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STATISTICAL ESTIMATION FOR
MULTIPLICATIVE CASCADES1

By Mina Ossiander and Edward C. Waymire

Oregon State University

The probability distribution of the cascade generators in a random
multiplicative cascade represents a hidden parameter which is reflected in
the fine scale limiting behavior of the scaling exponents (sample moments)
of a single sample cascade realization as a.s. constants. We identify a large
class of cascade generators uniquely determined by these scaling expo-
nents. For this class we provide both asymptotic consistency and confidence
intervals for two different estimators of the cumulant generating function
(log Laplace transform) of the cascade generator distribution. These results
are derived from investigation of the convergence properties of the fine
scale sample moments of a single cascade realization.

1. Introduction and preliminaries. Early versions of multiplicative
cascades were introduced by Kolmogorov (1941, 1962) in the statistical theory
of turbulence for use in modeling the redistribution of energy under a rapid
stirring motion as a repeated random splitting of energy into finer scale eddies.
Refinements were developed further by Yaglom (1966) and by Mandelbrot
(1974), and steps toward a rigorous mathematical foundation were initiated
by Kahane and Peyrière (1976), with earlier work done by Joffe, LeCam, and
Neveu (1973); also see Frisch (1995) in this context. Other highly variable
and intermittent phenomena whose statistics appear to be well represented
by such models are spatial rainfall, internet traffic, financial markets, etc.
For example, see Gupta and Waymire (1993), Gilbert, Willinger and Feldman
(1999), Mandelbrot (1998), respectively. Our goal is to extend some of the exist-
ing statistical theory required for accurate parameter estimation and rigorous
tests of hypotheses within this framework.
In such physical contexts as noted above, the data structure is a distribution

of some random quantities R���, for example, rain, energy, message packets,
etc., measured over some region S of space or time, and binned into some bN

pixels � at the scale of resolution δ = ��� = b−N. Here R�·� can be thought
of as a random measure observed on a partition of S into sets of diameter
b−N; that is, the pixels of resolution b−N. Typically R�·� does not have inde-
pendent increments, but instead exhibits a random splitting phenomena as
the diameter of the sets � decreases, or equivalently, the pixel resolution is
increased. An example of this type is seen in Gupta and Waymire (1993), with
the observed data, R���, comprising spatial rainfall measurements converted
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from observed radar scans over a square region S, 256-km on a side, binned
into 4096 4-km×4-km pixels at the finest resolution. Alternatively, Figure 2(a)
provides an example of a single simulated scan from a multiplicative cascade
over an interval S = �0�1	 binned into pixels of length 2−13. The multiscaling
exponents τ�h� arise in this context through log–log plots of empirical moments
of various orders h versus length scale δ; that is,

log
∑

�
���=δ

Rh��� = τ�h� log δ+Ch�(1)

In particular, in such data one observes (i) log–log linearity in δ for fixed h,
and (ii) nonlinear slopes τ�h� as a function of h. This naturally leads one to
seek a theoretical framework which will accomodate such empirically observed
structure.
Notice that linear multiscaling exponents (simple scaling) τ�h� = θh can be

accommodated by the theoretical framework of statistical self-similarity via

the relation R��� dist= ���θR�1�. In this setting a rather extensive theory exists.
On the other hand, to illustrate a model which exhibits true multiscaling

structure of the form (1) consider R��� dist= R0 exp�Blog�1/δ�, where �Bt
 t ≥ 0
is standard Brownian motion independent of R0. Then a simple computation
of the Gaussian moment generating function ERh��� = ERh

0 EehBlog�1/δ� fur-
nishes a log–log linear relation with nonlinear (quadratic) exponent τ�h� and
intercept Ch = logERh

0 . Since the Brownian motion exponent process is addi-
tively comprised of stationary independent increments, this framework sug-
gests the following multiplicative spatial extrapolation. Address each pixel
� ≡ �j�v� at the resolution b−j by a sequence v = �v1� � � � � vj� of digits
vi ∈ �0�1�2� � � � � b− 1, and write

R��N�v�� = R��0�v��
R��1�v��
R��0�v��

� � �
R��N�v��
R��N−1�v��

�(2)

If it is assumed that random splitting occurs independently at each level of
resolution, then the ratios R��j�v��/R��j−1�v�� will be independent random
variables. On the other hand, for a nearby pixel �N�v′� with v′ = �v1� � � � � vk�
v′
k+1� � � � � v

′
N� we have correlation since

R��N�v′�� = R��0�v��
R��1�v��
R��0�v��

� � �
R��k+1�v′��
R��k�v��

� � �
R��N�v′��
R��N−1�v′�� �(3)

Due to the additive nature of the R�·� process,
R��k�v�� =∑

v′
R��N�v′���(4)

where the sum is taken over all v′ = �v1� � � � � vk� v
′
k+1� � � � � v

′
N� as described

above. The following model incorporates both recursive random splitting and
the additivity of random measures in modeling R�·�.
Let �Wv be an i.i.d. family of nonnegative mean 1 random variables

indexed by the pixel addresses v at different fine scales b−n for n ≥ 1 and
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write

R���v�� = λ∞���v�� = Z∞�v� ×
N∏
j=1

W�v1� ���� vj�b
−N�(5)

where λ∞�dx� is the underlying random distribution at the fine scale limit
�δ → 0�, which is being sampled at the given resolution of b−N. In view of
the recursive structure which defines the fine scale limit distribution, Z∞�v�
is distributed as the total quantity λ∞�S�. Though purely phenomenological,
this is precisely the mathematical structure underlying Kolmogorov’s multi-
plicative cascade model of energy redistribution cited above. This provides a
framework for interpreting and analyzing data structures of the type (1); how-
ever for this paper the main focus is on statistical inference on the distribution
of cascade generators Wv from measurements of the form �λ∞���
 � ⊂ S at
some given resolution of the pixels �. That is, how does one choose the dis-
tribution of the W’s? In this paper we regard the parameter b as a given
parameter which is imposed on the data by the binning of observations.
This is an area of physical science in which the connection between the

physics of the phenomena and the model being analyzed is at best primitive.
Thus the role of statistics is to provide a framework for interpreting and ana-
lyzing the observed data structures in ways that might enhance the physical
understanding. In the context of the somewhat more well-developed physical
science of turbulence, Kolmogorov (1962) hypothesised a log-Normal distribu-
tion for the cascade generators. However recent results on the multiscaling
exponents by She and Levesque (1994) suggest a log-Poisson distribution for
the cascade generators; see Dubrulle (1994), She and Waymire (1995). Thus
the mathematically precise results of the type given in the present paper are
motivated by a need for accurate statistical hypothesis testing methodology.
In order to describe our results, let us now turn to a more precise math-

ematical specification of the multiplicative cascade. For simplicity, first con-
sider repeated splittings of T, a unit cube in Rd for some d ≥ 1, into a number
bn� b ≥ 2, of subcubes (pixels) of volume b−n� n = 1�2� � � � � such that the
nth-stage mass of the pixel �n�t1� � � � � tn�� tk ∈ �0�1� � � � � b−1 is given by the
random measure λn��n�t1� � � � � tn�� = b−n∏n

k=1W�t1 ··· tk�, where theWv’s are as
described above. The cascade measure λ∞ is obtained as the a.s. vague limit
of the sequence λn as n → ∞. See Figure 1 for a sketch of the histograms
of λ1� λ2, and λ∞ with b = 4 and T taken to be the unit square in R2. The
main problem for applications noted above is to infer the distribution of the
random factors Wv from data on the random masses λ∞��n�t1� � � � � tn��, at
some prescribed fine scale b−n. This problem is the focus of this paper.
Our results can be briefly described as follows. First, the distribution of the

Wv’s is parameterized by the structure function

χb�h� = logb E�Wh
v1�W > 0		 − �h− 1��(6)
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Fig. 1. Ingredients of a multiplicative cascade distribution on the unit square with b = 4; the his-
tograms of λ1� λ2 and λ∞ are indicated.
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the modified cumulant generating function for logWv. It is shown that the
estimators

τ̂n�h� = n−1 logb
∑
�n

λh
∞��n�(7)

and

τ̃n�h� = logb
(∑

�n+1

λh
∞��n+1�

/∑
�n

λh
∞��n�

)
(8)

converge a.s. to χb�h� as n → ∞ for all h within a critical interval. Conse-
quently, if the moment generating function of logWv is defined in a neigh-
borhood of the origin, the collection �λ∞��n�
 n ≥ 0 uniquely determines
the distribution of the cascade generators, �Wv. Theorem 2.2 in the follow-
ing section gives a more precise statement of this result. The convergence of
the estimators τ̂n�h� and τ̃n�h� themselves is addressed in Theorem 3.2 and
Corollary 3.4 of Section 3. In particular it is shown that τ̂n�h� converges a.s.
to a functional of χb�h� for all h. [Notice that τ̂n�h� corresponds asymptoti-
cally to the τ�h� appearing in (1) if δ is taken to be b−n.] On the other hand,
it is shown that τ̃n�h� converges a.s. to χb�h� for h within a critical interval
specified by the structure function itself. Central limit theorems for suitably
normalized versions of both τ̂n�h� and τ̃n�h� are given in Section 4. In par-
ticular, Corollary 4.7 at the end of Section 4 gives a central limit theorem
that allows computation of asymptotically exact confidence intervals for χb�h�
by using the fine-scale sample moments of a single sample realization of a
multiplicative cascade.
The overall organization of this paper is as follows. Fine-scale consistency

is explored via the use of size-bias methods in Section 2. Results here include
Theorem 2.2 mentioned above, with its proof appearing as a corollary to a
somewhat more general theorem (Theorem 2.4) on the rate of growth of the
sample moments. This latter result generalizes previous results of Holley and
Waymire (1992) and Collet and Koukiou (1992) to a much larger class of gen-
erators. Versions of this generalization utilizing “convergence in distribution”
were obtained by Franchi (1995) and Molchan (1996). Also, by employing a
Legendre transform formalism for expected values, such results were antici-
pated in the physics literature by Lovejoy and Schertzer (1991). These results
all follow from our more general theory (Theorems 2.4, 3.1). Although we
restrict this paper to the case of i.i.d. generators, an advantage of the approach
via size-bias methods is that the tools are also amenable to the analysis of
dependent cascades; see Waymire and Williams (1996). While size-biasing pro-
vides convergence in probability and in L1, an almost sure version of these
results is obtained in Section 3. The methods used here are more classical in
nature and depend on a delicate truncation argument. Related methods are
also required for our treatment of the fluctuation laws (central limit theorems)
given in Section 4. These latter results extend the central limit theorems of
Troutman and Vecchia (1999) to a correspondingly larger class of generators.
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A presentation of simulation results illustrating convergence and fluctuations
of the estimator τ̃n�h� of χb�h� is made in Section 5. These simulations point to
some interesting phenomena with regard to the behavior of the scale and/or
distribution of the estimators outside a critical range for the parameter h.
The paper concludes with some remarks on unresolved problems and possible
extensions of this work.

2. Fine scale consistency. It is mathematically convenient to exploit
the b-ary tree structure underlying the multiplicative cascade as follows. Let
b ≥ 2 be a natural number and let T denote the product space

T = �0�1�2� � � � � b− 1N(9)

equipped with the metric ρ�s� t� = b−�s∧t�� s� t ∈ T, where N denotes the set
of natural numbers and �s ∧ t� = inf�n ≥ 0
 sn+1 �= tn+1� s = �s1� s2� � � ��� t =
�t1� t2� � � �� ∈ T� ��T� will denote the corresponding Borel sigma field on T for
this metric. For t = �t1� t2� � � �� ∈ T let t�n = �t1� t2� � � � � tn�. If points t ∈ T are
viewed as paths through a b-ary tree then v = t�n denotes the nth generation
vertex along t.
For s ∈ T� n ∈ N, let

�n�s� ≡ �n�s�n� = Bb−n�s� = �t ∈ T
 ti = si� i ≤ n(10)

denote the closed ball of radius r = b−n centered at s ∈ T. The normalized
Haar measure λ on T, viewed as a countable product of cyclic groups of order
b, is specified by

λ��n�s�� = b−n� s ∈ T� n ≥ 1�(11)

Now let �Wv
 v ∈ �0�1� � � � � b − 1n� n ≥ 1 be a denumerable family of
i.i.d. nonnegative mean 1 random variables defined on a probability space
�"�� �P�. Also let �n� n ≥ 1, denote the filtration defined by

�n = σ�Wv
 �v� ≤ n� n ≥ 1�(12)

where for v = �v1� v2� � � � � vn�� vi ∈ �0�1� � � � � b−1� n ≥ 1� �v� = n. The random
variables Wv are referred to as the cascade generators and, as such, define a
sequence of random measures λn on �T���T��� n ≥ 1, via

dλn

dλ
�t� = Qn�t� =

n∏
i=0

Wt�i = W�
n∏

i=1
Wt�i� t ∈ T�(13)

where W�, referred to as the cascade initiator, is an a.s. positive random
variable independent of �n� n ≥ 1.
It is well known [e.g., see Kahane and Peyrière (1976)] that there is a

random measure λ∞ on �T���T�� such that
P�λn ⇒ λ∞ as n → ∞� = 1�(14)
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where, throughout, ⇒ denotes vague convergence. In fact, for any countable
dense family & of bounded Borel measurable functions [cf. Kahane (1989)],

P

(
lim
n→∞

∫
T
f�t�λn�dt� =

∫
T
f�t�λ∞�dt�� f ∈ &

)
= 1�(15)

The random measure λ∞ defines the multiplicative cascade. The following
basic structure theorem for λ∞ is also well known. First let

χb�h� = logb E�Wh1�W > 0		 − �h− 1��(16)

where W is a generic cascade generator distributed as Wv for v �= �. The
structure function χb�h� is defined for all real numbers h but may be infinite,
with the conventions that 00 = 0�0 · ∞ = 0. The use of the indicator function
1�W > 0	 allows incorporation of the case h < 0 into the general theory.

Theorem 2.1 [Kahane and Peyrière (1976)]. (i) Eλ∞�T� > 0 iff χ′
b�1−�

< 0.
(ii) Eλh

∞�T� < ∞ for 0 ≤ h ≤ 1, and, if hc 
= sup�h ≥ 1
 χb�h� ≤ 0 > 1,
then Eλh

∞�T� < ∞ for 1 < h < hc.
(iii) Eλ∞�T� = 1 iff Eλ∞�T� > 0.

The following example of a multiplicative random cascade is explicitly
related to the Galton–Watson branching process. Let W take values p−1 and
0 with probability p and 1 − p, respectively; that is, W is nonzero–zero with
mean 1. χb is then linear with slope logb�1/bp�. Then the random measure
λn has total mass λn�T� obtained as a sum of bn terms which are each of the
form

∏n
i=1Wv�ib−n, which takes on either value 0 or value �bp�−n. The num-

ber of nonzero terms in the sum is the number Xn in the nth generation of
a Galton–Watson branching process with a Binomial�b�p� offspring distribu-
tion, that is,

λn�T� = Xn

�bp�n �(17)

λn�T� is the nonnegative mean one martingale associated withXn, with λ∞�T�
being its a.s. limit. Part (i) above tells us that P�λ∞�T� > 0� > 0 iff the slope of
χb is less than 0; that is, p > b−1. This coincides exactly with the well-known
condition guaranteeing that the mean-normalized Galton–Watson branching
process �bp�−nXn lives with positive probability.
The following theorem gives a precise statement of the main results of this

paper.

Theorem 2.2. Assume that χ′
b�1−� < 0. If E�Wh1�W > 0		 exists and

is finite for h belonging to some neighborhood of 0, then �λ∞��n�v��
 v ∈
�0�1� � � � � b − 1n� n ≥ 0 uniquely determines the distribution of the cascade
generator W.
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Throughout the remainder of the paper we will restrict our consideration
to cascade generators for which

χ′
b�1−� < 0�(18)

so that Eλ∞�T� > 0; compare Theorem 2.1. A basic family of statistics which
we consider are the nth-scale sample moments defined by

Mn�h� = ∑
�v�=n

λh
∞��n�v��� h ∈ R�(19)

The estimators τ̂n�h� and τ̃n�h� are defined in terms of theMn�h�’s as follows:
τ̂n�h� = n−1 logb Mn�h�(20)

and

τ̃n�h� = logb�Mn+1�h�/Mn�h��(21)

A particularly useful tool for our considerations are the h-cascades, denoted
by the random measures λ∞�h�dt�� h ∈ R, which we define via the h-cascade
generators

Wv�h� = Wh
v

EWh
v

� h ∈ R�(22)

With this one may easily check that

λh
n��n�v��
bnχb�h� = λn�h��n�v���(23)

where

dλn�h� ·�
dλ

�t� ≡ Qn�h� t� =
n∏

i=0
Wt�i�h�� t ∈ T�(24)

is the sequence of nth level h-cascades, n = 1�2� � � � .

Proposition 2.1. For h ∈ R� n ≥ 1, one has
Mn�h�
bnχb�h� = ∑

�v�=n

Zh
∞�v�λn�h��n�v�� =

∫
T
Zh

∞�t�n�λn�h�dt��

where a.s.,

Z∞�v� = lim
N→∞

∑
�u�=N−n

N−n∏
i=1

Wv∗�u1···ui�b
−�N−n��

and ∗ denotes the concatenation
�v1� � � � � vn� ∗ �u1� � � � � uN� = �v1� � � � � vn� u1� � � � � uN��
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Proof. First note that for N ≥ n+ 1� n = 1�2� � � � one has
λN��n�v�� = Z

�n�
N �v� · λn��n�v���(25)

where

Z
�n�
N �v� = ∑

�u�=N−n

N−n∏
i=1

Wv∗�u1···ui�b
−�N−n��(26)

For each n ≥ 1 and �v� = n, the sequence �Z�n�
N �v��N = n + 1� n + 2� � � � is

a nonnegative martingale and therefore limN→∞ Z
�n�
N �v� = Z

�n�
∞ �v� exits a.s.

and is independent of �n. Moreover, using (25),

λ∞��n�v�� = Z
�n�
∞ �v� · λn��n�v���(27)

Thus, combining this with (23),

λh
∞��n�v��
bnχb�h� =Z

�n�
∞ �v� · λ

h
n��n�v��
bnχb�h�

=Z
�n�h
∞ �v�λn�h��n�v���

(28)

This completes the proof. ✷

The following proposition delineates the critical interval of h-values which
is central to the convergence results of this and following sections.

Proposition 2.2. Assume that χ′
b�1−� < 0 and let

H+
c = sup�h ≥ 1
 hχ′

b�h� − χb�h� < 0
and

H−
c = inf�h ≤ 0
 hχ′

b�h� − χb�h� < 0�
Then H−

c ≤ 0 < 1 ≤ H+
c , with hχ′

b�h� − χb�h� < 0 for all H−
c < h < H+

c .
Furthermore, for h ∈ �0�1	 ∪ �H−

c �H
+
c �� λn�h�T� → λ∞�h�T�P-a.s., where

Eλ∞�h�T� = 1�

Proof. Define

χb�h�r� = logb E�W�h�r1�W�h� > 0	 − �r− 1� = χb�hr� − rχb�h��(29)

Note that χb�0�r� = �1−r�χb�0� so χ′
b�0�1� = −χb�0� < 0 since χb�h� is convex,

χb�1� = 0, and χ′
b�1−� < 0. Also χ′

b�1−� = 1χ′
b�1−�−χb�1� = χ′

b�1−� < 0. Then
simply observe that

χ′
b� h�1−� =

{
hχ′

b�h−� − χb�h�� if h > 0,

hχ′
b�h+� − χb�h�� if h < 0.

Taking a derivative with respect to h, and using the convexity of χb�h� it is
easy to see that χ′

b� h�1−� < 0 if h ∈ �0�1	 ∪ �H−
c �H

+
c �. Now apply (29) and

Theorem 2.1. ✷
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Define a reverse filtration by

�̃n = σ�Wv
 �v� > n� n ≥ 0�(30)

Then for each n�Z
�n�
∞ �v� is �̃n-measurable, �v� = n. In fact we will see below

that �Z�n�h
∞ �v�� �̃n, viewed as a sequence of random variables on "×T, com-

prises a reverse martingale under an appropriate size-bias change of measure.
More precisely, define

Z̃n�ω� t� = Z
�n�
∞ �t�n��ω�� ω ∈ "� t ∈ T�(31)

Also define a probability measure ��h�dω × dt� on �"�� × ��T�� by the
disintegration formula,

��h�dω× dt� = Pt�h�dω�λ�dt��(32)

where Pt�h�dω� � P�dω� on �n with

dPt�h� ·�
dP

∣∣∣∣∣
�n

�ω� =
n∏

i=0
Wt�i�h��ω��(33)

Equivalently, for each bounded measurable function f on " × T one has

E
[∫

"×T
f�ω� t���h�dω× dt���n

]
= E

[∫
T
f�ω� t�λn�h�dt�

]
�(34)

Proposition 2.3. One has

E��h� ·�Z̃h
n = EPZ

h
∞�

Proof. One has using (27) that

E��h�·�Z̃
h
n = EP

[∫
T
Z̃h

n�ω� t�λ∞�h�dt�
]

= EP

[
EP

{∫
T
Z̃h

∞�t�n�λ∞�h�dt�
∣∣∣�n

}]
(35)

= EP

[ ∫
T
EPZ̃

h
∞�t�n�λn�h�dt�

]
= EPZ

h
∞EPλn�h�T� = EPZ

h
∞�(36)

where we used independence of Z�n�h
∞ with �n. This completes the proof. ✷

Corollary 2.1. For each �̃n ×��T�-measurable, bounded function G̃ one
has

E��h�·��G̃Z̃h
n	 = E��h�·��G̃Z̃h

n+k	� k = 1�2� � � � �

Theorem 2.3. The sequence of random variables �Z̃h
n
 n = 0�1�2� � � � on

" × T is a reverse martingale with respect to �̃n ×��T�.
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Proof. First note that

Z̃n+1�t�ω� = Z∞�t�n+ 1� = lim
N→∞

∑
�u�=N

N∏
i=1

W t�n+1!∗ u1�����ui!b
−N

is �̃n+1 ×�-measurable. We must check that

E��h�·��Z̃h
n��̃n+1 ×��T�	 = Z̃h

n+1�

For this let G̃ be an arbitrary bounded �̃n+1 ×�-measurable function. Then

E��h�·�G̃Z̃h
n =EP

∫
T
G̃�ω� t�Z̃h

n�ω� t�λ∞�h�dt�

=EP

[
EP

{∫
T
G̃�ω� t�Z̃h

n�ω� t�λ∞�h�dt�
∣∣∣�̃n

}]
=EP

[∫
T
EP�G̃Z̃h

n	λn�h�dt�
]

=EP�G̃Z̃h
n	EPλn�h�T�

=EPG̃Z̃h
n = EPG̃Z̃h

n+1�

(37)

where we apply Corollary 2.1 in the last line. This completes the proof. ✷

Corollary 2.2. One has

Z̃h
n → EpZ

h
∞

��h� ·�-a.s. and in L1���h� ·���

Proof. In view of Theorem 2.3 there is a random variable Y such that
Z̃h

n → Y��h� ·�-a.s. and in L1���h� ·��. Moreover,
Y = E�Z̃h

1 ��̃∞ ×��T�	�
However, �̃∞ × ��T� is trivial with respect to ��h� ·�. Since �Wv
 v ∈ T are
independent under ��h� ·�� see Waymire and Williams (1996), it follows that
Y is ��h� ·�-a.s. constant. Thus

Z̃h
n → E��h�·�Z̃

h
1 = EPZ

h
∞� n → ∞�

��h� ·�-a.s. and in L1���h� ·��. ✷

Theorem 2.4. Assume that χ′
b�1−� < 0 and χb�h� < 0. Take

h ∈ �0�1	 ∪ �H−
c �H

+
c ��

Then

Mn�h�
bnχb�h� → λ∞�h�T�1�λ∞�T� > 0	EZh

∞

in probability as n → ∞. Moreover the limit is finite and positive with positive
probability.
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Proof. First note that∣∣∣∣∣Mn�h�
bnχb�h� − λ∞�h�T�EZh

∞

∣∣∣∣∣
≤
∣∣∣∣∣Mn�h�
bnχb�h� − λn�h�T�EZh

∞

∣∣∣∣∣+
∣∣∣λn�h�T� − λ∞�h�T�

∣∣∣EZh
∞�

The second term is P-a.s. o�1� by the martingale convergence theorem, and
thus converges to 0 in probability as well. We will show that the first term is
o�1� in L1�P� and thus in P-probability. In view of Proposition 2.1, one has∣∣∣∣∣Mn�h�

bnχb�h� − λ∞�h�T�EPZ
h
∞

∣∣∣∣∣ ≤ EP

∫
T

∣∣Z̃h
n −EPZ

h
∞
∣∣λn�h�dt�

=
∫
T
EP

∣∣Z̃h
n −EPZ

h
∞
∣∣EPλn�h�dt�

=
∫
T
EP

∣∣Z̃h
n −EPZ

h
∞
∣∣EPλ∞�h�dt�(38)

= EP

∫
T

∣∣Z̃h
n −EPZ

h
∞
∣∣λ∞�h�dt�

= E��h�·�
∣∣Z̃h

n −EPZ
h
∞
∣∣

Now simply use the L1 convergence property of reverse martingales. ✷

Remark. One may note that the conditions are weaker than previously
required in Holley and Waymire.
Theorem 2.2 may now be obtained by an application of the above results as

follows.

Proof of Theorem 2.2. First note that

logb Mn�h�
logb�bn� = 1

n
log

(
Mn�h�
bnχb�h�

)
+ χb�h��

Thus, in view of Theorem 2.4, one may obtain χb�h� as a limit on a set of
positive probability for a countable dense set of h ∈ �0�1	 ∪ �H−

c �H
+
c �� Since

χb�h� exists for h in a neighborhood of the origin one may check that H−
c < 0

and the distribution of logW is uniquely determined by its moment generating
function in a neighborhood of the origin [cf. Billingsley (1986), page 408]. ✷

3. Laws of large numbers. The main result of this section is the follow-
ing Theorem 3.1, which provides a strengthening of Theorem 2.4 to almost
sure convergence. It is the key ingredient in the derivation of the a.s. conver-
gence of both τ̂n�h� and τ̃n�h�.
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Theorem 3.1. For h ∈ �0�1	 ∪ �H−
c �H

+
c ��

Mn�h�
bnχb�h� → λ∞�h�T�1�λ∞�T� > 0	Eλh

∞�T�
P-a.s. as n → ∞�

The proof of Theorem 3.1 is deferred until later in this section. Conver-
gence of the estimators τ̂n�h� and τ̃n�h� to the structure function χb�h� for h
inside the critical interval �H−

c �H
+
c � is provided in Corollaries 3.2, 3.3 and

3.4, respectively.

Corollary 3.1. For any h ∈ �0 ∪ �H−
c �H

+
c � with h �= 1�

P��λ∞�T� > 0	��λ∞�h�T� > 0	� = 0�

Corollary 3.2. For any h ∈ �0�1	∪�H−
c �H

+
c �, the following hold P-a.s. as

n → ∞ on the set �λ∞�T� > 0	 

�i� �logb Mn�h� − nχb�h�� → logb λ∞�h�T� + logb Eλh

∞�T�
and

�ii� τ̂n�h� → χb�h��

Corollary 3.3. On the set �λ∞�T� > 0	,
�τ̂n�h�
 h ∈ �0�1	 ∪ �H−

c �H
+
c � → �χb�h�
 h ∈ �0�1	 ∪ �H−

c �H
+
c �

P-a.s. as n → ∞.

Proof. The function τ̂n�h� = n−1 logb Mn�h� is a convex function of h,
which converges a.s. to the continuous convex function χb�h� on any countable
set of h ∈ �H−

c �H
+
c �� ✷

Corollary 3.4. On the set �λ∞�T� > 0	 one has P-a.s. that

�τ̃n�h�
 h ∈ �0�1	 ∪ �H−
c �H

+
c � → �χb�h�
 h ∈ �0�1	 ∪ �H−

c �H
+
c �

as n → ∞.

Proof. On the set �λ∞�T� > 0	�

bτ̃n�h� = Mn+1�h�
Mn�h�

= bχb�h� Mn+1�h�
b�n+1�χb�h�

(
Mn�h�
bnχb�h�

)−1
→ bχb�h��

P-a.s. for h ∈ �0�1	 ∪ �H−
c �H

+
c �. ✷

The following theorem provides a strengthening of Theorem 2.4, both prob-
abilistically and in scope. It shows that the form of the limiting behavior of
τ̂n�h� = n−1 logb Mn�h�, viewed as a function of h, is different outside the
set �0�1	 ∪ �H−

c �H
+
c �; that is, when the low frequency h-cascade λn�h�T� dies
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out a.s. with respect to P. It also makes clear that the interval �H−
c �H

+
c � is

a bona fide critical interval for estimation purposes. Weaker versions of this
appear in Lovejoy and Schertzer (1991), Holley and Waymire (1992), Collect
and Koukiou (1992), Franchi (1995) and Molchan (1996).

Theorem 3.2. Let

"χb�h� =


hχ′

b�H−
c �� if h ≤ H−

c < 0�

χb�h�� if h ∈ �H−
c �H

+
c � ∪ �0�1	�

hχ′
b�H+

c �� if h ≥ H−
c .

If H+
c < hc and H−

c < 0, with EWh1�W > 0	 < ∞ for some h < H−
c , then on

A = �λ∞�T� > 0	,
�τ̂n�h�
 h ∈ R → �"χb�h�
 h ∈ R

P-a.s. as n → ∞. If H−
c = 0 and H+

c < hc, then on A,

�τ̂n�h�
 h ≥ 0 → �"χb�h�
 h ≥ 0
P-a.s. as n → ∞.

Remark. The simulation results given in Section 5 strongly suggest that
the estimator τ̃n�h� = logb�Mn+1�h�/Mn�h�� converges to neither χb�h� nor
"χb�h� for h > H+

c and h < H−
c . This is partially explained by the following

Theorem 3.3, which gives a result complementary to those of Theorems 3.1
and 3.2 for h > H+

c ; analogous statements hold, of course, for h in an open
interval bounded above by H−

c . The proof of Theorem 3.3 is deferred until the
end of this section.

Theorem 3.3. For h ∈ �H+
c � hc�, P-a.s. as n → ∞,

Mn�h�
bnχb�h� → 0�

We now proceed to the proof of Theorem 3.1. It relies on a truncation argu-
ment and careful use of Chebyshev’s inequality. Similar methods are used
in Ossiander (2000) to show that the support sets (in T) of the collection of
h-cascades are disjoint a.s. P.

Proof of Theorem 3.1. For h = 1, the result holds trivially. For h = 0,
Mn�0�
bnχb�0� − λn�0�T�P�λ∞�T� > 0�

= ∑
�v�=n

�1�Z∞�v� > 0	 −P�λ∞�T� > 0�λn�0��n�v��
(39)

It is easy to check that the variance of the sum is P�λ∞�T� > 0�P�λ∞�T� =
0�b−nχb�0�� Since χb�0� > 0, the sum of these variances is finite. The result
follows from Proposition 2.2 in this case.
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For the remaining values of h the first step involves a truncation as follows.
Fix h ∈ �H−

c �H
+
c � and write

Mn�h�
bnχb�h� = ∑

�v�=n

Zh
∞�v�λn�h��n�v��(40)

as given by Proposition 2.1. Since χ′
b� h�1� < 0, we can choose ε > 0 small

enough to have both χb�h�1 + ε� < 0 and h�1 + ε� ∈ �H−
c �H

+
c �. Set α =

bχb�h�1+ε� < 1. Fix n > 1, and for �v� = n let

Z̃�v� = Z∞�v�1[Zh
∞�v�λn�h��n�v�� < αn/2�1+ε�]�(41)

We use this truncation and a conditional centering to decompose Mn�h�/
bnχb�h�. Write

Mn�h�
bnχb�h� −Eλh

∞�T� · λn�h�T�

= ∑
�v�=n

(
Zh

∞�v� − Z̃h�v�)λn�h��n�v��

+ ∑
�v�=n

�Z̃h�v� −E�Z̃h�v���n	�λn�h��n�v��

−
(
Eλh

∞�T� · λn�h�T� − ∑
�v�=n

E�Z̃h�v���n	λn�h��n�v��
)
�

(42)

We will show that each of the three terms on the right side of (42) converges
to 0 P-a.s. as n → ∞. This will then give

Mn�h�
bnχb�h� −Eλh

∞�T� · λn�h�T� → 0

P-a.s. as n → ∞. Since, by Proposition 2.2, λn�h�T� → λ∞�h�T� P-a.s. as
n → ∞, the asserted result is obtained. Let

An = ⋃
�v�=n

�Z∞�v� �= Z̃�v�	�(43)

The first term is treated as follows. Using subadditivity followed by the well-
known bound for nonnegative random variables, E�X1�X > a	� ≤ EX1+δa−δ

for a� δ > 0, one obtains

P�An� ≤
∑

�v�=n

P�Z∞�v� �= Z̃�v��

= bnP
(
Zh

∞�v0�λn�h��n�v0�� > αn/2�1+ε�
)

≤ bnE
[
Z

h�1+ε�
∞ �v0�λ1+ε

n �h��n�v0��α−n/2]
= bnEλ

h�1+ε�
∞ �T�bn�χb�h�1+ε�−1�α−n/2

=αn/2Eλ
h�1+ε�
∞ �T��

(44)



1548 M. OSSIANDER AND E. C. WAYMIRE

Theorem 2.1 gives Eλ
h�1+ε�
∞ �T� < ∞. Since α < 1,

∑
n P�An� < ∞, so that

P�An i�o�� = 0. Thus, as n → ∞, one has, P-a.s.,∑
�v�=n

�Zh
∞�v� − Z̃h�v��λn�h��n�v�� → 0�(45)

The third term in (42) is

Eλh
∞�T� · λn�h�T� − ∑

�v�=n

E�Z̃h�v���n	λn�h��n�v��

= ∑
�v�=n

�EZh
∞�v� −E�Z̃h�v���n	�λn�h��n�v��

= ∑
�v�=n

E
(
Zh

∞�v�1[Zh
∞�v�λn�h��n�v�� > αn/2�1+ε�]∣∣�n

)
λn�h��n�v���

(46)

This difference can now be seen to be nonnegative. Using the conditional ver-
sion of the bound used previously in (44), (46) above is bounded as follows:∑

�v�=n

E
(
Z

h�1+ε�
∞ �v�λ1+ε

n �h��n�v����n

)
α−nε/2�1+ε�

= Eλ
h�1+ε�
∞ �T�α−nε/�2�1+ε�� ∑

�v�=n

λ1+ε
n �h��n�v��

= Eλ
h�1+ε�
∞ �T�αn�2+ε�/2�1+ε� ∑

�v�=n

λn�h�1+ ε���n�v��

= Eλ
h�1+ε�
∞ �T�αn�2+ε�/2�1+ε�λn�h�1+ ε��T��

(47)

Since Eλ
h�1+ε�
∞ �T� < ∞� λn�h�1+ε��T� → λ∞�h�1+ε��T� P-a.s. as n → ∞,

and α < 1, this sum converges to 0 P-a.s. as n → ∞.
Finally, let us consider the middle term of (42), namely the sum

Sn 
= ∑
�v�=n

(
Z̃h�v� −E

[
Z̃h�v�∣∣�n

])
λn�h��n�v���(48)

Notice that for �u� = �v� = n, with u �= v, one has that Z̃�u� and Z̃�v� are
conditionally independent and thus conditionally uncorrelated given �n. Thus

VarSn =ES2n = E�E�S2n��n�	
=E

∑
�v�=n

E��Z̃h�v� −E�Z̃h�v���n��2��n	λ2n�h��n�v��

≤E
∑

�v�=n

E�Z̃2h�v�λ2n�h��n�v����n	

≤αn/2�1+ε� ∑
�v�=n

E�Z̃h�v�λn�h��n�v��	

≤αn/2�1+ε�Eλh
∞�T��

(49)
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Since α < 1 and Eλh
∞�T� < ∞, it follows that ∑n VarSn < ∞, and hence

Sn → 0 P-a.s. as n → ∞. ✷

The following propositions are utilized in the proof of Theorem 3.2.

Proposition 3.1. If H+
c < ∞, then for h ≥ H+

c , on A = �λ∞�T� > 0	,

lim sup
n

τ̂n�h� ≤ h

H+
c

χb�H+
c −� P-a�s�(50)

and

lim sup
n

τ̂n�h� ≥ hχ′
b�H+

c −� P-a�s�(51)

Proof. Fix h ≥ H+
c and take r ∈ �0�H+

c �. For a� b > 0 and p ≥ 1� ap+bp ≤
�a+ b�p. Thus, taking h/r = p > 1,

Mn�h� = ∑
�v�=n

Zh
∞�v�λh

n��n�v�� ≤ Mh/r
n �r��(52)

From Corollary 3.2. one has P-a.s.,

lim sup
n→∞

τ̂n�h� ≤ h

r
χb�r��(53)

Let r ↑ H+
c to see that P-a.s.,

lim sup
n→∞

τ̂n�h� ≤ h

H+
c

χb�H+
c −��(54)

To derive the lower bound again take r ∈ �0�H+
c �. From Jensen’s inequality,

for any ε > 0,

Mn�h�
Mn�r�

=
∑

�v�=n�Z∞�v�λn��n�v���h−rλr
∞��n�v��

Mn�r�

≥
(∑

�v�=n�Z∞�v�λn��n�v����h−r�/�1+ε�λr
∞��n�v��

Mn�r�
)1+ε

=
(
Mn�r+ �h− r�/�1+ ε��

Mn�r�
)1+ε

(55)

If we require ε > �h − H+
c �/�H+

c − r�, so that r + �h− r�/�1+ ε� = �h + εr�/
�1+ ε� < H+

c , then we can apply Corollary 3.2 to see that P-a.s.,

lim inf
n→∞ τ̂n�h� ≥ �1+ ε�χb

(
h+ εr

1+ ε

)
− εχb�r��(56)

Letting ε ↓ �h − H+
c �/�H+

c − r�, the right-hand side becomes χb�H+
c −�+

�h − H+
c �/�H+

c − r��χb�H+
c −� − χb�r��. Now let r ↑ H+

c and use the defini-
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tion of H+
c to obtain

lim inf
n→∞ τ̂n�h� ≥ χb�H+

c −� + �h−H+
c �χ′

b�H+
c −� ≥ hχ′

b�H+
c −�� ✷(57)

Proposition 3.2. If −∞ < H−
c < 0, then for h ≤ H−

c ,

lim sup
n

τ̂n�h� ≤ h

H−
c

χb�H−
c +�(58)

and

lim inf
n

τ̂n�h� ≥ hχ′
b�H−

c +��(59)

Proof. The proof follows exactly the same pattern as the proof of
Proposition 3.1. ✷

Proof of Theorem 3.2. If H+
c < hc, then both χb�H+

c � and χ′
b�H+

c � are
defined and finite with 0 = χ′

b�H+
c
�1� = H+

c χ
′
b�H+

c � − χb�H+
c �. Thus the upper

and lower bounds of Proposition 3.1 are the same. If EWh1�W > 0	 < ∞
for some h < H−

c , then both χb�H−
c � and χ′

b�H−
c � are defined and finite with

0 = χ′
b�H−

c
�1� = H−

c χ
′
b�H−

c � − χb�H−
c �. Then the upper and lower bounds of

Propositions 3.1 and 3.2 are identical. ✷

It is easy to see that the above Theorem 3.1 may be generalized as follows.

Theorem 3.4. Suppose that �X�v�
 �v� = n�n ≥ 1 is a collection of iden-
tically distributed nonnegative random variables defined on �"�� �P� with
EX1+ε�v0� < ∞ for some ε > 0 and, for each n ≥ 1, �X�v�
 �v� = n is a
collection of independent random variables which is also independent of �n.
Then for h ∈ �0�1	 ∪ �H−

c �H
+
c �,∑

�v�=n

X�v�λn�h��n�v�� → λ∞�h�T�EX�v0�

P-a.s. as n → ∞.

Proof. In the proof of Theorem 3.1 replaceZh
∞�v� byX�v� and Z̃h�v� with

X̃�v� = X�v�1[X�v�λn�h��n�v�� ≤ αn/2�1+ε�](60)

for suitably small ε > 0. The proof is then identical. ✷

The proof of Theorem 3.3 relies on the following proposition.

Proposition 3.3. Assume χ′
b�1� > 0 and let �X�v�
 �v� = n�n ≥ 1 be a col-

lection of random variables defined on �"�� �P� with supnmax�v�=n E�X�v�� =
C < ∞ and, for each n ≥ 1� �X�v�
 �v� = n independent of �n. Then∑

�v�=n

X�v�λn��n�v�� → 0� P-a.s. as n → ∞�
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Proof. Fix r ∈ �0�1� so that χb�r� < 0. Then

E

∣∣∣∣ ∑
�v�=n

X�v�λn��n�v��
∣∣∣∣r ≤ E

∑
�v�=n

∣∣X�v�λn��n�v��
∣∣r

≤ max
�v�=n

E
∣∣X�v�∣∣rbnEλr

n��n�v0��

≤ Crbn�1−r�E
n∏
1

Wr
v0�i

= Crbnχb�r��

Since χb�r� < 0 the sum over n of this bound is finite. Applying Cheby-
shev’s inequality and the Borel–Cantelli lemma, we see that for any ε > 0�
P
(∣∣∑�v�=n X�v�λn��n�v��

∣∣ > ε i.o.
) = 0, and thus∑

�v�=n

X�v�λn��n�v�� → 0�

P-a.s. ✷

Proof of Theorem 3.3. For h ∈ �H+
c � hc� write

Mn�h�
bnχb�h� = ∑

�v�=n

Zh
∞�v�λn�h��n�v���

For h ∈ �H+
c � hc�� χ′

b� h�1� > 0 and �Zh
∞�v�
 �v� = n forms a collection of i.i.d.

nonnegative random variables independent of �n with EZh
∞�v� < ∞. From

Proposition 3.3 this converges to 0 P-a.s. ✷

4. Central limit theorems. Here we develop asymptotic error distribu-
tions for the estimators τ̂n�h� and τ̃n�h� for h within the scaled critical interval
�H−

c /2�H
+
c /2�. The central limit theorem for a normalized τ̂n�h� appears in

Corollary 4.4. The central limit theorem for the estimator τ̃n�h� is given in
Corollary 4.7.
For each n ≥ 1, let �Xn�v�
 �v� = n be a collection of independent random

variables which are also independent of �n. Define

Sn�h� = ∑
�v�=n

Xn�v�λn�h��n�v���(61)

Also let

Rn�h� = Sn�h�
�∑�v�=n λ

2
n�h��n�v���1/2

�(62)

Proposition 4.1. If EX2
n�v� = 1 and EXn�v� = 0 for each v, and if

sup
n
sup
�v�=n

E�Xn�v��2�1+δ� < ∞
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for some δ > 0, then for h ∈ (H−
c /2�H

+
c /2
)
,

lim
n→∞E�eizRn�h���n	 = 1�λ∞�T� = 0	 + e−�1/2�z21�λ∞�T� > 0	�(63)

with the convention that Rn�h� = 0 if λn�T� = 0.

Proof. Fix h ∈ (H−
c /2�H

+
c /2
)
, and choose δ > 0 sufficiently small that

h�1 + δ� ∈ (
H−

c /2�H
+
c /2
)
, supn sup�v�=n E�Xn�v��2�1+δ� < ∞, and χ′

b�2h
�1 + δ� < 0. Together with the convexity of the χb�2h, this last implies that
χb�2h�1+ δ�� − �1+ δ�χb�2h� < 0. For �v� = n, let

Yn�v� = Xn�v�λn�h��n�v��
�∑�u�=n λ

2
n�h��n�u���1/2 �(64)

Again we take Yn�v� = 0 if λn�T� = 0. Conditionally on �n, the Yn�v�’s are
independent, mean zero random variables. Furthermore,

E

[( ∑
�v�=n

Yn�v�
)2

��n

]
= ∑

�v�=n

E�Y2n�v���n	 = 1�λn�T > 0�	�(65)

andAn 
= �λn�T� > 0	 ↓ A = �λ∞�T� > 0	 a.s.P. We will show that Lindeberg’s
condition holds conditionally. The following is useful in this regard:∑

�v�=n

λr
n�h��n�v��=

∑
�v�=n

λrh
n ��n�v��E−rnWhbnr�h−1�

= ∑
�v�=n

λn�rh��n�v��E−rnWhEnWrhbn�1−r�

=λn�rh�T�bn�χb�rh�−rχb�h��

=λn�rh�T�bnχb�h�r��

(66)

Now

E

[ ∑
�v�=n

Y2n�v�1��Yn�v�� > ε	��n

]
≤ ∑

�v�=n

E
[
Y2n�v�1

[�Yn�v�� > ε
]∣∣�n

]
1�A	 + 1�An −A	

≤ ε−2δ ∑
�v�=n

E
[�Yn�v��2�1+δ�∣∣�n

]
1�A	 + 1�An −A	

≤ ε−2δ sup
�v�=n

E�Xn�v��2�1+δ�
∑

�v�=n λ
2�1+δ�
n �h��n�v��

�∑�v�=n λ
2�h��n�v���1+δ

1�A	 + 1�An −A	

≤ Cε−2δ λn�2h�1+ δ��T�
λ1+δ
n �2h�T� bn�χb�2h�1+δ��−�1+δ�χb�2h��1�A	 + 1�An −A	�

(67)



CASCADE ESTIMATION 1553

Both λn�2h�T� → λ∞�2h�T� and λn�2h�T� > 0P-a.s. on the set A. Since
1�An − A	 → 0P-a.s. and χb�2h�1 + δ�� − �1 + δ�χb�2h� < 0, the right-hand
side above converges to 0 P-a.s. as n → ∞. This gives P-a.s.,

lim
n

∑
�v�=n

E�Y2n�v�1��Yn�v�� > ε	��n� = 0�(68)

If we set σ2n�v� = E�Y2n�v���n� = E�Y2n�v�1�A	��n�, then we can follow the
usual proof of Lindeberg’s theorem [cf. Billingsley (1986), page 369] from here
to see that

�69� lim
n

E�eizRn�h���n	 = 1�Ac	 + e−�1/2�z21�A	� ✷

Corollary 4.1. For h ∈ �H−
c /2�H

+
c /2�,

lim
n

EeizRn�h� = P�λ∞�T� = 0� + e−�1/2�z2P�λ∞�T� > 0��(70)

For the proof, apply the dominated convergence theorem to the result given
by Proposition 4.1.

Corollary 4.2. For h ∈ �H−
c /2�H

+
c /2�,

Rn�h�
d→ηNh�(71)

where η and Nh are independent with η =d 1�λ∞�T� > 0	 and Nh has a
standard normal distribution.

Proof. Note that EeizηNh = P�λ∞�T� = 0� + e−�1/2�z2P�λ∞�T� > 0�� This
follows immediately from (70) using the continuity theorem for characteristic
functions. ✷

Remark. One may check that, as a stochastic process indexed by h� �Nh
is a Gaussian white noise. Moreover, Proposition 4.1 may be used to show that
the convergence in Corollary 4.2 is mixing in the sense of Rootzen (1976).

Corollary 4.3. For h ∈ �H−
c /2�H

+
c /2�,

��Mn�h�/bnχb�h�� −Eλh
∞�T� · λn�h�T��

�Var λh∞�T��1/2�∑λ2n�h��n�v���1/2
d→ηNh�(72)

where η and Nh are independent with η =d 1�λ∞�T� > 0	 and Nh has a
standard normal distribution.

Proof. Taking Xn�v� = �Zh
∞�v� − Eλh

∞�T���Var λh
∞�T��−1/2 in (61), this

follows from the previous corollary. ✷
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Corollary 4.4. For h ∈ �H−
c /2�H

+
c /2�,

nMn�h�
M
1/2
n �2h�

(
τ̂n�h� − χb�h� − n−1

(
log
b

Eλh
∞�T�

+ log
b

λn�h�T�
))

d→ ĉhηNh�

(73)

where η and Nh are independent with η =d 1�λ∞�T� > 0	�Nh has a standard

normal distribution, and ĉ2h = Var λh
∞�T�/�Eλh

∞�T� log2 b�.

Remark. Notice that this central limit theorem for τ̂n�h� has an unobserv-
able centering term: n−1�logb Eλh

∞�T� + logb λn�h�T��.

Proof. Start with Corollary 4.3, take logarithms and use a Taylor’s expan-
sion together with Theorem 3.1 [see Serfling (1980) for details] to see

λ∞�h�T�Eλh
∞�T�(74)

×
(
logb Mn�h� − nχb�h� − logb Eλh

∞�T� − logb λn�h�T�
�Var λh∞�T��1/2�∑λ2n�h��n�v���1/2

)
converges in distribution to ηNh/ log b. Using the change of variables for
λn�h� ·� given in (66), along with Proposition 2.2 and Theorem 3.1, the corollary
follows. ✷

Investigating the distributional limit of τ̃n�h� leads to a more satisfactory
denouement.

Corollary 4.5. For h ∈ �H−
c /2�H

+
c /2�,

�Mn�h�/bnχb�h�� − �Mn+1�h�/b�n+1�χb�h��
�∑λ2n�h��n�v���1/2

d→ chηNh�(75)

where η and Nh are independent with η =d 1�λ∞�T� > 0	, Nh has a standard
normal distribution, and ch = �Var �λh

∞�T� − b−χb�h�M1�h���1/2.

Proof. The numerator can be written as
∑

�v�=n Xn�v�λn�h��n�v��, where

Xn�v� = Zh
∞�v� −

b−1∑
i=0

Wh
v∗i

bEWh
Zh

∞�v ∗ i��(76)

For each n, these are i.i.d. random variables and independent of �n with
EXn�v� = 0 and VarXn�v� = c2h. ✷

The estimator τ̃n�h� of χb�h� is obtained by differencing the logarithms of
the hth sample moments at scales of resolution n + 1 and n; namely τ̃n�h� =
logb�Mn+1�h�/Mn�h��. In view of Corollary 3.4 we have asymptotic consis-
tency of this estimator for h ∈ �H−

c �H
+
c �. In the following two corollaries we
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develop an observable normalization of this estimator which yields, in turn,
a computable estimate of its variance and, thus, a central limit theorem for
computing error bars.
Define

D2n�h� = ∑
�v�=n

(
λh
∞��n�v��
Mn�h�

− 1
Mn+1�h�

b−1∑
i=0

λh
∞��n+1�v ∗ i��

)2
�(77)

Remark. Although we do not make use of it here, it should be mentioned
that this statistic D2n�h� has been shown to be an ordinary least squares vari-
ance estimator for sufficiently small h; see Troutman and Vecchia (1999).

Corollary 4.6. For h ∈ �H−
c /2�H

+
c /2�,

�Mn+1�h�/Mn�h��b−χb�h� − 1
Dn�h�

d→ηNh�(78)

where η and Nh are independent with η =d 1�λ∞�T� > 0	 and Nh has a
standard normal distribution.

Proof. Simply note that P-a.s.,∑
�v�=n

λ2n�h��n�v��b−nχb�h�2� = λn�2h�T� → λ∞�2h�T�(79)

and, letting

X̃n�v� = Zh
∞�v� − Mn�h�

Mn+1�h�
b−1∑
i=0

b−hWh
v∗iZ∞�v ∗ i��

one has upon expanding the square and repeatedly applying Theorem 3.1 that

M2
n�h�D2n�h�b−nχb�2h� = ∑

�v�=n

X̃2
n�v�λn�2h� δn�v��

→ c2hλ∞�2h�T��
(80)

so that

M2
n�h�D2n�h�

b2nχb�h�∑�v�=n λ
2
n�h��n�v��

→ c2h1�λ∞�T� > 0	�

Now rewrite

�Mn�h�/bnχb�h�� − �Mn+1�h�/b�n+1�χb�h��
ch

√∑
�v�=n λ

2
n�h��n�v��

= − Mn�h�Dn�h�
bnχb�h�ch

√∑
�v�=n λ

2
n�h��n�v��

( �Mn+1�h�/Mn�h��b−χb�h� − 1
Dn�h�

)
to get the asserted result. ✷
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The following corollary then gives a central limit theorem for a completely
observable statistic whose asymptotic distribution does not depend on the dis-
tributions of the unobservable generator variables W or the unknown distri-
bution of the cascade itself, λ∞�T�. The independence in h of the Nh’s noted
above indicates that the errors in this estimator of χb�h�, namely τ̃�h�, are
asymptotically independent.

Corollary 4.7. For h ∈ �H−
c /2�H

+
c /2�,

τ̃�h� − χb�h�
Dn�h�

d→�log b�−1ηNh�(81)

The proof follows by taking logarithms in the previous corollary and mak-
ing a Taylor approximation to get the distributional limit; for example, see
Serfling (1980).

5. Simulations and numerical illustrations. In this section we will
provide some MATLAB simulations to illustrate the estimation theory devel-
oped in the previous sections and its limitations.
For the first example we consider generators W which are uniformly dis-

tributed on [0, 2] with binary branching number b = 2. In this case it is simple
to check using recursions that the total mass Z∞ 
= λ∞�T� has the Gamma
distribution

P�Z∞ ∈ dx� = 4xe−2xdx� x ≥ 0�(82)

Thus an exact simulation of the limit cascade may be achieved using this
and Proposition 2.1. Figure 2(a) provides a sample realization of λ∞��n� =
λn��n�Z∞ at the resolution n = 13, that is, 213 = 8192 pixels �n. Also, in this
case one has

χ2�h� = 1− log2�1+ h�� h > −1�(83)

In particular, H−
c ≈ −0�6266� χ′

2�H−
c � ≈ −2�4210� H+

c ≈ 3�3111� χ′
2�H+

c � ≈
−0�3346� hc = ∞. A plot of χ̄2�h� is given in Figure 2(b). Sample values of
the estimator τ̃12�h� = log2�M13�h�/M12�h�� for H−

c /2 = −0�31133 < h <
1�6555 = H+

c /2 are given by an overlay of ×’s with error bars denoting a 95%
confidence interval. In Table 1 we have included the values marked by italics
for discussion below; however, these are not error bars predicted by theory
and are not plotted in Figure 2(b). There is a cutoff effect from the print code
which should be ignored outside the theoretically applicable range.
Now let us turn to the nature of the errors outside of this range. While

asymptotic consistency has been shown to hold outside this range of h-values
[i.e., for all h ∈ �H−

c �H
+
c �], the asymptotic distribution of the fluctuations

is unknown there. One may note from Table 1 that χ̄2�h� is in the interval
�τ̃12�h� − D12�h�ζ0�025/ log 2� τ̃12�h� + D12�h�ζ0�025/ log 2� for some values of h
in the range not covered by the present central limit theory; namely h = −0�5
and h = 2�5�3�5. However χ̄2�−0�75� is outside the suggested interval. In
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Fig. 2. Binary cascade simulation with generators uniformly distributed on [0, 2]. (a) Graph of
a single simulation of λ∞��� with ��� = 2−13; (b) Graph of χ̄2 and τ̃12 with error bars marked;
(c) Probability plot of the normalized values of τ̃12�2�5�; (d) Probability plot of the normalized
values of τ̃12�−0�75�.

the former cases the tails of the fluctuation law appear to be comparable
to Gaussian. However, deviations from normality are illustrated in the nor-
mal probability plot based on the sample of 500 realizations of the statistic
�τ̃12�h� − χ2�h�� log 2/D12�h� for h = 2�5� h = −0�75 in Figure 2(c) and 2(d),
respectively.

6. Conclusions. The results presented here provide a rigorous basis for
statistical inference based on the scaling exponents associated with intermit-
tent and highly variable phenomena modeled by random cascades. The values
H−

c and H+
c as defined are critical points for the survival of the h-cascades;

compare Proposition 2.2 and Theorems 2.4, 3.1 and 3.3. Criticality in this con-
text is analogous to the quenched versus annealed transitions in the study of
spin glass models [cf. Koukiou (1997)].
The results presented here permit a comparison of the two estimators of

χb�h�� τ̂�h� = n−1 logb Mn�h� and τ̃n�h� = logb�Mn+1�h�/Mn�h��. Within the
critical interval �0�1	 ∪ �H−

c �H
+
c � these are both strongly consistent estima-
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Table 1
Estimation at resolution n = 13

h �̃12�h� �̃12�h� ± D12�h��0�025/log 2 �̄2�h�
−0�75 2.6047 (2.3746, 2.8343) 2.8978
−0�50 1.9614 (1.8831, 2.0397) 2.000
−0�25 1.1414 (1.4008, 1.4274) 1.4150
0.25 0.6780 (0.6735, 0.6825) 0.6781
0.50 0.4149 (0.4078, 0.4220) 0.4150
0.75 0.1924 (0.1856, 0.1992) 0.1926
1.50 −0.3227 (−0.3625,−0.2829) −0.3219
2.50 −0.8293 (−1.0311,−0.6275) −0.8074
3.50 −1.2317 (−1.63753,−0.7881) −1.1221

tors. Outside this range τ̂n�h� estimates χ̄b�h�. Simulation results suggest
that outside this critical interval the estimator τ̃n�h� is converging to some
unknown function of h. Perhaps in practice a comparison of the two estima-
tors can be used to delineate the critical points H−

c and H+
c . However the

limiting behavior of τ̃n�h� for h outside the critical interval will need to be
better understood to make this a useful approach.
The fluctuations of τ̃n�h�, appropriately scaled, are approximately Gaussian

within the scaled critical zone �H−
c /2�H

+
c /2�. Outside this interval our proba-

bility plots suggest that either a nonnormal limit law holds, or that a different
scaling is appropriate. This is also indicated by Theorem 3.3. While this ext-
ends the range of speculation based on simulation offered by Troutman and
Vecchia (1999), we have also shown that this range is critical in a certain
important sense. Also, one may oberve from Jensen’s inequality for h >H+

c ≥ 1
that

Mn+1�h� = 1
bh−1

∑
�v�=n

b−1∑
i=0

Zh
v∗iW

h
v∗iλ

h
n��nv�

b

≥ 1
bh−1

∑
�v�=n

Zh
vλ

h
n��nv� = b1−hMn�h��

Thus, in particular,

τ̃n�h� ≥ 1− h�

with a similar estimate for h < H−
c . This bound on the estimator clearly

indicates that the growth of this statistic is constrained to be finite outside
the critical range as n → ∞.
Building on this approach to make further inferences ragarding the dis-

tribution of the underlying cascade generators relies on Laplace transform
inversion in one form or another. By restricting the class of generators to those
with a density whose Fourier transform is a simple analytic continuation of
the Laplace transform one may be able to obtain explicit density estimates.
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This is an interesting problem which does not seem to have been treated in
the literature.
The extension of the methods used here to the case of i.i.d. nonnegative

random vectors �W0�W1� � � � �Wb−1� of generators with E�1/b�∑b−1
i=0 Wi = 1

appears to be rather straightforward by the methods of this paper, although
we have not checked all of the details. Our calculations show that for such vec-
tor generators one should expect the same results in this correlated case with
χb�h� replaced by the transform ξb�h� = logEW̃h−�h−1�, where W̃ = Wi with
probability b−1. In particular, the statistical estimation is restricted to the dis-
tribution of W̃. Thus, in the absence of further symmetry assumptions, statis-
tics additional to the multiscaling exponents will be required for inference on
the joint distribution of the entries in the random vector �W0�W1� � � � �Wb−1�.
An alternative approach based on wavelets is given in a recent preprint by
Resnick, Gilbert, and Willinger (1999) for the special perfectly correlated case
in which b = 2, andW0 = 2−W1 andW0 is symmetrically distributed about 1.
Another estimation problem that comes up in this context is that of esti-

mating the support dimension of the random measure λ∞ from the pixel obser-
vations �λ∞��n�v��
 v ∈ �0�1� � � � � b − 1n� n ≥ 0. This problem can also be
addressed using extensions of the methods of this paper; see Ossiander and
Waymire (2000). Simultaneous estimation of these various parameters of the
cascade and its generators requires functional analogues of Theorem 3.4 and
Proposition 4.1. This suggests development of an understanding of the con-
vergence of multiplicative cascades along the lines seen in empirical process
theory; compare Dudley (1999).
Related problems arise when attempting to estimate the distribution of the

cascade generators when random binning is present; that is, the branching
or binning number b is a random parameter, selected independently at each
splitting. The foundations for a cascade model with random binning are given
in Burd and Waymire (2000).
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