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Statistical error analysis for phenomenological nucleon-nucleon potentials
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Nucleon-nucleon potentials are common in nuclear physics and are determined from a finite number of

experimental data with limited precision sampling the scattering process. We study the statistical assumptions

implicit in the standard least-squares χ 2 fitting procedure and apply, along with more conventional tests, a

tail-sensitive quantile-quantile test as a simple and confident tool to verify the normality of residuals. We show

that the fulfillment of normality tests is linked to a judicious and consistent selection of a nucleon-nucleon

database. These considerations prove crucial to a proper statistical error analysis and uncertainty propagation.

We illustrate these issues by analyzing about 8000 proton-proton and neutron-proton scattering published data.

This enables the construction of potentials meeting all statistical requirements necessary for statistical uncertainty

estimates in nuclear structure calculations.
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I. INTRODUCTION

Nucleon-nucleon potentials are the starting point for many

nuclear physics applications [1]. Most of the current informa-

tion is obtained from np- and pp-scattering data below the

pion production threshold and deuteron properties for which

abundant experimental data exist. The NN scattering amplitude

reads

M = a + m(σ1 · n)(σ2 · n) + (g − h)(σ1 · m)(σ2 · m)

+ (g + h)(σ1 · l)(σ2 · l) + c(σ1 + σ2) · n, (1)

where a, m, g, h, and c depend on energy and angle; σ1 and

σ2 are the single-nucleon Pauli matrices; l, m, and n are three

unitary orthogonal vectors along the directions of kf + ki ,

kf − ki , and ki ∧ kf , respectively; and (kf , ki) are the final

and initial relative nucleon momenta. From these five complex

energy- and angle-dependent quantities 24 measurable cross

sections and polarization asymmetries can be deduced [2].

Conversely, a complete set of experiments can be designed

to reconstruct the amplitude at a given energy [3]. The finite

amount, precision, and limited energy range of the data, as well

as the many different observables, call for a standard statistical

χ2-fit analysis [4,5]. This approach is subjected to assump-

tions and applicability conditions that can only be checked

a posteriori in order to guarantee the self-consistency of the

analysis. Indeed, scattering experiments deal with counting

Poissonian statistics and for a moderately large number of

counts a normal distribution is expected. Thus, one hopes

that a satisfactory theoretical description O th
i can predict a

set of N -independent observed data Oi given an experimental

uncertainty �Oi as

Oi = O th
i + ξi�Oi (2)
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with i = 1, . . . ,N and where ξi are independent random

normal variables with vanishing mean value 〈ξi〉 = 0 and unit

variance 〈ξiξj 〉 = δij , implying that 〈Oi〉 = O th
i . Establishing

the validity of Eq. (2) is of utmost importance since it provides

a basis for the statistical interpretation of the error analysis.

In this work we will study to what extent this normality

assumption underlying the validity of the full χ2 approach

is justified. This will be done by looking at the statistical dis-

tribution of the fit residuals of about 8000 np and pp published

scattering data collected since 1950. Using the normality test

as a necessary requirement, we show that it is possible to

fulfill Eq. (2) with a high confidence level and high statistics.

Furthermore, we discuss the consequences and requirements

regarding the evaluation, design, and statistical uncertainties of

phenomenological nuclear forces. We illustrate our points by

determining for the first time a smooth nuclear potential with

error bands directly inferred from experiment. We hope that

these estimates will be useful for NN potential users interested

in quantifying a definite source of error in nuclear structure

calculations.1

The history of χ2 statistical analyzes of NN-scattering data

around pion production threshold started in the mid-1950s [7]

(an account up to 1966 can be traced from Ref. [8]). A modified

χ2 method was introduced [9] in order to include data without

absolute normalization. The steady increase along the years

in the number of scattering data and their precision generated

mutually incompatible data and hence a rejection criterion was

introduced [10–12], allowing us to discard inconsistent data.

Upgrading an ever-increasing consistent database poses the

question of normality, Eq. (2), of a large number of selected

data. The normality of the absolute value of residuals in pp

scattering was scrutinized and satisfactorily fulfilled [13,14] as

a necessary consistency condition. The Nijmegen group made

an important breakthrough 20 years ago by performing the

1We note that in a Physical Review A editorial [6] the importance of

including error estimates in papers involving theoretical evaluations

has been stressed.
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very first partial-wave analysis (PWA) fit with χ2/DOF ∼ 1

and applying a 3σ -rejection criterion. This was possible after

including em corrections, vacuum polarization, magnetic-

moment interactions, and a charge-dependent (CD) one pion

exchange (OPE) potential. With this fixed database, further

high-quality potentials have been steadily generated [15–18]

and applied to nuclear structure calculations. However, high-

quality potentials, i.e., those whose discrepancies with the

data are confidently attributable to statistical fluctuations in

the experimental data, have been built and used as if they

were errorless. As a natural consequence, the computational

accuracy to a relative small percentage level has been a goal

per se in the solution of the few and many body problem

regardless on the absolute accuracy implied by the input

of the calculation. While this sets high standards on the

numerical methods there is no a priori reason to assume the

computational accuracy reflects the realistic physical accuracy

and, in fact, it would be extremely useful to determine and

identify the main source of uncertainty; one could thus tune

the remaining uncertainties to this less demanding level.

It should be noted that the χ2 fitting procedure, when

applied to limited upper energies, fixes most efficiently the

long-range piece of the potential which is known to be

mainly described by OPE for distances r � 3 fm. However,

weaker constraints are put in the midrange r ∼ 1.5–2.5 fm

region, which is precisely the relevant interparticle distance

operating in the nuclear binding. To date and to the best of

our knowledge, the estimation of errors in the nuclear force

stemming from the experimental scattering data uncertainties

and its consequences for nuclear structure calculations has not

been seriously confronted. With this goal in mind we have

upgraded the NN database to include all published np- and

pp-scattering data in the period 1950–2013, determining in

passing the error in the interaction [19,20].

The present paper represents an effort towards filling this

gap by providing statistical error bands in the NN interaction

based directly on the experimental data uncertainties. In order

to do so, the specific form of the potential needs to be fixed.2

As such, this choice represents a certain bias and hence

corresponds to a likely source of systematic error. Based on the

previous high-quality fits which achieved χ2/ν � 1 [15–18]

we have recently raised suspicions on the dominance of

such errors with intriguing consequences for the quantitative

predictive power of nuclear theory [22–24]; a rough estimate

suggested that NN uncertainties propagate into an unpleasantly

large uncertainty of �B/A ∼ 0.1–0.5 MeV, a figure which

has not yet been disputed by an alternative estimate. In view

of this surprising finding, there is a pressing need to pin down

the input uncertainties more accurately based on a variety of

2This is also the case in the quantum mechanical inverse scattering

problem, which has only unique solutions for specific assumptions

on the form of the potential [21] and with the additional requirement

that some interpolation of scattering data at nonmeasured energies is

needed. One needs then the information on the bound state energies

and their residues in the scattering amplitude. We will likewise impose

that the only bound state is the deuteron and reject fits with spurious

bound states.

sources.3 This work faces the evaluation of statistical errors

after checking that the necessary normality conditions of

residuals and hence Eq. (2) are confidently fulfilled. From this

point of view, the present investigation represents an initial

step, postponing a more complete discussion on systematic

uncertainties for a future investigation.

The PWA analysis carried out previously by us [22–24] was

computationally inexpensive due to the use of the simplified

δ-shell potential suggested many years ago by Avilés [29].

This form of potential effectively coarse grains the interaction

and drastically reduces the number of integration points in

the numerical solution of the Schrödinger equation (see, e.g.,

Ref. [30]). However, it is not directly applicable to some of

the many numerical methods available on the market to solve

the few and many body problem where a smooth potential is

required. Therefore, we will analyze the 3σ self-consistent

database in terms of a more conventional potential form

containing the same 21 operators extending the AV18 as we

did in Refs. [22–24]. Testing for normality of residuals within

a given confidence level for a phenomenological potential is

an issue of direct significance to any statistical error analysis

and propagation. Actually, we will show that for the fitted

observables to the 3σ self-consistent experimental database

O
exp

i , with quoted uncertainty �O
exp

i , i = 1, . . . ,N = 6713

(total number of pp and np scattering data), our theoretical

fits indeed satisfy that the residuals

Ri = O
exp

i − O th
i

�O
exp

i

(3)

follow a normal distribution within a large confidence level. In

order to establish this we will use a variety of classical statis-

tical tests [4,5], such as the Pearson, Kolmogorov-Smirnov

(KS), the moments method (MM), and, most importantly,

the recently proposed tail-sensitive (TS) quantile-quantile test

with confidence bands [31]. By comparing with others, the

TS test turns out to be the most demanding with regard

to the confidence bands. Surprisingly, normality tests have

only seldom been applied within the present context, so our

presentation is intended to be at a comprehensive level. A

notable exception is given in Refs. [13,14] where the moments

method in a pp analysis up to TLAB = 30 and 350 MeV is

used for N = 389 and 1787 data, respectively, to test that the

squared residuals R2
i in Eq. (3) follow a χ2 distribution with

one degree of freedom. Note that this is insensitive to the sign

of Ri and thus blind to asymmetries in a normal distribution.

Here we test normality of Ri for a total of N = 6713 np and

pp data up to TLAB = 350 MeV.

The paper is organized as follows. In Sec. II we review

the assumptions and the rejecting and fitting processes used in

our previous works to build the 3σ self-consistent database

and expose the main motivation to carry out a normality

3There is a growing concern on the theoretical determination of

nuclear masses from nuclear mean-field models with uncertainty eval-

uation [25] (for a comprehensive discussion see, e.g., Refs. [26,27]),

echoing the need for uncertainty estimates in a Physical Review A

editorial [6] and the Saltelli-Funtowicz seven rules checklist [28].
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test of the fit residuals. In Sec. III we review some of the

classical normality tests and a recently proposed tail-sensitive

test, which we apply comparatively to the complete as well as

the 3σ self-consistent database, providing a raison d’être for

the rejection procedure. After that, in Sec. IV we analyze a fit

of a potential whose short-distance contribution is constructed

by a sum of Gaussian functions, with particular attention to

the error bar estimation, a viable task since the residuals pass

satisfactorily the normality test. Finally, in Sec. V, we come to

our conclusions and provide an outlook for further work.

II. STATISTICAL CONSIDERATIONS

There is a plethora of references on data and error analysis

(see, e.g., Refs. [4,5]). We will review the fitting approach in

such a way that our points can be more easily stated for the

general reader.

A. Data uncertainties

Scattering experiments are based on counting Poissonian

statistics and, for a moderately large number of counts, a

normal distribution sets in. In what follows Oi will represent

some scattering observable. For a set of N -independent

measurements of different scattering observables O
exp

i exper-

imentalists quote an estimate of the uncertainty �O
exp

i so the

true value O true
i is contained in the interval O

exp

i ± �O
exp

i

with a 68% confidence level. In what follows we assume

for simplicity that there are no sources of systematic errors.

Actually, when only the pair (O
exp

i ,�O
exp

i ) is provided without

specifying the distribution, we will assume an underlying

normal distribution,4 so

P
(

O
exp

i

)

=
exp

[

− 1
2

(

O true
i −O

exp

i

�Oexp

)2]

√
2π�O

exp

i

(4)

is the probability density of finding measurement O
exp

i .

B. Data modeling

The problem of data modeling is to find a theoretical

description characterized by some parameters Fi(λ1, . . . ,λP )

which contain the true value O true
i = Fi(λ

true
1 , . . . ,λtrue

P ) with

a given confidence level characterized by a bounded p-

dimensional manifold in the space of parameters (λ1, . . . ,λP ).

For a normal distribution the probability of finding any of the

(independent) measurements O
exp

i , assuming that (λ1, . . . ,λP )

4This may not be the most efficient unbiased estimator (see, e.g.,

Refs. [4,5] for a more thorough discussion). Quite generally, the

theory for the noise on the specific measurement would involve

many considerations on the different experimental setups. In our case

the many different experiments makes such an approach unfeasible.

There is a possibility that some isolated systematic errors in particular

experiments are randomized when considered globally. However,

the larger the set the more stringent the corresponding statistical

normality test. From this point of view the verification of the normality

assumption underlying Eq. (2) proves highly nontrivial.

are the true parameters, is given by

P
(

O
exp

i

∣

∣λ1 . . . λP

)

=
exp

[

− 1
2

(

Fi (λ1,...,λP )−O
exp

i

�Oexp

)2]

√
2π�O

exp

i

. (5)

Thus the joined probability density is

P
(

O
exp

1 . . . O
exp

N

∣

∣λ1 . . . λP

)

=
N

∏

i=1

P
(

O
exp

i

∣

∣λ1 . . . λP

)

= CNe−χ2(λ1,...,λP )/2, (6)

where 1/CN = ∏N
i=1(

√
2π�O

exp

i ). In such a case the maxi-

mum likelihood method [4,5] corresponds to take the χ2 as a

figure of merit given by

χ2(λ1, . . . ,λP ) =
N

∑

i=1

(

O
exp

i − Fi(λ1, . . . ,λP )

�O
exp

i

)2

(7)

and look for the minimum in the fitting parameters

(λ1, . . . ,λP ),

χ2
min = min

λi

χ2(λ1, . . . ,λP ) = χ2(λ1,0, . . . ,λP,0). (8)

Our theoretical estimate of O true
i after the fit is given by

O th
i = Fi(λ1,0, . . . ,λP,0). (9)

Expanding around the minimum one has

χ2 = χ2
min +

P
∑

ij=1

(λi − λi,0)(λj − λj,0)E−1
ij + · · · , (10)

where the P×P error matrix is defined as the inverse of the

Hessian matrix evaluated at the minimum

E−1
ij = 1

2

∂2χ2

∂λi∂λj

(λ1,0, . . . ,λP,0). (11)

Finally, the correlation matrix between two fitting parameters

λi and λj is given by

Cij = Eij
√

EiiEjj

. (12)

We compute the error of the parameter λi as

�λi ≡
√
E ii . (13)

Error propagation of an observable G = G(λ1, . . . ,λP ) is

computed as

(�G)2 =
∑

ij

∂G

∂λi

∂G

∂λj

∣

∣

∣

∣

λk=λk,0

Eij . (14)

The resulting residuals of the fit are defined as

Ri = O
exp

i − Fi(λ1,0, . . . ,λP,0)

�O
exp

i

, i = 1, . . . ,N. (15)

Assuming normality of residuals is now crucial for an

statistical interpretation of the confidence level, since then
∑

i R
2
i follows a χ2 distribution. One useful application of

the previous result is that we can replicate the experimental

data by using Eq. (2) and in such a case 〈χ2〉 = N . For a
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large number of data N with P parameters one has, with a 1σ

or 68% confidence level, the mean value and most likely the

values nearly coincide, so one has 〈χ2
min〉 = N − P and thus

as a random variable we have

χ2
min

ν
≡

∑

i ξ
2
i

ν
= 1 ±

√

2

ν
, (16)

where ν = N − P is the number of degrees of freedom. The

goodness of fit is defined in terms of this confidence interval.

However, the χ2 test has a sign ambiguity for every single

residual given that Ri → −Ri is a symmetry of the test. From

this point of view, the verification of normality is a more

demanding requirement.5

Thus a necessary condition for a least-squares fit with mean-

ingful results is the residuals to follow a normal distribution

with mean zero and variance 1, i.e., Ri ∼ N (0,1). It should

be noted that a model for the noise need not be normal, but it

must be a known distribution P (z) such that the residuals Ri

do indeed follow such distribution.6

C. Data selection

The first and most relevant problem one has to confront

in the phenomenological approach to the nucleon-nucleon

interaction is that the database is not consistent; there appear

to be incompatible measurements. This may not necessarily

mean genuinely wrong experiments but rather unrealistic error

estimates or an incorrect interpretation of the quoted error as

a purely statistical uncertainty.7 Note that the main purpose of

a fit is to estimate the true values of certain parameters with

a given and admissible confidence level. Therefore one has to

make a decision on which are the subset of data which will

finally be used to determine the NN potential. However, once

the choice has been made the requirement of having normal

residuals, Eq. (3), must be checked if error estimates on the

fitting parameters are truly based on a random distribution.

The situation we encounter in practice is of a large number

of data, ∼8000 vs the small number of potential parameters

∼40, which are expected to successfully account for the

description of the data [33]. Thus, naively there seems to be a

large redundancy in the database. However, there is a crucial

issue on what errors have been quoted by the experimentalists.

If a conservative estimate of the error is made, there is a risk of

making the experiment useless, from the point of view that any

other experiment in a similar kinematical region will dominate

5One can easily see that for a set of normally distributed data Ri ,

while |Ri | does not follow that distribution, |Ri |2 = R2
i would pass a

χ 2 test.
6In this case the merit figure to minimize would be

S(λ1, . . . ,λP ) = − ∑

i log P
[O

exp
i

−Fi (λ1,...,λP )

�O
exp
i

]

.

For instance, in Ref. [32], dealing with πN scattering a Lorentz

distribution arose as a self-consistent assumption.
7Indeed any measurement could become right provided a suffi-

ciently large or conservative error is quoted.

the analysis.8 If, on the contrary, errors are daringly too small,

they may generate a large penalty as compared to the rest of

the database. This viewpoint seems to favor more accurate

measurements whenever they are compatible but less accurate

ones when some measurements appear as incompatible with

the rest. In addition, there may be an abundance bias, i.e.,

too many accurate measurements in some specific kinematical

region and a lack of measurements in another regions. Thus, the

working assumption in order to start any constructive analysis

is that most data have realistic quoted errors and that those

experiments with unrealistically too small or too large errors

can be discerned from the bulk with appropriate statistical

tools. This means that these unrealistic uncertainties can be

used to reject the corresponding data.9 If a consistent and

maximal database is obtained by an iterative application of a

rejection criterium, the discrepancy between theory and data

has to obey a statistical distribution, see Eq. (2).

D. Data representation

For two given data with exactly the same kinematical

conditions, i.e., same observable, scattering angle, and energy,

the decision on whether they are compatible may be easily

made by looking at nonoverlapping error bands.10 This is

frequently not the case; one has instead a set of neighboring

data in the (θ,E) plane for a given observable or different

observables at the same (θ,E) point. The situation is depicted

in Fig. 1 (left panels) where every point represents a single pp

or np measurement (for an illustrative plot on the situation by

1983 up to 1 GeV see Ref. [37]). The total number of 8124

fitting data includes 7709 experimental measurements and 415

normalizations provided by the experimentalists. Thus, the

decision intertwines all available data and observables. As a

consequence, the comparison requires a certain extrapolation,

which is viable under a smoothness assumption of the energy

dependence of the partial-wave-scattering amplitude. Fortu-

nately, the meson exchange picture foresees a well-defined

analytical branch cut structure in the complex energy plane

which is determined solely from the long-distance properties

of the interaction. A rather efficient way to incorporate this de-

sirable features from the start is by using a quantum mechanical

potential. More specifically, if one has nπ exchange, then at

long distances V (r) ∼ e−nmπ r guarantees the appearance of

a left-hand branch cut at center-of-mass (c.m.) momentum

8See, e.g., the recommendations of the Guide to the Expression

of Uncertainty in Measurement by the BIPM [34] where (often

generously) conservative error estimates are undesirable, while

realistic error estimates are preferable. Of course, optimal error

estimates could only arise when there is a competition between

independent measurements and a bonus for accuracy.
9From this point of view, the small and the large errors are not

symmetric; the small χ 2 (conservative errors) indicate that the fitting

parameters are indifferent to these data, whereas the large χ2 (daring

errors) indicate an inconsistency with the rest of the data.
10For several measurements the Birge test [35] is the appropriate

tool. The classical and Bayesian interpretation of this test has been

discussed recently [36].
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FIG. 1. (Color online) Abundance plots for pp- (top panel) and np- (bottom panel) scattering data. Full database (left panel). Standard

3σ criterion (middle panel). Self-consistent 3σ criterion (right panel). We show accepted data (blue), rejected data (red), and recovered data

(green).

p = imπn/2. Using this meson exchange picture at long

distances the data world can be mapped onto a, hopefully

complete, set of fitting parameters.

In order to analyze this in more detail we assume, as we

did in Refs. [22–24], that the NN interaction interaction can be

decomposed as

V (	r) = Vshort(r)θ (rc − r) + Vlong(r)θ (r − rc), (17)

where the short component can be written as

Vshort(	r) =
21

∑

n=1

Ôn

[

N
∑

i=1

Vi,nFi,n(r)

]

, (18)

where Ôn are the set of operators in the extended AV18

basis [16,22–24], Vi,n are unknown coefficients to be deter-

mined from data, and Fi,n(r) are some given radial functions.

Vlong(	r) contains a CD OPE (with a common f 2 = 0.075

[22–24]) and electromagnetic (EM) corrections which are kept

fixed throughout. This corresponds to

Vlong(	r) = VOPE(	r) + Vem(	r) . (19)

Although the form of the complete potential is expressed in

the operator basis the statistical analysis is carried out more

effectively in terms of some low and independent partial-waves

contributions to the potential from which all other higher

partial waves are consistently deduced (see Refs. [38,39]).

E. Fitting data

In our previous PWA we used the δ-shell interaction

already proposed by Avilés [29] and which proved extremely

convenient for fast minimization and error evaluation11 and

corresponds to the choice

Fi,n(r) = �riδ(r − ri), (20)

where ri � rc are a discrete set of radii and �ri = ri+1 − ri .

The minimal resolution �rmin is determined by the shortest

de Broglie wavelength corresponding to a pion production

threshold which we estimate as �rπ ∼ 0.6 fm [30,33] so

the needed number of parameters can be estimated a priori.

Obviously, if �rmin ≪ �rπ , the number of parameters in-

creases as well as the correlations among the different fitting

coefficients, Vi,n, so some parameters become redundant

or an overcomplete representation of the data, and the χ2

value will not decrease substantially. In the opposite situation

11We use the Levenberg-Marquardt method where an approximation

to the Hessian is computed explicitly [40] which we keep throughout.
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TABLE I. Standardized moments μ′
r of the residuals obtained by fitting the complete database with the δ-shell potential and 3σ -consistent

database with the OPE-δ shell, χTPE-δ shell, and OPE-Gaussian potentials. The expected values for a normal distributions are included ±1σ

confidence level of a Monte Carlo simulation with 5000 random samples of size N .

r Complete database 3σ OPE-δ shell 3σ χTPE-δ shell 3σ OPE-Gaussian

N = 8125 N = 6713 N = 6712 N = 6711

Expected Empirical Expected Empirical Expected Empirical Expected Empirical

3 0 ± 0.027 −0.176 0 ± 0.030 0.007 0 ± 0.030 −0.011 0 ± 0.030 −0.020

4 3 ± 0.053 4.305 3 ± 0.059 2.975 3 ± 0.059 3.014 3 ± 0.059 3.017

5 0 ± 0.301 −3.550 0 ± 0.330 0.059 0 ± 0.327 −0.066 0 ± 0.329 0.020

6 15 ± 0.852 42.839 15 ± 0.939 14.405 15 ± 0.948 15.110 15 ± 0.941 15.052

7 0 ± 3.923 −78.766 0 ± 4.324 0.658 0 ± 4.288 0.054 0 ± 4.300 3.077

8 105 ± 14.070 671.864 105 ± 15.591 98.687 105 ± 15.727 107.839 105 ± 15.577 106.745

�rmin ≫ �rπ the coefficients Vi,n do not represent the

database and hence are incomplete. Our fit with an uniform

�r ≡ �rπ was satisfactory, as expected.

F. The 3σ self-consistent database

After the fitting process we get the desired 3σ self-

consistent database using the idea proposed by Gross and

Stadler [18] and worked at full length in our previous

work [39]. This allows to rescue data which would otherwise

have been discarded using the standard 3σ criterion contem-

plated in all previous analyzes [15–18,41]. The situation is

illustrated in Fig. 1 (middle and right panels).

By using the rejection criterion at the 3σ level we cut off

the long tails and, as a result, a fair comparison could, in

principle, be made to this truncated Gaussian distribution.

The Nijmegen group found that the moments method test

(see below for more details) largely improved by using this

truncated distribution [13]. It should be reminded, however,

that the rejection criterion is applied to groups of data sets,

and not to individual measurements, and in this way gets

coupled with the floating of normalization. One could possibly

improve on this by trying to determine individual outliers

in a self-consistent way, which could make a more flexible

data selection. Preliminary runs show that the number of

iterations grows and the convergence may be slowed down

or nonconverging by marginal decisions with some individual

data flowing in and out the acceptance domain. Note also

that rejection may also occur because data are themselves

non normal or the disentanglement between statistical and

systematic errors was not explicitly exploited. In both cases

these data are useless to propagate uncertainties invoking the

standard statistical interpretation, see Eq. (14).

G. Distribution of residuals

In Fig. 2 we present the resulting residuals, Eq. (3), in a

normalized histogram for illustration purposes, in the cases

of the original full database and the 3σ -consistent database,

and compare them with a normal distribution function with

the binning resolution �R = 0.2. The complete database

histogram shows an asymmetry or skewness as well as

higher tails and clearly deviates from the normal distribution;

meanwhile the 3σ consistent database residuals exhibit a

closer agreement with the Gaussian distribution. Note that

this perception from the figure somewhat depends on eyeball

comparison of the three situations. We will discuss more

preferable tests in the next section which are independent on

this binning choice.

A handy way of checking for the normality of the residuals

is looking into the standardized moments [4]. These are defined

as

μ′
r = 1

N

N
∑

i=1

(

Xi − μ

σ

)r

, (21)

where μ is the arithmetic mean and σ the standard deviation;

the r = 1 and r = 2 standardized moments are zero and 1,

respectively. Due to the finite size of any random sample

an intrinsic uncertainty �μ′
r (N ) exists. This uncertainty can

be estimated using Monte Carlo simulations with M random

samples of size N and calculating the standard deviation of μ′
r .

The result of such simulations are shown in Table I along with

the moments of the residuals of the complete database with

N = 8125 data and the 3σ self-consistent database with N =
6713. Clearly, the complete database shows discrepancies

at 68% confidence level and hence cannot be attributed to

3σ consistent data. N = 6713

Complete database. N = 8125

420-2-4

0.5

0.4

0.3

0.2

0.1

0

FIG. 2. (Color online) Normalized histogram of the resulting

residuals after fitting the potential parameters to the complete pp

and np database (blue boxes with solid borders) and to the 3σ

consistent database (red boxes with dashed borders). The N (0,1)

standard normal probability distribution function (green solid line) is

plotted for comparison.
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the finite size of the sample. On the other hand,for the 3σ

self-consistent database the moments fall in the expected

interval. This is a first indication on the validity of Eq. (2)

for our fit to this database.

The moments method was already used by the Nijmegen

group [13] for the available at the time pp (about 400) data up

to TLAB = 30 MeV. However, they tested the squared residuals

R2
i in Eq. (3) with a χ2 distribution with one degree of freedom

which corresponds to testing only even moments of the normal

distribution. As we have already pointed out, this is insensitive

to the sign of Ri and hence may overlook relevant skewness.

H. Rescaling of errors

The usefulness of the normality test goes beyond checking

the assumptions of the χ2 fit since it allows to extend the

validity of the method to naively unfavorable situations.

Indeed, if the actual value for χ2
min/ν comes out outside

the interval 1 ± √
2/ν, one can still rescale the errors by the

so-called Birge factor [35] namely �O
exp

i →
√

χ2
min/ν�O

exp

i

so the new figure of merit is

χ̄2 =
(

χ2
/

χ2
min

)

ν, (22)

which by definition fulfills χ̄2
min/ν = 1. There is a common

belief that this rescaling of χ2 restores normality, when it

only normalizes the resulting distribution.12 If this was the

case, there is no point in rejecting any single datum from

the original database. Of course, it may turn out that one

finds that residuals are nonstandardized normals. That means

that they would correspond to a scaled Gaussian distribution.

We will show that while this rescaling procedure works once

the residuals obey a statistical distribution, the converse is

not true; rescaling does not make residuals obey a statistical

distribution.

In the case at hand we find that rescaling only works for

the 3σ self-consistent database because residuals turn out to

be normal. We stress that this is not the case for the full

database. Of course, there remains the question on how much

can errors be globally changed by a Birge factor. Note that

errors quoted by experimentalists are in fact estimates and

hence are subjected to their own uncertainties which ideally

should be reflected in the number of figures provided in �O
exp

i .

For N ≫ P one has ν ∼ N and one has χ2/ν = 1 ± √
2/N =

1 ± 0.016 for N = 8000. Our fit to the complete database

yields χ2/ν = 1.4, which is well beyond the confidence level.

Rescaling in this case would correspond to globally enlarge the

errors by
√

1.4 ∼ 1.2 which is a 20% correction to the error in

all measurements. Note that while this may seem reasonable,

the rescaled residuals do not follow a Gaussian distribution.

Thus, the noise on Eq. (2) remains unknown and cannot be

statistically interpreted.

12This rescaling is a common practice when errors on the fitted

quantities are not provided; uncertainties are invented with the

condition that indeed χ 2
min/ν ∼ 1. The literature on phase-shift

analyzes provides plenty of such examples. It is also a recommended

practice in the Particle Data Group booklet when incompatible data

are detected among different sets of measurements [42,43]).

For instance, if we obtain χ2/ν = 1.2 one would globally

enlarge the errors by
√

1.1 ∼ 1.1 which is a mere 10% correc-

tion on the error estimate, a perfectly tolerable modification

which corresponds to quoting just one significant figure on the

error.13 Thus, while χ2
min/ν = 1 ± √

2/ν looks as a sufficient

condition for goodness of fit, it actually comes from the

assumption of normality of residuals. However, one should

not overlook the possibility that the need for rescaling might

in fact suggest the presence of unforeseen systematic errors.

III. NORMALITY TESTS FOR RESIDUALS

There is a large body of statistical tests to quantitatively

assess deviations from an specific probability distribution

(see, e.g., Ref. [44]). In these procedures the distribution of

empirical data Xi is compared with a theoretical distribution

F0 to test the null hypothesis, H0 : Xi ∼ F0. If statistically

significant differences are found between the empirical and

theoretical distributions, the null hypothesis is rejected and

its negation, the alternative hypothesis, H1 : Xi ∼ F1, is

considered valid, where F1 is an unknown distribution that

differs from F0. The comparison is made by a test statistic T

whose probability distribution is known when calculated for

random samples of F0; different methods use different test

statistics. A decision rule to reject (or fail to reject) H0 is

made based on possible values of T ; for example, if the

observed value of the test statistic Tobs is greater (or smaller

depending on the distribution of T ) than a certain critical value

Tc, the null hypothesis is rejected. Tc is determined by the

probability distribution of T and the desired significance level

α, which is the maximum probability of rejecting a true null

hypothesis. Typical values of α are 0.05 and 0.01. Another

relevant and meaningful quantity in hypothesis testing is the

p value, which is defined as the smallest significance level at

which the null hypothesis would be rejected. Therefore a small

p value indicates clear discrepancies between the empirical

distribution and F0. A large p value, on the contrary, means

that the test could not find significant discrepancies.

In our particular case H0, the residuals follow a standard

normal distribution, and the p value would be the probability

that denying the assumption of true normality would be an

erroneous decision.

A. Pearson test

A simple way of testing the goodness of fit is by using the

Pearson test by computing the test statistic

T =
Nb
∑

i=1

(

nfit
i − nnormal

i

)2

nth
i

, (23)

where nfit
i are the number of residuals on each bin and nnormal

i

are the number of expected residuals for the normal distribution

in the same bin. T follows a χ2 distribution with Nb − 1 DOF.

13For instance, quoting 12.23(4) ≡ 12.23 ± 0.04 means that the

error could be between 0.035 and 0.044, which is almost 25%

uncertainty in the error. Quoting instead 12.230(12) corresponds to a

10% uncertainty in the error.
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TABLE II. Results of the Pearson normality test of the residuals

obtained by fitting the complete database with a δ-shell potential and

the 3σ consistent database with the δ shell and the OPE-Gaussian

potentials. The results of the test of the scaled residuals for every

case is shown below the corresponding line. The critical value Tc

corresponds to a significance level of α = 0.05.

Database Potential N Tc Tobs p value

Complete OPE-DS 8125 93.945 598.84 1.36×10−83

190.16 2.18×10−12

3σ OPE-DS 6713 87.108 82.67 0.09

69.08 0.40

3σ χTPE-DS 6712 87.108 100.70 0.004

74.40 0.25

3σ OPE-G 6711 87.108 84.17 0.08

68.38 0.43

The decision on how close a given histogram is to the expected

distribution depends on the specific choice of binning, which

is the standard objection to this test. To perform the test we use

a equiprobable binning so �Ri is such that nnormal
i is constant

for all i, instead of the equidistant binning shown in Fig. 2

(see, e.g., Ref. [5] for more details on binning strategies). The

results of the test are given in Table II and, as we see, again

the complete database fails the test even when residuals are

scaled.

B. Kolmogorov-Smirnov test

A simple and commonly used test is the Kolmogorov-

Smirnov test [45,46]. The KS test uses the empirical distri-

bution function S(x), defined as the fraction of Xis that are

less or equal to x and expressed by

S(x) = 1

N

N
∑

i=1

θ (x − Xi), (24)

where N is the number of empirical data. The test statistic in

this procedure is defined as the greatest difference between

S(x) and F0(x), that is

TKS = sup
x

|F0(x) − S(x)|. (25)

Some of the advantages of using TKS as a test statistic come

from its distribution under the null hypothesis; since it is

independent of F0, it can be calculated analytically and a fairly

TABLE III. Same as Table II for the Kolmogorov-Smirnov test.

Database Potential N Tc Tobs p value

Complete OPE-DS 8125 0.015 0.037 4.93×10−10

0.035 6.24×10−9

3σ OPE-DS 6713 0.017 0.011 0.43

0.012 0.26

3σ χTPE-DS 6712 0.017 0.010 0.47

0.010 0.47

3σ OPE-G 6711 0.017 0.013 0.22

0.014 0.18

E(1.5)

N(−1, 1)

N(0, 1.5)

N(0, 1)

Theoretical Quantiles N(0, 1)
S
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p
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FIG. 3. (Color online) Quantile-quantile plot of different random

samples against the standard normal distribution. Blue crosses are

sampled from the N (0,1) distribution, red diagonal crosses from

N (0,1.5), green asterisks from N (−1,1) and yellow squares from the

exponential distribution E(1.5).

good approximation exists for the case of large N . Given

that large values of TKS indicate large deviations from the

theoretical distribution the decision rule will be to reject the

3σ consistent data

Theoretical Quantiles N(0, 1)
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FIG. 4. (Color online) Quantile-quantile plot of the residuals

obtained from fitting the 3σ consistent database against the standard

normal distribution. The deviations at the tails, which are not detected

using the Kolmogorov-Smirnov test, are clearly visible with this

graphical tool.
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TABLE IV. Same as Table II for the tail-sensitive test.

Database Potential N Tc Tobs p value

Complete OPE-DS 8125 0.00070 0.0000 <0.0002

3.54×10−25 <0.0002

3σ OPE-DS 6713 0.00072 0.0010 0.07

0.0076 0.32

3σ χTPE-DS 6712 0.00072 0.0005 0.03

0.0156 0.50

3σ OPE-G 6711 0.00072 0.0001 0.01

0.0082 0.33

null hypothesis if the observed value Tobs,KS is larger than a

certain critical value Tc,KS. The critical value depends on α

and N ; for large numbers of data and a significance level of

0.05Tc,KS = 1.36/
√

N . Also, a good approximation for the

corresponding p value has been given [47],

PKS(Tobs) = 2

∞
∑

j=1

(−1)j−1e−2[(
√

N+0.12+0.11/
√

N)jTobs]
2

. (26)

The results of the KS normality test to the residuals obtained

by fitting the potential parameters to the complete and 3σ

consistent databases are shown in Table III. For the case

of the complete database the observed test statistic is much

larger than the critical value at the 0.05 significance level,

which indicates that with a 95% confidence level the null

hypothesis H0 : Xi ∼ N (0,1) can be rejected; the extremely

low p value gives an even greater confidence level to the

rejection of H0 very close to100%. In contrast, the observed

test statistic using the 3σ -consistent data is smaller than the

corresponding critical value, this indicates that there is no

statistically significant evidence to reject H0.

A shortcoming of the KS test is that the sensitivity to

deviations from F0(x) is not independent from x. In fact, the

KS test is most sensitive to deviations around the median value

of F0 and therefore is a good test for detecting shifts on the

probability distribution, which in practice are unlikely to occur

in the residuals of a least-squares fit. But, in turn, discrepancies

away from the median such as spreads, compressions, or

outliers on the tails, which are not that uncommon on residuals,

may go unnoticed by the KS test.

C. Quantile-quantile plot

A graphical tool to easily detect the previously mentioned

discrepancies is the quantile-quantile (QQ) plot, which maps

two distributions quantiles against each other. The q quantiles

of a probability distribution are obtained by taking q − 1

equidistant points on the (0,1) interval and finding the values

whose cumulative distribution function correspond to each
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Complete OPE-DS residuals
Tail Sensitive

Kolmogorov-Smirnov

3σ OPE-DS residuals
Tail Sensitive

Kolmogorov-Smirnov

3σ χTPE-DS scaled residuals
Tail Sensitive

Kolmogorov-Smirnov

3σ OPE-Gaussian scaled residuals
Tail Sensitive

Kolmogorov-Smirnov

FIG. 5. (Color online) Rotated quantile-quantile plot of the residuals obtained (blue points) from fitting the complete database with

the OPE-δ-shell potential (upper left panel), the 3σ self-consistent database fitted with the OPE-δ-shell potential (upper right panel), the

χTPE-δ-shell potential (lower left panel), and the OPE-Gaussian potential (lower right panel). 95% confidence bands of the TS (red dashed

lines) and KS (green dotted lines) tests are included.
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FIG. 6. (Color online) Correlation matrix Cij for the short dis-

tance parameters in the partial wave basis (Vi)
LSJ
l,l′ , see Eq. (18). We

show the OPE-DS (upper panel) and the χTPE-DS (middle panel)

potentials. The points ri = �rπ (i + 1) are grouped within every

partial wave. The ordering of parameters is as in the parameter tables

in Refs. [38,39] and [48] for OPE-DS 46 parameters and the χTPE

30+3 parameters (the last three are the chiral constants c1,c3,c4)

respectively. The OPE-Gaussian case (lower panel) also contains the

parameter a. We grade gradually from 100% correlation, Cij = 1

(red), 0% correlation, Cij = 0 (yellow) and 100% anti-correlation,

Cij = −1 (blue).

TABLE V. Fitting partial-wave parameters (Vi)
JS
l,l′ (in MeV) with

their errors for all states in the JS channel. The dash indicates that

the corresponding fitting (Vi)
JS
l,l′ = 0. The parameters marked with an

asterisk are set to have the tensor components vanish at the origin. The

parameter a, which determines the width of each Gaussian, is also

used as a fitting parameter and the value 2.3035 ± 0.0133 fm is found.

Wave V1 V2 V3 V4

1S0np −67.3773 598.4930 −2844.7118 3364.9823

±4.8885 ±64.8759 ±245.3275 ±268.9192
1S0pp −52.0676 408.7926 −2263.1470 2891.2494

±1.1057 ±12.9206 ±57.0254 ±76.3709
3P0 −60.3589 – 520.5645 –

±1.2182 ±17.4210
1P1 22.8758 – 256.2909 –

±0.9182 ±8.1078
3P1 35.6383 −229.1500 928.1717 –

±0.9194 ±9.0104 ±28.8275
3S1 −42.4005 273.1651 −1487.4693 2064.7996

±2.1344 ±24.1462 ±91.3195 ±105.4383

ε1 −121.8301 262.7957 −1359.3473 1218.3817*

±3.2650 ±19.0432 ±50.9369 ±34.8398
3D1 56.6746 – – –

±1.3187
1D2 −44.4366 220.5642 −617.6914 –

±1.2064 ±10.8326 ±27.1533
3D2 −107.3859 74.8901 – –

±2.9384 ±7.1627
3P2 −10.4319 – −170.3098 132.4249

±0.3052 ±7.3280 ±13.2310

ε2 50.0324 −177.7386 748.5717 −620.8659*

±0.8985 ±8.2027 ±34.7849 ±27.2518
3F2 6.3917 −659.4308 3903.1138 –

±2.6615 ±41.3707 ±187.9877
1F3 28.5198 42.9715 – –

±3.0801 ±19.5127
3D3 −9.6022 65.9632 – –

±0.8870 ±4.3677

point. For example, to find the 4-quantiles of the normal

distribution with zero mean and unit variance we take the

points 0.25, 0.5, and 0.75 and look for values of x satisfying

1√
2π

∫ x

−∞
e− −x̃

2 dx̃ = 0.25, 0.5, 0.75. (27)

In this case, the 4-quantiles are −0.6745, 0, and 0.6745. For

a set of ranked empirical data the easiest way to find the

q-quantiles is to divide it into q essentially equal-sized subsets

and take the q − 1 boundaries as the quantiles.

To compare empirical data with a theoretical distribution

function using a QQ plot the N + 1-quantiles are used. In this

way each datum can be graphed against the corresponding the-

oretical distribution’s quantile; if the empirical and theoretical

distributions are similar, the QQ plot points should lie close

to the y = x line. In Fig. 3 different random samples of size

N = 50 are compared with a normal distribution. The first

sample corresponds to the N (0,1) distribution, and the second

to the N (0,1.5), and the larger spread of the data can be seen

as a shift on the tails towards the bottom left and top right
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TABLE VI. Operator coefficients Vi,n (in MeV) with their errors

for the OPE-Gaussian potential. The operators tT , τz, and στz are

set to zero.

Operator V1 V2 V3 V4

c −19.2829 126.2986 −648.6244 694.4340

±0.6723 ±7.7913 ±33.1067 ±36.8638

τ 2.3602 −25.4755 130.0301 −284.7219

±0.4287 ±5.4291 ±20.0608 ±19.8417

σ 6.0528 −75.1908 372.4133 −530.8121

±0.4311 ±5.2742 ±19.5580 ±22.4309

τσ 7.3632 −48.5435 273.7226 −349.0040

±0.1794 ±1.9523 ±8.5410 ±10.1673

t 1.9977 −22.1227 70.8515 −50.7264

±0.2293 ±2.6777 ±10.1475 ±7.8130

tτ 15.0237 −38.3450 183.8178 −160.4965

±0.3419 ±1.8260 ±5.2644 ±3.7129

ls −2.6164 39.4240 −217.0569 −109.6725

±0.1947 ±3.3849 ±17.5511 ±10.2746

lsτ 0.0069 2.5897 −26.5807 −77.5825

±0.0944 ±1.1685 ±5.5782 ±3.3168

l2 1.4358 −23.5937 67.8942 144.1521

±0.1809 ±3.5108 ±18.4785 ±16.7585

l2τ −0.4106 8.3379 −82.9823 175.1091

±0.0950 ±1.4331 ±6.2147 ±5.7715

l2σ −0.0990 2.2549 −51.8708 175.0991

±0.1040 ±1.5679 ±6.6876 ±6.2497

l2στ −0.2667 6.6299 −55.3425 100.7191

±0.0343 ±0.5087 ±2.1657 ±2.3042

ls2 0.4583 −11.6586 150.5353 −302.1105

±0.2816 ±4.9506 ±22.8210 ±17.1765

ls2τ 0.7156 −18.8891 141.7216 −182.7536

±0.1273 ±1.8340 ±7.5529 ±5.7410

T 0.6379 −7.9042 24.2319 −19.7389

±0.1996 ±2.6738 ±9.9460 ±10.6364

σT −0.6379 7.9042 −24.2319 19.7389

±0.1996 ±2.6738 ±9.9460 ±10.6364

l2T −0.1063 1.3174 −4.0386 3.2898

±0.0333 ±0.4456 ±1.6577 ±1.7727

l2σT 0.1063 −1.3174 4.0386 −3.2898

±0.0333 ±0.4456 ±1.6577 ±1.7727

parts of the graph. A third samples comes from the N (−1,1)

distribution and this can be seen as an downward shift of the

points. A last sample is taken from the exponential distribution

E(1.5) which is asymmetric and positive.

Figure 4 shows the QQ plot of the residuals from the fit

to the 3σ consistent database against the N (0,1) distribution;

deviations around the tails, which cannot be seen with the

histogram in Fig. 2 and are not detected by the Pearson and

KS tests, are clearly visible at the bottom left and top right

corners of the plot.

D. Tail-sensitive test

Even though the QQ plot is a convenient and easy-to-use

tool to detect deviations from a theoretical distribution,

graphical methods often depend on subjective impressions

and no quantitative description of the deviations visible in

Fig. 4 can given by the QQ plot alone. A recent method

by Aldor-Noiman et al. [31] provides (1 − α) confidence

bands to the QQ plot to quantitatively test deviations from

the normal distribution. This new test, called tail sensitive,

has a higher sensitivity on the tails than the KS test. In fact,

the TS test rejection rate is uniformly distributed over the x

variable. Although no analytic expression is given for the TS

test statistic distribution, it can be easily simulated via Monte

Carlo techniques. The details of such simulation are explained

in Ref. [31]. We will restrict ourselves to point out that a small

value of TTS indicates discrepancies between the empirical and

normal distribution and therefore the rejection criterion for the

null hypothesis is Tobs,TS < Tc,TS.14

We applied the TS normality test to both sets of residuals,

the complete database and the 3σ consistent one, and show

the results on Table IV. For each test the Monte Carlo

simulation consisted on taking 5000 random samples of size

N with a standard normal distribution and calculating T MC
obs,TS

for each sample to obtain the distribution of TTS under the

null hypothesis. The critical value for a significance level

α = 0.05 corresponds to the T MC
obs,TS that is greater than 5%

of all the values calculated. Finally, the test statistic for the

empirical data T
emp

obs,TS can be calculated and compared to

the simulated distribution to obtain the p value. In this case the

p value is the proportion of T MC
obs,TS that are smaller than T

emp

obs,TS.

Since the observed TTS for the complete database residuals is

numerically equal to zero and smaller than all of the simulated

14It should also be noted that a typo in Ref. [31] is made in their

steps 1c and 1e where �−1 and B−1
(i,n+1−i) are printed instead of �

and B(i,n+1−i); the latter are consistent with the rest of the text and the

results presented there.

TABLE VII. Deuteron static properties compared with empirical/recommended values and high-quality potentials calculations. We list

binding energy Ed , asymptotic D/S ratio η, asymptotic S-wave amplitude AS , mean-squared matter radius rm, quadrupole moment QD , and

D-wave probability PD .

This work Emp./Rec. [55–60] δ-shell [38] Nijm I [15] Nijm II [15] Reid93 [15] AV18 [16] CD-Bonn [17]

Ed (MeV) Input 2.224575(9) Input Input Input Input Input Input

η 0.02448(5) 0.0256(5) 0.02493(8) 0.02534 0.02521 0.02514 0.0250 0.0256

AS (fm1/2) 0.8885(3) 0.8845(8) 0.8829(4) 0.8841 0.8845 0.8853 0.8850 0.8846

rm (fm) 1.9744(6) 1.971(6) 1.9645(9) 1.9666 1.9675 1.9686 1.967 1.966

QD (fm2) 0.2645(7) 0.2859(3) 0.2679(9) 0.2719 0.2707 0.2703 0.270 0.270

PD 5.30(4) 5.67(4) 5.62(5) 5.664 5.635 5.699 5.76 4.85
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values, we can only give an upper bound to the p value.

The graphical results of the TS test are presented in Fig. 5

with the 95% confidence level bands; the same bands for the

KS test are drawn for comparison reasons. Since for such

a large value of N the confidence bands are very narrow, a

45◦-clockwise rotated QQ plot is used to visually enhance the

possible deviations from a normal distribution. The complete

database residuals (upper left panel) show obvious deviations
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TABLE VIII. pp isovector phase shifts.

ELAB
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ǫ2

3F2
3F4 ǫ4

3H4

1 32.666 0.001 0.000 0.133 −0.080 −0.000 0.013 −0.001 0.000 0.000 −0.000 0.000

±0.003 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

5 54.834 0.042 0.000 1.578 −0.899 -0.004 0.205 −0.052 0.002 0.000 −0.000 0.000

±0.006 ±0.000 ±0.000 ±0.002 ±0.001 ±0.000 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

10 55.223 0.163 0.003 3.729 −2.053 −0.031 0.628 −0.201 0.013 0.001 −0.004 0.000

±0.010 ±0.000 ±0.000 ±0.005 ±0.002 ±0.000 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

25 48.694 0.688 0.040 8.616 −4.892 −0.233 2.440 −0.815 0.103 0.018 −0.049 0.004

±0.014 ±0.001 ±0.000 ±0.016 ±0.007 ±0.000 ±0.005 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

50 39.040 1.701 0.152 11.601 −8.186 −0.704 5.823 −1.735 0.328 0.099 −0.197 0.026

±0.018 ±0.003 ±0.000 ±0.030 ±0.013 ±0.001 ±0.009 ±0.003 ±0.001 ±0.001 ±0.000 ±0.000

100 25.452 3.820 0.414 9.567 −13.010 −1.546 11.074 −2.727 0.774 0.444 −0.553 0.107

±0.034 ±0.008 ±0.001 ±0.052 ±0.017 ±0.008 ±0.013 ±0.007 ±0.007 ±0.004 ±0.001 ±0.000

150 15.567 5.642 0.702 4.732 −17.296 −2.070 14.058 −2.980 1.132 0.991 −0.881 0.201

±0.050 ±0.014 ±0.005 ±0.064 ±0.026 ±0.019 ±0.020 ±0.010 ±0.015 ±0.009 ±0.002 ±0.002

200 7.490 7.058 1.032 −0.388 −21.412 −2.308 15.663 −2.875 1.337 1.642 −1.158 0.292

±0.064 ±0.022 ±0.011 ±0.064 ±0.037 ±0.031 ±0.025 ±0.017 ±0.024 ±0.014 ±0.004 ±0.005

250 0.500 8.276 1.385 −5.174 −25.335 −2.371 16.506 −2.603 1.289 2.272 −1.381 0.380

±0.080 ±0.026 ±0.017 ±0.066 ±0.052 ±0.044 ±0.032 ±0.023 ±0.032 ±0.019 ±0.005 ±0.011

300 −5.699 9.537 1.713 −9.460 −29.016 −2.385 16.892 −2.253 0.891 2.768 −1.556 0.478

±0.102 ±0.032 ±0.022 ±0.087 ±0.073 ±0.061 ±0.044 ±0.031 ±0.041 ±0.026 ±0.006 ±0.018

350 −11.239 10.974 1.959 −13.221 −32.431 −2.461 16.977 −1.875 0.091 3.056 −1.691 0.608

±0.130 ±0.059 ±0.027 ±0.124 ±0.101 ±0.084 ±0.060 ±0.042 ±0.054 ±0.045 ±0.006 ±0.025

from the normal distribution which is reflected on the

extremely low p values. The 3σ consistent data residuals (up-

per right panel) show deviations from the normal distribution

that are always within the TS confidence bands and therefore to

a confidence level α = 0.05 there are no statistically significant

differences to reject the null hypothesis.

E. Discussion

We haveshown in the previous discussion evidence support-

ing the validity of Eq. (2) for the 3σ self-consistent database

recently built from all published np- and pp-scattering data

from 1950 to 2013 [30,33]. The numerics can be a costly

procedure since multiple optimizations must be carried out

TABLE IX. np isovector phase shifts.

ELAB
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ǫ2

3F2
3F4 ǫ4

3H4

1 62.074 0.001 0.000 0.180 −0.108 −0.000 0.021 −0.001 0.000 0.000 −0.000 0.000

±0.018 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

5 63.652 0.040 0.000 1.653 −0.940 −0.004 0.248 −0.048 0.002 0.000 −0.000 0.000

±0.045 ±0.000 ±0.000 ±0.002 ±0.001 ±0.000 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

10 60.004 0.154 0.002 3.747 −2.073 −0.026 0.705 −0.185 0.011 0.001 −0.003 0.000

±0.065 ±0.000 ±0.000 ±0.006 ±0.003 ±0.000 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

25 51.043 0.669 0.032 8.506 −4.896 −0.201 2.586 −0.768 0.089 0.015 −0.039 0.003

±0.107 ±0.001 ±0.000 ±0.017 ±0.007 ±0.000 ±0.005 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

50 40.920 1.701 0.131 11.433 −8.251 −0.634 6.025 −1.688 0.295 0.089 −0.169 0.020

±0.167 ±0.003 ±0.001 ±0.031 ±0.013 ±0.001 ±0.009 ±0.003 ±0.001 ±0.001 ±0.000 ±0.000

100 27.691 3.863 0.365 9.314 −13.211 −1.447 11.261 −2.747 0.724 0.428 −0.505 0.090

±0.268 ±0.008 ±0.007 ±0.053 ±0.018 ±0.008 ±0.014 ±0.007 ±0.007 ±0.004 ±0.001 ±0.000

150 18.146 5.697 0.594 4.380 −17.569 −1.977 14.170 −3.042 1.083 0.981 −0.834 0.176

±0.313 ±0.014 ±0.027 ±0.064 ±0.027 ±0.020 ±0.020 ±0.010 ±0.016 ±0.009 ±0.002 ±0.002

200 10.161 7.111 0.838 −0.809 −21.717 −2.236 15.705 −2.938 1.295 1.643 −1.124 0.261

±0.309 ±0.022 ±0.056 ±0.064 ±0.038 ±0.032 ±0.025 ±0.017 ±0.024 ±0.014 ±0.004 ±0.005

250 3.068 8.331 1.118 −5.626 −25.658 −2.322 16.495 −2.644 1.248 2.280 −1.369 0.347

±0.304 ±0.026 ±0.085 ±0.067 ±0.053 ±0.045 ±0.032 ±0.024 ±0.032 ±0.019 ±0.005 ±0.011

300 −3.345 9.601 1.434 −9.916 −29.352 −2.356 16.840 −2.271 0.841 2.775 −1.566 0.448

±0.345 ±0.033 ±0.102 ±0.089 ±0.074 ±0.062 ±0.045 ±0.031 ±0.042 ±0.026 ±0.006 ±0.018

350 −9.144 11.052 1.763 −13.666 −32.782 −2.447 16.891 −1.879 0.022 3.053 −1.720 0.583

±0.441 ±0.062 ±0.105 ±0.127 ±0.103 ±0.085 ±0.061 ±0.043 ±0.055 ±0.047 ±0.006 ±0.025
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TABLE X. np isoscalar phase shifts.

ELAB
1P1

1F3
3D2

3G4
3S1 ǫ1

3D1
3D3 ǫ3

3G3

1 −0.186 −0.000 0.006 0.000 147.624 0.102 −0.005 0.000 0.000 −0.000

±0.000 ±0.000 ±0.000 ±0.000 ±0.009 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

5 −1.493 −0.010 0.218 0.001 117.905 0.638 −0.177 0.002 0.012 −0.000

±0.004 ±0.000 ±0.000 ±0.000 ±0.020 ±0.003 ±0.000 ±0.000 ±0.000 ±0.000

10 −3.058 −0.064 0.843 0.012 102.230 1.086 −0.661 0.007 0.080 −0.003

±0.010 ±0.000 ±0.001 ±0.000 ±0.028 ±0.007 ±0.001 ±0.000 ±0.000 ±0.000

25 −6.337 −0.421 3.698 0.170 80.068 1.653 −2.735 0.058 0.552 −0.053

±0.034 ±0.000 ±0.005 ±0.000 ±0.041 ±0.018 ±0.005 ±0.003 ±0.000 ±0.000

50 −9.603 −1.143 8.951 0.722 62.105 1.955 −6.276 0.376 1.609 −0.264

±0.071 ±0.003 ±0.020 ±0.000 ±0.053 ±0.035 ±0.013 ±0.013 ±0.002 ±0.000

100 −14.089 −2.291 17.299 2.181 42.633 2.428 −11.922 1.599 3.451 −0.989

±0.113 ±0.022 ±0.049 ±0.005 ±0.065 ±0.066 ±0.030 ±0.038 ±0.011 ±0.004

150 −17.844 −3.102 22.164 3.665 30.269 2.980 −16.143 2.830 4.700 −1.898

±0.129 ±0.052 ±0.060 ±0.019 ±0.066 ±0.085 ±0.045 ±0.054 ±0.024 ±0.013

200 −21.036 −3.775 24.449 5.065 20.890 3.517 −19.526 3.690 5.536 −2.851

±0.148 ±0.080 ±0.073 ±0.041 ±0.067 ±0.093 ±0.059 ±0.061 ±0.034 ±0.029

250 −23.623 −4.421 25.137 6.379 13.208 4.007 −22.339 4.222 6.150 −3.787

±0.181 ±0.100 ±0.096 ±0.066 ±0.088 ±0.099 ±0.072 ±0.074 ±0.039 ±0.048

300 −25.653 −5.078 24.920 7.604 6.681 4.476 −24.681 4.578 6.648 −4.692

±0.222 ±0.116 ±0.121 ±0.086 ±0.131 ±0.114 ±0.088 ±0.099 ±0.047 ±0.067

350 −27.236 −5.734 24.242 8.712 1.036 4.956 −26.586 4.876 7.067 −5.568

±0.266 ±0.145 ±0.147 ±0.097 ±0.183 ±0.137 ±0.107 ±0.130 ±0.065 ±0.082
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FIG. 11. (Color online) Same as in Fig. 10 but for ELAB = 100 MeV.

and different subsets of data of the complete database must

be tested and confronted. As outlined above, our analysis

was carried out using a physically motivated coarse-grained

potential and, more specifically, a δ-shells interaction already

proposed by Avilés [29]. This scheme proved extremely

convenient for fast minimization and error evaluation.

As a first application, with the currently fixed database,

we have also addressed the calculation of the chiral con-

stants which appear in the χTPE potential [48] (which

also passes the normality test, as can be seen from Fig. 5

and Tables I–IV). We note that the small rescaling by

the Birge factor
√

1.07 is requested to pass the Pearson

and TS tests. As we have mentioned, this form of δ-shell

potentials cannot be directly implemented in some of the

many powerful computational approaches to nuclear structure

calculations.15

The necessary conditions for a sensible interpretation of

the χ2 fit according to Eq. (2) requires testing for normality

of residuals of a fit to a consistent database. In all, the

15The δ-shell potential cannot even be plotted, which may

naively seem a disadvantage. However, its Fourier transformation

is smooth [30] in the relevant center-of-mass momentum region of

pc.m. � 2 fm−1, complying to the idea that coarse graining down to

�rπ ∼ 0.6 fm resolutions lacks information on shorter length scales.

present situation regarding both the selection of data with

the self-consistent 3σ criterion and the normality of residuals

turns out to be highly satisfactory. In our view, this combined

consistency of the statistical assumptions and the theory used

to analyze it provides a good starting point to proceed further

in the design of theory-friendly smooth NN interactions as well

as a sound estimate of their statistical uncertainties.

Of course, the normality of residuals applies to any fit

aiming at representing the data. Thus, any potential which

pretends to represent the data ought to pass the test. In the

next section we propose a potential whose short-distance part

is made of a superposition of Gaussian functions and, unlike

the δ-shell potential, can be plotted. We will check that our

proposed potential does in fact pass the normality test.

There is an issue concerning the statistical approach on

what would be the “true” potential since the concept of true

parameters of a given model is invoked (see the discussion in

Sec. II B). On the one hand, the very definition of potential

is subject to ambiguities because the scattering information

only determines an interaction once its specific form has been

chosen [21]. This reflects the well-known off-shell ambiguities

which by definition are inaccessible to experiment [49]. On the

other hand, nuclear structure calculations are carried out with

potentials statistically representing the scattering data. This

is a source for a systematic uncertainty which was unveiled

in Refs. [22–24] for the previously developed high-quality
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FIG. 12. (Color online) Same as in Fig. 10 but for ELAB = 200 MeV.

interactions. The upgrade of this systematic uncertainty study

using the present statistical analysis is left for future research.

Ultimately, QCD is the theory to validate Eq. (2) versus

the large body of data, O th
i = O

QCD
i , with just two parameters

in the (u,d) sector, �QCD, and the quark masses (mu,md ), or,

equivalently, with the pion weak decay constant fπ and the

pion masses (mπ0 ,mπ± ). Remarkably, nuclear potentials have

been evaluated on the lattice recently [50–52]. The HAL QCD

Collaboration [53] finds a local potential for the unphysical

pion mass mπ = 701 MeV with a shape similar to our OPE-

Gaussian potential (see Sec. IV) but a depth of −30 MeV in

the central component Vc and �Vc ∼ 5 MeV for r � 1 fm,

and, consequently, the 1S0 phase-shift obtained by directly

solving the Schrödinger equation is smaller as compared to

ours with much larger errors. This potential approach uses

the Nambu-Bethe-Salpeter wave function which ultimately

depends on the choice of the interpolating composite nucleon

fields (for a recent overview of the pros and cons of the

potential approach to lattice QCD see, e.g., Ref. [54]). Of

course, since the lattice NN potential depends ultimately in

just two parameters, �QCD and mq the different r values

in the potential functions Vn(r) must be correlated. In the

phenomenological approach correlations among the fitting

parameters are indeed found or built in. Some of them are

the trivial ones due to the OPE potential which just depends

on the pion masses (mπ0 ,mπ± ), but others correspond to the

inner short-distance parameters, suggesting that the number of

parameters can de reduced solely from the phenomenological

potential analysis of the data. In Fig. 6 we represent pictorially

the resulting correlation matrix both for the OPE-DS fit [38,39]

as well as for χTPE-DS [48] short-distance parameters in the

partial-wave basis (Vi)
LSJ
l,l′ , see Eq. (18). The listing ordering

is the same as the one in the parameter tables in Refs. [38,39]

and [48] for OPE-DS and χTPE-DS, respectively. Note the

isolated pattern of correlations for the OPE-DS case, however,

as we see there are substantial correlations among different

(Vi)
LSJ
l,l′ within a given partial wave, suggesting the possibility

of reducing the number of parameters. Indeed, we observe that

this parameter reduction takes place from 46 to 33 when going

from the OPE-DS case to the χTPE-DS potential [48], which

incorporates specific QCD features such as chiral symmetry.

The resulting correlation pattern becomes now more spread

over the full short-distance parameter space.

IV. THE OPE-GAUSSIAN POTENTIAL

In the present section we provide a rather simple local form

of the potential Eqs. (17) and (18) based on Gaussian functions

Fi,n(r) = e−r2/(2a2
i ), (28)

where we have taken the parameters as ai = a/(1 + i). The

parameter a is used as a fitting variable. With this potential
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FIG. 13. (Color online) Same as in Fig. 10 but for ELAB = 350 MeV.

we get χ2/ν = 1.06. The resulting 42 fitting parameters

(41 independent partial-wave coefficients (Vi)
JS
l,l′ and the

Gaussian width a are listed with their uncertainties in Table V.

The Vi,n operator coefficients are given in Table VI.16 The

linear transformation from partial-wave coefficients (Vi)
JS
l,l′

to the Vi,n operator coefficients has been given explicitly

in Ref. [39]. In Fig. 6 we depict the correlation matrix,

Eq. (12), for the partial-wave parameters listed in Table V,

where a similar correlation pattern to the OPE-DS one is

observed. Deuteron properties for this potential compared

with calculations using other potentials and empirical or

recommended values can be looked up in Table VII.

The rotated QQ plot of the scaled residuals for the OPE-

Gaussian fit to the 3σ self-consistent database can be seen in

Fig. 5. As we can see the TS test is passed satisfactorily. On

a more quantitative level we show on Table I the moments

test. The resulting p value of the different normality tests

are given in Tables II, III, and IV for the Pearson, KS, and

TS tests, respectively. As we see all tests are satisfactorily

passed except for the TS where a tiny scaling of the residuals

by a Birge factor of
√

χ2/ν = 1.03, corresponding to a global

16The many digits are provided to guarantee numerical reproducibil-

ity of results, since we find strong correlations among the parameters.

We thank Eduardo Garrido numerical checks.

enlargement of the provided experimental errors by 3%, allows

to restore normality. Thus, we are entitled to propagate the

uncertainties of the data to derived quantities through the

determined parameters Vi,n with errors and their corresponding

correlations, see Eq. (14).

In Figs. 7 and 8 we show the OPE-Gaussian potential

in partial wave and operator basis, respectively, with the

error bands propagated with the corresponding correlation

matrix from the fit to the experimental data. As we see,

these error bands are smaller than the discrepancy with

Reid93 [15], NijmII [15], and AV18 [16]. This may be a hint

that systematic errors induced by the bias involved in the choice

of the several potentials, as first noted in Refs. [22–24], may

indeed play a relevant role in the total evaluation of nuclear

uncertainties.

In Fig. 9 we present the lowest np and pp phase shifts

and their errors based on the OPE-Gaussian potential and

compared with the Reid93 [15], NijmII [15], and AV18 [16]

potential phases. In Tables VIII, IX, and X the low-angular-

momentum phases as a function of the LAB energy with their

errors propagated from the fit are listed.

The resulting Wolfenstein parameters, Eq. (1), for the

OPE-Gaussian potential are depicted in Figs. 10, 11, 12,

and 13 for LAB energies 50,100,200, and 350 MeV, re-

spectively, with their corresponding errors. For compari-

son we also show the same quantities calculated with the
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1993 high-quality Reid93 [15], NijmII [15], and AV18 [16]

potentials.

V. CONCLUSIONS AND OUTLOOK

We summarize our main points. The determination of

uncertainties in theoretical nuclear physics is one of the most

urgent issues to be solved in order to establish the predictive

power of ab initio nuclear structure calculations. One certain

source for these uncertainties is the errors of the phenomeno-

logical NN interaction stemming from the finite accuracy of

experimental scattering data as well as local scarcity in certain

regions of the (θ,E) plane and an abundance bias in some other

regions. Any statistical analysis of this sort assumes a model

both for the signal and the noise which can only be checked

a posteriori. In order to carry out such an analysis the lack of

bias in the data and the model has to be established with a given

confidence level. If normal errors on the data are assumed, the

check can be made by applying normality tests to the residuals

between the fitted model and the experimental data. We have

used some classical tests and the highly demanding recently

proposed tail-sensitive quantile-quantile test with a confidence

level of 95%. Based on the outcome there is no serious reason

to doubt on the normality of residuals of the 3σ self-consistent

database obtained in our PWA of np- and pp-scattering data

below pion production threshold.

We note that this normality test actually checks for the

assumption, underlying any least-squares χ2 fit, that the

data themselves follow a normal distribution. With this fixed

database one then can look for different representations of

the potential which facilitate a straightforward implementation

in any of the many available powerful methods which are

currently available for solving the multinucleon problem.

We provide a user-friendly potential which consists of

a short-range local part with 21-operators multiplying a

linear superposition of Gaussian functions. The resulting fitted

potential passes the normality tests satisfactorily and, hence,

can be used to estimate statistical uncertainties stemming from

NN-scattering data.

Our findings here seem to confirm a previous study of us

when we compare the current OPE-Gauss potential including

statistical error bands with previous potentials such as NijmII,

Red93, or AV18 (without statistical bands); errors in the

potential are dominated by the form of the potential rather

than by the experimental data. Nonetheless, a thorough study

of these kind of errors requires repeating the present analysis

with an identical database with the most general potentials and

functional forms and looking for discrepancies in the nuclear

structure calculations outcome.

ACKNOWLEDGMENTS

We thank Elı́as Moreno for a statistician’s point of view,

Antonio Bueno for an experimentalist’s point of view, and

Lorenzo Luis Salcedo for an introduction to the Bayesian ap-

proach. We also thank Eduardo Garrido for numerical checks.

[1] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
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