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Abstract—In this paper, we study the achievable ergodic
sum-rate of multiuser multiple-input multiple-output downlink
systems in Rician fading channels. We first derive a lower bound
on the average signal-to-leakage-and-noise ratio by using the
Mullen’s inequality, and then use it to analyze the effect of
channel mean information on the achievable ergodic sum-rate.
A novel statistical-eigenmode space-division multiple-access (SE-
SDMA) downlink transmission scheme is then proposed. For this
scheme, we derive an exact analytical closed-form expression for
the achievable ergodic rate and present tractable tight upper and
lower bounds. Based on our analysis, we gain valuable insights
into the system parameters, such as the number of transmit
antennas, the signal-to-noise ratio (SNR) and Rician K-factor on
the system sum-rate. Results show that the sum-rate converges to
a saturation value in the high SNR regime and tends to a lower
limit for the low Rician K-factor case. In addition, we compare
the achievable ergodic sum-rate between SE-SDMA and zero-
forcing beamforming with perfect channel state information at
the base station. Our results reveal that the rate gap tends to zero
in the high Rician K-factor regime. Finally, numerical results are
presented to validate our analysis.

Index Terms—Achievable rate, multiuser MIMO, Rician
fading, space-division multiple-access.

I. INTRODUCTION

Multiuser multiple-input multiple-output (MU-MIMO) has

emerged as a promising technology for significantly improving

the capacity of wireless communication systems [1, 2]. In the

downlink, it was shown that dirty paper coding (DPC) can

achieve the capacity region with very high implementation
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complexity in practice [3, 4]. For more practical linear

precoding approaches such as zero-forcing beamforming

(ZFBF) and block-diagonalization precoding, the practical

challenge is that these methods require perfect channel state

information at the transmitter (CSIT) to properly accommodate

multiple spatially multiplexed users. However, the need for

acquisition and feedback of CSIT imposes a significant

burden on the cost of most systems. Despite the advances in

conventional MU-MIMO over the past decade, it is widely

believed that its spatial benefits have only been partially

explored [5]. In recent years, a new type of MU-MIMO termed

as massive or large-scale MIMO, in which the BS is equipped

with a large number of antennas (e.g., hundreds of antennas),

has the advantage of providing both higher spectral efficiency

and power efficiency [6, 7].

In [7], it was found that the effect of fast fading will

vanish when the BS deploys very large antenna arrays

while simultaneously serving multiple users. These attractive

features make massive MIMO a key technology for the

fifth-generation (5G) wireless communication systems [6,

8]. Nonetheless, the growth of the number of antennas

brings up new challenges for massive MIMO, which need

to be well understood before its roll-out. One of the major

challenges in massive MIMO systems is to acquire accurate

CSI at the BS. In [9], it was demonstrated that the energy

and spectral efficiency of massive MU-MIMO systems can

be greatly improved through precoding with perfect CSIT.

However, in practice, channel estimation errors, feedback

delays and quantization errors are deemed to exist, which

eventually lead to performance degradation [10]. To acquire

accurate CSI, the BSs can gain downlink knowledge via

limited feedback in frequency-division duplexing (FDD) [11]

or leverage channel reciprocity in time-division duplexing

(TDD) [12]. For massive MIMO systems operating in TDD

mode, CSI is acquired by the BS through open-loop uplink

pilot training. Unfortunately, as the coherence time is limited,

pilot contamination greatly decreases the system efficiency

and becomes the system bottleneck [13]. Some works in

[13, 14] showed that pilot contamination can be mitigated

by using subspace-based channel estimation techniques. With

FDD operation, the BSs obtain CSI through the feedback link

[11]. Obviously, as the number of transmit antennas grows

without bound, the feedback overhead in the uplink becomes

prohibitive. Therefore, exploitation of statistical CSI (SCSI) in

the multiuser massive MIMO downlink is far more desirable.

Another critical challenge of multiuser massive MIMO
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is the space limitation at the BS. It is obviously hard to

pack a large number of antenna elements within a finite

volume. To fully reap the spatial multiplexing gains and

to exploit the small wavelengths at high frequencies, the

synergy between millimeter wave (mmWave) and massive

MIMO was considered in [15]. As a matter of fact, numerical

results showed that data rates of gigabits per second (Gbps)

in either indoor [15] or outdoor environments [16] can be

achieved. A key feature of mmWave systems is that line-

of-sight (LOS) propagation is predominant due to the quasi-

optical propagation characteristics. In [18], it was reported

that mmWave communications can achieve a high-rate (1-100
Gbps) communication in a pure LOS channel. Clearly, large

antenna arrays can not only provide the beamforming gain

to overcome path loss and establish reliable links, but also

support multiple data streams via general precoding schemes

[17, 18]. Therefore, massive MIMO systems in the mmWave

band are ideally suited for high-capacity transmission and,

thus, are anticipated to form an important component of 5G

systems [19, 20].

Motivated by the above observations, in this paper,

we study the achievable ergodic sum-rate of MU-MIMO

systems in Rician fading channels, where uniform linear

arrays (ULAs) are deployed at the BS, which communicate

with an arbitrary number of users. In particular, an

effective statistical-eigenmode space-division multiple-access

(SE-SDMA) downlink transmission scheme, which is based on

a lower bound on the ergodic signal-to-leakage-and-noise ratio

(SLNR), is proposed. Since channel mean information (CMI)

is rather static and varies only over a long time scale, SCSI

can be more easily and accurately obtained by the BSs through

long-term feedback [21].1 Regarding related literature, a SCSI-

aided MU-MIMO downlink transmission scheme was initially

studied in [22, 23], where the impact of spatial correlation

on the achievable sum-rate and feedback overhead was

investigated. Furthermore, the authors in [24] demonstrated

that SE-SDMA can achieve the maximum achievable ergodic

sum-rate for MU-MIMO with SCSI at the BS and perfect

CSI at the users. Moreover, the authors in [25] addressed the

optimal statistical precoder design for a simple multiuser case

and derived a closed-form expression for the ergodic sum-rate,

under the assumption that the BS has only two antennas and

each of the two users has one antenna. However, the analytical

results of [24, 25] were limited to two-user correlated and

semi-correlated Rayleigh fading channels, respectively, while

the practical case of MU-MIMO in Rician fading channels,

with an arbitrary number of BS antennas and users, remains

still an open research problem.

In this paper, we first derive a lower bound on the average

SLNR using the Mullen’s inequality, which is then used to

analyze the effect of CMI on the achievable ergodic sum-

rate. With these results in hand, a novel SE-SDMA MIMO

downlink transmission scheme is proposed which is suitable

for Rician fading channels. For this scheme, we derive an exact

analytical closed-form expression for the achievable ergodic

1Note that despite the relevance of our analysis with massive MIMO, this
holds for any finite number of BS antennas.

rate and present tractable upper and lower bounds, which are

asymptotically tight in the high signal-to-noise ratio (SNR) and

high Rician K-factor regimes. Based on our analytical results,

we gain some valuable insights into the implications of the

model parameters, such as the number of transmit antennas,

the SNR, the Rician K-factor on the achievable ergodic rate. In

addition, we compare the achievable ergodic sum-rate between

the SE-SDMA scheme and the ZFBF scheme with perfect

instantaneous CSIT. Analytical results show that the rate gap

tends to zero in the high Rician K-factor regime.

The rest of this paper is organized as follows: In Section

II, we introduce an L-user MIMO downlink model for

the Rician fading channels. The SE-SDMA transmission

approach is presented in Section III. Section IV provides our

main analytical results for the SE-SDMA MIMO downlink

transmission scheme. Numerical results are provided in

Section V and we conclude the paper in Section VI. All the

main proofs are given in the appendices.

Notations—Throughout the paper, matrices and vectors

are expressed as upper and lower case boldface letters,

respectively. Moreover, (·)H denotes conjugate transpose,

while ∥·∥ and |·| represent the Euclidean norm and the absolute

value, respectively. Also, tr (·) and E{·} represent the trace

and expectation operators, respectively, IM denotes an M×M
identity matrix, whereas the eigenvector of A corresponding

to its maximum eigenvalue is denoted by umax (A). Finally

γ = 0.5772156 is the Euler-Mascheroni constant.

II. SYSTEM MODEL

We consider the downlink of a single-cell MU-MIMO

system, where one BS equipped with Nt transmit antennas

communicates simultaneously with L single-antenna mobile

users in a given coverage area. Under the assumption that the

number of users is not larger than the number of transmit

antennas, i.e., Nt ≥ L and that the equal-power allocation

scheme is used over Nt transmit antennas, the received signal

at the k-th user can be expressed as

yk =
√
ρhkwksk +

√
ρ

L∑

j=1
j ̸=k

hkwjsj + zk, (1)

where ρ = P/Nt is the average SNR, P denotes the total

available transmit power, sk and sj represent the transmit

symbols for user k and user j with |sk|2 = |sj |2 = 1, wk

and wj are unit-norm precoding vectors of user k and user

j, respectively, which satisfy ∥wk∥ = ∥wj∥ = 1. Moreover,

zk ∼ CN (0, 1) denotes the zero-mean unit-variance complex

Gaussian additive noise at the receiver, L is the number of

simultaneously scheduled users among the entire user set S,

and hk is the flat Rician fading channel vector between the

BS and the k-th user, given by [26, 27]

hk =

√

Kk

Kk + 1
h̄k +

√
1

Kk + 1
h̃k, (2)

where Kk (k = 1, . . . , L) is the ratio between the LOS and

non-LOS channel power in Rician fading channels, h̃k ∈
C

1×Nt is the non-LOS channel component, whose entries are

complex circular symmetric Gaussian random variables with
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Fig. 1. A schematic diagram of a MU-MIMO system with a ULA of Nt

transmit antennas serving L users.

zero mean and unit variance, and h̄k is the channel mean

vector, satisfying tr
(
h̄kh̄

H
k

)
= Nt. In this paper, we consider

the general case of ULAs,2 as shown in Fig. 1. The channel

mean vector of the k-th user is expressed by

h̄k =
[

1 ejk0d cos(ϕk) · · · ej(Nt−1)k0d cos(ϕk)
]

, (3)

where k0 = 2π/λ, λ is the wavelength, d is the inter-antenna

spacing, and ϕk is the angle of departure (AoD) for the k-th

user, measured with respect to the antenna array boresight.

We assume that all users have perfect instantaneous

knowledge of their corresponding channel vector,3 i.e., hi

(i = 1, . . . , L) but the BS only knows the channel mean vector,

i.e., h̄i (i = 1, . . . , L) for the reason that the AoDs change

much slower than the complex path gains, and the CMI can

be easily acquired by the BS. From (1), under the assumption

of Gaussian input signaling, the achievable ergodic rate of the

k-th user can be expressed as

Rk = E {log2 (1 + SINRk)} , (4)

where

SINRk ,
ρ|hkwk|2

1 + ρ
L∑

j=1
j ̸=k

|hkwj |2
. (5)

Consequently, the achievable ergodic sum-rate of the system

in bit/s/Hz is given by

Rsum=
L∑

k=1

Rk. (6)

To maximize the achievable ergodic sum-rate in (4), the

optimization aims to find the optimal beamforming vectors wi

(i = 1, . . . , L) that maximize the sum-rate Rk. However, since

this approach generally results in a challenging optimization

problem with L coupled variables, it is difficult to obtain

the optimal beamforming vector wi when the BS has only

2Our results can be easily extended to other array topologies such as
uniform planar arrays or uniform circular arrays.

3This assumption is reasonable because accurate CSI can be obtained at
the user side via a few feedback bits for downlink channels, as was shown in
[28].

CMI. To avoid solving the coupled optimization problem, the

concept of SLNR has been recently introduced in [30, 31],

which leads to closed-form solutions for the downlink in MU-

MIMO systems. According to the definition in [30, 31], the

SLNR of the k-th user can be expressed as

SLNRk =
ρ|hkwk|2

1 + ρ
L∑

j=1
j ̸=k

|hjwk|2
, (7)

where the term ρ|hjwk|2 in the denominator represents the

power leaked from the k-th user’s beamforming direction to

other users’ channel directions. Note that the SLNR has been

demonstrated as a convenient and effective metric that leads

to near-optimal solutions in the design of multiuser downlink

transmission [30, 31]. In the following section, we will use

the average SLNR as our performance metric to design the

sub-optimal beamforming vectors.

III. SE-SDMA TRANSMISSION

Here, we derive a lower bound on the average SLNR

by utilizing the concept of leakage power and the Mullen’s

inequality. We then obtain the optimal beamforming vector

and the maximum value of the average SLNR by maximizing

this lower bound. With these results, we propose a novel SE-

SDMA downlink transmission scheme which utilizes only the

CMI. The following theorem presents a new lower bound on

the average SLNR for MU-MIMO downlink channels.

Proposition 1: The lower bound on the average SLNR for

the k-th user is represented by

E {SLNRk} ≥ {SLNRk}LB, (8)

where

{SLNRk}LB ,
ρwH

k Rkwk

1 + ρwH
k

L∑

j=1
j ̸=k

Rjwk

(9)

and

Rj , E
{
h
H
j hj

}
=

Kj

Kj + 1
R̄j +

1

Kj + 1
INt

(10)

with

R̄j , h̄
H
j h̄j . (11)

Proof: See Appendix A.

Proposition 1 presents an approach for the optimal

beamformer design to maximize the lower bound on the

average SLNR with CMI at the BS. In [29], an approximate

closed-form expression for the probability density function

(p.d.f.) of the average SLNR was derived in spatially correlated

MIMO channels. Obviously, our lower bound can be applied

to Rician fading channels and the results in [29] are a special

case of Proposition 1.

With the results in Proposition 1 in our hands, we can now

obtain the optimal beamforming vector to maximize the SLNR

lower bound under the condition that only CMI is available at

the BS.

Theorem 1: With the SE-SDMA downlink transmission

scheme, the optimal beamforming vector, which maximizes
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{SLNRk}LB, is given by4

w
opt

k =
1√
Nt

h̄
H
k , for k = 1, . . . , L. (12)

Proof: To obtain the maximum value of (9), we find that

the optimal wk must simultaneously maximize the nominator

and minimize the denominator of (9). We first consider the

term of the nominator. Since Rk is a Hermitian matrix, it can

be decomposed into (13) shown at the top of the next page,

where Ũ
H
k is the orthogonal subspace of h̄

H
k

/√
Nt. In order

to obtain the maximum value of the nominator, we can see

that

w
opt

k = umax (Rk) =
h̄
H
k√
Nt
. (14)

At the same time, to get the minimum value of the

denominator, we must have

h̄jw
opt

k =
1√
Nt

h̄jh̄
H
k = 0, for j ̸= k, (15)

which implies that w
opt

k is orthogonal to h̄
H
j

/√
Nt.

From Proposition 1, we observe that the optimal

beamforming vector w
opt

k has a critical impact on the lower

bound on the average SLNR. When the channel mean

vectors of the users scheduled are orthogonal to each other,

{SLNRk}LB achieves its maximum value, and vice versa.

In the following, we will work out when the channel mean

vectors satisfy the orthogonality condition, by deriving the

relation between the AoDs of two users. According to the

definition in (3), the evaluation of
∣
∣h̄
H
j h̄k

∣
∣ for ULAs is given

by

f (δ) =
∣
∣h̄
H
j h̄k

∣
∣ =

∣
∣
∣
∣
∣

sin
(
Ntπd
λ δ

)

sin
(
πd
λ δ
) ej

(Nt−1)πd

λ
δ

∣
∣
∣
∣
∣
, (16)

where

δ , cosϕk − cosϕj . (17)

Since the lower bound on the average SLNR is maximized

when the channel mean vectors are orthogonal to each other,

we should have
sin
(
Ntπd
λ δ

)

sin
(
πd
λ δ
) = 0, (18)

which yields the following condition for δ:

δ =
nλ

Ntd
, (19)

where n is any positive integer, i.e., n = 1, . . . , N .

Substituting (19) into (17), we can infer that the azimuth AoD

of users must satisfy the following condition:

ϕk = arccos

(
λ

dNt
n+ cosϕj

)

. (20)

The number of points at which the above criterion is

satisfied, depends heavily on the number of transmit antennas

and the inter-element spacing. In general, a larger array

4Note that the selection of w
opt

k is based on maximizing the average
SLNR lower bound. It was demonstrated in [24] that applying the Mullen’s
inequality can achieve the same ergodic sum-rate as the optimal exhaustive
search method [25].

aperture (i.e., larger Nt and/or d) gives better interference

suppression. This is expected because the system has more

degrees of freedom in the spatial domain to null out

interference. On the contrary, when the two channel vectors

are co-linear (i.e., ϕj = ϕk), interference is maximized and

the function f (δ) becomes equal to Nt. Moreover, the width

of the main lobe of f (δ) is again squeezed when Nt and/or d
increases. The above observations emphasize the importance

of user scheduling in MU-MIMO systems, showing that it

is better to schedule users with distinct incident angles, as

described in (20), in order to avoid severe interference between

different users.

Corollary 1: With the SE-SDMA downlink transmission

scheme in Theorem 1, the maximum value of the lower bound

on the average SLNR is given by

{SLNRk}max

LB =
ρ
(

Kk

Kk+1Nt +
1

Kk+1

)

1 + ρ
L∑

j=1
j ̸=k

(
1

Kj+1

) . (21)

Proof: According to Theorem 1, the channel mean vectors

of the users scheduled are orthogonal to each other. Thus, we

get

w
H
k Rkwk =

Kk

Kk + 1
Nt +

1

Kk + 1
(22)

and

w
H
k Rjwk =

1

Kk + 1
, for j ̸= k. (23)

Substituting (22) and (23) into (9), along with some

manipulations yields the desired result.

From Corollary 1, we have the following observations:

• It is interesting to see that the maximum of the lower

bound on the average SLNR depends on the number of

transmit antennas, the Rician K-factor, and the average

SNR. Fixing the average SNR and the number of transmit

antennas, it can be shown that in the special cases of Ki

= 0 and Ki → ∞ (i = 1,. . . ,L) the maximum of the

lower bound in (21) reduces, respectively, to

lim
Kk→0

{SLNRk}max

LB =
ρ

1 + (L− 1) ρ
(24)

and

lim
Kk→∞

{SLNRk}max

LB = ρNt. (25)

• Moreover, when the Rician K-factor and the number of

transmit antennas are fixed, as ρ→ ∞, the maximum of

lower bound on the average SLNR reduces to

lim
ρ→∞

{SLNRk}max

LB =

KkNt+1
Kk+1

L∑

j=1
j ̸=k

1
Kj+1

. (26)

• The maximum of lower bound on the average SLNR

is an increasing function of Nt, thereby confirming the

intuition that adding more antennas to the transmitter has

the effect of improving the maximum of the lower bound
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Rk =
(

h̄
H
k√
Nt

Ũ
H
k

)








KkNt

Kk+1 + 1
Kk+1 0 · · · 0

0 1
Kk+1 · · · 0

...
...

. . .
...

0 0 · · · 1
Kk+1








(
h̄k√
Nt

Ũk

)

, (13)

on the average SLNR. When Nt → ∞, we have

lim
Nt→∞

{SLNRk}max

LB =
PKk

Kk + 1
, (27)

where P is defined in (1). This observation means that

all leakage to other users can be eliminated by deploying

a large number of antennas at the BS, which is in good

agreement with the conclusion in [7].

IV. ACHIEVABLE RATE CHARACTERIZATION

Based on the SE-SDMA scheme proposed in Section III, we

derive a new exact closed-form expression for the achievable

ergodic sum-rate in this section. We also deduce upper and

lower bounds on the achievable ergodic sum-rate. Then, we

analyze the mean rate loss between the proposed scheme and

ZFBF with perfect instantaneous CSIT. Based on these results,

several interesting physical insights into the impact of system

and channel parameters can be obtained.

A. Exact Expression on the Achievable Rate

From Theorem 1, it is observed that the SE-SDMA scheme

is a type of orthogonal beamforming. We start by defining

the achievable ergodic rate of the k-th user for the SE-SDMA

downlink transmission scheme as

RSE
k = E







log2









1 +
ρ
∣
∣
∣

1√
Nt

hkh̄
H
k

∣
∣
∣

2

1 + ρ
L∑

j=1
j ̸=k

∣
∣
∣

1√
Nt

hkh̄
H
j

∣
∣
∣

2















(28)

We now focus on computing a closed-form expression for

the achievable ergodic rate. The following theorem calculates

the achievable ergodic sum-rate as a function of CMI of

different links and the choice of beamforming vectors.
Theorem 2: For the SE-SDMA downlink transmission

scheme with the SLNR criterion in Theorem 1, the exact
analytical expression of RSE

k is given by

R
SE
k = log2(e)e

−
NtKk

2 e
Kk+1

2ρ

∞∑

j=0

(NtKk)
j

j!2j
∆

(

j + L,
2ρ

Kk + 1

)

− log2(e)e
Kk+1

2ρ

L−1∑

h=1

Eh

(
Kk + 1

2ρ

)

, (29)

where

∆(m,β) ,
m∑

h=1

Γ (−m+ h, 1/β)

βm−h =
m∑

h=1

Eh

(
1

β

)

(30)

with Γ (α, x) =
∫∞
x
e−tta−1dt is the upper incomplete gamma

function while Eh (x) =
∫∞
1
t−he−xtdt, h = 0, 1, 2, . . . is the

exponential integral of order h. The last equation follows from

the relation

Eh (x) = xh−1Γ (1− h, x) . (31)

Proof: See Appendix B.

We point out that the expression in (29) involves the sum

of infinite series, and the computation of the exact achievable

ergodic rate is quite complicated. For the convergence of the

infinite series in (29), we will now assume that T0 − 1 terms

are used so that the truncation error Te can be written as

Te =
∞∑

j=T0

(NtKk)
j

j!2j
∆

(

j + L,
2ρ

Kk + 1

)

. (32)

By employing a result from [32], the truncation error Te in

(32) can be upper bounded as

Te < E1

(
Kk + 1

2ρ

)

(T0 + L)
(NtKk)

T0

T0!2T0

2F2 (T0 + 2, 1;T0 + 1, T0 − L+ 1;NtKk/2) , (33)

where pFq (·) denotes the generalized hypergeometric function

with p, q non-negative integers [40, (9.14.1)]. For the selection

of T0 by taking into account the acceptable truncation error,

the exact analytical expression of RSEk can be approximately

given by (34) shown at the top of the next page.

From (34), we draw an interesting conclusion that R̂SE
k is

a function of the SNR and Rician K-factor. The following

corollary presents the achievable ergodic rate limit as ρ→ ∞.

Corollary 2: In the high SNR regime, (i.e., as ρ→ ∞) for

fixed Kk, L, and Nt, R̂
SE
k in (34) is reduced to

lim
ρ→∞

R̂SEk = log2(e)



e−
NtKk

2

∞∑

j=0

(NtKk)
j

j!2j
(ln (L+ j)

+γ − Ei (0)) −ln (L− 1) + γ − Ei (0)) (35)

where Ei(·) denotes the exponential integral function, which

is defined as

Ei (ξ) = −
∫ ∞

−ξ

e−t

t
dt. (36)

Proof: It is known that Eh+1 (z) can be efficiently

evaluated using the recursive relations [39, Eq. (5.1.51)].

Eh+1 (z) =
1

h

(
e−z − zEh (z)

)
(37)

and

E1 (z) = −Ei (−z) . (38)

When ρ grows without bound, we have the following result

Kk + 1

2ρ
→ 0. (39)
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RSE
k ≈ R̂SE

k = log2(e)e
Kk+1

2ρ e−
NtKk

2

T0−1∑

j=0

(NtKk)
j

j!2j

L+j
∑

h=1

Eh

(
Kk + 1

2ρ

)

− log2(e)e
Kk+1

2ρ

L−1∑

h=1

Eh

(
Kk + 1

2ρ

)

. (34)

Substituting (39) into (37) and combining it with (34) yield

the desired result.

It is interesting to note from Corollary 2 that with fixed

Kk, L, and Nt, R̂
SE
k converges to a saturation value when ρ

grows without bound. This is because inter-user interference

increases when the SNR grows. We then investigate the impact

of the Rician K-factor on the downlink rate approximation in

the following corollary.

Corollary 3: For the special case of Kk → 0, RSE
k in (29)

converges to

lim
Kk→0

RSEk = log2(e)e
1
2ρEL

(
1

2ρ

)

. (40)

Proof: The result is directly obtained by setting Kk = 0
in (29).

Corollary 3 shows that when the Rician K-factor tends to

zero, the achievable rate reaches to a limit, which aligns with

the conclusion in [1] for the special case of Rayleigh fading.

As indicated in (40), RSE
k has no relation with the number

of transmit antennas because the BS randomly assigns beams

to users in Rayleigh fading channels. On the other hand, it is

found that with a fixed SNR, RSE
k will decrease if the number

of users increases. The reason is that EL(·) is a monotonically

decreasing function of L due to the increasing inter-user

interference. Therefore, SE-SDMA in the low Rician K-factor

regime cannot contribute to the MU-MIMO performance.

From (34), we can observe that the selection of T0 is elusive

since it changes with the model parameters, such as the Rician

K-factor, the number of transmit antennas, and the SNR.

Hence, it is more useful and convenient to obtain tight upper

and lower bounds for further analysis.

B. Tight Bounds on the Achievable Rate

To obtain generic closed-form results, we now calculate new

upper and lower bounds on the achievable rate by utilizing

the properties of non-central chi-square variates from [33].

Based on these bounds, several interesting insights can be

obtained, which complement the previous analysis. We begin

with the following theorem which provides novel upper and

lower bounds on the achievable rate.

Theorem 3: For the SE-SDMA downlink transmission

scheme with the SLNR criterion in Theorem 2, the exact

analytical expression of RSE
k can be bounded as

Rlower ≤ RSE
k ≤ Rupper, (41)

where

Rupper , R+log2

(

ρ+

(
Kk + 1

2

)

g′L−1

(
KkNt
2

))

(42)

and

Rlower , R+ log2

(

ρ+

(
Kk + 1

2

)

e
−gL

(

KkNt
2

)
)

(43)

where R is given by

R , log2 (e) gL

(
KkNt
2

)

− log2

(
Kk + 1

2

)

− log2(e)e
Kk+1

2ρ

L−1∑

h=1

Eh

(
Kk + 1

2ρ

)

, (44)

while gm (ξ) and g′m (ξ) are, respectively, defined as

gm (ξ) , ln (ξ)− Ei (−ξ)

+
m−1∑

i=1

(−1)
i

[

e−ξ (i− 1)!− (m− 1)!

i (m− 1− i)!

](
1

ξ

)i

(45)

and

g′m (ξ) ,
(−1)

m
Γ (m)

ξm

(

e−ξ −
m−1∑

i=0

(−1)
i

i!
ξi

)

. (46)

Proof: See Appendix C.

From Theorem 3, it can be seen that the lower and upper

bounds are much simpler than the exact expression given in

(29). More importantly, they can be very easily evaluated and

efficiently programmed. In the following corollary, we derive

more tight bounds by considering several special scenarios.

Corollary 4: For the following three special cases Nt →
∞, or Kk → ∞, or ρ → ∞, the bounds in (41) become

exact, such that

lim
U→∞

RSE
k = R∞

lower=R
∞
upper. (47)

where U ∈ {Nt,Kk, ρ}.

Proof: See Appendix D.

From Corollary 4, if one of the three cases is established, the

lower and upper bounds coincide, since the difference between

the lower and upper bounds tends to zero. Specifically, when

Nt grows large, the lower and upper bounds are approximately

equivalent to the exact analytical expression in (29). This is

because as Nt → ∞, the random channel vectors between the

BS and the users become orthogonal, which is consistent with

the conclusion in [7]. Note that for the special case of Kk →
∞, the same result can also be obtained for the reason that

the random channel vectors are identical to the deterministic

mean channel vectors. The consequent result in (52) as SNR

increases should not be a surprise since the achievable rate

converges to a saturation value in the high SNR regime, as

described in Corollary 2.

Without loss of generality, we herein define the difference

between the lower and upper bounds on the achievable rate as

∆R. Comparing to (42) and (43), ∆R can be defined as

∆R , Rupper −Rlower. (48)
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Substituting (42) and (43) into (48), the difference can be

represented as

∆R , log2




ρ+

(
Kk+1

2

)
g′L−1

(
KkNt

2

)

ρ+
(
Kk+1

2

)
e
−gL

(

KkNt
2

)



 . (49)

We can observe that ∆R depends on the Rician K-factor,

the number of transmit antennas, and the SNR. Utilizing the

properties of ∆R, we now study how ∆R changes against the

Rician K-factor and the SNR. The results are summarized in

the following corollaries.

Corollary 5: In the low SNR regime, ∆R reduces to

lim
ρ→0

∆R = log2

(

g′L−1

(
KkNt

2

)

e
−gL

(

KkNt
2

)

)

. (50)

Proof: The result is simply obtained by setting ρ = 0 in

(49).

Note that in the low SNR regime some extra insights

can be obtained by applying the corresponding lower and

upper bounds on the denominator and nominator of (50),

respectively, shown in (94) and (95). It implies that the ∆R is a

monotonically decreasing function of the Rician K-factor, the

number of transmit antennas and the number of users, which

is consistent with the conclusion described in Corollary 4.

Corollary 6: For the special case Kk → 0, ∆R becomes

lim
Kk→0

∆R = log2

(
2ρ+ 1

(L−1)

2ρ+ e−ψ(L)

)

, (51)

where ψ (·) is the digamma function, which is defined as

ψ (m) = −γ +
m−1∑

i=1

1

i
. (52)

Proof: We now consider the case of Kk = 0. From [33],

we have

gL (0) = ψ (L) , (53)

and

g′L−1 (0) =
1

L− 1
. (54)

Substituting (53) and (54) into (49) yield the desired result.

In the low Rician K-factor regime, we also observe that

the difference depends on the SNR and the number of users.

Obviously, ∆R tends to zero as SNR increases. Regarding the

number of users, the difference decreases when the number

of users grows for the reason that ∆R is a monotonically

decreasing function against L in this scenario.

C. Comparison with ZFBF with Perfect CSIT

Since the performance gap between ZFBF and dirty paper

coding (DPC) is essentially negligible, we herein compare

the proposed SE-SDMA approach against ZFBF with perfect

instantaneous CSIT and present an upper bound on the mean

loss gap between the two schemes. For the ease of subsequent

derivation, we start by giving the achievable ergodic rate of

the ZFBF with perfect instantaneous CSIT according to [35,

36]

RZF
k = log2

(

1 + ρ
∣
∣hkv

ZF
k

∣
∣
2
)

, (55)

where v
ZF
k is the unit beamforming vector that is chosen as

the k-th column of the normalized matrix V, in which V =
H
(
HH

H
)−1

and H = [hH1 · · ·hHk ]. To make the interference

zero, we schedule a set of users with satisfying an orthogonal

criterion to each other. Then v
ZF
k is selected from the null

space of the channel direction of the other users, such that 5

∣
∣hjv

ZF
k

∣
∣
2
= 0, if k ̸= j. (56)

Now, we define the mean rate loss gap between the SE-

SDMA scheme and ZFBF with perfect instantaneous CSIT

as

∆RZF−SE = RZF
sum −RSE

sum, (57)

where RZF
sum ,

∑L
k=1R

ZF
k and RSE

sum ,
∑L
k=1R

SE
k , in which

RSE
k was defined in (28).

Theorem 4: The mean rate loss between the proposed SE-

SDMA scheme and ZFBF with perfect instantaneous CSIT is

upper bounded as

∆RZF−SE ≤ Llog2(e)

L−1∑

h=1

e
Kk+1

2ρ Eh

(
Kk + 1

2ρ

)

. (58)

Proof: Since the proposed SE-SDMA scheme is a kind

of orthogonal beamforming, by neglecting the interference

terms with respect to the signal component, we can obtain

the following relatively loose bound on RSE
k

RSE
k ≥ E

{

log2

(

1 + ρ

∣
∣
∣
∣

1√
Nt

hkh̄
H
k

∣
∣
∣
∣

2
)}

− E







log2




1 + ρ

L∑

j=1
j ̸=k

∣
∣
∣
∣

1√
Nt

hkh̄
H
j

∣
∣
∣
∣

2












. (59)

Substituting the above lower bound and RZF
k from (55) into

(57) yield

∆RZF−SE ≤
L∑

k=1

E

{

log2

(

1 + ρ
∣
∣
∣hkv

ZF
k

∣
∣
∣

2
)}

−
L∑

k=1

E

{

log2

(

1 + ρ

∣
∣
∣
∣

1√
Nt

hkh̄
H
k

∣
∣
∣
∣

2
)}

+

L∑

k=1

E







log2




1 + ρ

L∑

j=1
j ̸=k

∣
∣
∣
∣

1√
Nt

hkh̄
H
j

∣
∣
∣
∣

2












. (60)

Based on the fact that CSIT is accurate, the normalized

beamforming vector v
ZF
k and h̄

H
k
/
√
Nt are the same.

Therefore, we have

∣
∣hkv

ZF
k

∣
∣ =

∣
∣
∣
∣

1√
Nt

hkh̄
H
k

∣
∣
∣
∣
. (61)

5Indeed, the design in (55) should assume that the BS has perfect CSI.
However, if the distance of two users with strong Rician K-factor is very short,
the feasibility of (55) will be questionable. In order to solve this problem,
specific schedule methods in this case should be designed carefully.
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Then, the upper bound, ∆RZF−SE can be expressed by

∆RZF−SE≤
L∑

k=1

E







log2




1 + ρ

L∑

j=1
j ̸=k

∣
∣
∣
∣

1√
Nt

hkh̄
H
j

∣
∣
∣
∣

2












. (62)

Utilizing the results in Theorem 2 yields the desired expression

in (58).

Theorem 4 presents the upper bound on the mean rate

loss between the SE-SDMA scheme and ZFBF with perfect

instantaneous CSIT. We can clearly observe that ∆RZF−SE

depends on the Rician K-factor, the number of users, and the

SNR. We now examine some special cases of ∆RZF−SE.

Corollary 7: We consider the special case Nt → ∞, L →
∞, with Nt/L = α, for some fixed α. In this case, the upper

bound on the mean rate loss is reduced to

lim
Nt→∞, L→∞

∆RZF−SE= Llog2(e)

L−1∑

k=1

2ρ

Kk + 1− 2ρ (1 + k)
.

(63)

Proof: For the case L → ∞, we first apply

[39, Eq. (5.1.19)] and [39, Eq. (8.365.3)] to obtain the

approximation

e
Kk+1

2ρ

L−1∑

h=1

Eh

(
Kk + 1

2ρ

)

≈ ψ

(

L− 1 +
Kk + 1

2ρ

)

−ψ
(
Kk + 1

2ρ

)

,

(64)

where ψ (·) has been defined in (52).

By applying the properties of the digamma function

described in [40, Eq. (8.365.1)] and [40, Eq. (8.365.3)],

respectively, we get

ψ

(

L− 1 +
Kk + 1

2ρ

)

=ψ

(
Kk + 1

2ρ
− 1

)

+

L−1∑

k=0

1
Kk+1

2ρ
− 1 + k

(65)

and

ψ

(
Kk + 1

2ρ

)

= ψ

(
Kk + 1

2ρ
− 1

)

+
1

Kk+1
2ρ − 1

. (66)

Substituting (65) and (66) into (64), along with some

manipulations, concludes the proof.

Based on Corollary 7, we can examine the effect of the

Rician K-factor on the mean rate loss upper bound. In

particular, it is noted that the upper bound on the mean

rate loss in (63) is a monotonic decreasing function of the

Rician K-factor for the reason that the fading channels tend to

become deterministic, which facilitates inter-user interference

cancellation. Thus, ∆RZF−SE decreases with the Rician K-

factor in this scenario.

Corollary 8: For the special case Kk → ∞ or ρ→ 0, the

upper bound on the mean rate loss reduces to

lim
Kk→∞,or ρ→0

∆RZF−SE = 0. (67)

Proof: The proof starts by recalling properties of exEh (·)
from [39, Eq. (5.1.19)], such that

1

x+ h
≤ exEh (x) ≤

1

x+ h− 1
. (68)

When x grows without bound, we have

lim
x→∞

exEh (x) = 0. (69)

Therefore, as Kk → ∞ or ρ→ 0, we can obtain the desired

result.

Form Corollary 8, we see that the SE-SDMA scheme can

achieve the same rate performance with ZFBF in the above

special cases. In the low SNR regime, the SE-SDMA not

only reduces the consumption of transmit power but also

ensures the desired achievable rate of the system. On the

other hand, in the high Rician K-factor regime, the SE-SDMA

scheme only needs a small number of channel feedback bits

to perform near-ideal ZFBF for the reason that random fading

channels become deterministic. These observations clearly

reveal the effectiveness of our proposed SE-SDMA scheme

under different operating conditions; this implies that it is a

very promising transmission strategy for MU-MIMO systems.

V. NUMERICAL RESULTS

This section provides numerical results to validate our

analysis. In our simulations, we assume that the channel

vectors are randomly generated, and the channel mean vectors

between the selected users are orthogonal. For comparison

with ZFBF, we consider that the BS has perfect instantaneous

CSI but without user selection. The number of users is set

to L = 5, the number of transmit antennas is Nt = 50
and the inter-antenna spacing is d = λ/2. For the sake of

simplicity, every user has the same Rician K-factor Ki = Kk

(i.e., i = 1, . . . , L).

Fig. 2 shows the analytical result presented in (34) and

Corollary 3 for SNR ρ = 10dB and ρ = 30dB (35). We

can observe that as the Rician K-factor tends to zero, the

achievable sum-rate reaches a lower limit because the Rician

fading channels are reduced to i.i.d. Rayleigh fading channels,

which agrees with the theoretical analysis in Corollary 3.

Furthermore, the achievable sum-rate grows with the Rician

K-factor, since the orthogonal mean channel vectors become

dominant, and the fading channels become deterministic. This

facilitates inter-user interference cancellation. It also implies

that in the high Rician K-factor regime, scheduling users with

orthogonal channels contributes substantially to the achievable

sum-rate. On the other hand, it is found that a larger SNR

(ρ = 30dB) improves the achievable sum-rate, which is

consistent with our theoretical analysis.

In Fig. 3, Monte-Carlo simulations are compared against

the lower and upper bounds, provided in (42) and (43),

respectively. Clearly, the lower and upper bounds remain very

tight with the numerical results across the entire SNR regime.

In fact, as the SNR increases, the difference between the lower

bound and upper bound tends to zero. Furthermore, it can be

found that the achievable sum-rate converges to a saturation

rate in the high SNR regime, which validates the theoretical

analysis in Corollary 2. Finally, we observe that the achievable

sum-rate saturates quickly as the SNR (ρ ≈ 13dB) increases,

which implies that a high SNR does not dramatically benefit

the achievable sum-rate. In contrast, the SE-SDMA scheme is

preferable in the low SNR regime.
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Fig. 2. Achievable sum-rate versus the Rician K-factor for different SNR
cases. The low Rician K-factor regime approximation is also depicted.
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Fig. 3. Comparison of the achievable sum-rate bounds versus SNR for L

= 5, Nt = 50 and Rician K-factor Kk = 10dB. The high SNR regime
approximation is also depicted.

Fig. 4 depicts the exact expression for the achievable ergodic

sum-rate in (29), as well as, the lower and upper bounds shown

in (42) and (43), respectively. In the simulations, the number

of users is set to L = 3 and the SNR is set to a moderate

value of 10dB. As we can see, the lower and upper bounds are

very tight with the exact ergodic sum-rate, especially for large

number of transmit antennas. For comparison, we illustrate

the achievable sum-rate for different Rician K-factor Kk =

10dB and Kk = 5dB ∀k, respectively. We also find that the

achievable sum-rate grows without bound with the number of

transmit antennas, which validates the theoretical analysis in

Theorem 3 and is in accordance with the result in Corollary

4. This observation is especially appealing for the design of

mmWave massive MIMO operating systems in Rician fading

channels.

Results in Fig. 5 are provided for the Monte-Carlo

simulation results and the upper bound on the mean rate

loss (49) between SE-SDMA scheme with user selection

and ZFBF with perfect instantaneous CSIT. The SNR is
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Fig. 4. Comparison of the achievable sum-rate bounds versus the number of
transmit antennas for L = 3, ρ = 15dB and different Rician K-factor cases.
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Fig. 5. Comparison of Monte-Carlo simulation and the analytical upper
bound on the mean rate loss between the SE-SDMA scheme and ZFBF with
perfect instantaneous CSIT. Results are shown versus the Rician K-factor for
different SNR cases.

set to 5dB and 15dB, respectively. Note that the simulated

curves are generated based on 100, 000 channel realizations

of (57). We can observe that the theoretical results for the

upper bound on the mean rate loss are slightly larger than

the Monte-Carlo simulation results, confirming the analysis

in Theorem 4. Moreover, as the Rician K-factor increases,

the difference between the theoretical analysis and numerical

results tends to zero. In particular, at the high Rician K-

factor range (Kk ≈ 40dB), the upper bound and the

simulation result curves coincide, which is consistent with the

analysis in Corollary 8. This is because the fading channels

tend to deterministic, which facilitates inter-user interference

cancellation. In addition, in the low SNR regime (ρ ≈ 5dB),

the convergence speed is much faster, which implies that

the performance of the SE-SDMA scheme can be indeed

comparable with ZFBF in the low SNR regime.

Results in Fig. 6 are provided for the Monte-Carlo

simulation results and the upper bound on the mean rate loss

(49) between the SE-SDMA scheme with user selection and
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Fig. 6. Comparison of Monte-Carlo simulation and the analytical upper
bound on the mean rate loss between the SE-SDMA scheme and ZFBF with
perfect instantaneous CSIT. Results are shown versus the SNR for different
Rician K-factor cases.

ZFBF with perfect instantaneous CSIT against the SNR. In this

figure, the SE-SDMA and ZFBF schemes are applied to the

same configuration, while the Rician K-factor is set to 10dB

and 20dB, respectively. We observe that the closed-form upper

bound on the mean loss gap in (58) increases with the SNR.

Furthermore, the numerical results remain very close to the

theoretical analysis as the SNR grows, while for larger Rician

K-factor, the proximity speed is much faster than for smaller

one. Moreover, in the low SNR regime (ρ ≈ −20dB), the

upper bound and the simulation result curves coincide, and the

performance of SE-SDMA is getting much closer to the ZFBF

scheme, which is consistent with the theoretical analysis in

Corollary 8. To sum up, the results indicate that the SE-SDMA

scheme offers identical performance with ZFBF in the low

SNR regime when the Rician K-factor is large. Compared with

the ZFBF scheme, these observations showcase the advantage

of the proposed SE-SDMA scheme since it needs far less

overhead on the CSI feedback.

VI. CONCLUSION

This paper has investigated the achievable downlink sum-

rate of MU-MIMO systems in Rician fading channels. We have

devised a novel SE-SDMA downlink transmission scheme

under the assumption that the users have perfect CSI but

the BS has only SCSI. For this scheme, an exact analytical

expression for the achievable sum-rate was derived. With this

result, we observed that the achievable sum-rate converges

to a saturation value in the high SNR regime and reaches

a lower limit in the low Rician K-factor regime. In addition,

we derived general lower and upper bounds on the achievable

rate, which are remarkably high across the entire SNR regime.

Furthermore, we compared the achievable sum-rate of the SE-

SDMA scheme with that of ZFBF with perfect instantaneous

CSIT. Analytical and numerical results showed that the mean

loss gap tends to zero in the high Rician K-factor regime or

in the low SNR regime.

APPENDIX I

PROOF OF THEOREM 1

According to (7), the average SLNR is expressed as

E {SLNRk} = E







ρwH
k h

H
k hkwk

(

1 + ρ
L∑

j=1,j ̸=k

wH
k hH

j hjwk

)







. (70)

In order to derive a lower bound on the average SLNR,
we start by presenting the Mullen’s inequality [37]. In
particular, for independent random variables X and Y , it holds
that E {X/Y } ≥ E {X} /E {Y }. Since the numerator and
denominator of the right-hand side in (70) are independent,
by applying the Mullen’s inequality, we get

E {SLNRk} ≥ ρwH
k E

{
h
H
k hk

}
wk

(

1 + ρ
L∑

j=1,j ̸=k

wH
k E

{
hH
j hj

}
wk

) . (71)

Calculating the expectations and simplifying give the desired

result.

APPENDIX II

PROOF OF THEOREM 3

Starting from (28), we can factorize it into

R
SE
k = E

{

log2

(

1 + ρ

L∑

j=1

∣
∣
∣
∣

1√
Nt

hkh̄
H
j

∣
∣
∣
∣

2
)}

︸ ︷︷ ︸

I1

− E
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H
j

∣
∣
∣
∣

2












︸ ︷︷ ︸

I2

. (72)

Having established the equivalent expression in (72), we
further evaluate the achievable rate to get

L∑

j=1

∣
∣
∣
∣

1√
Nt

hkh̄
H
j

∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
hk

(
L∑

j=1

1

Nt
h̄
H
j
h̄j

)

h
H
k

∣
∣
∣
∣
∣
. (73)

Due to the channel mean vectors being orthogonal to each

other, we have the eigen-decomposition

L∑

j=1

1

Nt
h̄
H
j
h̄j = UDU

H , (74)

where U ,
[
h̄
H
1 h̄

H
2 · · · h̄

H
L

]
and D ,

diag






1, . . . 1
︸ ︷︷ ︸

L

, 0, . . . 0






. Since the elements of h̄j

are invariant under a unitary transformation, we have
L∑

j=1

∣
∣
∣

1√
Nt

hkh̄
H
j

∣
∣
∣

2

= X and
L∑

j=1
j ̸=k

∣
∣
∣

1√
Nt

hkh̄
H
j

∣
∣
∣

2

= Y, where

the random variables X and Y follow the non-central chi-

squared distribution and the central chi-squared distribution,

respectively. According to the definitions in [38], their p.d.f.s

can be, respectively, expressed as

fX (x;n, λ)=
1

2σ2

( x

λ2

)(n−2)/4

e−(x+λ
2)/2σ2

In/2−1

(√
x
λ

σ2

)

,

(75)
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where n and σ2 denote the degrees of freedom and the variance
of the random variable X , respectively, while Ia (x) denotes
the modified Bessel function of first kind and a-th order, which
can be expressed via an infinite series

Ia (x) =

∞∑

j=0

(x/2)a+2j

k!Γ (a+ j + 1)
. (76)

For the p.d.f. of Y , we have that

fY (y;n) =
1

σn2n/2Γ
(
1

2
n
)y

n/2−1
e
−y/2σ2

, (77)

where n is the variance of the random variable Y . According

to the derivations in (73), with n = 2L degrees of freedom,

non-centrality parameter λ = NtKk/(Kk + 1) and variance

σ2 = 1/(Kk + 1), the p.d.f. of X is

fX (x;n, λ) = e−
NtKk

2

∞∑

j=0

(Kk + 1)
(L+j)

(NtKk)
j

j! (L+ j − 1)!2L+2j

x(L−1+j)e−
(Kk+1)x

2 (78)

Similarly, the random variable Y with n = 2 (L− 1) degrees

of freedom and variance σ2 = 1/(Kk + 1), has the p.d.f. given

by

fY (y;n) =

(
Kk + 1

2

)L−1
yL−2e−y(Kk+1)/2

(L− 2)!
. (79)

We can now evaluate the achievable rate with CMI at the BS,

as

RSE
k = E {log2 (1 + ρX)}

︸ ︷︷ ︸

I1

−E {log2 (1 + ρY )}
︸ ︷︷ ︸

I2

. (80)

With the p.d.f.s in (78) and (79), we will begin by evaluating

I1 and I2 according to

I1 =

∫ ∞

0

log2 (1 + ρX)fX (x;n, λ) dx, (81)

and

I2 =

∫ ∞

0

log2 (1 + ρY )fY (y;n) dy. (82)

By applying the integration identity in [34]

∫ ∞

0

ln (1 + aλ)λq−1
e
−bλ

dλ = (q − 1)!eb/ab−q
q∑

h=1

Eh

(
b

a

)

,

(83)

we can get

I1 = log2(e)e
−

NtKk
2 e

Kk+1

2ρ

∞∑

j=0

(NtKk)
j

j!2j

L+j∑

h=1

Eh

(
Kk + 1

2ρ

)

(84)

and

I2 = log2(e)e
Kk+1

2ρ

L−1∑

h=1

Eh

(
Kk + 1

2ρ

)

. (85)

Substituting (84) and (85) into (80), we complete the proof

after some basic manipulations.

APPENDIX III

PROOF OF THEOREM 4

We start by re-expressing I1 in (80) as

I1 = log2 (e)

(

E {lnX}+ E

{

ln

(

ρ+
1

X

)})

. (86)

To evaluate the first term in (86), the required expectation of

ln (X) can be calculated as

E {ln (X)} =

∫ ∞

0

ln (X)fX (x;n, λ) dx. (87)

Substituting the p.d.f. of X in (78) into (87), the average

natural logarithm function can be evaluated as (88) shown at

the top of the next page. With the help of Definition 2 in [33],

(72) can be further simplified as

E {ln (X)} = gL

(
KkNt
2

)

− ln

(
Kk + 1

2

)

, (89)

where gL (·) has been defined in (57).
With the help of the Jensen’s inequality, the second term of

the natural logarithm function in (86) can be upper and lower
bounded by

{

ln
(

ρ+ e
−E{lnX}

)}

≤E

{

ln

(

ρ+
1

X

)}

≤ ln

(

ρ+ E

{
1

X

})

.

(90)
To evaluate the right-hand side term in (90), the required

expectation of 1/X is calculated as

E

{
1

X

}

=

∫ ∞

0

1

X
fX (x;n, λ) dx. (91)

Likewise, the solution is similar to the derivation of (87), i.e.,

E

{
1

X

}

=

(
Kk + 1

2

)

e
−

KkNt
2

∞∑

j=0

1

j! (L+ j − 1)

(
KkNt

2

)j

.

(92)
With the help of Theorem 3 in [33], (92) can be further

simplified as

E

{
1

X

}

=

(
Kk + 1

2

)

g
′
L−1

(
NtKk

2

)

. (93)

Substituting (89) and (93) into (90), and combining it with

(86) yield the desired result.

APPENDIX IV

PROOF OF COROLLARY 4

For the case of ρ→ ∞, the result follows trivially. We now
consider the case of Nt → ∞. From [33], we have

2

KkNt + 2L
≤ e

−gL

(

KkNt
2

)

≤ 2

KkNt + 2 (L− 1)
(94)

and

2

KkNt + 2 (L− 1)
≤ g

′
L−1

(
KkNt

2

)

≤ 2

KkNt + 2 (L− 2)
.

(95)

We can derive the following result by using the squeeze

theorem:

e
−g2L

(

KkNt
2

)

= g′2L−1

(
KkNt
2

)

= 0. (96)

Substituting (96) into (49) yields the desired result. Then, we
can consider the case of Kk → ∞. With the help of the result
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E {ln (X)} = e−
KkNt

2

∞∑

i=0

1

i!

(
KkNt
2

)i
[

ρ−
L−1∑

i=0

(−1)
i

i!

(
KkNt
2

)i

− ln

(
Kk + 1

2

)]

. (88)

(94) in the former derivations, we have
(
Kk + 1

2

)

e
−gL

(

KkNt
2

)

→ 1

Nt
. (97)

Similarly, by utilizing (95), we have
(
Kk + 1

2

)

g
′
L−1

(
KkNt

2

)

→ 1

Nt
. (98)

Substituting (97) and (98) into (49) yield the desired result.
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