

(ii) T>m and mRor;>1 

From Eqs. (B'4), (B'11) and (B·13) it follows that 

0(R3 nc ) ~ mR2 (_I_+_I_L)_I_ 
A" R 256Jr 60Jr

2 
m or;' 

(3·10) 

0(R
4

pc) ~ 2R2(_I_+_I_L)_I_+~m4R3R(L)2 
or; m 48Jr 2 256Jr m or; 12 m 

(3'11) 

(iii) T < m and mRor; > 1 

In this case the temperature-dependent terms become negligible due to the 

factor (emx
/
T 

- 1)-1 even in the chemical equilibrium case and only the first terms 

of Eqs. (3'10) and (3'11) survive: 

(3'12) 

(3·13) 
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Statistical Effect of Interactions on Particle Creation 1427 

To sum up the contributions from each time interval [7)j, 7)i+d given by Eqs. 

(3-8)~(3-13) to obtain the total amount of the number and the entropy produc· 

tion of created particles, we must specify the expansion law of universe. As 

explained in § 2, exactly speaking, the change of the cosmic scale factor is coupled 

with the particle creation through the Einstein equation. Hence Rand T (and 

Ji if necessary) are determined step by step taking into account the effect of 

particle creation. However, when we only want to estimate whether such 

backreaction effect of particle creation is negligible or not, it is sufficient to 

calculate neglecting the backreaction on Rand T and assuming that the back

ground matter is closed itself. If the resultant total energy and the entropy 

production of created particles are negligible compared with the energy of the 

background matter, this assumption is justified and the corresponding result of 

calculation can be considered to give a good approximation. Following this idea 

we next evaluate the particle creation in the fixed radiation dominant Friedmann 

univetse. 

The cosmic scale factor R( 7) for the radiation dominant Friedmann universe 

is given by6) 

1 
R=Z7) , (3-14) 

normalizing R as unity at Planck time t = 1 (7) = 2), where the physical time t is 

related with the conformal time 7) by 

(3-15) 

The temperature of the universe at time 7) is given by6) 

(3-16) 

where T * is the temperature at Planck time, which is expressed by the number of 

particle species g at that time as 

(3-17) 

We assume that the reduction time ot is equal to the characteristic interac

tion time nnt of the scalar particles with the background matter. Furthermore 

we assume that the interactions are of the gauge field type with a universal 

coupling constant ~ra, following the recent trend of particle physics. Then nnt 

( = 1/ «JlJ > nBG; nBG denotes the number density of the background particles in

teracting with the concerned scalar particles) is given as 
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1428 H. Kodama 

{ a'T ,lXh1" 
1 

for T'Pm, (3·18a) 
a 2 hT 

nnt~ 

m
2 

1 
for T~m, (3·18b) 

a 2 m
2 x hT3 a 2 hT3 

where h denotes the number of particle species which have masses smaller than 

the temperature T and participate in the interactions. We assume that ha
2 
~ ga

2 

< 1. Thus the condition (3·1) is in the present case expressed as 

for T'Pm, (3·19a) 

for T~m. (3·19b) 

In general the statistical weight h changes with time. In most cases we can 

safely put h=g for T>m and h=hm (the value of h at T~m) for T<m in 

Eq. (3·19). Thus we find that our model is applicable in the period 

1 4a 2 h T 3 

2 T ~7)~ ~ * - 7)f . 
a g * m 

7)i (3·20) 

Especially from this we obtain the constraint on the mass: 

(3·21) 

Taking a=10-
2 and hm=10

2
, for example, Eq. (3·21) yields the condition m~5 

x lOIS GeV. Particles with mass m> M never come in thermal equilibrium with 

the background matter and their creation can be evaluated by the conventional 

free field theory. 

Now we evaluate the total amount of particle creation in the Friedmann 

universe. Since !Jt=R(5T)~rexp, we can replace the summation of !J(R3 nc ) and 

!J(R
4
pc) at each time interval by the integration of !J(R3nc)/!J7) and !J(R4 pc)/!J7) in 

terms of 7). According to the cases (i)~(iii) in the estimation of !J(R3 nc ) and 

!J(R
4
pc) we divide the period (3·20) into three sub-periods. Then the total 

amounts of the number and the entropy of created particles in each sub-period are 

given as follows: 

(i) 7)i=(a2gT*)-I~7)<2a2hl T*/m 

(hi is the value of h at the time mR!J7) = 1) 

L1(R3 nc ) ~ 12t7[ a
2 
hi T* m+ 48

1
7[2 T* m , (3·22) 
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Statistical Effect of Interactions on Particle Creation 

In order that this sub-period exists, m must satisfy the condition 

m<2a4ghl T*2~0.4a4 hl/g . 

(ii) 2a
2
hlT*/m<Tj<2T*/m 

L1(R3nc)~ 51~7l"a2h2T*mln(a}hl)+ 12~7l"2 T*m, 

1429 

(3-24) 

(3-25) 

(3-26) 

where h2 is the mean value of h in this sub-period. In the case in which 

m > 2a
4 
ghl T*2 and the sub-period (i) does not exist, we should replace InO/a 2 hd 

by In(2a 2gT*2/m ) in Eqs. (3-25) and (3-26). 

(iii) 2 T*/m< Tj4:..4a
2 
hm T/ /m

2= Tjf 

L1(R3 nc ) ~ lOi47l" a
2 
hm T*m , (3-27) 

(3-28) 

In order that this subperiod exists, m must satisfy the condition 

(3-29) 

Note that the major parts of L1(R3nc) and L1(R4pc ) in this sUbperiod are created 

around T ~ m since 0 (R
3 
nc) /oTj and 0 (R4 Pc) /OTj are monotonic decreasing func

tions of Tj as is seen from Eqs. (3-12) and (3-13). 

§ 4_ Free particle creation in Friedmann universe 

For the later comparison with the result in the finite reduction-time model, we 

evaluate the scalar particle creation in the radiation dominant Friedmann 

universe in the conventional free field theory.1) We assume that the field is a 

neutral scalar field and that the definition of particles at each time is given by the 

simultaneous Hamiltonian diagonalizing one given in § 2. Furthermore in this 

section we only consider the particle creation from vacuum, i.e., we assume that 

the initial state of the field is the vacuum state at the starting point of the 

universe. 

The equation for the mode functions (2-26) is expressed in this case from Eq. 

(3-14) as 
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1430 H. Kodama 

(4·1) 

Note that this equation has no singularity at 7J =0, the big-bang point of the 

universe. This is the reason why we can set the initial condition for the field at 

7J = o. By setting x =../m 7J and a = - k2/m, Eq. (4·1) is transformed to 

(4·2) 

where the prime denotes the differentiation with respect to x. Solutions of Eq. 

(4·2) are written as linear combinations of the parabolic cylindrical functions 

E(a, x) and E(a, x)* (see Ref. 14». Let Xk(7J) be the solution of Eq. (4·1) 

expressed by E( a, x) as 

Xk(7J)=(E(a, x)/E(a, 0»*, (4·3) 

and define (Jk by 

(4·4) 

Then the Bogoliubov coefficients /3k( 7J) between the mode functions at 7J = 0 and 

7J specified by Eq. (2·30) with f-lk2=Q/=k2+m27J2/4 are given bylO) 

(4·5) 

where Re (Jk denotes the real part of (Jk and fJ) is given by 

The number density of created particles at time 7J is given by the first term 

of Eq. (3·2) in the present case. Unfortunately we cannot perform the k-integra

tion exactly. Therefore we ought to be satisfied with a rough estimate obtained 

by replacing l/3kl2 
by its asymptotic expansion for 7J ~ 1/../m. After a little 

elaborate calculation using the asymptotic formulas for E( a, x) and E' (a, x), 14) 

we find the following approximate expression for l/3kI2
: 

for k~m7J , (4·7a) 

for m3
/
4 7J 1/2 < k~ m7J , (4·7b) 

(4·7c) 

where 
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Statistical Effect of Interactions on Particle Creation 

_ 4\ok/ Iml X 16k/1m -IIU[I 
g( a) - (1 + e21ra )1/2(Re 6k/ 1m)2 

Note that g( a) is regular at a = O. 

1431 

• (4·8) 

Substituting Eq. (4·7) into the first term of Eq. (3·2) and performing the 

integration, we obtain the estimate for the number density n of created particles 

at 7J'2>I/m: 

(4·9) 

where each term corresponds to the contribution from each range of kin Eq. (4·7) 

in order. Noting that g(a) has the asymptotic behavior 

1 
g(a)~ 1281a17 /2 , 

(a~-=) (4·10) 

we can see that the particle creation stops for 7J '2> 1/ 1m (t '2> l/m), and eventually 

R3 n approaches a constant: 

(4·11) 

This result for the total number of created particles coincides with the one 

obtained by Audretsh and Schafer for a different initial condition,15) though the 

spectra are different. We can find the era during which the particle creation is 

most active from the comparison with Frolov et a1.'s calculation for the case 

7J ~ 1/ 1m. 16) They showed for this case 

(4·12) 

The right-hand side of Eq. (4·9) is a decreasing function of 7J for 7J '2> 111m and the 

right-hand side of Eq. (4·12) is an increasing function of 7J, and both give the same 

order of values at 7J ~ 1/1m, which is proportional to m3!2. Thus we can con

clude that, in the conventional free field theory, the particle creation of scalar 

particles in the Friedmann universe is most active around 7J ~ 1/1m, namely 

around the compton time t ~ l/m. 

§ 5. Statistical effect of interactions on particle creation 

First we summarize the characteristic features of particle creation in the 

finite-time reduction model estimated in § 3. Equations (3·8)~(3·13) with Eqs. 

(3·14) and (3·16) show that the particle creation occurs most actively around 
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1432 H. Kodama 

mRoT/~l (T/~2a2hl T*/m) and makes its pace down slowly in the period (ii) 

(2a2h17\/m<T/<2T*/m), and ceases when T4:...m. Note that a comparable 

amount of particles are created in the period (iii) (T< m) compared with the 

previous periods, as is seen from Eqs. (3·22)~(3·28). Some implication of this 

fact will be discussed later. Another feature we can notice from these equations 

is that as for the number the contribution from the induced particle creation (the 

second terms in Eqs. (3·22) and (3·25)) is greater than that from the vacuum 

creation (the first terms) by the factor 1/a2 h in the stage T> m. 

Concerning the total amount of created particles, both the number L1 (R 3 nc ) 

and the entropy production L1(R4pc) are proportional to the mass of the scalar 

particles (see the first and the second terms of Eqs. (3·22)~(3·26), and Eqs. (3·27) 

and (3·28)). Especially the entropy production due to particle creation is much 

smaller than the kinematical entropy production (the third terms of Eqs. (3·23) 

and (3·26)) under the constraint on the mass (3·20). This kinematical term is 

further smaller than V-IRTr(HBGDBG)=R4pBG~(2J[2/15)gT*4 since a2h4:...l. 

Therefore from Eq. (2·21) we can conclude that the entropy production due to 

particle creation, hence its effect on the temperature, is negligible for scalar 

particles in the radiation dominant Friedmann universe. 

In the stage T> m, this means that the effect of particle creation on the time 

evolution of the universe is negligible since in this stage the temperature com

pletely determines the energy density of the universe including the contribution of 

the scalar particles concerned. In contrast, in the stage T< m, the scalar 

particles go out of chemical equilibrium with the background matter within some 

time after T ~ m. Hence there is a possibility that the particles created after T 

~ m survive and make the universe matter dominant even when the universe is 

matter-anti-matter symmetric. In the real universe with a small baryon excess, 

however, we can show that such an effect does not become important-in any stage. 

In fact, after short calculation, it is shown that the mass of the scalar particles 

must be larger than 109 Ge V in order that the mass density of the surviving 

created particles exceeds the mass density due to the baryon asymmetry. We 

can show that these massive particles decay away before their energy density 

exceeds the radiation energy density unless the decay life is extraordinarily long. 

Therefore we can conclude that the created particles affect the cosmic expansion 

only through the entropy production even in the stage T < m, hence such effect is 

negligible. 

Now we compare these features with those in the conventional free field 

theory discussed in § 4. The most important difference of them is the time 

variation of particle creation. As shown in § 4, the particle creation in the 

conventional theory occurs most actively around compton time t ~ l/m (T/ = T/c 

~ l/m). In contrast, it continues until after T ~ m (T/ = T/m ~ 2 T */m) in our model. 

Since T/m'PT/c in the mass range (3·21), we find that the period in which particle 
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Statistical Effect of Interactions on Particle Creation 1433 

creation actively occurs is lengthened when the interactions of the particles with 

the background matter are taken into account. 

Next we compare the number of created particles. Since we have assumed 

in § 4 that the field is initially at vacuum state, we should compare the result of 

§ 4 with the first terms of Eqs. (3·22), (3·2S) and (3·27) (the particle creation from 

vacuum). The total number of created particles is proportional to m3/2 in the 

conventional case, and to m in our model. The latter is larger than the former 

from the condition (3·20). Further the first terms of LI (R 3 
nc) in § 3 increase if 

the interaction is effectively made stronger by increasing the value of a. These 

observations show that the statistical effect of interactions increases the number 

of created particles, and the stronger the interactions are, the larger the number 

becomes. 

Finally we comment on a cosmological implication of the lengthening of the 

active particle creation era in the finite-time reduction model. Recently a pos

sibility has been actively studied by many authors that the cosmological baryon

anti-baryon asymmetry can be explained by the baryon-number nonconserving 

processes in the grand unified gauge theories. 17
) In these arguments heavy 

bosons which decay through C and CP violating interactions and produce baryon 

number play an important role. Here we estimate the baryon number production 

due to the decay of such heavy bosons created in the T< m stage. 

Let us suppose that heavy bosons X with mass mx produce a baryon number 

LIB per one boson by decay. We assume that these particles are sufficiently 

heavy and come out of chemical equilibrium with the background matter soon 

after T~ mx. Then Eq. (3·27) yields the following estimate of the baryon-to

entropy ratio produced by the decay of X-bosons created after T~ m: 

(S·l) 

where Nx is the number of species of X-bosons. If we put, for example, ax2 

=10- 3
, hm:::=.g=200, mx=SX10- 4 m*:::=.SX10 15 GeV, Nx:::='SO and LIB = 10-6

, we 

obtain nB/nr :::=.10- 12
. Though this value is a little smaller than the required value 

nB/nr = 10-8 ~ 10-10
, this result indicates yet that the particle creation may play an 

important role in the problem of cosmological baryon number production, taking 

into account the roughness of our estimation of particle creation. 

§ 6. Discussion 

In this paper we have formulated the finite-time reduction model in order to 

study the statistical effect of interactions on particle creation in expanding 
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1434 H. Kodama 

universe, and applied it to scalar fields in the radiation dominant Friedmann 

universe. We have shown that the particle creation increases if this statistical 

effect is taken into account, and furthermore the active era of particle creation is 

much lengthened, compared with the result in the conventional free field theory. 

Especially we have shown that a comparable amount of particles are created in 

the period T< m compared with the preceding period, and this result may play an 

important role in the problem of the cosmological baryon number production. 

The most important new aspect opened by the finite-time reduction model is 

that we have become able to discuss the entropy production due to particle 

creation and its backreaction on the time evolution of universe. Unfortunately 

it has been shown that the entropy production due to the scalar particle creation 

in Friedmann universe is small compared with the entropy of the background 

matter, and hence its backreaction is negligible. However there is a possibility 

that this type of entropy production may play an important role in other situa

tions,18) such as in the exponentially expanding era of the universe suggested in 

connection with the GUT first-order phase transitions. 19) 

In spite of these fascinating features of the finite reduction model, the validity 

of this model, in other words, the reality of the statistical effect of interaction 

asserted in § 2, is an open problem at present. In connection with this problem 

the recent arguments l9) in the measurement theory for quantum mechanics are 

very interesting. In these arguments it is suggested that uncontrolable interac

tions of macroscopic systems with the surroundings may play an essential role in 

the explanation of the wave packet reduction. Since the essential features of the 

problems are quite similar in the explanation of the wave packet reduction and 

in our problem, these arguments indicate that our problem might be solved in the 

same line as the problem of the measurement theory. Anyway the further 

progress in the fundamental physics is required to convince ourselves with the 

validity of our model completely. 
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Appendix A 

The purpose of this appendix is two-fold: one is to show that the condition 

of 8J Q being finite leads to the choice A=O in Eq. (2·31) and the other is to 

derive the formula (3·5). Both are based on the study of the behavior of the 

Bogoliubov coefficients !3k. For simplicity we write the concerned interval as [7Jo, 

7Jd and express the values of various quantities at 7Jo and TJI by the suffices 0 and 
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Statistical Effect of Interactions on Particle Creation 1435 

1, respectively, and omit the momentum suffix k. Then, as shown in Ref. 10), the 

Bogoliubov coefficient in this interval is expressed as 

(A·I) 

where 

(A·2) 

(A ·2a) 

(A·2b) 

(A·2c) 

(A ·2d) 

in which we have put y = 0 following the argument in § 2. (/) is given by 

and !B (r;) is the solution of the nonlinear equation 

Q-l(Q- 1 93)"+(.!l+1-!B-4 )!B=0; !B(r;o)=l, 93(r;o)=0, 

where 

(A·3) 

(A·4) 

(A·5) 

By setting u=!B -1, the integral equation corresponding to Eq. (A·4) is written 

as 

u(r;)=- ~loq sin(21,QQ(r;")dr;") 

X [(1 + u(r;'».!l(r;')+ u(r;')q( u(r;'»]Q(r;')dr;' , (A·6) 

where q( u)= u(3u2+8u+6)/(l + U)3. 

First we study the finiteness condition of oQ. Since Tr DjNkU) damps 

exponentially for large k due to the factor exp( - HIT) (see Eqs. (2·18) and 

(2·43», this condition is equivalent to 
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1436 H. Kodama 

(A·7) 

Here we have used the fact that the expression for 8Q for the general case is 

given by replacing Q by /.1 in Eq. (2·43). Noting that !l3 =1 +O(k- 4
) and iJJ 

= O(k- 3 )for large k (see Eqs. (4·20) and (4·21) in Ref. 10)), we obtain the 

following asymptotic estimate for g] I : 

g]3=2(Q0
2
-/.10

2
)+ /.102~~1 (/.10

2
-/.11

2
)+ Q:~QI (QI2-Q0

2)+ O(k- I ). (A·S) 

Since /.1, Q ~ O( k), the condition (A· 7) is rewritten as 1 g] 12 = 0(1). Thus from Eq. 

(A ·S) we obtain the following constraint on /.1: 

(A·9) 

Since /.1
2
=Q

2
+ A from Eq. (2·31) (note we adopted Ilk =R), this constraint yields 

A= 0(1). (A ·10) 

This means that it is most natural to put A = o. 
Next we prove that I.8kl2 is given by Eq. (3·5) in the lowest order in 8t/rexp. 

We put Il=R and A=o in Eqs. (2·31) and (2·32), hence /.1k=Qk from now on. 

Then from Eq. (A ·6) we obtain 

(A·11) 

Rewriting Q/- Q02 as (Q2)·817 and using Eq. (A ·11), we obtain the following 

estimates of g] I: 

g] 1 = (Q2)"/Q [1 + O( ~t/rexp)], 

.fD2=4Q
2
u[1 + O(at/rexp)], 

_ 1 [(Q2)·Y 
g]3-S Q4 [1+0(8t/rexp)], 

(A ·12a) 

(A·12b) 

(A ·12c) 

(A ·12d) 

where u =!B -1. To proceed further we must consider the cases 817Q ~ 1 and 

817Q ~ 1 separately. 

(i) 817Q~1 case. In this case from Eq. (A·6) it follows that 
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Statistical Effect of Interactions on Particle Creation 1437 

=_~(~)2[~ m
4
R

4 
_~ m2R2(1+ R!?)] 

2 R/R 4 Q4 2 Q2 R 2 , 

it c:=. 2u/or; . 

From these equations we find 

fD 2 cos (j)/ fD 1 sin (j) c:=. (2:)" o;Q = o( ~:p )~1 , 

fD 3 sin (j) +fD 4 cos (j) = 0(( ~:J2)~ 1 . 

(A ·13) 

(A·14) 

(A ·15) 

Estimate (A ·15) means that fD c:=.fD 1 sin (j) in the lowest-order approximation. 

(ii) or;Q 3> 1 case. In this case, R/R 3> or; 3> I/Q and 

(A ·16) 

From these we obtain the following estimates: 

~ o( m2 
R2 ~) + 0(_1- ~)~ 1. 

Q2 R/R Qor; fD 1 

(A·I7) 

Thus again fD derm dominates in fD. (i) and (ii) show that fD c:=.fD 1 sin (j) in the 

lowest-order in ot/rexp, which leads to Eq. (3·5). 

Appendix B 

In this appendix we estimate the integrals II ~ Is which appeared in § 3. 

These integrals are classified into three types: 

(B·n 

(B·2) 

(B·3) 
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1438 H. Kodama 

First let us consider In(A). Since we cannot perform the integration exactly, we 

seek the asymptotic behavior of In for A~l and A~l. For A~l we can replace 

sin2 (Ax) by l/Z and obtain 

11= R=l vJr r(1--1) 
In~2 1 dx xn =-8- r( n~l)" (A~l) (B'4) 

For A~l, if n;;;;5, we can apply Lebesgue's theorem and obtain 

r(..!l-z) 
vJr Z A2 

4 r(n~l) 
(B'5) 

For A~l and n=4, we must make a little delicate argument. We divide the 

integrand into two parts: 

(B'6) 

By Lebesgue's theorem the first term is estimated as 

1= -1_ R=l- x . 2( 1) 12I=d R=l- x _ 121 2 
U-(, 4 SIn /\x ~/\ x 2 -/\ n -. 

1 X 1 X e (B·n 

The second term is expressed by the cosine integral function Ci(x) by partial 

integration. Using the asymptotic expansion formula for Ci(x), 14) we obtain 

l sin
2

A + sin ZA - C·(il) 
Z il 2 Zil Z 

3 
~2-r-ln(2A), (il~l) 

where r is Euler constant. Equations (B·n and (B·8) yield 

(il ~ 1) 

Next we estimate Kn and Lo. Let Ln(f]) be 

Then Lebesque's theorem yields 

(B'8) 

(B'9) 

(B '10) 
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Statistical Effect 0/ Interactions on Particle Creation 

for ,-1»1, 

for ,-1~1 . 

1439 

(B'll) 

(B'12) 

Thus we only have to examine 

interested only in the case e~l. 

Eq. (B'10) directly to obtain 

the asymptotic behavior of Ln(e). We are 

For n~2 we can apply Lebesgue's theorem to 

Ji[ 

8 

( n-1) 
r -2- e-

1 

r(; +1) . 
(e~l, n~2) (B'13) 

Equations (B'1l)~(B'13) yield the required asymptotic estimate of Kn(,-1, e). 

For n = 0 we change the integration variable from x to t = ex: 

(B·14) 

Then again by Lebesgue's theorem we obtain 

1
"" 2 

Lo(e) ~ e- 2 0 dt t( e t _1)-1 ={-e- 1 
• (e~l) (B'15) 
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